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Chapter 8

Voltage staircase

8.1 Introduction

A single-mode weak link between superconductors supports a two-level
system with a spacing that is adjustable via the superconducting phase
difference [263, 264]. Because Andreev reflection is at the origin of the
phase sensitivity, the levels are called Andreev levels. Although their
existence was implicit in early studies of the Josephson effect [265], the
characteristic dependence ∝

√
1− τ sin2(φ/2) of the level spacing on the

phase φ, with τ the transmission probability, was only identified [266] with
the advent of nanostructures. The present interest in quantum informa-
tion processing is driving theoretical [267, 268] and experimental [269–272]
studies of Andreev levels as qubits.

To assess the coherence of the qubit one would use ac microwave
radiation of the two-level system and perform a time-resolved detection of
the Rabi oscillations of the wave function [273]. In this work we will show
how a dc current Idc and measurement of the time-averaged voltage V̄
can be used to detect Rabi oscillations of an Andreev qubit: The staircase
dependence of V̄ on Idc counts the number of Rabi oscillations per 2π
increment of φ.

Our study is motivated by Choi, Calzona, and Trauzettel’s report [55]
of such a remarkable effect (dubbed “dc Shapiro steps”) in a Majorana
qubit — which is the building block of a topological quantum computer.
As we will see, neither the unique topological properties of a Majorana
qubit (its non-Abelian braiding and fusion rules) nor its specific symme-
try class (class D, with broken time-reversal and spin-rotation symmetry)
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Figure 8.1. Current-biased, resistively-shunted Josephson junction, formed out
of two superconductors (phases φL and φR) separated by an insulator containing
a quantum dot (tunnel rates ΓL and ΓR from the left and from the right). The
superconducting phases become time dependent when a voltage difference V
develops in response to a dc current Idc.

are needed, a similar phenomenology can be found in a non-topological
Andreev qubit with preserved symmetries (class CI).

The outline of this paper is as follows. In the next section 8.2 we
present the model of the weak link that we will consider: a quantum
dot connecting two superconductors with a tunnel rate Γ small compared
to the superconducting gap ∆0. Such a Josephson junction has been
extensively studied [274–276] in the regime where Coulomb charging and
the Kondo effect govern the charge transfer [277–279]. We will assume the
charging energy is small and treat the quasiparticles as noninteracting.

The dynamics of a current-biased, resistively shunted quantum-dot
Josephson junction is studied in Secs. 8.3 and 8.4. The voltage staircase
is shown in Fig. 8.3 and the one-to-one relationship with the number of
Rabi oscillations is in Fig. 8.6. In the concluding section 7.5 we will explain
why the substitution of the quantum dot by a quantum point contact will
remove the voltage staircase.

8.2 Andreev level Hamiltonian

We consider the Josephson junction shown in Fig. 8.1, consisting of a
quantum dot in the normal state (N) coupled via a tunnel barrier to
superconductors (S) at the left and right, with pair potentials ∆0e

iφL and
∆0e

iφR . We focus on the weakly coupled regime, when the tunnel rates
ΓL and ΓR through the barrier are small compared to ∆0.

We assume that the fully isolated quantum dot has a single electronic
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energy level E0 within an energy range Γ = ΓL+ΓR from the Fermi energy
µ. The normal-state conductance GN is then given by the Breit-Wigner
formula

GN = 2e2

h
τBW, τBW = ΓLΓR

(E0 − µ)2 + 1
4Γ2 . (8.1)

Coupling of electrons and holes by Andreev reflection from the supercon-
ductor produces a pair of Andreev levels at energies ±EA(φ), dependent
on the phase difference φ = φL − φR between the left and right supercon-
ductors.

A simplifying assumption of our analysis is that the Coulomb charging
energy U is small compared to Γ and can be neglected. If U is larger than Γ
but still smaller than ∆0, the main effect of the charging energy is a shift of
the energy level of the dot, E0 7→ E0 + U/2. Provided E0 > 0 the ground
state remains a spin-singlet [280], and we do not expect a qualitative
change in our results. If U becomes larger than ∆0 the supercurrent is
reduced by a factor Γ/∆0 because tunneling of a Cooper pair into the
quantum dot is suppressed [277–279].

To describe the non-equilibrium dynamics of the junction we seek the
effective low-energy Hamiltonian of time-dependent Andreev levels. This
requires information not only on the eigenvalues but also on the eigen-
functions. In subsections 8.2.1 and 8.2.2 we summarize results from Refs.
[280–283] for the time-independent situation, which we need as input for
the dynamical study starting from subsection 8.2.3.

8.2.1 Andreev levels

For arbitrary ratio of Γ and ∆0 the energies of the Andreev levels are
equal to the two real solutions ±EA of the equation [281, 282]

Ω(E, φ) + ΓE2
√

∆2
0 − E2 = 0, (8.2)

with
Ω(E, φ) = (∆2

0 − E2)
[
E2 − (E0 − µ)2 − 1

4Γ2]
+ ∆2

0ΓLΓR sin2(φ/2). (8.3)
In the weak-coupling regime Γ � ∆0, assuming also |E0 − µ| � ∆0, this
reduces to

EA = ∆eff

√
1− τBW sin2(φ/2),

∆eff =
√

(E0 − µ)2 + 1
4Γ2,

(8.4)
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Figure 8.2. Andreev levels ±EA(φ) according to the full expression (8.2) (solid
curve) and in the weak-coupling approximation (8.4) (dashed curve, parameters
E0 = 0.045, µ = 0, ΓL = ΓR = 0.115, all in units of ∆0).

no longer dependent on ∆0. The two Andreev levels have an avoided
crossing at φ = π, separated by an energy

δE =
√

4(E0 − µ)2 + (ΓL − ΓR)2, (8.5)

see Fig. 8.2.
The equilibrium supercurrent, at temperatures kBT � Γ, is given by

Ieq(φ) = −2e
~
dEA
dφ

= eΓLΓR sinφ
2~EA(φ) , (8.6)

with critical current (maximal supercurrent)

Ic = e

~

(√
(E0 − µ)2 + 1

4Γ2 −
√

(E0 − µ)2 + 1
4Γ2 − ΓLΓR

)
. (8.7)

There is no contribution from the continuous spectrum in the weak-coupling
regime [281].

8.2.2 Effective Hamiltonian: time-independent phase

For time-independent phases the effective low-energy Hamiltonian in the
weak-coupling regime Γ � ∆0 follows from second-order perturbation
theory [280, 283],

H = − 1
2
(
eiφLΓL + eiφRΓR

)
a†↑a
†
↓ + H.c. + (E0 − µ)(a†↑a↑ + a†↓a↓). (8.8)



8.2 Andreev level Hamiltonian 177

Here a↑ and a↓ are the fermionic annihilation operators of a spin-up or
spin-down electron in the quantum dot.

The corresponding Bogoliubov-De Gennes (BdG) Hamiltonian H is a
4× 4 matrix contracted with the spinors Ψ = (a↑,−a†↓, a↓,−a

†
↑) and Ψ†,

H = 1
2Ψ† · H ·Ψ + E0 − µ. (8.9)

It is block-diagonal, so we only need to consider one 2× 2 block, given by

H =
(

E0 − µ 1
2e
iφLΓL + 1

2e
iφRΓR

1
2e
−iφLΓL + 1

2e
−iφRΓR µ− E0

)
. (8.10)

One readily checks that the eigenvalues ±EA of H are given by Eq. (8.4).

8.2.3 Effective Hamiltonian: time-dependent phase

When the left and right superconductors are at different voltages ±V/2,
the superconducting phase becomes time dependent. We choose a gauge
such that φL(t) = φ(t)/2, φR(t) = −φ(t)/2, evolving in time according to
the Josephson relation

φ̇ ≡ dφ/dt = (2e/~)V. (8.11)
The voltage bias imposes an electrical potential on the quantum dot, which
shifts µ by an amount 1

2γeV with γ = (ΓL − ΓR)/Γ. The time dependent
BdG Hamiltonian then becomes

H(t) =
(

E0 − µ− 1
4~γφ̇(t) 1

2e
iφ(t)/2ΓL + 1

2e
−iφ(t)/2ΓR

1
2e
−iφ(t)/2ΓL + 1

2e
iφ(t)/2ΓR µ− E0 + 1

4~γφ̇(t)

)
=
[
E0 − µ− 1

4~γφ̇(t)
]
σz + 1

2Γ
[
σx cos 1

2φ(t)− γσy sin 1
2φ(t)

]
. (8.12)

The Pauli matrices act on the electron-hole degree of freedom. The cor-
responding current operator is given by

I(t) = 2e
~
∂

∂φ
H(t) = −eΓ2~

[
σx sin 1

2φ(t) + γσy cos 1
2φ(t)

]
. (8.13)

Notice that the Hamiltonian (8.12) depends both on φ(t) and on φ̇(t),
unless ΓL = ΓR. It is possible to remove the φ̇-dependence by a time-
dependent unitary transformation 1, but since this does not simplify our
subsequent calculations we will keep the form (8.12).

1The time-dependent unitary transformation Ψ 7→ U†Ψ, H 7→ U†HU − i~U†dU/dt
with U(t) = eiσzγφ(t)/4 removes the φ̇-term from the Hamiltonian (8.12). The γ-
parameter then appears in the superconducting phases, φL = 1

2 (1 − γ)φ, φR =
− 1

2 (1 + γ)φ.
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8.3 Voltage staircase
As shown in Fig. 8.1, a time-independent current bias Idc is driven par-
tially through the Josephson junction, as a supercurrent IS(t), and par-
tially through a parallel resistor R as a normal current IN(t) = V (t)/R.
Substitution of the Josephson relation (8.11) gives the differential equation

dφ(t)/dt = (2eR/~)[Idc − IS(t)]. (8.14)

Here we neglect the junction capacitance (overdamped regime of a resis-
tively shunted Josephson junction) [284]. We work in the low-temperature
regime, kBT � ∆0, so that we may ignore thermal fluctuations of the
phase due to the voltage noise over the external resistance [285].

The supercurrent is obtained from the expectation value

IS(t) = 〈Ψ(t)|I(t)|Ψ(t)〉, (8.15)

where the current operator is given by Eq. (8.13) and the wave function
evolves according to the Schrödinger equation

i~
d

dt
|Ψ(t)〉 = H(t)|Ψ(t)〉. (8.16)

As initial condition we take φ(0) = 0 and |Ψ(0)〉 the eigenstate of the
Andreev level at −EA for φ = 0. The dc current Idc is increased slowly
from zero to some maximal value and then slowly decreased back to zero.
The I–V characteristic is obtained by averaging V (t) over a moving time
window in which Idc is approximately constant.

2

Results of this numerical integration are shown in Fig. 8.3. We observe
a staircase dependence of V̄ on Idc. The nonzero voltage appears at
the critical current (8.7) for the up-sweep and disappears at a slightly
lower current for the down sweep. (A similar difference between switching
current and retrapping current was found for the Majorana qubit [286].)
The voltage steps at Idc > Ic also show hysteresis: the voltage jump up
happens at larger dc current than the voltage jump down. (This hysteresis
also appears in the Majorana qubit, see App. 8.6.)

2The parameters E0,ΓL,ΓR used in Fig. 8.3 are listed in each panel; additional
parameters: µ = 0 in both panels, R = 0.20 and 0.25 ~/e2 in panels a) and b), re-
spectively. The voltage V̄ is averaged over a time window δt such that δt × dIdc/dt =
6.3 · 10−4 e∆0/~. To check that we are sweeping slowly enough, we reduced dIdc/dt by
a factor of two and found little difference.



8.4 Andreev qubit dynamics 179

Figure 8.3. Current-voltage characteristic of the quantum-dot Josephson junc-
tion, for two different parameter sets2. The blue curve is for increasing dc
current, the red curve for decreasing current. The Andreev levels in Fig. 8.2
correspond to the parameters in panel a). The critical current (8.7) is indicated
by the black arrow.

8.4 Andreev qubit dynamics

The voltage staircase of Fig. 8.3 is a signature of Rabi oscillations of
the Andreev qubit formed by the two Andreev levels in the Josephson
junction, in much the same way that the voltage steps of Ref. [55] were
driven by Rabi oscillations of a Majorana qubit. Let us investigate the
Andreev qubit dynamics.

8.4.1 Adiabatic evolution

In the adiabatic regime of a slow driving, ~φ̇ � δE, transitions between
the Andreev levels can be neglected and the phase evolves in time as an
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Figure 8.4. Washboard potential (8.18) that governs the time dependence of
the superconducting phase in the adiabatic limit. The curve is plotted for the
junction parameters of Figs. 8.2 and 8.3a, at a value of Idc slightly above the
critical current Ic.

overdamped classical particle,

φ̇+ dUA/dφ = 0, (8.17)

moving in the “washboard potential” [284]

UA(φ) = −(2eR/~)
[
φIdc + (2e/~)EA(φ)

]
, (8.18)

plotted in Fig. 8.4.
The time dependence of the phase resulting from integration of Eq.

(8.17) is shown in panel a) of Fig. 8.5. Panel b) tracks the adiabatic
dynamics of the Andreev qubit, by plotting the Bloch sphere coordinates
R = (X,Y, Z), with Rα(t) = 〈Ψ(t)|σα|Ψ(t)〉. The qubit dynamics is
4π-periodic in φ, because the Hamiltonian (8.12) is 4π-periodic: When
φ is increased by 2π one has H 7→ σzHσz, so on the Bloch sphere the
qubit is rotated by π around the z-axis (X 7→ −X, Y 7→ −Y ). The
full spectrum is a 2π-periodic function of φ, in particular the Josephson
current (8.6) is 2π-periodic — this nontopological Josephson junction does
not exhibit the 4π-periodic Josephson effect that is the hallmark of a
topological superconductor.

8.4.2 Pulsed Rabi oscillations

Panels c) and d) of Fig. 8.5 show the full non-adiabatic dynamics, obtained
by integration of Eq. (8.16) for the same parameter set as in panels a) and
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Figure 8.5. Time dependence of the superconducting phase (top row) and of
the Bloch sphere coordinates of the Andreev qubit (bottom row), in the adiabatic
limit (left column) and in the non-adiabatic regime in which transitions between
the Andreev levels produce Rabi oscillations of the qubit (right column). The
junction parameters are those of Fig. 8.3a, at Idc = 0.08 e∆0/~. The wave
function was initialized as an eigenstate of the lowest Andreev level −EA(0) at
t = 0.

b). Transitions between the Andreev levels produce pronounced Rabi
oscillations of the qubit, also visible as small oscillations in φ(t).

Because the supercurrent carried by the two Andreev levels ±EA has
the opposite sign, the inter-level transitions reduce IS, thereby increasing
IN = Idc − IS and hence V̄ . This is evident from Fig. 8.5c, which shows
that the first 2π increment of φ, without interlevel transitions, takes a time
δt ≈ 1000 ~/∆0, while the second 2π increment, with Rabi oscillations,
only takes a time δt = 700. The average voltage V̄ ' 2π/δt is therefore
increased by a factor 10/7 because of the interlevel transitions.

The Rabi oscillations are pulsed: they appear abruptly when φ crosses
(2n − 1)π and increases rapidly to 2nπ, which is the steepest part of the
washboard potential (see Fig. 8.4).

To estimate the Rabi frequency we substitute

Ψ(t) =
(
u(t)eiφ(t)/4, v(t)e−iφ(t)/4)
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in the Schrödinger equation (8.16) and make the rotating wave approxi-
mation, discarding rapidly oscillating terms ∝ eiφ(t):

i~u̇(t) = [E0 − µ+ 1
2eV (t)]u(t) + 1

4Γv(t),
i~v̇(t) = −[E0 − µ+ 1

2eV (t)]v(t) + 1
4Γu(t).

(8.19)

(We have set ΓL = ΓR for simplicity.) If we further neglect the slow time
dependence of the voltage, we obtain oscillations ∝ sin2 ωRt of the Bloch
vector components X,Y, Z with Rabi frequency

~ωR =
√

(E0 − µ+ 1
2eV )2 + (Γ/4)2. (8.20)

The oscillations in Fig. 8.5d near t = 1000×~/∆0 have a period of 35 ~/∆0,
while TR = π/ωR = 40 ~/∆0 if we set V = RIdc, in reasonable agreement.

8.4.3 Voltage steps count Rabi oscillations

The key discovery of Ref. [55] is that steps in the time-averaged voltage
track the change in the number of Rabi oscillations of the Majorana qubit
per 2π increment of the superconducting phase. Fig. 8.6 shows the same
correspondence for the Andreev qubit.

If we estimate the duration δt of a 2π phase increment by the product
of the number N of Rabi oscillations and the Rabi period TR, we obtain
the estimate (2e/~)V̄ = 2π/δt ' 2ωR/N . A stepwise decrease of N with
increasing Idc would then produce a stepwise increase of V̄ . This argument
is suggestive, but does not explain the sharpness of the steps. We have no
quantitative analytical derivation for why the steps are as sharp as they
appear in the numerics.

8.5 Discussion

Two lessons learned from this study are: 1) Rabi oscillations of an Andreev
qubit can be counted “one-by-one” without either requiring time-resolved
detection or ac driving; 2) The voltage staircase phenomenology of Ref.
[55] does not need a topological Majorana qubit — it exists in a conven-
tional Andreev qubit.

We worked in the weak-coupling regime Γ� ∆0 because it simplifies
the calculations, but also for a physics reason: The voltage staircase is sup-
pressed when Γ becomes larger than ∆0, due to a well-known decoherence
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Figure 8.6. Top panel: portion of the I–V characteristic from Fig. 8.3a, with
red dotted lines into the the bottom panels to show how the voltage steps line up
with the change in the number N of Rabi oscillations of the qubit in a 2π phase
increment δφ.

mechanism [285, 287]: Equilibration of the Andreev levels ±EA(φ) with
the continuous spectrum at |E| > ∆0 when φ crosses an integer multiple
of 2π. Let us discuss this in a bit more detail.

For Γ� ∆0 the Andreev levels are given by

EA = ∆0

√
1− τBW sin2(φ/2), (8.21)

according to Eq. (8.2), with τBW the Breit-Wigner transmission proba-
bility (8.1). The difference with the weak-coupling result (8.4) is that
the reduced gap ∆eff has been replaced by the true gap ∆0. This means
the Andreev level merges with the superconducting continuum whenever
φ = 0 modulo 2π. As the phase evolves in time in response to the current
bias, each 2π phase increment will restart from an equilibrium distribu-
tion.

Now if we examine Fig. 8.5, panels c) and d), we see that the Rabi
oscillations are pulsed by the rapid increase of the phase in the (π, 2π)
interval, and only fully develop in the (2π, 3π) interval. Equilibration at
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φ = 2π will restart the cycle from t = 0, suppressing the Rabi oscillations
and hence the voltage staircase.

For the same reason a superconducting quantum point contact will
not show the voltage staircase: its Andreev levels also reconnect with the
superconducting continuum at φ = 0 modulo 2π.

This argument points to one difference in the Majorana versus Andreev
phenomenology of the voltage staircase: A topological Josephson junction
needs to be magnetic in order to prevent the equilibration of the Majorana
modes with the continuum at φ = 0 modulo 2π [246]. In a non-topological
quantum-dot Josephson junction this can achieved without breaking time-
reversal symmetry.

As a topic for further research, it would be worthwhile to see if the
voltage staircase can be used to count the number of Rabi oscillations
over multiple 2π phase increments, since that would provide additional
information on the coherence time of the qubit. This could involve the
constructive interference of Landau-Zener transitions at φ = π, 3π, . . .
[288].

8.6 Appendix: Hysteresis of the voltage stair-
case for the Majorana qubit

The voltage staircase of the Andreev qubit is hysteretic, the steps appear
at higher current for the up-sweep than for the down-sweep. No hysteresis
was reported in Ref. [55], here we show that it is present for the Majorana
qubit as well.

Instead of Eqs. (8.12) and (8.13) one has for the Majorana qubit the
time dependent Hamiltonian

H(t) = Exσx + Ezσz cos 1
2φ(t), (8.22)

and current operator

I(t) = 2e
~
∂

∂φ
H(t) = −eEz

~
σz sin 1

2φ(t). (8.23)

The Pauli matrices act on the fermion parity of two pairs of Majorana
zero-modes, such that σx flips the even–even parity state into the odd–odd
parity state, while σz changes the sign of the odd–odd parity state. While
the physical origin of the Majorana coupling terms is different from the
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Figure 8.7. Hysteretic voltage staircase of the Majorana Josephson junction, for
the parameters of Ref. [55], Fig. 3. The blue curve is for increasing dc current,
the red curve for decreasing current. (The voltage V̄ is averaged over a time
window δt such that δt× dIdc/dt = 10−3 eEz/~.)

Andreev qubit, mathematically the Hamiltonian (8.22) is equivalent to
Eq. (8.12) in the symmetric case ΓL = ΓR. (Switch σx ↔ σz by a unitary
transformation and replace Ex 7→ E0 − µ and Ez 7→ Γ/2.)

In Fig. 8.7 we show the hysteretic voltage staircase, for the same pa-
rameters Ez = 5µeV, Ex/Ez = 0.67, R = 0.827 ~/e2 as in Ref. [55].
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