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Plasmids are ubiquitous in the bacterial world. In many
microorganisms, plasmids have been implicated in important
aspects of bacterial physiology and contribute to horizontal
gene transfer. In contrast, knowledge on plasmids of the
enteropathogen Clostridioides difficile is limited, and there
appears to be no phenotypic consequence to carriage of many
of the identified plasmids. Emerging evidence suggests,
however, that plasmids are common in C. difficile and may
encode functions relevant to pathogenesis, such as
antimicrobial resistance and toxin production. Here, we review
our current knowledge about the abundance, functions and
clinical relevance of plasmids in C. difficile.
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Introduction

Clostridioides difficile 1s a Gram-positive spore-forming
enteropathogen and a major cause of infectious diarrhea
in healthcare and community settings [1]. C. difficile infec-
tion (CDI) depends on the production of one or more
toxins, which induce symptoms that range from mild diar-
rhea to potentially fatal colitis [2]. Different strains of C.
difficile can carry different toxin genes, but toxin gene
content by-and-large is conserved within phylogenetic
groups [3]. Different methods for typing of C. difficile are
used: whereas PCR ribotyping is currently the most com-
mon, whole genome sequencing (WGS)-based methods
such as multilocus sequence typing are becoming more
common [4]. In the 1980’s, plasmid typing was explored but
itwas quickly abandoned when it was realized thatnotall C.
difficile strains carry plasmids, which are defined here as self-
replicating extrachromosomal elements made up of double
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stranded DNA [5-7]. Nevertheless, it underscores that the
presence of plasmids in C. difficile has been known for over
30years. In 2006, the first fully sequenced genome (of strain
630) showed the presence of a single ~7 kb plasmid in this
strain, pCD630 [8]. With a worldwide increase in C. difficile
infections from 2005 and the availability of the whole-
genome sequence of strain 630, the need for advanced
molecular biological tools for the organism increased.
Instrumental in advancing the field was the development
of shuttle vectors that employed (i) the replicon from ~7 kb
plasmid pCD6 of strain C. difficile CD6, (i1) a ColE 1 replicon
to allow for replication in Escherichia coli, (iii) transfer
requirements (#7a@J gene and the origin of transfer, 0777)
and a (iv) selectable marker [9°°,10]. For many years, pCD6
and pCD630 remained the only C. difficile plasmids that had
been fully sequenced and/or characterized (Table 1).
Recently, however, the interest in C. difficile plasmids
has increased, with the demonstration of plasmids that
can be relevant to disease development and treatment
[11°°,12°°,13°°]. Here, we review our current knowledge
about the abundance, functions and clinical relevance of
plasmids in C. difficile.

Plasmids are common in C. difficile

Though the presence of plasmids in C. difficile has been
known for decades, there has been no unbiased investi-
gation of plasmid prevalence. Studies have either been
observational, had a strong sampling bias, or relied on
techniques that lead to the preferential detection of
specific types of plasmid. Moreover, there is no consensus
method to determine plasmid content (see Box 1). Nev-
ertheless, the overall picture emerging from these studies
is that plasmids are common in C. difficile.

Early evidence from pulse-field gel electrophoresis
(PFGE) suggests that 18-31% of C. difficile contained
plasmids, and outbreak isolates showed similar plas-
mid-patterns [14,15]. Several years later, Clabots and
coworkers reported even higher percentages, with 28—
67% of strains carrying plasmids [5-7]. In 2018, two
studies came out that determined the abundance of
specific plasmid-families in C. difficile. Using a PCR-based
approach targeting a conserved region of the modular
pCD630 plasmid family, which also includes the ~8 kb
pCD-ISS1 and ~12kb pCD-WTSI subfamilies, it was
shown that ~26% of strains from human and animal
sources carry a plasmid from this family [16°]. Similarly,
a significant portion (~5%) of human and animal strains
carry cryptic 42—47 kb plasmids of the pDLL3026 family,
which also includes pCDBI1 [17°]. In contrast to these
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Table 1

Features and accession numbers for selected C. difficile plasmids

Plasmid Size Description Accession number  References
(GenBank)

pCD6 6830 bp Part of the pCD-ECE6 family of plasmids; the replicon from this plasmid (repA/ AY350745.1 [9°°,10,18°°,28°]
ORF B) forms the basis of many genetic tools. Copy number: 4—10.

pCD630 7881 bp Plasmid from strain 630 and certain derivatives thereof. pCD630 is part of a AM180356.2 [8,16°,47]
modular family of plasmids that includes pCD-ISS1 and the pCD-WTSI
subfamilies. Conserved region encompasses cdp07-cdp10, and includes a
gene encoding a putative helicase.

pCD-METRO 7056 bp Plasmid capable of raising metronidazole MIC >2mg/L in diverse C. difficile Contained in [11°7]
strains. Copy number: 25—38. Replicon (ORF5 and flanking regions) not CAADHH010000000
sufficient to confer resistance.

pDLL3026 46192bp Likely non-conjugative cryptic plasmid, representing a family of 42—47 kb Contained in [17°,20]
plasmids that includes pCDBI1. Contains a RepB replication protein, and a GCA_004684655.1
putative parMRC partitioning locus as well as several phage related functions.

pHSJD-312 145122bp Putative conjugative toxin (tcdB, CDT)-carrying plasmid harboring a T4SS and MG973074.1 iRl
a quorum sensing system. Members have been identified in clade C-I, 2 and
4. Can be carried in strains harboring a chromosomal PalLoc as well.

pX18-498 31985bp Plasmid associated with reduced vancomycin susceptibility; also replicates in Contained in [12°°]
E. coli. Encodes cell wall related functions. Carriage increases fitness of C. SAMN14824866

difficile in a vancomycin-treated mouse model of CDI.

relatively abundant plasmids, a plasmid conferring met-
ronidazole resistance (pCD-METRO) was only detected
in <0.14% of all strains tested [11°°]. Taken together,
these studies suggest that different plasmid-families may
show differential prevalence.

Sequence-based approaches have also been used to iden-
tify plasmids in C. difficile. In the largest study on plasmid
prevalence and diversity to date, ~5400 short-read whole
genome sequences from GenBank were analyzed; of these,
13% were predicted to harbor extrachromosomal elements
thatare likely plasmids [18°°]. The study identified at least
6 putative families of plasmids (named pCD-ECE1 to
pCD-ECE®6) and suggested that pCD630- and pCD6-like

Box 1 Challenges in the identification of plasmids

plasmids account for ~50% of plasmids present in this
analysis (Figure 1a). Interestingly, it was noted that plas-
mids are more sparse in epidemic isolates, like those
belonging to PCR ribotype 027 (ST1/BI/NAPO1) [18°°].
Finally, long read sequencing of a collection of 419 clinical
C. difficile isolates indicated that 36% of strains contained at
least 1 plasmid [12°°]. Of note, 50% of the identified
plasmids were said not to fall into previously described
families, but whether they are single identifications or
belong to a novel group of plasmids is unclear.

Differences in the reported prevalence of plasmids may
be attributable to differences in methodology, sampling
bias and geographic distribution.

Traditionally, plasmids are identified by gel electrophoresis. Small plasmids may be separated by regular gel electrophoresis or pulse-field gel
electrophoresis; though the latter technique can reliably separate both large and small plasmids from high molecular weight chromosomal DNA
and definitively establishes the extrachromosomal nature of the plasmid, it is labor intensive and technically challenging. It has been used to
demonstrate the presence of plasmids in C. difficile total DNA [5,17°]. The extrachromosomal nature of plasmids can also be demonstrated by
performing a polymerase chain reaction on total DNA. Plasmids as defined here, due to their closed circular dsDNA nature, are resistant to
exonucleases such as PlasmidSafe DNase, whereas chromosomal DNA is sheared when isolated using common methodologies involving spin
columns. The technique has been used to demonstrate the extrachromosomal nature of the pCD-WTSI plasmid family and pCD-METRO in recent
experiments [11°°,16°]. The technique is limited by the fact that larger plasmids show shearing similar to C. difficile chromosomes. With the advent
of next generation sequencing, whole genome sequencing has become commonplace. The identification of plasmids from sequencing data is
challenging. First, homology based methods like PlasMapper [41] are biased towards plasmids from Gram-negatives and perform poorly on C.
difficile data due to limited availability of plasmids from Gram-positives in the reference database. Several graph-based computational methods
have been developed [42,43]. These reference-independent methods using short-read sequence data generally perform better on higher copy
number plasmids (as they are in part based on sequence coverage) and struggle to generate complete sequences for plasmids with repetitive
sequences. The technique was used to identify novel plasmid families of C. difficile [18°°]. Long read sequencing methods are expected to
facilitate the identification of complex and low copy number extrachromosomal elements when size-fractionation of the chromosomal DNA and
library preparation is taken into account, as routine methods may deplete smaller plasmids common to C. difficile. Combining short and long-read
sequence data has led to a significant expansion of putative plasmids in GenBank (BioProject PRUINA524299 and Supplemental Table 1) [19].
Irrespective of method, there may be significant overlap in gene content between (pro)phages, other mobile elements and plasmids [44-46],
making a definitive classification subject to experimental validation.
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Abundance and co-occurrence of plasmid families in C. difficile.

Data for this figure are from a previously published in silico analysis of
next generation sequencing data [18°]. (a) Relative abundance of
plasmid families. W=pCD-WTSI, 1-6 refers to pCD-ECE1 to pCD-
ECESB, respectively. S =singletons. The most abundant families, pCD-
WTSI1 and pCD8, include the plasmids pCD630 and pCDS6,
respectively. (b) Heatmap representing the relative abundance of
plasmids from specific families (on the y-axis) when they co-occur
with the family indicated on the x-axis. To generate the figure, data
was analyzed for strains containing >1 extrachromosomal element
and co-occurrence was scored. The resulting matrix was normalized
to the total number of plasmids in each column. A large fraction of co-
occurring plasmids due to a single family is indicated in red. For
example: of the plasmids co-occurring with pCD-ECE2 (column
labeled ‘2°), ~75% falls within the pCD-WTSI1 family (red square, top
row) and the remained in the pCD-ECE4 family (light red square, 5th
row). (c) Heatmap in which the relative contribution of each plasmid-
family in (b) is corrected for the relative abundance of the particular
plasmid family in the complete dataset. Because of the heterogeneity
of the group that likely belong to multiple compatibility groups,
singletons were omitted in this panel. In some cases (boxed regions) it
becomes clear that even though that the number of plasmid co-
occurrences are relative low (white or blue in panel (b)), due to the low
number of plasmids in these dataset, they are in fact overrepresented
(red colors in panel (c)).
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C. difficile plasmids range in size from ~2kb
to possibly 300 kb

The studies above suggest that most plasmids of C. difficile
are smaller than 50 kb, with a strong skew towards plas-
mids with a size <15kb. Indeed, this is largely mirrored
when the size distribution of 85 annotated C. difficile

plasmids is plotted (GenBank nucleotide database, taxid
1496, accessed on July 15, 2021) (Figure 2 and Table S1).

The smallest annotated plasmid present in the database is
pCD-ECE2 [18°°], at 1979 bp, and contains only 3 open
reading frames (ORFs), one of which is likely to be
involved in replication (see further below).

Seven of the larger plasmids (>100kb) present in the
database are derived from a single study that employed
long-read sequencing of C. difficile isolates from a pediat-
ric inflammatory bowel disease cohort [19]. This study
greatly contributed to the number of annotated plasmids,
with also multiple plasmids <100 kb (Table S1).

The largest element annotated as a plasmid comes from a
BI1 strain and exceeds 300 kb [20]. Plasmids of this size
are rare (Figure 2). It should be noted though that,
although it contains the ‘PLASMID’ identifier, the
authors explicitly indicate the possibility that this is in
fact a phage. Several other plasmids, including the
pDLL3026-family, also contain significant numbers of
gene encoding phage-like genes that may be remnants of
integrated phages [18°°,21]. As a result, discriminating
phage from plasmid is not trivial (see also Box 1).

It is informative to compare the size distribution of C.
difficile plasmids with an iz sifico analysis of plasmid sizes
across different phyla [22]. Though the number of plas-
mids for C. difficile is much lower, the overall size distri-
bution is highly similar (Figure 2).

Replicons of C. difficile plasmids

Plasmids replicate via rolling circle replication (RCR),
theta replication or strand displacement. These replica-
tion modes have been extensively reviewed here [23-25].
For clarity, we summarize a few key aspects. RCR is
unidirectional, asymmetrical (i.e. leading and lagging
strand synthesis are uncoupled) and is characterized by
the fact that the newly synthesized strand is covalently
attached to the parental strand during replication [25].
Theta replication derives its name from the shape of the
replication intermediate, involves melting of dsDNA
followed by coupled leading and lagging strand synthesis
and can be either unidirectional or bidirectional [25].
Strand displacement replication requires three plasmid-
encoded proteins for initiation and proceeds bidirection-
ally [25]. Though these mechanisms have not been
experimentally addressed in C. difficile, evidence suggest
that all mechanisms may occur. For instance, plasmid
families pCD-ECE2 and pCD-ECE3 are believed to
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Figure 2
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Size distribution of plasmids of C. difficile.

All GenBank entries annotated with ‘C. difficile’ and ‘plasmid’ with filter Genetic compartment ‘Plasmid’ (n=164 as per July 8, 2021) were
identified, redundant entries were merged on the basis of their descriptor and/or size (in base pairs) and non-C. difficile species were removed
(Table S1). The resulting list of 85 plasmids was binned into 10000 bp bins of which the upper limit is indicated in the graph. Size distributions for
non-transmissible, conjugative and mobilizable plasmids (derived from Ref. [22]) were overlaid. Well-known C. difficile plasmids pCD630 and pCD6

fall into the first bin.

replicate via RCR, based on homology of encoded pro-
teins to RCR proteins from other Firmicutes such as
Staphylococcus, Geobacillus and  Streprococcus  [18°°,24].
pCD-ECES might employ a theta-type mechanism, sim-
ilar to the E. co/i plasmid R6K, and pCD-ECE6 is
expected to replicate via an IncQ/strand displacement
mechanism, similar to the broad-host range plasmid
RSF1010 [18°%,23].

Despite these plausible mechanisms, little is known
about replicon function in C. difficile. There is no struc-
tural information or characterization of mechanisms that
determine replication initiation (including initiator pro-
teins and origins), control copy number or determine the
stability of plasmids carrying the replicon [26,27].

The best characterized replicon of C. difficile is the one
from plasmid pCD6 that is an integral part of a suite of
shuttle plasmids used for the manipulation of the species
[9°°,10]. The 6.8-kb pCD6 plasmid contains a 545-amino
acid replication initiation (Rep) protein, RepA, encoded
by ORF A. This protein shares similarity with RepA of
the Clostridium perfringens plasmid pIP404, but is signifi-
cantly larger [9°°]. Approximately 200 bp downstream of
the 7¢pA ORF is a region with 35-bp repeats (so called
iterons). A region encompassing 7¢pA and the iterons not

only sustains plasmid replication in C. difficile, but also in
Clostridium beijerinckii. A second open reading frame that
is generally present in the pCD6-derived region present
in shuttle plasmids, ORF B, is not essential for replication
[9°°,10]. Plasmids containing the pCD6 replicon are effi-
ciently maintained, with 92% of colonies retaining a
resistance associated with plasmid carriage after >32
generations in strain CD3 [9°°]. The copy number of
plasmids with a pCD6 replicon has been estimated at 4-
10 copies per chromosome equivalent, on the basis of a
quantitative PCR results [11°°,28°]. In contrast, the repli-
con from pCD-METRO sustains a copy number of 25-38
per chromosome equivalent. The 2-kb region of this
plasmid that allows for replication in C. difficile encom-
passes the gene encoding the 465-amino acid putative
replication factor, ORF5 (RepA), and its upstream and
downstream regions. In other replicons, Rep-adjacent
regions often contain the plasmid origin of replication
[23]. Tt is expected that investigation of uncharacterized
plasmid families will reveal novel replication functions, as
has been the case for the C. perfringens pCW3 plasmid,
which encodes a Rep protein without clear homology to
other Rep proteins [29].

Well-characterized plasmids such as pCD630, pCD6 and
pCD-METRO, appear to be efficiently maintained in the

Current Opinion in Microbiology 2022, 65:87-94
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absence of selection, consistent with their small size
(<10kb) and high copy number [9°°,11°°,16°,22]. Larger
plasmids, which may have copy numbers close to 1 chro-
mosome equivalent, rely on dedicated functions for stable
maintenance [17°,26]. Such plasmids frequently encode
post-segregational killing systems and/or partitioning sys-
tems, for example, which ensure that each daughter cell
inherits at least one copy of the plasmid and is therefore
not lost from the population [30]. Indeed, the 145-kb
pHSJD-312 plasmid appears to encode a partitioning
system [31]. Also the pDLL3026 family of plasmids
appears to encode a partitioning system, homologous to
the type II partitioning locus of R1 [17°]. ORF5 encodes a
putative ParM partitioning protein and ORF6 encodes a
protein that matches the characteristics of ParR proteins
from pCW3-like plasmids of C. perfringens. Finally, the
upstream of ORF5 contains 5 direct repeats that might
constitute a centromere like parC locus, that acts as a
recognition site for the ParR protein. Of note, no similar
parMRC systems were identified in closely related Clos-
tridia, suggesting that aspects of plasmid maintenance
systems may be unique to C. difficile.

Some C. difficile plasmids can co-occur in the
same cell

Plasmid incompatibility refers to the inability of two
coresident plasmids to be stably inherited by daughter
cells in the absence of specific selection and is generally
dependent on features of the replicon, such as the origin
and/or partitioning system [32]. For C. perfringens, there is
limited evidence for plasmid incompatibility [33], but at
the same time there is also evidence that the same or
highly related replicons can coexist [34]. For C. difficile, a
similar situation may apply, where some replicons may be
compatible whereas others may not be.

PFGE experiments suggest that up to 6 plasmids can co-
exist in the same strain [7,14,15] and similar numbers are
reported on the basis of sequence analyses [18°°]. Indeed,
in laboratory experiments pCD6-replicon and pCD630-
replicon plasmids can co-exist in the same cell [9°°,16°].
Similarly, it was observed that pDLL3026-family plas-
mids are compatible with pCD6-family plasmids [17°].
Nevertheless, transfer efficiency of a pCD6-replicon plas-
mid into strain CD6 is lower than to a CD6-derivative
cured of the native pCD6 plasmid, suggesting that the
presence of pCD6 negatively effects transfer or mainte-
nance of a vector with a similar replicon [9°°].

On the basis of an iz sifico analysis, it can be predicted
which family plasmids may be compatible (Figure 1b and
¢; see legend for details). For instance, pCD-W'T'SI family
plasmids (including pCD630) co-occur with all other
plasmid families investigated (Figure 1b). When cor-
rected for plasmid prevalence, it is also evident that some
plasmid families show clear incompatibility (Figure 1c).
For instance, pCD-ECE4 co-occurs with most other
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families, but not with other pCD-ECE4 family plasmids;
and pCD-ECET1 does not co-occur with plasmids from the
pCD-ECE1, —2 or —3 families. Compatibility of these
and other plasmid families awaits experimental
confirmation.

C. difficile plasmids are involved in
antimicrobial resistance

Many C. difficile plasmids are cryptic, that is, there are no
phenotypic consequences to plasmid carriage [16°,17°],
but in other Gram-positive pathogens plasmids are fre-
quently associated with antimicrobial resistance (AMR)
[34,35]. Well known examples include the aminoglyco-
side resistance plasmid pUB110 of Staphylococcus aureus
and plasmid pCW?3, that confers tetracycline resistance in
C. perfringens [34,35]. Recent evidence suggests that plas-
mids are also involved in AMR in (. difficile. Sequence
analysis has revealed the presence of putative AMR
determinants such as 23S rRNA methyltransferase ¢f7C
(conferring resistance to phenicols and linezolid), the 3'-
aminoglycoside phosphotransferase @p4A3, the aminogly-
coside-2"-adenylyltransferase aad(2"), and genes encod-
ing a transporter from the small multidrug resistance
(SMR) family on plasmids, but their functional relevance
has not been demonstrated [18°°,36]. In contrast, a clear
role was demonstrated for C. difficile plasmids in tolerance
and resistance to two clinically relevant antimicrobials:
the nitroimidazole prodrug metronidazole and the cell-
wall synthesis inhibitor vancomycin [11°°,12°°].

The 7-kb plasmid pCD-METRO was identified as the
main difference between longitudinally collected strains
from a single patient that showed a change in metronida-
zole resistance [11°°]. When introduced in a laboratory
strain, the plasmid leads to stable metronidazole resis-
tance (minimal inhibitory concentration (MIC) >2 mg/L.).
It has been shown that detection of the plasmid by PCR
can reliably identify metronidazole-resistant strains of
diverse ribotypes [11°°]. The mechanism by which the
plasmid confers resistance is unknown, but it requires
other regions than the replicon, as a shuttle plasmid
containing just the pCD-METRO replicon does not
confer resistance [11°°]. It has been reported that carriage
of pCD-METRO in PCR ribotype 010 (ST15) strains is
associated with a single nucleotide polymorphism in the
heme responsive gene /AsmA [37].

In another study, the authors showed that plasmids are
more common in C. difficile strains isolated from patients
that failed vancomycin treatment for CDI [12°°]. A 32-kb
plasmid, pX18-498, was isolated and shown to raise the
MIC for vancomycin 4—8-fold through a mechanism that
may involve an N-acetylmuramoyl-L-alanine amidase.
Though the MICs remained below the cut-off for resis-
tance (<2 mg/L.), it was shown that a strain carrying the
plasmid showed increased virulence in a preclinical van-
comycin-treated mouse model compared to an isogenic
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plasmid-less comparator, as judged by for instance colo-
nization, toxin production and inflammation of host tissue

[12°°].

Together, these studies provide compelling evidence for
a role of plasmids in C. difficile AMR.

C. difficile plasmids can contain toxin genes
Several Gram-positive bacteria contain virulence plas-
mids, that are conjugative and carry toxin genes [34].
In C. difficile, the genes encoding the large clostridial
toxins (TcdA and TcdB) and binary toxin (CDT) are
generally carried on the chromosome [1,2,38]. Neverthe-
less, in 2018, sequence analysis suggested the existence of
toxin-carrying plasmids, such as the 145-kb plasmid
pHSJD-312, in the C-I clade of C. difficile strains [31].
The C-I clade (that includes ST181) predates the emer-
gence of the typical healthcare-associated infection clades
of C. difficile by millions of years, and is noted for diver-
gent toxin gene architecture and unique gene clusters
[39]. Plasmid pHSJD-312 carries a #dB+ monotoxin
pathogenicity locus and a complete binary toxin locus.
Of note, the TcdB protein encoded by this plasmid
clusters with variant TcdB sequences from clade 2
(including the epidemic PCR ribotype 027 strain
R20291), but shows substantial differences in its glyco-
syltransferase domain [31]. Later, the finding of putative
plasmid-located toxin genes was extended to strains of
clade 2 and 4 [13°°]. The presence of #dB on a putatively
transmissible plasmid does not preclude chromosomal
carriage of the large clostridial toxins and may have
significant implications, as the plasmid-encoded toxins
escape routine diagnostic procedures [31].

The large size of these plasmids, and the fact that they
carry additional putative virulence factors as well as
putative conjugation genes including a type IV secretion
system (T'4SS; sce further below), suggests that they
should be considered legitimate virulence plasmids
[26,27,34].

Transfer of C. difficile plasmids

Plasmids can be conjugative, mobilizable or non-mobile;
the majority of plasmids in Firmicutes are believed to be
non-mobile (Figure 2) [22,40]. Plasmid transfer allows
cells to acquire new genetic information, which may
provide a fitness advantage. Multiple lines of evidence
suggest that transfer of plasmids to and from C. difficile can
occur.

Most conjugative plasmids of Gram-positive bacteria are
characterized by the presence of a 'T'4SS, that forms the
channel through which the DNA is transferred from
donor to recipient cell [22,40]. To date, the only C. difficile
plasmids postulated to be conjugative are the ~145-kb

plasmids carrying z4B and binary toxin [13°°,31], as these

contain a T4SS and several other proteins associated with
conjugation, but this awaits experimental verification.

Mobilizable plasmids lack a T4SS, but most encode other
functions related to mobilization, such as relaxases. The
only cis-acting element required for mobilization is an
origin of transfer (07:7) as long as the other functions are
provided in trans by a compatible mobile genetic element
[24]. For C. difficile, mobilization genes (including
relaxases) have been identified on some plasmids (e.g.
pCD-METRO and pCD-SMR) [11°°,18°°], but not others
(e.g. pDLL3026) [17°].

The majority of plasmids from Firmicutes is believed to
be non-mobilizable [22], and this may hold true for C.
difficile where many plasmids lack obvious transfer-related
genes. Yet, high sequence conservation has been
observed between plasmids isolated from phylogeneti-
cally distinct strains and acquisition of plasmids has been
documented [11°%,17°]. This suggests that horizontal
gene transfer might either occur via an alternative mech-
anism (e.g. competence) or through an uncharacterized
conjugation/transfer system.

Notably, the host range and natural reservoirs of C. difficile
plasmids are unknown. Considering their prevalence
among C. difficile strains but paucity outside this species,
it is likely that pCD6-like and pCD630-like plasmids are
native to C. difficile. Some plasmids may originate from
other Firmicutes, based on homology of the encoded
proteins [18°°]. It is interesting that 7 out of 25 plasmids
isolated from strains of vancomycin non-responders were
capable of replicating in the Gram-negative E. co/i [12°°].
Though this does not mean that this organism is a natural
host for plasmids such as pX18-498; it clearly shows that
some of the plasmids are broad-host range and reservoirs
might include gut-resident Enterobacteriaceae. Plasmids
that do not appear to be part of a larger family, so called
singletons [18°°] or uniquely identified plasmids [12°°],
may represent ‘accidental’ transfers. Rare transfer events
may be instigated by, for instance, treatment with anti-
microbials; acquisition of pCD-METRO and pX18-498
has been linked to metronidazole and vancomycin treat-
ment, respectively [11°°].

Opverall, the observation of both broad and narrow host-
range plasmids in C. difficile is consistent with observa-
tions in other Firmicutes [35].

Conclusions

Current evidence suggests that plasmids are common in
C. difficile and may encode functions relevant to patho-
genesis and treatment. Nevertheless, plasmids are under-
studied and frequently not annotated in whole genome
sequences, partially due to lack of relevant reference
sequences. The increased implementation of long-read
sequencing technologies is expected to enhance the
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identification of extrachromosomal elements, including
plasmids, and will facilitate the functional characteriza-
tion of plasmids of C. difficile. In particular, characteriza-
tion of the mechanisms of replication and a systematic
investigation of the function of plasmid-located genes
using /7 vive and iz vitro approaches is necessary. In order
to understand the role of C. difficile plasmids in horizontal
gene transfer, interspecies and intraspecies transfer of
plasmids will need to be investigated.
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