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Chapter 6

Orbital susceptibility of
T-graphene: Interplay of
high-order van Hove
singularities and Dirac cones

6.1 Introduction
Possible existence of two new graphene allotropes, planar tetragraphene
(or octagraphene) and buckled T-graphene composed of carbon octagons
with tetrarings, was demonstrated some time ago using the Density Func-
tional Theory (DFT) [52]. Several previous attempts to find such al-
lotropes were made in Refs.[201, 202]. It was noted that planar T-graphene
allotrope should be the most stable one after graphene while the buckled
T-graphene is not stable, and its fully relaxed state is very similar to
planar T-graphene [179]. Recently, the tetragraphene allotrope has been
predicted to possess superconductivity with critical temperature up to
around 20.8 K [203].

Some geometrical and electronic properties, as well as low-energy physics
of octagraphene were studied in Ref.[204], the phase diagrams were ana-
lyzed and the existence of Mott metal-insulator phase transitions in the
Hubbard model on square-octagon lattice was pointed out in [205–209].
In addition, structural and electronic properties of T-graphene and its
modifications were studied by DFT calculations in Refs.[210–213] and the
kinetic stability with time was analyzed in Ref.[214]. Later, it was shown
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[53] that the 2D monolayers of Zn2O2 and Zn4O4 also have nearly ideal
square-octagon lattice. In recent paper [53] the stability of multilayer
materials such as ZnO composed of square-octagon lattice was studied
with the help of DFT technique. Also it was shown that MoS2 transi-
tion metal dichalcogenide with square-octagon lattice can possess Dirac
fermions with Fermi velocity comparable to that of graphene [207]. The
coexistence of Dirac fermions and nearly flat bands seems to be a very
interesting property of square-octagon lattice and motivates us to study
physical quantities such as orbital susceptibility in terms on newly intro-
duced concept of high-order van Hove singularities [25].

As is known, when the doping level approaches VHS, system can ex-
hibit strong responses such as orbital paramagnetism in two-dimensional
case [50] or chiral superconductivity in the case of graphene [26]. An
ordinary VHS in two-dimensional electron system corresponds to loga-
rithmic divergence of the density of states (DOS). The distinctive feature
of high-order VHS is a more singular, power-law divergence of DOS with
an asymmetric peak [25, 215]. At the same time, the recent studies of
two-dimensional lattices uncovered a wide family of exotic band struc-
tures [15] with flat bands and multi-band touching points, at which the
quasiparticles are effectively described by high-pseudospin Hamiltonians.
Flat bands can be considered as a limiting case of VHS with delta-function
divergence of DOS.

The prominent examples of materials with high-order VHS of different
kind are bilayer graphene with tuned dispersion with the help of an inter-
layer voltage bias [216], Sr3Ru2O7 [217] and β − YbAlB4 [218]. Recently
it was also shown that when a high-order VHS is placed close to the Fermi
level, density wave, Pomeranchuk orders, and superconductivity can all be
enhanced [27]. The role of high-order VHS on different types of instabil-
ities in twisted bilayer graphene was analyzed in Ref.[219]. The presence
of van Hove singularities in twisted bilayer graphene [220] can lead to
valley magnetism [221], density waves and unconventional superconduc-
tivity [222] such as topological and nematic superconductivity [223], the
so-called "high-Tc" phase diagram [28], Kohn-Luttinger superconductivity
[224].

The orbital susceptibility [225] measures the response of a time-reversal
invariant electronic system to an external magnetic field. To evaluate
susceptibility of T-graphene analytically and numerically we use the for-
mulas for susceptibility derived in Refs.[226] and [227]. We analyze the
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Figure 6.1. T-graphene lattice structure, which is described in main text. Each
sublattice is denoted by its own color. Black dashed rectangle encircles one
elementary cell. The hopping parameters between two small squares are t1 and
inside each small square - t2.

role of VHS of both kinds in orbital susceptibility for electrons on square-
octagon lattice. Particularly, we show that the flat lines in tight-binding
band structure, which were firstly mentioned in Ref.[206], also represent
high-order VHS with inverse square root divergence of DOS.

The paper is organized as follows. In Sec.6.2 we describe the tight-
binding Hamiltonian of square-octagon lattice. Then, in Sec.6.3 we de-
rive effective low-energy Hamiltonians that describe bands around highly-
symmetric points in Brillouin zone (BZ). Also we identify the type of VHS
which are present in T-graphene. In Sec.6.4 we perform numerical eval-
uation of susceptibility, and then analyze the qualitative physical effects
of Dirac cones (Sec.6.4.2) and VHS using effective low-energy expansion
(Secs. 6.4.3 and 6.4.4). The role of high-order VHS is discussed also
in the Conclusions (Sec.6.5) where we summarize the obtained results.
In Appendix 6.6 we analyze flat lines in the dispersion of middle bands,
and in Appendix 6.7 we present expressions for the Green’s functions of
tight-binding and Löwdin Hamiltonians.

6.2 Tight-binding model

The square-octagon lattice consists of four atoms per unit cell which form a
small square, and is shown on Fig.6.1. According to Ref.[202], the numeri-
cal values for all nearest neighbor interatomic distances are approximately
equal to 1.429Å and lattice constant a = 3.47Å for T-graphene. Ref.[204]
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gives the intra-square, 1.48Å, and inter-squares, 1.35Å, distances, and sim-
ilar values were reported in Ref.[53]. The basis vectors of Bravais lattice
and reciprocal lattice are

a1 = (a, 0), a2 = (0, a);

b1 =
(

0, 2π
a

)
, b2 =

(2π
a
, 0
)
. (6.1)

In the tight-binding model, we take hopping parameters between atoms
in two neighboring small squares to be t1, and inside small square t2. The
corresponding tight-binding Hamiltonian has the form [204, 206]

HTg(k) = −


0 t2 t1e

ikxa t2
t2 0 t2 t1e

ikya

t1e
−ikxa t2 0 t2
t2 t1e

−ikya t2 0

 . (6.2)

and acts on the four-component wave functions ψ = (ψA, ψB, ψC , ψD)
(see Fig.6.1 for sublattice labels). The above mentioned difference in in-
teratomic distances can effectively described by tuning the hopping pa-
rameters t1 and t2. The values of these hopping parameters can be taken
from DFT calculations: t1 = 2.9 eV and t2 = 2.5 eV were used in Ref.[204],
while t1 = 2.98 eV and t2 = 2.68 eV were found from DFT calculations in-
side one layer of octagraphene [228].

The spectrum can be found from the equation det[εI −HTg(k)] = 0,
which after simplification reduces to [204, 206]

ε4 − 2
(
t21 + 2t22

)
ε2 + 4t1t22ε (cos (akx) + cos (aky))−

− 4t21t22 cos (akx) cos (aky) + t41 = 0, (6.3)

and has the form of depressed quartic equation. The spectrum is symmet-
ric with respect to rotations on the angle π

4 in k-space, because the lattice
has a C4 point symmetry group. Also the spectrum is symmetric with re-
spect to transformations ε→ −ε together with kx → kx± π

a , ky → ky ± π
a

(called chiral symmetry in [206]). The Brillouin zone of square-octagon
lattice is a square with −π

a < kx, ky <
π
a . The corresponding highly-

symmetric points are defined as

Γ = (0, 0), M =
(
±π
a
,±π

a

)
,

X =
(
±π
a
, 0
)
,

(
0,±π

a

)
, (6.4)
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Figure 6.2. Spectrum which is given by Eq.(6.3) for three values of parameter
α = t2/t1: panel (a) α = 1

3 , panel (b) α = 1 and panel (c) α = 3
2 . The energy ε is

measured in units of hopping parameter t1. On the panel (b) one can observe the
three-band-touching points where the two Dirac cones meet nearly flat middle
band. Black lines denote the lines of constant energies.

and are located in the center, corners and the middle of each square site,
respectively. It is convenient to measure the energy in terms of t1 hopping
parameter, and introduce the dimensionless ratio of hopping parameters
α = t2/t1. The 3D plots of the spectrum defined by Eq.(6.3) for several
values of α are shown in Fig.6.2, while the 2D plots along highly-symmetric
lines are represented in Fig.6.3. For α = 1, near the three-band-touching
points Γ and M , one observes almost flat middle bands [206]. These two
middle bands support completely flat energy lines, which are extended over
full BZ. Below we proceed with description of highly-symmetric points in
terms of van Hove singularities in the DOS.

6.3 Spectrum structure around highly-symmetric
points: van Hove singularities

Firstly, let us present general definitions that will be used throughout the
text. By definition, the one-electron DOS per spin is given by

D(ε) =
4∑
i=1

∫
BZ

d2k

(2π)2 δ [ε− εi(k)] , (6.5)

with i running over the band dispersions εi(k) found from Eq.(6.3). Due
to chiral symmetry the DOS is an even function of energy. The ordinary
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VHS with the logarithmic diverging DOS occurs at saddle point ks of a
particular band in which

∇kε(k) = 0 and detD < 0, (6.6)

where Dij ≡ 1
2∂i∂jε(k) is the 2× 2 Hessian matrix of a dispersion ε(k) at

ks. Here and below we use short-hand notation ∂i = ∂ki . After proper
rotation of a basis, the dispersion around saddle point can be conveniently
represented as ε−εs ≈ −ζp2

x+βp2
y with wave vector deviation p = k−ks.

The two coefficients ζ and β are the eigenvalues of D and satisfy the
condition −ζβ = detD < 0.

The high-order VHS corresponds to saddle point with the following
properties [25]:

∇kε = 0 and detD = 0. (6.7)

This class of VHS can be divided into two types: ζ = β = 0 (multicrit-
ical VHS), or ζ 6= 0, β = 0. The DOS is expected to have a power-law
divergence at such points. The position of all VHS can be found by dif-
ferentiating Eq.(6.3) and setting ∇kε = 0, from which we get the system
of equations:

sin(akx) (ε− t1 cos(aky)) = 0,
sin(aky) (ε− t1 cos(akx)) = 0. (6.8)

Below we perform expansion of the energy spectrum of T-graphene
around highly-symmetric points and flat lines and identify the correspond-
ing VHS type with the DOS divergence.

6.3.1 Γ and M points

Before proceeding with calculation, we underline that previously men-
tioned symmetry of spectrum makes these two points equivalent up to
change of energy sign. Thus, the analysis around the Γ point can be
directly translated to the M point and vice versa by chiral symmetry.

To find the approximate expressions for band energies around highly-
symmetric points, we perform the series expansion of spectral equation
(6.3). We write ε = ε

(0)
i + δ, with ε(0)

i is the energy of i-th band exactly
at the given point in k-space. Then, we expand equation into series in δ
and ka (measured from the given point), and find the solution for δ in
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leading order. Performing this for Γ point, we find the following results in
the case α > 1:

ε1
t1
≈− 1− 2α+ α|k|2a2

4(α+ 1) , (6.9)

ε2,3
t1
≈1− a2α

4 (α2 − 1)

[
α|k|2 ±

√(
α2|k|4 − 4(α2 − 1)k2

xk
2
y

)]
, (6.10)

ε4
t1
≈− 1 + 2α+ α|k|2a2

4(α− 1) . (6.11)

The numbering of bands goes from the lower one to the upper one (for
α < 1 the indices 2 and 4 should be interchanged). From expression
(6.9) one can conclude that spectrum of tight-binding Hamiltonian (6.2)
is bounded by −1− 2α < ε < 1 + 2α at zero temperature. In particular,
it follows from Eq.(6.10) that the top of band ε3 has completely flat lines
along kx and ky axes.

In the case α = 1 we find the following expansions for three upper
bands (which have triply degenerate point (see also Ref.[206])):

ε1
t1
≈ −3 + 1

8a
2|k|2, ε3

t1
≈ 1−

k2
xk

2
ya

2

2|k|2 ,
ε2,4
t1
≈ 1± a√

2
|k| −

a2
(
k2
x − k2

y

)
2

16|k|2 .

(6.12)

The two bands ε2,4 form Dirac cones with Fermi velocity vF = at1/
√

2~
with additional square-order corrections in |k|a. The middle band ε3 is
completely flat in first-order approximation, but has nontrivial anisotropic
corrections of second-order in |k|a.

The Γ and M points define the energy boundaries of each band (see
Fig.6.2). For α ≤ 1 the bands are in the ranges [−1− 2α,−1], [−1,−1 +
2α], [1 − 2α, 1], [1, 1 + 2α] measured in units of t1. It follows from the
expansions (6.9)-(6.11) taken at k = 0. We find that the gap near ε = 0
opens for α < 1/2. For the α ≥ 1 the bands’ energy ranges are ε/t1 ∈
[−1− 2α, 1− 2α], [−1, 1] for both middle bands, and [−1 + 2α, 1 + 2α]. In
this case the gaps are opened for α > 1 above ε = t1 and below ε = −t1,
respectively. These features of spectrum are manifested in vanishing DOS
in corresponding gap energy ranges, see Fig.6.3.

Next, we identify the type of VHS at ε3 = t1 in α = 1 case. For
this purpose, we evaluate the DOS contribution for each band separately,
taking the leading term in wavevector expansion. The integration over
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wavevector in Eq.(6.5) is extended to cut-off parameter Λ of effective ex-
pansions (6.12). Then, the Dirac cones give the standard graphene-like
result:

D2(ε) +D4(ε) = |ε− t1|
πa2t21

. (6.13)

The evaluation of DoS for middle nearly flat band is more complicated,
but can be performed in polar coordinates:

D3(ε . t1) =
∫ Λ

0

∫ 2π

0

kdkdφ

(2π)2 δ

[
ε− t1 + t1

k2a2 sin2(2φ)
8

]
. (6.14)

We emphasize the fact that the middle band contributes only for ε < t1
and the corresponding DOS is asymmetric. The integration over k is easily
performed, and the integration over angle can be confined to first quadrant
with adding a total factor 4. Then, one should integrate in the limits where
the solutions under delta-function are possible φmin < φ < φmax:

φmin = 1
2 arcsin

√8(1− ε/t1)
Λ2a2

 , φmax = π

2 −
1
2 arcsin

√8(1− ε/t1)
Λ2a2

 .
(6.15)

Thus, the integral for DOS becomes

D3(ε . t1) = 1
t1a2

∫ φmax

φmin

dφ
4

sin2(2φ) ≈
2
t1a

Λ√
2(1− ε/t1)

. (6.16)

with the 1/
√

1− ε/t1 divergence, as was noted previously. This power-law
divergence together with asymmetry of the DOS clearly indicates, that this
point corresponds to high-order VHS (see middle peaks of the DOS in all
panels of Fig.6.3). Below we show that this holds true for all points on flat
lines in the dispersion ε3(k). Also one should note that this singularity has
larger exponent κ = 1/2 (which is defined as D3(ε ≤ t1) ∼ |t1−ε|−κ) than
in twisted bilayer graphene (κ = 1/4, [25]), and the same as in Sr3Ru2O7
[217] and β −YbAlB4 [218] materials.

Above we have found the long wavelength expansions of spectrum for
small values of wavevector k. However, these expansions are violated if
the model parameter α approaches 1. In this case we can use another
series expansion of the spectrum: we assume that |1−α| ∼ |ka| are of the
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Figure 6.3. The spectrum of T -graphene along the closed path X − Γ −M −
X and DOS for α = 1/3, 1 and α = 3/2. DOS is plotted on the right of
each spectrum, and is measured in units of 1

a2t1
. DOS is regularized with finite

broadening of levels, Γ = 0.01t1 to make plots smooth.

same order. Then, we replace both terms |1−α| and |ka| in Eq.(6.3) with
ζ|1 − α| and ζ|ka|, respectively, and expand the obtained equation into
powers of ζ. This guaranties that expansions keep contributions from both
small values |1−α| and |ka| in the same leading order. Next, we solve the
approximate spectral equation around each band, as for Eqs.(6.9)-(6.11),
and set finally ζ = 1, we find

ε1
t1

= −1− 2α+
(k2
x + k2

y)a2

8 ,
ε3
t1

= 1−
k2
xk

2
ya

2

2(k2
x + k2

y)
,

ε2,4
t1

= 1−

(1− α)±

√
(k2
x + k2

y)a2

2 + (1− α)2

 . (6.17)

The last two expressions show that the |1 − α| competes with |k|a and
their larger value defines the spectrum form in the leading order.
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6.3.2 X-points and flat lines

At X point the eigenvalues of Hamiltonian (6.2) are

εX1,4 = ∓t1
√

1 + 4α2, εX2,3 = ∓t1. (6.18)

The energies ε1,4 belong to lower and upper and bands, respectively, and
the energies ε2,3 belong to flat lines for the points in k-space, which are
situated in the middle between band-touching points. In Appendix 6.6
we show how the flat lines are related to the C4 point symmetry group
of the lattice and structure of tight-binding Hamiltonian. Performing the
series expansion of spectral equation in the same way as discussed above
Eq.(6.9) but for wavevectors around X = (0, πa ), we find:

ε1 ≈ εX1 + t1a
2

4

[
k2
x

(
1 + t1

εX1

)
−
(
ky −

π

a

)2
(

1− t1
εX1

)]
, (6.19)

ε4 ≈ εX4 + t1a
2

4

[
k2
x

(
1 + t1

εX4

)
−
(
ky −

π

a

)2
(

1− t1
εX4

)]
. (6.20)

These two dispersion relations represent ordinary VHS, defined via the
conditions (6.6). The Hessian matrix is diagonal and its’ elements are
the derivatives of above dispersion relations with respect to wavevectors,
D = diag(∂xxε, ∂yyε). The DOS exhibits a logarithmic divergence around
ε = εX1 and ε = εX4 : D1,4(ε) ∼ log

(
Λa2t1
|ε−εX1,4|

)
. These upper and lower

peaks in DOS are clearly visible on Fig.6.3.
Next, we find the series expansion of ε2,3 bands’ dispersion around

X point. Due to chiral symmetry mentioned after Eq.(6.3), it suffices to
make expansion only for upper band, while for lower band it can be found
by appropriate change of wavevectors. Expanding the spectral equation
(6.3) for third band around energy ε3 = t1 into series in kxa, we find:

ε3 ≈ t1 − t1

[
k2
xa

2

2 − k4
xa

4

4α2(1− cos(kya))

]
. (6.21)

This approximation works well only for k4
xa

4

4α2(1−cos(kya)) <
k2
xa

2

2 , since this
band has ε3 ≤ t1 energy for all points in BZ. The Hessian matrix for
the dispersion (6.21) has only one nonzero component on diagonal D =
diag

(
− t1a2

2 , 0
)
. Thus, we observe that the middle bands at X-point and
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in other points of flat line where 1 − cos(kya) 6= 1 exhibit a high-order
saddle point (detD = 0). One can check that the DOS for dispersion
(6.21) has a inverse square root divergence 1/

√
t1 − ε with energy, with

benchmark asymmetry:

D3(ε . t1) =
∫

d2k

(2π)2 δ

[
ε− t1

(
1− k2

xa
2

2

)]
= Λ√

2π2at1
√

1− ε/t1
.

(6.22)

In Fig.6.3 we present dispersion relations for T -graphene along the path
X −Γ−M −X which represents the main features in spectrum (left part
of each panel) and DOS (regularized by finite level broadening, right part
of each panel) for the values α = 1/3, 1 and α = 3/2. Note that the path
length in M −Γ direction is

√
2 times larger than that in X−M or Γ−X

directions. Our plots show that at energies ∓t1
√

1 + 4α2 DOS exhibits
logarithmic divergences, which are the standard VHS at X points. At
the same time, the much stronger peaks in DOS correspond to flat lines
in spectrum at energies ∓t1 which are ’high-order’ VHS. Our results for
spectra agree with the results of Refs.[204–206], however, the dispersion
ε3 in Eq.(6.12) was not recognized as the one exhibiting high-order VHS.

Fig.6.3 demonstrates also evolution of DOS as the function of the
hopping parameter α. At ε = 0 we find that for α < 1/2 there are no
states (insulating phase), while for larger α the states are present. For
energies |ε| < t1 the DOS is always finite for α > 1/2 meaning metallic
behavior. On the other hand, for energies |ε| > t1 and α > 1 we observe
the presence of gaps in the DOS.

In Sec.6.4 we will study the behavior of orbital susceptibility around
van Hove singularities.

6.3.3 Effective models of band touching point: linear and
quadratic approximations

In the tight-binding model of square-octagon lattice the band touching
exists at two highly-symmetric points - Γ and M . Since they are related
by chiral symmetry (see discussion after Eq.(6.3)), we need to build an
effective Hamiltonian only at one of these points. As was proposed in
Ref.[206], one can perform a rotation to C4v basis utilizing the following
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unitary matrix

UC4v = 1
2


1
√

2 0 1
1 0

√
2 −1

1 −
√

2 0 1
1 0 −

√
2 −1

 , (6.23)

which acts on four-component wave functions in sublattice space, defined
below Eq.(6.2). After such unitary transformation we obtain the following
first-order effective SU(3) Hamiltonian near the Γ point:

H
(1)
SU(3) = t1


1 0 − iakx√

2
0 1 iaky√

2
iakx√

2 − iaky√
2 2α− 1

 . (6.24)

This Hamiltonian is useful for understanding how the Dirac cones emerge
in spectrum for α = 1. The spectrum defined by this Hamiltonian is

ε0
t1

= 1, ε±
t1

= α±

√
a2|k|2

2 + (α− 1)2, (6.25)

where ε0 corresponds to the ε3 band of tight-binding model, and ε−,+ to
the bands ε2,4 respectively. The corresponding eigenvectors are

Ψ0 = 1
|k|

(ky, kx, 0) ,

Ψ− = (ikxa,−ikya,
√

2(1− ε−))√
2 (|k|2a2 + 2(1− α)(1− ε−))

,

Ψ+ = (−ikxa, ikya,
√

2(ε+ − 1))√
2 (|k|2a2 + 2(α− 1)(ε+ − 1))

. (6.26)

One should note that the linear Hamiltonian of such type does not capture
the spectral structure of middle band. Instead, the middle band is treated
as completely flat, and the corresponding effective theory is an example
of pseudospin-1 fermion models (see Ref.[229] for topological classification
of such theories). Since the aim of present paper is to analyze the role of
high-order VHS, we need to build the effective Hamiltonian that correctly
captures the dispersion of middle band at leading order in |k|a. The
needed dispersion is presented, for example, in Eq.(6.12) in the α = 1
case.
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To find corresponding effective Hamiltonian, we use Löwdin method
[230], which is also called Löwdin partitioning (the example calculation
for Lieb-kagome Hamiltonian was performed in Ref.[231]). The idea is to
perform the rotation of the full tight-binding Hamiltonian (6.2) via the
unitary transformation (6.23), and then represent it in a block-like form:

H =
(
Hαα Hαβ

Hβα Hββ

)
, (6.27)

where the α subspace describes SU(3) band-touching and β subspace cor-
responds to lower band, decoupled from other three bands by relatively
large gap. Then, the effective second-order Hamiltonian around band-
touching is written as

Hα = Hαα +Hαβ (ε0 −Hββ)−1Hβα, (6.28)

where ε0 = ε2,3(k = 0) = t1. For Γ point this Hamiltonian has the
following form

H
(2)
SU(3) = ε̂(0) + t1


−a2(2α+1)k2

x
4(α+1)

a2kxky
4(α+1) − iakx√

2
a2kxky
4(α+1) −a2(2α+1)k2

y

4(α+1)
iaky√

2
iakx√

2 − iaky√
2

k2a2

4

 , (6.29)

where ε̂(0) = t1diag(1, 1, 2α−1) . Such simple Hamiltonian is particularly
useful when the proper dispersion of all three bands is needed at leading
order.

6.4 Orbital susceptibility
In this section we study the manifestation of T-graphene spectrum fea-
tures considered above, in particular, VHS of both kinds, in the orbital
susceptibility. The susceptibility measures the response of a electronic
system to an external magnetic field and is defined standardly as the sec-
ond derivative of the grand canonical potential at zero field. The main
formula, which is most suitable in our case for numerical calculation, was
given in Ref.[232], the more general formula was derived in Ref.[227]. The
susceptibility can be represented as

χorb (µ, T ) = −µ0e
2

12~2
Im
πS

∫ ∞
−∞

nF(ε) Tr X̂dε. (6.30)
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Here nF (ε) = 1/(e(ε−µ)/T + 1) is the Fermi distribution, µ0 = 4π × 10−7

in SI units and S is the area of the sample. The operator X̂ is written
in terms of zero-field Green function G(k) and Bloch Hamiltonian H(k),
and ∂x,y are partial derivatives over momenta:

X̂ = G(k)∂2
xH(k)G(k)∂2

yH(k)−G(k)∂2
xyH(k)G(k)∂2

xyH(k)+
+ 2 ([G(k)∂xH(k), G(k)∂yH(k)])2 . (6.31)

The trace operation contains the integral over the BZ and the trace over
band indices:

Tr(•) =
∑
k

tr(•) = S

∫
BZ

d2k

4π2 tr(•). (6.32)

The orbital susceptibility can be rewritten in several other forms, one of
them without commutator [227],

χorb (µ, T ) = −µ0e
2

12~2
Im
πS

∫ +∞

−∞
nF (ε) Tr {GHxxGHyy

− GHxyGHxy − 4 (GHxGHxGHyGHy −GHxGHyGHxGHy)}dε.
(6.33)

Here G = G(k) is the Green function and H i, H ij denote the first and
second derivatives of Hamiltonian with respect to components of momenta
ki,j and the trace contains momenta integration, as defined in Eq. (6.32).
The last formula can be also rewritten [227] in terms of previously found
one by Gomez-Santos [226],

χorb(µ, T ) = −µ0e
2

2~2
Im
πS

∫ +∞

−∞
nF (ε) Tr {GHxGHyGHx

× GHy + 1
2 (GHxGHy +GHyGHx)GHxy

}
dε. (6.34)

Here the first term represents the Fukuyama result [233]. Three formulas
for susceptibility are equivalent of course, and the use of a specific formula
depends on possible simplifications, for example, for Hamiltonians linear
in momenta the expressions (6.31) or (6.33) are preferred since the terms
with second derivatives H ij vanish.

To check the numerical results below we use the sum rule which states
that the integral of the orbital susceptibility over the whole band vanishes:∫

χorb(µ, T )dµ = 0. (6.35)
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The derivation of the sum rule for general tight-binding model was given in
Ref.[13]. Below we apply the formulas for orbital susceptibility to partic-
ular models, namely - tight-binding model of tetragraphene and effective
low-energy SU(3) models.

6.4.1 Application of general formulas to tetragraphene

Let us now apply the formula (6.30) to tetragraphene Hamiltonian (6.2).
Since the second derivatives ∂2

xyH and ∂2
yxH vanish, the operator X̂ re-

duces to

X̂ = G(k)∂2
xH(k)G(k)∂2

yH(k) + 2 ([G(k)∂xH(k), G(k)∂yH(k)])2 .

(6.36)

The Green’s function is given in Appendix 6.7. Then, calculating the
trace of X̂ for each term separately, we find the expressions presented
in Appendix by Eqs.(6.59) and (6.60). We denote the first term with
second derivatives in (6.36) as “term 1” and the term with commutator
as “term 2”. Here and thereafter we use dimensionless energy parameter
ε → ε/t1 to simplify the form of expressions. One should notice that the
numerators in both terms (6.59) and (6.60) are real, thus the imaginary
part comes fully from integration over energy due to the presence of sin-
gular denominators. We write the determinants as

4∏
i=1

(ε − εi(k)), where

εi(k) are band energies measured in units of t1.
One can use also an alternative expression (6.34) for susceptibility

obtaining shorter expression

χorb(µ, T ) = −µ0e
2t1

2~2
Im
π

+∞∫
−∞

dεnF (t1ε)
∫
BZ

d2k

4π2 tr {GHxGHyGHxGHy} .

(6.37)

Evaluating the trace, we find

tr {GHxGHyGHxGHy} =
(

2αa(ε2 − 1)
det[ε− 1

t1
H(k)]

)4

sin2(kxa) sin2(kya).

(6.38)

The advantage of this formula is that the numerator is much simpler
comparing to Eqs.(6.59)-(6.60). However, the larger power of denominator
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makes it harder to perform numerical calculation, since the behavior at
band-touching point is more singular.

The integrals over energy can be evaluated analytically using Cauchy
formula with residues. Next, we need to calculate the integrals over
wavevector in full BZ. They are cumbersome and can be performed only
numerically.

The numerical evaluation can be performed by sampling many points
in BZ, and replacing integral by a quadrature sum. For this purpose
we use Monte Carlo approach - it converges very fast with increasing
number of sample points for multidimensional integrals. Taking N sample
points in BZ, the integral over d2k is replaced by the sum

∫
BZ

d2k
(2π)2 f(k) =

1
N

∑
j f(kj). Then, the final formula used in evaluation is

χorb (µ, T ) = χ0
N

N∑
j=1

[∑
i

res
ε=εi

nF (t1ε)fR(ε)
]
k=kj

. (6.39)

The residues were evaluated analytically using expressions (6.59)-(6.60),
and the band energy solutions of spectral equation (6.3) were substituted
numerically into final expressions. Here we introduced the scale factor for
susceptibility χ0 = µ0e

2a2t1/12~2.
The results of evaluation for χ as a function of chemical potential are

shown in Fig.6.4. We have checked that good convergence is reached for
N = 105 and N = 5 × 105 for the terms (6.59) and (6.60), respectively.
The errors of integration become in this case several orders less than the
absolute values of susceptibility. As a test, we checked that the sum rule,
which is given by Eq.(6.35), holds true with the same precision.

The orbital susceptibility exhibits standard weak diamagnetic peaks
near the edges of the spectrum, which can be easily understood from the
Landau-Peierls (LP) formula [227, 232, 234, 235],

χLP(µ, T ) = µ0e
2

12~2

4∑
i=1

∫
d2k

4π2n
′
F (εi)

(
∂2
xεi∂

2
yεi − ∂2

xyεi∂
2
xyεi

)
, (6.40)

which takes into account only intraband contributions. Here n′F (ε) is a
derivative of the Fermi distribution function. We note that the LP contri-
bution in total susceptibility comes from the first two terms in Eq.(6.31)
which contain second derivatives.

In the case of T-graphene only the lower (upper) band gives strong
contribution to the orbital susceptibility at the lower (upper) edge of the
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spectrum. This can be clearly seen from Figs.6.2 and 6.3, since at lower
(upper) edge the corresponding band in Γ (M) point is separated by a large
gap from other three bands. The dispersion of this band is quadratic in
momenta, see Eq.(6.9), and both derivatives in first term of LP formula
are positive. The second term exactly vanishes, and thus the LP suscep-
tibility is negative because n′F (ε) < 0. These peaks are clearly visible
in susceptibility described by the red line (term 1) in panels a) - c) of
Fig.6.4 (leftmost and rightmost negative peaks). At the same time, the
Landau-Peierls formula does not capture the contribution of high-order
saddle points. This is because the large contribution from a Fermi func-
tion derivative n′F (εi) is compensated by vanishing determinant of Hessian
matrix that is present in round brackets.

At the ordinary van Hove points, which are placed on upper and lower
bands at X-points at the energy levels εX1,4 = ∓

√
1 + 4α2, one finds strong

paramagnetic peaks. These peaks are also well-described by the Landau-
Peierls formula (6.40). Substituting series expansion (6.19) or (6.20), one
finds that only the first term in Landau-Peierls formula is nonzero, and
have positive sign due to opposite signs of ∂2

x and ∂2
y derivatives. More-

over, due to the divergent DOS at this energy level, the contribution of this
band dominates and leads to strong paramagnetism. This is also related
to famous magnetic breakdown phenomena [234], where the quasiclassical
approximation in terms of electronic orbits fails in the vicinity of saddle
points due to effects of tunneling from one trajectory to the neighboring
one that leads to rotation of the electron in a direction opposite to the
direction of classical rotation (see Ref.[50] for physical picture of this phe-
nomenon). Large paramagnetic peaks coming from the Landau-Peierls
formula are well seen in the red line (term 1) in the left panel of Fig.6.4
(α = 1/3). Due to the sum rule (6.35) they are almost compensated by
diamagnetic contribution in the green line (term 2). The competition of
two terms in Eq.(6.36) leads to several dia- to paramagnetic transitions
when we continuously change the chemical potential µ (see Fig.6.4). The
susceptibility for α = 3/2 behaves qualitatively similar to the case with
α = 1/3.

The behavior of the susceptibility is more interesting when the hop-
ping parameter α is close to unity. At the Fermi level µ = 0 the orbital
susceptibility does not exhibit any peculiar properties. However, when the
doping is tuned to band-touching point µ = t1, one can expect nontrivial
behavior of susceptibility due to presence of massless fermions forming a
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Dirac cone and flat lines with high-order VHS of DOS. Near the energy
levels µ = ±t1 (see the panels b) and d) in Fig.6.4) we find strong diamag-
netic and paramagnetic peaks. Since the contribution of high-order VHS
is suppressed in the LP formula (term 1) we are left with diamagnetic
contribution from the term 2 due to Dirac excitations when |µ| ' t1. On
the other hand, when |µ| / t1 there is a strong paramagnetic contribution
in the term 2 from high-order VHS. The existence of the orbital paramag-
netism is a necessary condition to cancel the diamagnetic contribution in
order to satisfy the sum rule (6.35). The competition of these two contri-
butions leads to a sharp dia- to paramagnetic transition at |µ| ≈ t1 (see
panels b), d) in Fig.6.4. This transition manifests itself in Fig.6.5 where
the susceptibility at µ = t1 is plotted as a function of α (blue line).

Below we analyze the orbital susceptibility for effective linear and
quadratic Hamiltonians given by Eqs.(6.24) and (6.29) to obtain some
insights into the physics of these peculiar features.

6.4.2 Analytical results in effective pseudospin-1 model around
band-touching

Let us firstly use the linear effective Hamiltonian around band-touching
point to find an analytical approximation for the susceptibility. It is given
by Eq.(6.24), and we omit the dimensional parameter t1, restoring it in
the final expressions for susceptibility,

H3 ≡
HSU(3)
t1

=


1 0 − iakx√

2
0 1 iaky√

2
iakx√

2 − iaky√
2 2α− 1

 . (6.41)

The corresponding Green’s function is

GSU(3) = 1
det[ε−H3]×

ε2 − a2k2
y

2 − 2α(ε− 1)− 1 −1
2a

2kxky − ia(ε−1)kx√
2

−a2kxky
2 ε2 − a2k2

x
2 − 2α(ε− 1)− 1 ia(ε−1)ky√

2
ia(ε−1)kx√

2 − ia(ε−1)ky√
2 (ε− 1)2

 .
(6.42)
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Figure 6.4. The dependence of susceptibility χ on chemical potential µ, mea-
sured in units of t1 hopping parameter, for three values of α: a) 1/3, b) 1, c) 3/2.
The susceptibility is normalized to scale factor χ0 = µ0e

2a2t1/12~2. The legend
on panel (b) shows the lines definitions in panels a) - c): dashed and dash-dotted
lines correspond to first and second term contributions in X̂ (see Eq.(6.36)), while
the solid line describes the total susceptibility (the different ranges in y-axis are
taken for better visibility). Panel d) shows the total susceptibility for three values
of α.
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The determinant in denominator is simple

det[ε−H3] = 1− ε
2

(
a2k2 + 2(ε− 1)(2α− ε− 1)

)
(6.43)

and gives two Dirac cones and the flat band at ε = 1. The first derivatives
of Hamiltonian are,

Hx
3 = a√

2

 0 0 −i
0 0 0
i 0 0

 , Hy
3 = a√

2

 0 0 0
0 0 i
0 −i 0

 , (6.44)

while all second derivatives are zero. Then, we can apply the formula
(6.34), which in our case reduces to

χorb(µ, T ) = −µ0e
2t1

2~2
Im
πS

+∞∫
−∞

nF (ε) Tr {GHxGHyGHxGHy}dε. (6.45)

Calculating the matrix trace we come at the orbital susceptibility given
by the triple integral,

χorb(µ, T ) = −µ0e
2t1

2~2
Im
π

∫ +∞

−∞
nF (t1ε)dε

×
∫
d2k

4π2
16a8k2

xk
2
y(

a2
(
k2
x + k2

y

)
+ 2(ε− 1)(2α− ε− 1)

)4 . (6.46)

The integration over momenta is easily performed using polar coordinates∫
d2k

4π2
16a8k2

xk
2
y(

a2
(
k2
x + k2

y

)
+ 2(ε− 1)(2α− ε− 1)

)4

= a2

12π ×


1

2(α−1)

(
1
ε−1 −

1
ε+1−2α

)
, α 6= 1,

− 1
(ε−1)2 , α = 1.

(6.47)

Then, using the formula

Im
∫ +∞

−∞

f(E)
(E − α)j dE = − π

(j − 1)!f
(j−1)(α), (6.48)

for susceptibility we finally obtain:

χorb(µ, T ) = −χ0
2π


1

2(α−1) (nF (t1(2α− 1))− nF (t1)) , α 6= 1,
t1n
′
F (t1), α = 1.

(6.49)
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Note that the case α = 1 is the limit of the upper case with α 6= 1. The
result for α = 1 has the same functional structure as the susceptibility for
low-energy model of graphene [227], but differs in numerical factor and
sign. The latter difference is connected with the presence of flat band
in spectrum. In such a case the flat band plays the crucial role giving
strong delta-like paramagnetic response of the system at µ = t1 instead
of diamagnetic, which was a result of two Dirac cones in graphene. Note
however, that the linear effective Hamiltonian does not capture the correct
dispersion of the middle band. The model contains completely flat band
and the spectrum (6.25) is similar to a gapped dice model where the para-
magnetic contribution from flat band exceeds diamagnetic contribution
from Dirac cones (see Ref.[196])

The plot of effective susceptibility defined by Eq.(6.49) is shown in
Fig.6.5 as a function of a hopping parameter α. On the plot it is denoted
as “Eq.(24)” effective theory. We compare its dependence on α with total
susceptibility of actual model evaluated numerically. The doping level µ =
t1 coincides with the band touching point at which the high-order VHS and
Dirac point are present for α = 1. The numerical calculations demonstrate
the presence of dia- to paramagnetic transition at α ≈ 0.94, which is
absent in the low-energy result (6.49). Thus, we should analyze more
precise effective model, which is given by the second-order Hamiltonian
Eq.(6.29).

6.4.3 Paramagnetic-diamagnetic phase transition at band-
touching point and second-order effective Hamilto-
nian

The calculation of orbital susceptibility for the second-order effective Hamil-
tonian (6.29) involves all terms in X̂ operator (6.31), because all first and
second derivatives of Hamiltonian (6.29) over ki are nonzero. The corre-
sponding Green’s function is presented in Appendix, see Eq.(6.61). Since
the calculations quickly become cumbersome, we present only numerical
results here. For the integrals over wave number k we use Monte-Carlo
method. The energies for each point in k-space are found from Eq.(6.63)
and then we use the integration formula (6.39) multiplied by volume factor
Λ2a2/π2. Here Λ is a cut-off parameter, that defines the region of appli-
cability of second-order effective Hamiltonian (6.29). We estimated it as
Λ ≈ 0.8 1

a by comparing exact spectrum with one obtained from Eq.(6.63).
The orbital susceptibility for the effective Hamiltonian (6.29) at the
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Figure 6.5. The dependence of orbital susceptibility on relative strength
of tight-binding parameters α = t2/t1 for µ = 1.0t1 and T = 0.05t1. The
numerically-evaluated total susceptibility (solid blue line) is compared with sus-
ceptibility obtained from effective pseudospin-1 Hamiltonians (6.24) (gray dash-
dotted line) and (6.29) (magenta dashed line).

band-touching point µ = 1.0t1 as a function of a hopping parameter α is
presented in Fig.6.5. It is clearly seen that this Hamiltonian exhibits dia-
to paramagnetic transition at α = 0.94 in agreement with tight-binding
Hamiltonian and in contrast to the linear effective Hamiltonian (6.24).
Qualitatively, one can expect that such a transition occurs due to the
presence of Dirac cones, which give strong diamagnetism in graphene [197,
227], and the proximity of a high-order VHS that should result in strong
paramagnetism. The competition between these two opposite responses
together with the weak role of fourth band leads to a dia- to paramagnetic
transition.

6.4.4 The role of van Hove singularities

Let us discuss the role of van Hove singularities in T-graphene. For the
ordinary VHS the orbital susceptibility exhibits paramagnetic peak [50].
This can be understood using the standard Landau-Peierls formula for
contribution of single band [227]. In T-graphene, at the doping level
µ = ±t1, one meets the three-band-touching points, at which two Dirac
cones and middle band with flat lines intersect. In a single-layer graphene
the presence of Dirac cones leads to singular diamagnetic contribution
into orbital susceptibility χ ∼ −χ0δ(µ) at zero temperature [197]. In the
gapped dice model, spectrum of which is similar to (6.25), the param-
agnetic contribution due to a flat band exceeds diamagnetic contribution
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from Dirac cones (see Ref.[196]). In the case of T-graphene, the presence
of middle band, which is not flat anymore but contains flat lines with
high-order VH singularities on it, leads to strong paramagnetic contri-
bution competing with diamagnetic contribution from Dirac cones, thus
resulting in sign change of the orbital susceptibility.

High-order Van Hove singularities manifest themselves in many phys-
ical quantities as was reported in, e.g., Refs. [27, 28, 216–224]. In the
present paper we focused on the magnetic susceptibility of non-interacting
electrons in square-octagon lattice. However, one should expect the mani-
festation of high-order VHS of T-graphene also in other physical quantities
besides orbital susceptibility which is a subject for future studies. We note
that the accessibility of doping levels beyond the van Hove singularity was
demonstrated in recent experiment for single-layer graphene [236].

6.5 Conclusions

In this paper we have studied the spectrum structure of tight-binding
model for square-octagon lattice and analyzed the emergence of Dirac
cones and van Hove singularities of different type. Firstly, we found that
the singularities in DOS, that correspond to the flat lines in spectrum
of T-graphene, represent VHS of high-order. Their benchmarks are large
divergence exponent κ = 1/2 (instead of logarithmic divergence for ordi-
nary VHS) and asymmetry of DOS near corresponding energy level. Such
high-order saddle points in spectrum are intermediate between the ordi-
nary saddle points and completely flat bands. Also, using the Löwdin par-
titioning, we derived an effective second-order Hamiltonian that correctly
captures dispersions of three bands near the high-order saddle point.

Secondly, we have studied the orbital susceptibility of electrons on
square-octagon lattice. We have found that while for ordinary VHS there
are standard paramagnetic peaks predicted long ago by Vignale [50], the
recently introduced high-order VHS [25] manifest themselves in a more
complicated way. The tight-binding magnetic susceptibility exhibits sev-
eral dia- to paramagnetic transitions when a chemical potential runs the
whole zone.

Studying the orbital susceptibility at band-touching point (µ = t1)
as a function of the tight-binding hoppings ratio α, we found a dia- to
paramagnetic transition at α ≈ 0.94. Its existence can be qualitatively
understood due to competitions of contributions from Dirac cones, which
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give strong diamagnetism, and high-order VHS that result in strong para-
magnetism. The effective low-energy pseudospin-1 Hamiltonian near the
Γ point (6.24) correctly describes paramagnetic contribution but does not
capture the dia- to paramagnetic transition. On the other hand, the effec-
tive Hamiltonian (6.29), which keeps second-order terms in a wavevector
expansion, correctly reproduces the dia- to paramagnetic transition at
α = 0.94 given by the tight-binding Hamiltonian.

The tight-binding parameter α can be varied due to in-plane defor-
mations keeping C4 symmetry, thus allowing to verify the dia- to param-
agnetic transition in experiment. Though it is not probably easy to fine-
tune the hopping parameters experimentally, one can observe the different
phases by analyzing different materials that are based on square-octagon
lattice (see Refs. [53, 211]). Also, the T-graphene model can be real-
ized experimentally with cold fermionic atoms in an optical lattice, or in
phononic crystals [237]. In these cases it could be possible to test directly
the sign change of the susceptibility as a function of α. In further stud-
ies of the T-graphene model it would be interesting to include impurities
and interactions. In the recent publication [238] the role of high-order
VHS in the orbital magnetic susceptibility was studied for twisted bilayer
graphene. These studies complement the analysis in the present work.

6.6 Appendix: Flat lines in dispersion of middle
bands and lattice symmetry

In this Appendix we show that the flat lines in spectrum are related to
the C4 point symmetry group. Also we show, that every point of flat line
represents a high-order saddle point. Firstly, one can check that setting
kx = 0 (or ky = 0) in spectral equation (6.3), it can be factorized:

(ε− 1)
(
−
(
4α2 + 1

)
ε+ 4α2 cos(aky) + ε3 + ε2 − 1

)
= 0. (6.50)

Here we used scaled energy parameter ε, measured in units of t1. Thus,
we find the middle band dispersion ε = 1, which describes a flat line. The
same property of spectral equation holds true for kxa = ±π and kya = ±π
lines, with ε = −1.

The wavevector in tight-binding Hamiltonian (6.2) is measured from Γ
point. Performing the rotation to the basis of C4 symmetry group via the
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unitary matrix given in Eq.(6.23), we find the transformed Hamiltonian
U †C4v

HUC4v . Along flat line direction kx = 0 (and similarly for ky = 0)
the Hamiltonian reduces to the matrix

U †C4v
HUC4v(kx = 0, ky) = t1

2 ×
−1− 4α− cos (aky) 0 i

√
2 sin (aky) −1 + cos (aky)

0 2 0 0
−i
√

2 sin (aky) 0 2 cos (aky) i
√

2 sin (aky)
−1 + cos (aky) 0 −i

√
2 sin (aky) −1 + 4α− cos (aky)

 .
(6.51)

Thus, one can conclude that the presence of flat lines is protected not only
by C4 symmetry, but also by the geometry of tight-binding model. As was
noted in Ref.[206], at the Γ point the flat lines represent nearly flat band
(two lines intersect at the angle π

2 ). When the two hopping parameters are
equal, α = 1, the corresponding linear low-energy model (6.24) treats the
middle band as completely flat and is similar to a pseudospin-1 model.
However, in the second order approximation (see Eq.(6.29)) the middle
band becomes dispersive. This fact distinguishes this pseudospin-1 model
from other models, such as Lieb [21], Kagome [75] or α − T3 [13, 14, 89]
models, where the presence of exactly flat band is supported by the lattice
geometry in tight-binding approximation.

Finally, expanding the spectral equation (6.3) near the flat line kx = 0
up to second order in kxa, we find

δ4 − 4δ3 + 4
(
1− α2

)
δ2 + 2α2δ

(
(kxa)2 − 2 cos(kya) + 2

)
+ 2α2(kxa)2(cos(kya)− 1) = 0. (6.52)

Here δ = 1 − ε measures the deviation of energy from flat line value. In
this equation we can omit the third and fourth order corrections (δ3 and
δ4), and obtain simple quadratic equation. The solution, that corresponds
to the flat line, has the following approximate behavior

δ ≈ k2
xa

2

2 − k4
xa

4

4α2 (cos (kya)− 1) . (6.53)

The determinant of Hessian matrix for such a solution is always zero.
Thus we conclude, that every point on a flat line is a high-order saddle
point.
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6.7 Appendix: Green’s function of tight-binding
and Löwdin Hamiltonians

In this Appendix we calculate the Green function of the tight-binding
Hamiltonian (6.2). Standardly it is defined as

G(k, ε) = 1
t1

(
ε− 1

t1
H(k)

)−1
(6.54)

for energy ε measured in units of t1. Using the formula for adjoint matrix,
we find the simple but long expression. For the clarity, we write the
Green’s function in block form:

G(k, ε) = 1
t1 det[ε− 1

t1
H(k)]

(
G11 G12
G†12 G22

)
. (6.55)

The corresponding blocks are given by the following expressions:

G11(k, ε) = (6.56)[
ε(−2α2 + ε2 − 1) + 2α2 cos kya αe−ikya(−ε+ eikxa)(−1 + εeikya)
αe−ikxa(−1 + εeikxa)(−ε+ eikya) ε(−2α2 + ε2 − 1) + 2α2 cos kxa

]
,

G12(k, ε) = (6.57)[
2α2(ε− cos kya)− (ε2 − 1)eikxa α(−ε+ eikxa)(ε− eikya)

α(−ε+ eikxa)(ε− eikya) 2α2(ε− cos kxa)− (ε2 − 1)eikya

]
,

G22(k, ε) = (6.58)[
ε(−2α2 + ε2 − 1) + 2α2 cos kya αe−ikxa(−1 + εeikxa)(−ε+ eikya)
αe−ikya(−ε+ eikxa)(−1 + εeikya) ε(−2α2 + ε2 − 1) + 2α2 cos kxa

]
.

These expressions are used to evaluate the traces for “term 1” and “term
2” (first and second terms in Eq.(6.36)):

tr [term 1] = a4

det[ε− 1
t1
H(k)]2

×[
4α2

((
ε2 + 1

)
cos(kxa)− 2ε

) ((
ε2 + 1

)
cos(kya)− 2ε

) ]
, (6.59)
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tr [term 2] = 16α2a4

det[ε− 1
t1
H(k)]3

×[
t21α

2
(
ε2 + 2

)2
+ 2α2ε2 cos(2kya)(ε cos(kxa)− 1)2 +

+ ε
(
α2ε

(
ε2 + 2

)
cos(2kxa) +

(
(ε2 − 1)2 − 4ε2α2

(
ε2 + 2

))
cos(kxa)

)
+ cos(kya)

(
−2
(
2α2 + 1

)
ε3 − 8α2ε− 4α2ε3 cos(2kxa)

+
(
4αε− ε2 + 1

) (
4αε+ ε2 − 1

)
cos(kxa) + ε5 + ε

)
− ε2

(
ε2 − 1

)2
]
.

(6.60)

For the second-order effective Hamiltonian (6.29), which is obtained with
the help of Löwdin partitioning method, the Green’s function is (we set
a = 1 to simplify the notation)

G = 1

t1 det
[
ε−

H
(2)
SU(3)(k)
t1

]× (6.61)


G11 −kxky(k2+16α−4ε+4)

16(α+1) − ikx(2(ε−1)+α(k2
y+2ε−2))

2
√

2(α+1)

−kxky(k2+16α−4ε+4)
16(α+1) G22

i(2(ε−1)+α(k2
x+2ε−2))ky

2
√

2(α+1)
ikx(2(ε−1)+α(k2

y+2ε−2))
2
√

2(α+1) − i(2(ε−1)+α(k2
x+2ε−2))ky

2
√

2(α+1) G33


(6.62)

where

G11 =
[
1− k

2

4 − 2α+ ε

] [
(2α+ 1)k2

y

4(α+ 1) + ε− 1
]
−
k2
y

2 ,

G22 =
[

(2α+ 1)k2
x

4(α+ 1) + ε− 1
] [

1− k
2

4 − 2α+ ε

]
− k2

x

2 ,

G33 = (ε− 1)2 +
(2α+ 1)k2(ε− 1) + αk2

xk
2
y

4(α+ 1) .
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and the determinant is given by the following third-order polynomial:

det

ε− H
(2)
SU(3)(k)
t1

 = ε3 − ε2 (α (8α− k2 + 12
)

+ 4
)

4(α+ 1)

− ε
(
−32(α+ 1)(4α− 1) + αk4 cos(4φ) + (3α+ 2)k4 + 16α(2α+ 1)k2)

32(α+ 1)

− 128
(
2α2 + α− 1

)
+ αk6 + 4(α− 2)(2α+ 1)k4

128(α+ 1)

+ 32α(4α+ 1)k2 + αk4 (8α+ k2 + 4
)

cos(4φ)
128(α+ 1) . (6.63)

These expressions were used above for the calculation of orbital suscepti-
bility from the effective second-order model.


