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Chapter 4

Optical conductivity of
semi-Dirac and
pseudospin-1 models:
Zitterbewegung approach

4.1 Introduction
The optical studies of electronic systems is one of the main sources of in-
formation about charge dynamics in different condensed matter systems:
high-Tc superconducting cuprates [123, 124], graphene [125–130], topo-
logical insulators [131] together with Dirac and Weyl materials [132–134].
Recently it was shown [15] that in crystals with special space symmetry
groups more complicated quasiparticle spectra could be realized with no
analogues in high-energy physics where the Poincare symmetry provides
strong restrictions. Some of such systems possess strictly flat (dispersion-
less) bands [92, 100, 101] with high degeneracy potentially leading to a
large enhancement of some physical quantities.

In the present paper we develop the method to calculate frequency-
dependent optical and Hall conductivities in low-energy models containing
also new types of quasiparticles. The presented method is based on the
solution of the Heisenberg equations for the time-dependent quasiparticle
velocity operators, which also describe the phenomena of zitterbewegung
(trembling motion) [47, 135]. The formulation of this method is very
similar to the proper time approach of Schwinger [136] and the obtained



68 Chapter 4. Zitterbewegung approach for optical conductivity

expressions extend previously derived formulas for longitudinal conductiv-
ity in Refs.[137, 138]. We rewrite the Kubo formula through quasiparticle
velocity correlators, and use the solutions of the Heisenberg equations. We
demonstrate the applicability of the described method to the semi-Dirac
model and gapped pseudospin-1 models of the dice and Lieb lattices. As a
result, we obtain closed-form analytic expressions, which in turn are used
to investigate the dependence of conductivities on frequency, gap size and
temperature.

The phenomenon of Dirac points merging in two-dimensional materials
has received much attention in the literature [139–141]. Such system was
realized experimentally in optical lattices [142] and in microwave cavities
[143]. The analytical and numerical calculations of optical conductiv-
ity for semi-Dirac systems were discussed in several recent papers [144–
148]. Quite recently the magneto-conductivity of the semi-Dirac model
was studied [149].

The dice model is a tight-binding model of two-dimensional fermions
living on the T3 (or dice) lattice where atoms are situated both at the
vertices of hexagonal lattice and the hexagons centers [11, 80]. Since the
dice model has three sites per unit cell, the electron states in this model
are described by three-component fermions and the energy spectrum of
the model is comprised of three bands. The two of them form Dirac cones
and the third band is completely flat and has zero energy [12, 13]. The
T3 lattice has been experimentally realized in Josephson arrays [16, 17],
metallic wire networks [18] and its optical realization by laser beams was
proposed in Refs.[12, 19]. The optical and Hall conductivities for the
α − T3 model were studied in Refs. [49, 150–152]. We show that our
method allows one to obtain fully analytic expressions for the case of Sz
model even without magnetic field, thus extending the previous results.

Another example of pseudospin-1 system considered in this paper is
the gapped low-energy model of the Lieb lattice [21]. Due to the presence
of flat band in spectrum [21, 153, 154], the Lieb lattice served as a platform
for theoretical studies of many strongly-correlated phenomena - ferromag-
netism [20, 155] and superconductivity [156, 157]. The Lieb lattice was
realized in many experimental setups: arrays of optical waveguides [8,
158] via the surface state electrons of Cu(111) confined by an array of
carbon monoxide molecules [7], in vacancy lattice in chlorine monolayer
on Cu(100) surface [159] and in covalent organic frameworks [9, 10].

The chapter is organized as follows: in Sec.4.2 we present the most
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Figure 4.1. Spectrum given by Hamiltonian Hsemi in Eq.(4.9). The values of
gap parameter are (a) ∆ = 1, (b) ∆ = 0 and (c) ∆ = −1. We choose units
v = 1, a = 1. The panel (a) represents a fully gapped regime, while the panel (c)
corresponds to the regime with two Dirac cones separated by 2

√
∆/a along the

x-direction.

general formulas for the optical and Hall conductivity in terms of quasi-
particle velocity correlators. In Sec.4.3 we apply the method for a simple,
but physically reach semi-Dirac model with merging Diral cones. Next,
we apply the described approach to calculate the optical conductivity of
the gapped dice model. For this purpose in Sec.4.4.1 we solve the Heisen-
berg equations for the dice model with gap and discuss properties of the
quasiparticle dynamics. Combining the results with general formulas for
conductivity in Sec.4.4.2, we find the optical and Hall conductivity and
analyze their dependence on external frequency. Finally, in Sec.4.5 we
perform similar calculation for the Lieb lattice model, whose underlying
matrix algebra is much more complicated. In the Appendices we present
the details of Kubo formula transformations and conductivity integrals
evaluation.

4.2 Expression for conductivity through particle
velocity correlators

The method described below is an extension of the approach used in
Ref.[135] to an arbitrary pseudospin model with different dispersions. We
start the derivation from the Kubo formula for frequency-dependent elec-
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trical conductivity tensor written in the following form [138]:

σµν(ω) = i

(ω + iε)V

×
[
〈τµν〉 −

i

~

∫ ∞
0

dtei(ω+iε)t Tr (ρ̂ [Jµ(t), Jν(0)])
]
, (4.1)

where V is the volume (area) of the system, ρ̂ = exp (−βH) /Z is the
density matrix with the Hamiltonian H in the grand canonical ensem-
ble, Z = Tr exp (−βH) is the partition function, β = 1/kBT , and Jµ
are the current operators. The diamagnetic or stress tensor 〈τµν〉 in
the Kubo formula (4.1) is a thermal average of the operator defined as
τµν = ∂2H/∂(Aµ/c)∂(Aν/c). In the case of a linear dispersion law the
term with 〈τµν〉 in Eq.(4.1) is absent. In what follows we set ~ = 1 and
restore it in the final expressions.

The important symmetry properties of the conductivity are

Reσµν(ω) = Reσµν(−ω), (4.2)
Im σµν(ω) = − Im σµν(−ω). (4.3)

Using the representation of conductivity tensor through the correlation
functions of currents (see Ref.[137] and Appendix 4.7) and expressing them
in terms of time-dependent particle velocity correlators, we arrive at the
following general expressions:

Reσ{µ,ν}(ω) = e2

2ω

∫ ∞
−∞

dEρ(E) [f(E)− f(E + ω)]

×
∫ ∞
−∞

dteiωt
〈
v{µ(t)vν}(0)

〉
E
, (4.4)

where the velocity operator vµ(t) = eiHtvµ(0)e−iHt. Here we defined the
microcanonical average of an operator Â at given energy E as

〈Â〉E = Tr[δ(E − Ĥ)Â]
Tr[δ(E − Ĥ)]

(4.5)

where Tr[δ(E − Ĥ)] = ρ(E)V and ρ(E) is the density of states (DOS). It
is easy to check that the last expression is real using〈

v{µ(−t)vν}(0)
〉∗
E

=
〈
v{µ(t)vν}(0)

〉
E
. (4.6)



4.3 Optical conductivity of the semi-Dirac model 71

The expression (4.4) for T = 0 is in accordance with Ref.[160] for diagonal
conductivity. The numerator in Eq.(4.5) can be represented using the
Fourier transformation:

Tr[δ(E − Ĥ)Â] = V

2π

∫ ∞
−∞

dseiEs Tr [e−iĤsÂ]

= V

2π

∫ ∞
−∞

dseiEs
∫

d2p

(2π)2 tr [e−iH(p)sÂ(p)]. (4.7)

Similarly, for the imaginary antisymmetric part of conductivity we have

Im σ[µ,ν](ω) = e2

2ω Im
∫ ∞
−∞

dEρ(E) [f(E)− f(E + ~ω)]

×
∫ ∞
−∞

dteiωt
〈
v[µ(t)vν](0)

〉
E
. (4.8)

We note that the integral over t is purely imaginary due to the property〈
v[µ(−t)vν](0)

〉∗
E

= −
〈
v[µ(t)vν](0)

〉
E
.

To calculate Im σ{µ,ν}(ω) and Reσ[µ,ν](ω) we use the Kramers-Krönig
relation (4.60). The equations (4.4) and (4.8) together with Eqs.(4.5) and
(4.7) allow one to obtain the final result after two Fourier transformations.

4.3 Optical conductivity of the semi-Dirac model

In this section we analyze the conductivity of the semi-Dirac model, which
was extensively used to describe the low-energy physics of phosphorene
[144, 147, 148, 161, 162]. The main feature of such model is that it mixes
linear and quadratic terms in the Hamiltonian

Hsemi =
(
∆ + ap2

x

)
σx + vpyσy. (4.9)

The dispersion defined by this Hamiltonian consists of two bands:

ε± = ±
√

(ap2
x + ∆) 2 + v2p2

y. (4.10)

The spectrum described by Eq.(4.10) is presented in Fig.4.1. By tuning
the gap parameters, one can achieve a completely different types of spec-
trum - fully gapped, one band-touching point or two band-touching points
separated by 2

√
∆/a distance along px momentum.
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Writing the Heisenberg equations for this Hamiltonian, we find

v(t) = dx

dt
= −i[x(t), Hsemi(t)] = (2apx(t)σx(t), vσy(t)), (4.11)

dpi
dt

= −i[pi, Hsemi] = 0. (4.12)

From the first equation we find that velocity depends on momentum px(t),
which does not evolve as a result of the second equation: px(t) = px(0).
Also, velocity depends on the Pauli matrices, which evolve with time ac-
cording to another Heisenberg equation:

dσ(t)
dt

= −i[σ(t), Hsemi] = 2[p̃(0)× σ(t)]. (4.13)

Here we used notation p̃(0) = [∆ + ap2
x, vpy, 0] and the fact that the com-

mutator of the Pauli matrices is [σi(t), σj(t)] = 2iεijkσk(t). Cross means
the vector product of p̃ and σ. The initial condition for the Pauli matri-
ces is σ(0) = (σx, σy, σz), thus the operator σ(0) is in the Schrödinger
picture, i.e., it is time independent.

Equation (4.13) describes the time evolution of the pseudospin degree
of freedom in terms of Pauli matrices acting on states in Hilbert space.
Such an unusual temporal evolution of matrix operators first appeared
in the original paper by Schrödinger [48] on the zitterbewegung of the
electron described by the Dirac Hamiltonian. It is clear from Eq.(4.13)
that the pseudospin vector σ(t) precesses around the vector p. Below
we demonstrate that similar Heisenberg equations describe the dynamics
of pseudospin degree of freedom for another matrix types depending on
effective Hamiltonian of quasiparticles.

The Heisenberg equation above gives a system of differential equations
for matrices σ̇i(t) = Pijσj(t), Pij = 2εikj p̃k, whose solution is

σi(t) =
(
ePt
)
ij

(p̃)σj(0),
(
ePt
)
ij

(p̃) =
p̃2
y cos(2p̃t)+p̃2

x

p̃2
p̃xp̃y(1−cos(2p̃t))

p̃2
p̃y sin(2p̃t)

p̃
p̃xp̃y(1−cos(2p̃t))

p̃2
p̃2
x cos(2p̃t)+p̃2

y

p̃2 − p̃x sin(2p̃t)
p̃

− p̃y sin(2p̃t)
p̃

p̃x sin(2p̃t)
p̃ cos(2p̃t)

 . (4.14)

Here we denoted p̃ =
√
p̃2
x + p̃2

y. The time-dependent velocity is obtained
from these solutions by combining them with Eq.(4.11). The velocity vi(t)
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contains zitterbewegung terms which stem from the oscillatory terms (the
cosine and sine terms) in Eq.(4.14).

The zitterbewegung phenomenon was first regarded as a relativistic
effect related to the Dirac equation and describing “trembling” or oscilla-
tory motion of the center of a free wave packet [48, 163]. The appearance
of zitterbewegung phenomena in graphene and other two-dimensional con-
densed matter systems [47, 135, 164] indicates that the effect is not purely
relativistic, originating from inter-band transitions between states with
positive and negative energy. The direct experimental observation of the
zitterbewegung became recently possible in a Bose–Einstein condensate of
ultracold atoms [165].

We now proceed by calculating the traces of velocity products with ma-
trix exponential of the Hamiltonian as they appear in Eq.(4.7). Due to the
anisotropy in the electron dispersion, the conductivity is also anisotropic,
therefore, we present the results of its calculation in separate sections.

4.3.1 Optical conductivity in xx-direction

We start with the evaluation of real part of optical conductivity in the
x-direction. For this purpose we start with the calculation of trace which
has the form as in Eq.(4.7):

Tr [e−iHsemisvx(t)vx(0)] =
∫

d2p

(2π)2
8a2p2

x

ε2
+
×(

v2p2
y cos ((s− 2t)ε+) +

(
ap2

x + ∆
)

2 cos (sε+)
)
. (4.15)

Next we substitute this result into the expression for the real part of the
xx longitudinal conductivity (4.4), and calculate the Fourier transforms
over t and s. The result has the form of double integral:

Reσxx(ω) = e2

ω

∫ ∞
−∞

dE

2π [f(E)− f(E + ω)]
∫
d2p

2a2p2
x

ε2
+

×
[
δ (E + ε+)

(
v2p2

yδ (ω + 2ε−) + δ(ω)
(
ap2

x + ∆
)2
)

+ δ (E + ε−)
(
v2p2

yδ (ω + 2ε+) + δ(ω)
(
ap2

x + ∆
)2
)]

. (4.16)

The procedure of integration over momentum depends on the sign of
∆ parameter, and is described in details in Appendix 4.8. The main trick
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Figure 4.2. Real part of longitudinal interband ac conductivity in x- and y-
directions (top and bottom plots) as a function of frequency for the fixed values of
gap ∆ for the semi-Dirac model. The frequency is measured in units of ω0 = v2/a.
The normalization parameters are σ0 = e2√a

2π~v for the x-direction and σ0 = e2v
2π~
√
a

for the y-direction. The values of gap parameter are (a) ∆/ω0 = 1, (b) ∆/ω0 = 0
and (c) ∆/ω0 = −1.
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in calculation is to introduce modified polar coordinates, which take into
account the anisotropy of dispersion (4.10) in each case ∆ < 0, ∆ = 0 and
∆ > 0 with the proper regions of integration. As a result, we were able
to express all integrals in terms of complete elliptic integrals. The results
for the real part of interband ac and intraband dc conductivities are:

Reσinterxx (ω) = sgnω e2

2π~

√
2|ω|a
4v

[
f

(
−ω2

)
− f

(
ω

2

)]
×

×



2Θ(|∆| − |ω/2|)Ixx3 (2∆/|ω|)
+2Θ(|ω/2| − |∆|)Ixx1 (2∆/|ω|)

, ∆ < 0,

16π3/2

5
√

2Γ2( 1
4 ) , ∆ = 0,

2Θ(|ω/2| −∆)Ixx1 (2∆/|ω|), ∆ > 0.

(4.17)

The integrals Ixx1 , Ixx3 , and similar integrals occurring below, are defined
in Appendix 4.8, they are given in terms of complete elliptic integrals of
the first and second kind.

We plot the conductivity Reσinterxx (ω) as a function of ω at different
values of ∆ in upper plots of Fig.4.2. In all plots we set Ta = 0.1, and
absorb v and a parameters into normalization constant σ0. As is seen, the
behavior of the conductivities at small frequencies, ω < 2|∆|, is radically
different for ∆ > 0 and ∆ < 0: the case ∆ > 0 corresponds to insulating
phase while ∆ ≤ 0 corresponds to metallic phase.

The analytic expression (4.17) allows one to get asymptotes at small
and large ω, for example, in the most interesting case ∆ < 0 they are

Reσinterxx (ω) ' e2

2π~


√
|∆|a
v

πω
8T cosh2 µ

2T
, ω → 0,

√
ωa
v

4π3/2

5Γ2( 1
4 ) , ω →∞.

(4.18)

In the intraband part of conductivity with δ(ω) the result contains
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Figure 4.3. Real part of xx (a) and yy (b) intraband dc conductivities as
functions of the gap ∆ for different values of chemical potential. The temperature
is equal to T = 0.1ω0 in both cases with ω0 = v2/a. The pronounced peak at
µ = 0 in panel (b) manifests the possibility of dc transport through the charge-
neutrality point.

integral over energy,

Reσintraxx (ω) = δ(ω) e
2√a

4π~vT

∫ ∞
−∞

dE|E|3/2

cosh2
(
E−µ
2T

)×

×



2Θ(|∆| − |E|)Ixx4 (∆/|E|)
+2Θ(|E| − |∆|)Ixx2 (∆/|E|)

, ∆ < 0,

3π3/2

10
√

2Γ2( 5
4 ) , ∆ = 0,

2Θ(|E| −∆)Ixx2 (∆/|E|), ∆ > 0.

(4.19)

The integral over energy can be evaluated analytically only in the special
case of zero temperature T → 0. We plot Reσintraxx as a function of the
gap parameter ∆ in Fig.4.3. One can observe the monotonous decrease
with growing ∆ for all values of chemical potential.

4.3.2 Optical conductivity in the y-direction

For the longitudinal conductivity along the y-direction the technical de-
tails of calculation are very similar to the xx-case. They are presented in
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Appendix 4.8. The results for interband ac optical conductivity are:

Reσinteryy (ω) = sgnω e2

2π~
v

4
√

2|ω|a

[
f

(
−ω2

)
− f

(
ω

2

)]
×

×



2Θ(|∆| − |ω/2|)Iyy4 (2∆/|ω|)+
+2Θ(|ω/2| − |∆|)Iyy2 (2∆/|ω|)

, ∆ < 0,

Γ2( 1
4 )

3
√

2π , ∆ = 0,

2Θ(|ω/2| −∆)Iyy2 (2∆/|ω|), ∆ > 0.

(4.20)

They are presented in Fig.4.2 in lower panels for all three different cases of
∆. As is seen in the lower panel in Fig.4.2(c), the optical conductivity in
the y-direction diverges at the point ω = −2∆ for ∆ < 0. This divergence
was also observed in numerical calculations in Refs.[146, 147]. Using our
exact expressions, we can derive asymptotic expansions in the integrals
Iyy2 (2∆/|ω|) and Iyy4 (2∆/|ω|) at ω = 2|∆| for negative ∆. Expanding the
integrals near this point up to leading order, we find:

Iyy2 (2∆/|ω|)ω→2|∆|+ ≈
1√
2

log 2|∆|
ω − 2|∆| + const, (4.21)

Iyy4 (2∆/|ω|)ω→2|∆|− ≈
1√
2

log 2|∆|
|2∆| − ω + const. (4.22)

The logarithmic singularity has the same amplitudes from both sides. In
Ref.[147] this singularity was related to the joint density of states for
initial and final states involved in an optical transition, hence the van
Hove singularity appears at ω = 2|∆|, while the density of states itself
has a van Hove logarithmic singularity at ω = |∆|. The density of states
for the considered system was derived in Ref.[140], it is expressed also in
terms of complete elliptic integrals of the first and second kind.

We also present the asymptotes for the case ∆ < 0 at small and large
ω:

Reσinteryy (ω) ' e2

2π~


v√
|∆|a

πω
32T cosh2 µ

2T
, ω → 0,

v√
ωa

Γ2( 1
4 )

24
√
π
, ω →∞.

(4.23)
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For intraband dc optical conductivity we find

Reσintrayy (ω) = δ(ω) e2

16π~T

∫ ∞
−∞

dE

cosh2
(
E−µ
2T

) v√|E|√
a
×

×



2Θ(|∆| − |E|)Iyy3 (∆/|E|)+
+2Θ(|E| − |∆|)Iyy1 (∆/|E|)

, ∆ < 0,

√
2Γ2( 1

4 )
3
√
π

, ∆ = 0,

2Θ(|E| −∆)Iyy1 (∆/|E|), ∆ > 0.

(4.24)

Interband and intraband conductivities were studied recently in Ref.[147]
at zero temperature, the authors have obtained also asymptotic expres-
sions at small and large frequencies. We checked that their asymptotics
follow straightforwardly from our analytical results for T = 0 while at
finite temperature we get different dependence for Reσinteryy (ω) when ω
goes to zero.

Finally, in Fig.4.3 we plot intraband parts as functions of the gap ∆ for
different values of chemical potential. The interesting feature presented in
Fig.4.3(b) is the appearance of a small peak near ∆ = 0 on the negative
side at small chemical potentials. This peak can be related to the crossing
of saddle point level with chemical potential. At zero chemical potential
this peak appears only at small ∆ values and attain maximum for ∆ ≈ 0,
which shows that temperature-broadened van Hove singularities intersect
with the Fermi level and allow transport even at zero frequency. Such
signature can be used as a manifestation of the regime that is close to
topological transition with ∆ in dc transport measurements.

4.4 Optical conductivity of gapped dice model

4.4.1 Solution of the Heisenberg equations for the quasi-
particle in dice model

The T3 (dice) lattice is schematically shown in Fig.1.1. The correspond-
ing tight-binding Hamiltonian is expressed through the function fk =
−
√

2t(1 + e−ika2 + e−ika3) with equal hoppings t between atoms C (green
hubs) and A,B (red, blue rim sites) [12, 80] and the corresponding energy
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px
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Dice
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Lieb

Figure 4.4. Possible interband transitions which contribute to optical conduc-
tivity and define frequency thresholds for gapped dice and Lieb lattice models.

spectrum is [13]

ε0 = 0,

ε± = ±
√

2t
[
3 + 2(cos(a1k) + cos(a2k) + cos(a3k))

]1/2
, (4.25)

where a1 = (1, 0)a and a2 = (1/2,
√

3/2)a are the basis vectors of the
triangle sublattices and a3 = a2 − a1 with the lattice constant denoted
by a.

There are two values of momentum where fk = 0 and all three bands
meet. They are situated at the corners of the hexagonal Brillouin zone

K = 2π
a

(1
3 ,

1√
3

)
, K ′ = 2π

a

(
−1

3 ,
1√
3

)
. (4.26)

For momenta near the K and K ′ points, the function fk is linear in p =
k − ξK, i.e., fk = vF (ξpx − ipy), vF =

√
3ta/2 is the Fermi velocity, and

ξ = ± is the valley index. In addition, we set ~ = 1 for convenience. The
low-energy Hamiltonian near K(K’) ξ = ±1 three-band-touching point
reads:

Hdice = vF (pxSx + ξpySy + pzSz), (4.27)

with a constant gap vF pz and pseudospin-1 matrices Si are

Sx = 1√
2

 0 1 0
1 0 1
0 1 0

 , Sy = 1√
2

 0 −i 0
i 0 −i
0 i 0

 ,
Sz =

 1 0 0
0 0 0
0 0 −1

 . (4.28)
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These matrices form a closed algebra with respect to commutator opera-
tion: [Si, Sj ] = iεijkSk.

The Sz-type term in the Hamiltonian Hdice describes the spectral gap,
which can be opened by adding on-site potential on A and B sites [14],
in the Haldane model [151] or dynamically generated in special cases of
electron-electron interactions [166] and in the Floquet setup under circu-
larly polarized radiation [167, 168].

Let us perform analysis for K (ξ = 1) valley, and then account for
K’ valley with proper sign changes. The Heisenberg equations for the
coordinate and momentum operators in this case take the form:

v(t) = dx

dt
= −i[x(t), Hdice] = vFS(t), (4.29)

dp

dt
= −i[p(t), Hdice] = 0. (4.30)

Again, using the solution of the second equation, that states p(t) = p(0),
we arrive at the following Heisenberg equation for matrices Si:

dSi(t)
dt

= −i[Si(t), Hdice] = iPijSj(t), (4.31)

with

Pij = ivF εijkpk = ivF

 0 pz −py
−pz 0 px
py −px 0

 . (4.32)

The solution of this equation has the form

Si(t) =
(
eiP t

)
ij
Sj(0), (4.33)

where the matrix exponential is(
eiP t

)
ij

=
(p2
y+p2

z) cos(ptvF )+p2
x

p2
pxpyC−ppz sin(ptvF )

p2
pxpzC+ppy sin(ptvF )

p2

pxpyC+ppz sin(ptvF )
p2

(p2
x+p2

z) cos(ptvF )+p2
y

p2
pypzC−ppx sin(ptvF )

p2

pxpzC−ppy sin(ptvF )
p2

ppx sin(ptvF )+pypzC
p2

(p2
x+p2

y) cos(ptvF )+p2
z

p2

 .
(4.34)
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Here we used the notation p =
√
p2
x + p2

y + p2
z and C = 1−cos (ptvF ). The

eigenvalues of the matrix P are ±vF p, 0. The matrix exponential greatly
simplifies for the gapless case with pz = 0 (compare with Eq.(4.14)):

(
eiP t

)
ij

(pz = 0) =

=


p2
y cos(ptvF )+p2

x

p2
pxpy(1−cos(ptvF ))

p2
py sin(ptvF )

p
pxpy(1−cos(ptvF ))

p2
p2
x cos(ptvF )+p2

y

p2 −px sin(ptvF )
p

−py sin(ptvF )
p

px sin(ptvF )
p cos (ptvF )

 . (4.35)

Thus, from the solutions (4.33) and (4.34) we find the time-dependent
velocity operators:

vx(t) =vF


(
p2
y + p2

z

)
cos (ptvF ) + p2

x

p2 Sx+

+pxpy(1− cos (ptvF ))− ppz sin (ptvF )
p2 Sy+

+pxpz(1− cos (ptvF )) + ppy sin (ptvF )
p2 Sz

)
, (4.36)

vy(t) =vF
(
pxpy(1− cos (ptvF )) + ppz sin (ptvF )

p2 Sx+

+
(
p2
x + p2

z

)
cos (ptvF ) + p2

y

p2 Sy+

+pypz(1− cos (ptvF ))− ppx sin (ptvF )
p2 Sz

)
. (4.37)

Below we insert these results into Eqs.(4.4) and (4.8) to evaluate the lon-
gitudinal and Hall conductivities. Again, we see that the velocities vi(t)
contain zitterbewegung terms which stem from the oscillating terms.
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4.4.2 Longitudinal and Hall conductivities in massive dice
model

Substituting the obtained velocities into Eqs.(4.5),(4.7) and performing
Fourier transform over pairs of (s, E) and (t, ω) variables, we find

Ft,s Tr [e−iHsvx(t)vx(0)] =

πv2
F δ(E)

(
p2 + p2

z

2p2

)
(δ (ω − pvF ) + δ (ω + pvF )) +

+ πv2
F δ (E + pvF )

(
p2 + p2

z

2p2 δ (ω − pvF ) + p2 − p2
z

p2 δ(ω)
)

+

+ πv2
F δ (E − pvF )

(
p2 + p2

z

2p2 δ (ω + pvF ) + p2 − p2
z

p2 δ(ω)
)
, (4.38)

Ft,s Tr [e−iHsv[x,(t)vy](0)] = v2
F pz
ip
×[

δ(ω − pvF )δ(E + pvF )− δ(ω + pvF )δ(E − pvF )

− δ(E)δ(ω + pvF )− δ(ω − pvF )
]
. (4.39)

where the double Fourier transform is defined as

Ft,sf(t, s) =
∫ ∞
−∞

dt ds

(2π)2 e
iωt+iEsf(t, s) (4.40)

Using the first expression in the general formula for longitudinal conduc-
tivity, we find:

Reσxx(ω) = e2

4~

δ(ω)
∫ ∞
−∞

dE

4T cosh2
(
E−µ
2T

)×
× E2 −∆2v2

F

|E|
Θ (|E| −∆vF ) +

+ ω2 + ∆2v2
F

2ω2 Θ (|ω| −∆vF ) [f(−|ω|)− f(|ω|)]
]
, (4.41)

where we relabeled pz = ∆ > 0 and took into account the presence of
two valleys that contribute equally. Note that the term proportional to
Θ(|ω| − ∆vF ) defines the energy threshold after which the transitions
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from and to flat band become possible. However, no special threshold
is present for transitions between the two dispersive bands, which means
that only transitions through flat band are possible. This was already
pointed out for the gapless dice model in Refs.[49, 152]. In addition we
note that in the gapless limit the obtained expression agrees with that
obtained for arbitrary pseudospin models with the same matrix algebra
[Si, Sj ] = iεijkSk in Ref.[169].

Similarly, for the imaginary part of the Hall conductivity in one valley
we find

Im σ[x,y](ω) = e2pzvF
4~ω Θ (|ω| − vF |pz|) [f(|ω|)− f(−|ω|)]. (4.42)

Note that the Hall conductivity is proportional to the gap parameter pz
and the sum over two valleys with different signs of pz will lead to the
zero total Hall conductivity. This is because the system is T-invariant,
and the operation of T-invariance interchanges K and K’ valleys [14].
These conductivities are shown in Fig.4.5 for different values of chemical
potential and temperature.

Using the Kramers-Kronig relations, one can evaluate the real part of
the Hall conductivity, see Eq.(4.106). At zero temperature we find the
following expression:

Reσxy(ω) = −e
2vF pz
4π~ω log

∣∣∣∣max(|µ|, vF |pz|) + ω

max(|µ|, vF |pz|)− ω

∣∣∣∣ . (4.43)

At the energy ω = max(|µ|, vF |pz|), there is a logarithmic divergence
in the Hall conductivity. For large energies, ω → ∞, this expression
approaches zero as ∼ 1/ω2. This expression is very similar to those ob-
tained in graphene-like systems (see, for example, [170, 171]). The dc limit
ω → 0 leads to the quantized Hall conductivity Reσxy = −e2sign(pz)/h
for |µ| ≤ vF |pz| in the absence of a magnetic field [172].

4.5 Optical conductivity of the Lieb model
In this section we evaluate the optical conductivity of the gapped Lieb
model [21] using the method presented above. The main complication
arises in solving Heisenberg equations for matrices: due to commutation
relations the whole set of the Gell-Mann matrices enters the calculation.
Below we show how one can still perform calculation and arrive at rela-
tively simple expression for the conductivity. We start with description
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Figure 4.5. Panels (a) and (b): the real part of optical conductivity for gapped
dice and Lieb lattices given by Eqs.(4.41) and (4.52) at temperature T = 0.1∆vF .
Panel (c): the real part of intraband dc conductivity which is the same for both
lattices (for dice lattice in a single valley).
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of the main properties of the Lieb lattice and corresponding low-energy
model.

4.5.1 Lieb lattice and low-energy model

The Lieb lattice is schematically shown in Fig.1.2. It consists of three
square sublattices, with atoms placed in the corners and in the middle
of each side of big squares forming a line-centered-square lattice. The
tight-binding Hamiltonian, described in Ref.[21], reduces to the following
low-energy model near the center of BZ kx,y = π

a + qx,y:

HLieb =

 ∆vF vF qx 0
vF qx −∆vF vF qy

0 vF qy ∆vF

 , (4.44)

where the site energies are set as εB = εC = −εA = ∆vF . In terms of the
Gell-Mann λ-matrices the Hamiltonian takes the form

HLieb = vF

[
λ1qx + λ6qy + ∆

(
λ0
3 + λ3 −

λ8√
3

)]
. (4.45)

Here λ0 is the 3 × 3 unit matrix. The energy dispersions defined by this
Hamiltonian are given by three bands, one is flat band and the other two
are dispersive bands (see Fig.4.4c):

ε0 = ∆vF , ε± = ±vF
√

∆2 + q2
x + q2

y . (4.46)

Let us check the T-invariance of this Hamiltonian. The operator T should
contain complex conjugation, the change of the sign of both momenta and
contain the proper matrix transformation in sublattice space:

T̂H(q)T̂−1 = H(−q), T̂ = FK̂. (4.47)

In the absence of the gap the matrix F has the form

F =

1 0 0
0 −1 0
0 0 1

 . (4.48)

Thus we conclude that the gap presented in Ref.[21] does not break T-
invariance. Consequently, the Hall conductivity is zero in this model in
the absence of a magnetic field.
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4.5.2 Solution of the Heisenberg equations

The Heisenberg equations for the coordinate and momentum operators
are very similar to that obtained in previous sections: velocities evolve
with time as the corresponding matrices in the Hamiltonian near qx and
qy, and the momenta do not evolve at all. The nontrivial part comes
from the equation that describes the evolution of matrices. The system of
equations for the Gell-Mann matrices has the form:

dλi(t)
dt

= −i[λi(t), HLieb] = vFAijλj(t), (4.49)

where we used the commutation relations [λi, λk] = 2ifikjλj with fikj
being the structure constants of the su(3) algebra, hence the matrix Aij
has the form:

A =



0 −2∆ 0 0 qy 0 0 0
2∆ 0 −2qx −qy 0 0 0 0
0 2qx 0 0 0 0 −qy 0
0 qy 0 0 0 0 −qx 0
−qy 0 0 0 0 qx 0 0

0 0 0 0 −qx 0 2∆ 0
0 0 qy qx 0 −2∆ 0 −

√
3qy

0 0 0 0 0 0
√

3qy 0


. (4.50)

For the eigenvalues of the matrix vFAij we find:

a1,2 = 0, a3,4 = ±2ipvF
a5,6 = ±ivF (∆ + p), a7,8 = ±ivF (p−∆), (4.51)

where we defined p =
√
q2
x + q2

y + ∆2. The initial conditions for velocities
are vx(0) = vFλ1, vy(0) = vFλ6. After calculation of the matrix expo-
nent exp[At], we find velocities at time t by taking the corresponding rows
in resulting matrix - the first for vx and the sixth for vy. The solutions for
vx and vy are defined as vectors in the Gell-Mann basis - see Eqs.(4.108)
and (4.109) in Appendix 4.11. The identity matrix is not present because
it does not evolve with time and the coefficient before this matrix is zero.
Next we evaluate the conductivity using the obtained solutions vx,y(t) and
previously established method.
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4.5.3 Optical conductivity

Performing trace evaluation and using the double-Fourier transform, we
arrive at the following final answer for the optical conductivity of the Lieb
lattice in the x-direction (see Appendix 4.11):

Reσxx(ω) = e2

4~

δ(ω)
∫ ∞
−∞

dE

4T cosh2
(
E−µ
2T

)×
× E2 −∆2v2

F

|E|
Θ (|E| −∆vF ) +

+Θ(|ω| − 2∆vF )
[

2∆2v2
F

ω2

(
f

(
−|ω|2

)
− f

( |ω|
2

))
+

+f(∆vF − |ω|)− f(∆vF )
2

]
+ f(∆vF )− f(∆vF + |ω|)

2

]
. (4.52)

For the conductivity in the y-direction we find the same answer.
The physical meaning of the terms in Eq.(4.52) is the following: the

first term corresponds to intraband dc conductivity, the second term de-
scribes interband transitions through the gap - that is why the threshold is
2∆vf , and the last term corresponds to transitions between flat and upper
dispersive band. This conductivity is presented in Fig.4.5 in comparision
with gapped dice model. Qualitatively, the behavior of conductivities in
both models is similar.

The interesting difference compared to the dice model conductivity
(4.41) is the presence of both dispersive-to-dispersive band transitions
and dispersive-to-flat band transitions in the interband ac part of optical
conductivity (schematically shown in Fig.4.4c).

4.6 Conclusions
In the present paper we further developed the approach of Refs.[47, 135]
for calculating longitudinal and Hall conductivities of systems with arbi-
trary pseudospin and dispersion law of quasiparticles. The conductivities
are written through quasiparticle velocity correlators at time t for states of
energy E which also describe the phenomenon of zitterbewegung. For non-
interacting systems the Heisenberg equations for velocities can be solved
that allows one to significantly reduce the complexity of the conductivity
calculation and obtain in some cases closed-form analytic expressions. The
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method under consideration is well adapted also to the presence of impu-
rities in the system. The velocity correlators in this case can be computed
numerically utilizing time dependent Schrödinger equation with averaging
over impurities [138, 173].

We applied this method to evaluate the optical conductivity of the
semi-Dirac model, which is an example of low-energy theory with anisotropic
spectrum. We obtained exact expressions which allowed us to identify the
signatures of topological phase transition with gap closing and merging
Dirac points. The previously unobserved result is the peak in the in-
traband dc conductivity along the y-direction at zero chemical potential
when the two Dirac cones nearly merge with each other. Physically, one
would expect that this is related to the intersection of broadened van Hove
singularities with the Fermi level. Such an intersection leads to the ap-
pearance of a number of propagating states carrying a nonzero current. At
low temperatures, nonzero transport through the charge-neutrality point
may indicate the appearance of a topological phase transition.

In addition, we analyzed two gapped pseudospin-1 models that corre-
spond to dice and Lieb lattices. The optical conductivities for the con-
sidered gap parameters were not studied previously. The key physical
difference that we observed is the fact that in the gapped Lieb model all
transitions between three bands (dispersive-to-flat, flat-to-dispersive and
between two dispersive) contribute to the optical conductivity at large
frequencies, while in dice lattice only transitions to and from flat band
play a role.

4.7 Appendix: Derivation of general conductiv-
ity expressions from Kubo formula
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4.7.1 Expression of the conductivity tensor through re-
tarded correlation function

It is well known that the conductivity (4.1) can be written through the
Fourier transform of the retarded correlation function Πr

µν(t):

Πr
µν(t) = −iθ(t) 〈[Jµ(t)Jν(0)]〉

σµν(ω) = iKµν(ω + iε)
ω + iε

,

Kµν(ω + iε) = 〈τ〉
V
δµν +

Πr
µν(ω + iε)

V
. (4.53)

The function Πr
µν(ω) can be obtained by analytical continuation from its

imaginary time expression
(
Πr
µν(ω) = Πµν (iωm → ω + iε)). For nonin-

teracting fermions, using the Matsubara diagram technique for evaluating
τ -ordered product of operators we get

Πµν (iωm) = 1
β

∞∑
n=−∞

Tr
[
jµ

1
iΩn −H0

jν
1

iΩn − iωm −H0

]
. (4.54)

In the energy representation it takes the form

Πµν (iωm) = 1
β

∑
α,β

jαβµ jβαν

∞∑
n=−∞

1
(iΩn − Eβ) (iΩn − iωm − Eα) . (4.55)

The summation over the Matsubara frequencies can be easily performed,
thus we get

Πµν (iωm) =
∑
α,β

jαβµ jβαν
f (Eα)− f (Eβ)
Eα − Eβ + iωm

, (4.56)

where f(E) is the Fermi-Dirac distribution function, f(E) = 1/(exp(β(E−
µ)) + 1). We now write

Jαβµ Jβαν = Jαβ{µ J
βα
ν} + Jαβ[µ J

βα
ν] , (4.57)

where J{µJν} ≡ (JµJν + JνJµ) /2 and J[µJν] ≡ (JµJν − JνJµ) /2 denote
symmetric and antisymmetric parts of the tensor JµJν , respectively. Us-
ing hermiticity of the current it is easy to show that the symmetric part
J{µJν} is a real quantity while the antisymmetric part J[µJν] is the purely
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imaginary one. Therefore, after performing analytical continuation over
frequency, we find the real symmetric part of σµν ,

Reσ{µ,ν}(ω) = πe2

V ω

∑
α,β

vαβ{µ v
βα
ν} [f (Eα)− f (Eβ)] δ (Eα − Eβ + ω) , (4.58)

where we used the relation jµ = −evµ between the current density and
the velocity (e > 0). Accordingly, for the imaginary antisymmetric part
of σµν we have

Im σ[µ,ν](ω) = πe2

V ω

∑
α,β

Im
(
vαβ[µ v

βα
ν]

)
[f (Eα)− f (Eβ)] δ (Eα − Eβ + ω) .

(4.59)

To restore remaining imaginary and real parts we can use the Kramers-
Krönig relationships,

Im σ{µ,ν}(Ω) = − 1
π

P.v.
∫ ∞
−∞

dωReσ{µ,ν}(ω)
ω − Ω ,

Reσ[µ,ν](Ω) = 1
π

P.v.
∫ ∞
−∞

dω Im σ[µ,ν](ω)
ω − Ω . (4.60)

Writing

δ (Eα − Eβ + ω) =
∫ ∞
−∞

dEδ (E − Eα) δ (E − Eβ + ω) (4.61)

we have for the symmetric part

Reσ{µ,ν}(ω)

= πe2

V ω

∑
α,β

∫ ∞
−∞

dEvαβ{µ v
βα
ν} δ (E − Eα) δ (E − Eβ + ω) [f (Eα)− f (Eβ)]

= πe2

V ω

∫ ∞
−∞

dE[f(E − ω)− f(E)] Tr
[
v{µδ(E −H)vν}δ(E −H − ω)

]
.

(4.62)

In the last line we replaced the eigenvalues Eα,β by the Hamiltonian and
sum over eigenstates by the trace over quantum numbers describing the
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system eigenstates. Similarly, for the imaginary antisymmetric part we
find:

Im σ[µ,ν](ω) = πe2

V ω

∫ ∞
−∞

dE[f(E − ω)− f(E)]

× Im Tr
[
v[µδ(E −H)vν]δ(E −H − ω)

]
. (4.63)

Using the relation between traces and velocity correlators averaged at
fixed energy (see Sec. 4.7.2), we find the results presented in the main
text, Eqs.(4.4) and (4.8).

4.7.2 Relation between trace and time-dependent velocity
operators

Let us consider the term Tr [vµδ(E −H)vνδ(E −H − ω)] in the expres-
sions (4.62) and (4.63) for interband ac conductivity. Also, Jµ(t) is the
actual current measured experimentally, the corresponding total current-
density is obtained by differentiating the Hamiltonian with respect to the
vector potential,

Jµ(r, t) = − δH

δ (Aµ(r, t)/c) . (4.64)

Using the representation for the first delta function,

δ(E −H) = 1
2π

∫ ∞
−∞

dtei(E−H)t, (4.65)

and the cyclic property of a trace, then changing the variable of integration
E → E + ω, we can write

Tr [vµδ(E −H)vνδ(E −H − ω)] = 1
2π

∫ ∞
−∞

dteiωt Tr [δ(E −H)vµ(t)vν(0)] .,
(4.66)

Defining the microcanonical average of an operator Â at given energy E,

〈Â〉E = Tr[δ(E − Ĥ)Â]
Tr[δ(E − Ĥ)]

, (4.67)

where Tr[δ(E − Ĥ)] = ρ(E)V is the total density of states (DOS), we get
the following expression for the symmetric ac conductivity through the
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correlator of velocities:

Reσ{µ,ν}(ω) = e2

2ω

∞∫
−∞

dEρ(E) [f(E)− f(E + ω)]
∞∫
−∞

dteiωt
〈
v{µ(t)vν}(0)

〉
E
.

(4.68)
It is easy to check the reality of the last expression using the relationship〈
v{µ(−t)vν}(0)

〉∗
E

=
〈
v{µ(t)vν}(0)

〉
E
.

The expression (4.4) for T = 0 is in accordance with Ref.[160] for
diagonal conductivity. Similarly, for the imaginary antisymmetric part of
conductivity we obtain

Im σ[µ,ν](ω) = e2

2ω Im
∞∫
−∞

dEρ(E) [f(E)− f(E + ω)]

×
∞∫
−∞

dteiωt
〈
v[µ(t)vν](0)

〉
E
. (4.69)

To calculate Im σ{µ,ν}(ω) and Reσ[µ,ν](ω) we use the Kramers-Krönig re-
lation (4.60).

4.8 Appendix: Momentum integration in expres-
sions for conductivity of the semi-Dirac model.

In this Appendix we discuss technical details regarding evaluation of lon-
gitudinal conductivity in the semi-Dirac model. Following Ref.[137], one
can express the diamagnetic term 〈τµµ〉 appearing in Eq.(4.1) as

〈ταα〉
V

= e2
∫
BZ

d2p

(2π)2
f(ε+(p))− f(−ε+(p))

2ε(p)

(
Φ(p) ∂

2

∂p2
α

Φ∗(p) + c.c.
)
,

(4.70)

where Φ(p) is defined by model Hamiltonian (4.9) as

Hsemi =
(

0 Φ(p)
Φ∗(p) 0

)
, Φ(p) =

(
∆ + ap2

x

)
− ivpy. (4.71)

Thus, only the 〈τxx〉 contribution is nonzero. After substituting the exact
form of the dispersion and taking derivative of Φ(p), we find that the term
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〈τxx〉 is real:
〈τxx〉
V

= e2
∫

d2p
(2π)2

2a
(
∆ + ap2

x

)
ε+(p) [f (ε+(p))− f (−ε+(p))] . (4.72)

The contribution of this term into optical conductivity does not depend
on the frequency and we neglect it in our studies.

To evaluate the real parts of longitudinal optical conductivity along the
x- and y-directions, we first calculate traces with time-dependent velocity
operators, which are obtained from Eqs.(4.11) and (4.14),

Tr [e−iHsemisvx(t)vx(0)] =

=
∫

d2p

(2π)2

8a2p2
x

(
v2p2

y cos ((s− 2t)ε+) +
(
ap2

x + ∆
)2 cos (sε+)

)
ε2

+
, (4.73)

Tr [e−iHsemisvy(t)vy(0)] =

=
∫

d2p

(2π)2

2v2
[(
ap2

x + ∆
)2 cos ((s− 2t)ε+) + v2p2

y cos (sε+)
]

ε2
+

. (4.74)

Here the notation ε+ ≡ ε+(p) was used. As described in the main text, we
then make Fourier transforms over t and s to obtain the delta-functions
under integrals which technically simplify integrals. The resulting expres-
sions for longitudinal optical conductivity are:

Reσxx(ω) = 2e2

ω

∫ ∞
−∞

dE

2π [f(E)− f(E + ω)]
∫
d2p

a2p2
x

ε2
+
×

×
[
δ (E + ε+)

(
v2p2

yδ (ω − 2ε+) + δ(ω)
(
ap2

x + ∆
)2
)

+ δ (E − ε+)
(
v2p2

yδ (ω + 2ε+) + δ(ω)
(
ap2

x + ∆
)2
)]

, (4.75)

Reσyy(ω) = e2

2ω

∫ ∞
−∞

dE

2π [f(E)− f(E + ω)]
∫
d2p

v2

ε2
+
×

×
[
δ (E + ε+)

((
ap2

x + ∆
)

2δ (ω − 2ε+) + v2δ(ω)p2
y

)
+δ (E − ε+)

((
ap2

x + ∆
)

2δ (ω + 2ε+) + v2δ(ω)p2
y

)]
. (4.76)

To perform the integration over momentum, we use the symmetry px →
−px, py → −py of the integrals and the following change of coordinates
that simplifies square root in ε+:

ap2
x + ∆ = L cosφ, vpy = L sinφ, ε+ = L. (4.77)
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For the functions even in px and py we can write

∫
d2pf(px, py) = 4

∞∫
0

dpxdpyf(px, py)

=
∞∫
0

dL

π∫
0

dφ
2Lθ(L cosφ−∆)
v
√
a(L cosφ−∆)

f

√L cosφ−∆
a

,
L sinφ
v

 . (4.78)

The presence of the theta function takes into account that the regions of
integration of the L and φ variables will be different depending on the
sign of the ∆ parameter. In what follows, we extensively use the following
integral (Eq. 3.197.8 from book [174]):

∫ u

0
xν−1(x+ a)λ(u− x)µ−1dx = aλuµ+ν−1 B(µ, ν) 2F1

(
−λ, ν;µ+ ν;−u

a

)
,

(4.79)

with arg u
a < π. Performing the momentum integration in Eqs.(4.75),

(4.76) by means of Eq .(4.78), we obtain:

xx :
∫
d2p[. . . ] = 2

√
a

v

∞∫
0

dL

π∫
0

dφL
√

(L cosφ−∆)θ(L cosφ−∆)×

[
δ (E + L)

(
sin2 φδ (ω − 2L) + δ(ω) cos2 φ

)
+δ (E − L)

(
sin2 φδ (ω + 2L) + δ(ω) cos2 φ

)]
, (4.80)

yy :
∫
d2p[. . . ] = 2v√

a

∞∫
0

dL

π∫
0

Ldφ√
L cosφ−∆

θ(L cosφ−∆)×

[
cos2 φ(δ (E + L) δ (ω − 2L) + δ(E − L)δ(ω + 2L))

+ sin2 φδ(ω)(δ(E + L) + δ (E − L))
]
. (4.81)

The integration over angle depends on the sign of ∆. For 1 > δ = ∆/L ≥
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0, we find the following four integrals:

Ixx1 (δ) =
∫ φL

0

√
cosφ− δ sin2 φdφ

= 2
√

2
15

[
2(3 + δ2)E(k)− (3 + δ)(1 + δ)K(k)

]
, (4.82)

Ixx2 (δ) =
∫ φL

0

√
cosφ− δ cos2 φdφ

=
√

2
15
[
(1 + δ)(2δ − 9)K(k) +

(
18− 4δ2

)
E(k)

]
, (4.83)

Iyy1 (δ) =
φL∫
0

sin2 φdφ√
cosφ− δ

= 2
√

2
3 [(1 + δ)K(k)− 2δE(k)] , (4.84)

Iyy2 (δ) =
φL∫
0

cos2 φdφ√
cosφ− δ

=
√

2
3 [(1− 2δ)K(k) + 4δE(k)] , (4.85)

where K(k) and E(k) are complete elliptic integrals, k =
√

1−δ
2 , and

φL = arccos(δ). To calculate the above integrals we made the variable
change x = cosφ, then used Eq.(4.79), the relation

2F1(a, b; c; z) = (1− z)−a2F1

(
a, c− b; c; z

z − 1

)
. (4.86)

and Eqs. 7.3.2.18, 7.3.2.20 and 7.3.2.75 from the book [96].
Case ∆ < 0: in this case the angular integration is separated into two

regions,

φ ∈


[
0, arccos −|∆|L

]
, L > |∆|,

[0, π], L ≤ |∆|.
(4.87)

This example can be seen as integrating with the centers in the Dirac
point. Performing integration over angle in Eqs.(4.80), (4.81) we find the
following: the integrals for L > |∆| are the same as in ∆ > 0 case with
the changes ∆ → −|∆|. The integrals for L < |∆| (|δ| > 1) are different
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and have the following form:

Ixx3 (δ < −1) =
∫ π

0

√
cosφ+ |δ| sin2 φdφ

= 4
15

√
|δ|+ 1

[
(3 + δ2)E(k′)− |δ|(|δ| − 1)K(k′)

]
, (4.88)

Ixx4 (δ < −1) =
∫ π

0

√
cosφ+ |δ| cos2 φdφ

= 2
15

√
|δ|+ 1

[
(9− 2δ2)E(k′) + 2|δ|(|δ| − 1)K(k′)

]
, (4.89)

Iyy3 (δ < −1) =
∫ π

0

sin2 φdφ√
cosφ+ |δ|

= 4
3

√
|δ|+ 1

[
|δ|E(k′)− (|δ| − 1)K(k′)

]
,

(4.90)

Iyy4 (δ < −1) =
∫ π

0

cos2 φdφ√
cosϕ+ |δ|

= 2
3
√
|δ|+ 1

[
−2|δ|(|δ|+ 1)E(k′) + (1 + 2δ2)K(k′)

]
, (4.91)

where k′ =
√

2
|δ|+1 .

Evaluating the integrals over L in all these cases gives the following
results for longitudinal conductivities in the x− and y−directions:

Reσxx(ω) = e2

4π~ω

∫ ∞
−∞

dE[f(E)− f(E + ω)]4|E|
3/2a1/2

v
×

×



2Θ(|∆| − |E|) (Ixx3 (∆/|E|)δ (ω + 2E) + Ixx4 (∆/|E|)δ(ω)) +
+2Θ(|E| − |∆|) (Ixx1 (∆/|E|)δ (ω + 2E) + Ixx2 (∆/|E|)δ(ω))

, ∆ < 0,

8π3/2

5
√

2Γ2( 1
4 ) [2δ(ω + 2E) + 3δ(ω)], ∆ = 0,

2Θ(|E| −∆) [Ixx1 (∆/|E|)δ(ω + 2E) + Ixx2 (∆/|E|)δ(ω)] , ∆ > 0,
(4.92)
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and

Reσyy(ω) = e2

4π~ω

∫ ∞
−∞

dE[f(E)− f(E + ω)]v
√
|E|√
a
×

×



2Θ(|∆| − |E|) (Iyy4 (∆/|E|)δ(ω + 2E) + Iyy3 (∆/|E|)δ(ω)) +
+2Θ(|E| − |∆|) (Iyy2 (∆/|E|)δ(ω + 2E) + Iyy1 (∆/|E|)δ(ω))

, ∆ < 0,

Γ2( 1
4 )

3
√

2π [δ(ω + 2E) + 2δ(ω)], ∆ = 0,

2Θ(|E| −∆)
[
Iyy2 (∆/|E|)δ (ω + 2E) + Iyy1 (∆/|E|)δ(ω)

]
, ∆ > 0.

(4.93)

Separating interband ac and intraband dc parts, we find the results given
by Eqs.(4.17) and (4.19) together with (4.20) and (4.24) in the main text.

4.9 Appendix: Longitudinal conductivity of the
gapped dice model.

First we evaluate traces of commutators with matrix exponential of the
Hamiltonian:

Tr [e−iHsvx(t)vx(0)] =
v2
F cos (psvF )

(
2
(
p2
y + p2

z

)
p2 cos (ptvF ) + 4p2

xp
2
)

2p4 +

+
v2
F

(
2
(
p2
y + p2

z

) (
p2 sin (psvF ) sin (ptvF ) + p2 cos (ptvF )

))
2p4 , (4.94)

Tr [e−iHsvy(t)vy(0)] =
v2
F

(
cos (psvF )

(
2
(
p2
x + p2

z

)
p2 cos (ptvF ) + 4p2

yp
2
))

2p4 +

+ v2
F

(
+2
(
p2
x + p2

z

) (
p2 sin (psvF ) sin (ptvF ) + p2 cos (ptvF )

))
2p4 . (4.95)
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Next, we Fourier transform this expressions twice with respect to t → ω
and s→ E, and integrate over the polar angle

Ft,s Tr [e−iHsvx(t)vx(0)] =

= δ(E)
(
πv2

F

(
p2 + p2

z

)
δ (ω − pvF )

2p2 + πv2
F

(
p2 + p2

z

)
δ (ω + pvF )

2p2

)
+

+ δ (E + pvF )
(
πv2

F

(
p2 + p2

z

)
δ (ω − pvF )

2p2 + π(p2 − p2
z)v2

F δ(ω)
p2

)
+

+ δ (E − pvF )
(
πv2

F

(
p2 + p2

z

)
δ (ω + pvF )

2p2 + π(p2 − p2
z)v2

F δ(ω)
p2

)
.

(4.96)

Due to isotropy of the model we get the same result for the Fourier trans-
form Ft,s Tr [e−iHsvy(t)vy(0)].

The longitudinal conductivity is given by the expression

Reσxx(ω) = πe2

ω

∞∫
−∞

dE[f(E)− f(E + ω)]
∞∫
0

k dk

(2π)2Ft,s Tr [e−iHsvx(t)vx(0)].

(4.97)

where k =
√
p2
x + p2

y. Finally, performing integrations we find

Reσxx(ω) = e2

4

[
xδ(ω)

∞∫
−∞

dE
f(E)− f(E + ω)

ω
Θ (|E| −∆) |E|

2 −∆2

|E|

+ f(−ω)− f(ω)
ω

ω2 + ∆2

2|ω| Θ(|ω| −∆)
]
, (4.98)

where in the last equality we took into account that vF pz = ∆ > 0. This
expression appears in the main text, Eq.(4.41), in slightly different form
and is plotted for different values of parameters.
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4.10 Appendix: Evalution of Hall conductivity
σxy in gapped dice model

Let us evaluate the quasiparticle velocity operator averages for the Hall
conductivity. First, we evaluate the matrix traces:

tr
[
e−ivFSps (vx(t)vy(0) + vy(t)vx(t))

]
=

= −2v2
F pxpy (cos (pvF (s− t))− 2 cos (psvF ) + cos (ptvF ))

p2 , (4.99)

tr
[
e−ivFSps (vx(t)vy(0)− vy(t)vx(0))

]
= 2v2

F pz(sin(pvF (s− t))− sin(ptvF ))
p

.

(4.100)

The first trace vanishes after the angle integration. Thus the symmetric
part is absent for the Hall conductivity, as expected. For the antisymmet-
ric part we find (again k =

√
p2
x + p2

y):

Tr [δ(E −H) (vx(t)vy(0)− vy(t)vx(0))] =

= V

2π

∞∫
−∞

dseiEs
∞∫
0

kdk

(2π)
2v2
F pz (sin (pvF (s− t))− sin (ptvF ))

p
=

= V

∞∫
0

kdk

(2π)
2v2
F pz
p
×

[
e−ipvF tδ(E + pvF )− eipvF tδ(E − pvF )

2i − δ(E) sin(ptvF )
]
. (4.101)

Next we perform integration over time and find

∫ ∞
−∞

dteiωt Tr [δ(E −H) (vx(t)vy(0)− vy(t)vx(0))] = (4.102)

= V

∫ ∞
0

kdk
2v2
F pz
p

(
δ(ω − pvF )δ(E + pvF )− δ(ω + pvF )δ(E − pvF )

2i

−δ(E)δ(ω + pvF )− δ(ω − pvF )
2i

)
.



100 Chapter 4. Zitterbewegung approach for optical conductivity

Thus, for the imaginary part of the Hall conductivity we find

Im σ[x,y](ω) = 1
2
e2

4~ω

∞∫
0

kdk
2v2
F pz
p

∞∫
−∞

dE[f(E)− f(E + ~ω)]

× (−δ(ω − pvF )δ(E + pvF ) + δ(ω + pvF )δ(E − pvF )+
+ δ(E)[δ(ω + pvF )− δ(ω − pvF )]) =

= e2v2
F pz

4~ω

∞∫
0

kdk

p

(
δ(ω + pvF )[f(pvF )− f(pvF + ω) + f(0)− f(ω)]−

− δ(ω − pvF )[f(−pvF )− f(−pvF + ω) + f(0)− f(ω)]
)
. (4.103)

Also in the first line we canceled ρ(E) and V with the normalization
Tr δ(E−H). The factor 1/2 in the first line of the last equation accounts
for the definition of the antisymmetric part of the tensor. Now we can
integrate over momenta and obtain

Im σ[x,y](ω > 0) = e2

4ωvF pzΘ (ω − vF |pz|) (f(ω)− f(−ω)), (4.104)

Im σ[x,y](ω < 0) = e2

4ωvF pzΘ (−ω − vF |pz|) (f(−ω)− f(ω)). (4.105)

Combining these formulas together we arrive at Eq.(4.42).
Now using the Kramers-Kronig relation we can evaluate the real part:

Reσ[x,y](Ω) = 1
π

P.v.
∞∫
−∞

dω Im σ[µ,ν](ω)
ω − Ω

= e2vF pz
4π P.v.

∞∫
−∞

dω
Θ (|ω| − vF |pz|) (f(|ω|)− f(−|ω|))

ω(ω − Ω) . (4.106)

It is easy to check that Reσ[x,y](Ω) is even function in Ω by changing the
integration variable. The integral simplifies for the zero temperature when

f (|ω|)− f (−|ω|)→ θ (µ− |ω|)− θ (|ω|+ µ) = −θ(|ω| − |µ|). (4.107)

Thus, Eq.(4.106) gives Eq.(4.43).
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4.11 Appendix: Conductivities of the Lieb model.

The system of equations for the Gell-Mann matrices is given by Eq.(4.49)
with the initial values λi(t = 0) = λi. The solutions for the vx(t) and
vy(t) are defined as vectors in the Gell-Mann basis (the identity matrix is
not present because it does not evolve with time and the coefficient before
this matrix is zero): vx(t) = vF

(
eAt
)

1j
λj , vy(t) = vF

(
eAt
)

6j
λj where(

eAt
)

1j
and

(
eAt
)

6j
are

(1j) = (4.108)

∆2q2
x cos(2ptvF )+pq2

y(p cos(ptvF ) cos(∆tvF )−∆ sin(ptvF ) sin(∆tvF ))+(p2−∆2)q2
x

p2(p2−∆2)

− cos(ptvF )(2∆q2
x sin(ptvF )+pq2

y sin(∆tvF ))+∆q2
y sin(ptvF ) cos(∆tvF )

p(p2−∆2)
qx sin(ptvF )(∆(2q2

x+q2
y) sin(ptvF )+pq2

y sin(∆tvF ))
p2(p2−∆2)

qy sin(ptvF )(2∆q2
x sin(ptvF )+p(q2

y−q2
x) sin(∆tvF ))

p2(p2−∆2)
qy sin(ptvF ) cos(∆tvF )

p
qxqy(−∆2−p2 cos(ptvF ) cos(∆tvF )+∆2 cos(2ptvF )+∆p sin(ptvF ) sin(∆tvF )+p2)

p2(p2−∆2)
− qxqy(−∆ sin(2ptvF )+∆ sin(ptvF ) cos(∆tvF )+p cos(ptvF ) sin(∆tvF ))

p(p2−∆2)√
3qxq2

y sin(ptvF )(p sin(∆tvF )−∆ sin(ptvF ))
p2(p2−∆2)



T

,

(6j) = (4.109)

qxqy(−∆2−p2 cos(ptvF ) cos(∆tvF )+∆2 cos(2ptvF )+∆p sin(ptvF ) sin(∆tvF )+p2)
p2(p2−∆2)

qxqy(−∆ sin(2ptvF )+∆ sin(ptvF ) cos(∆tvF )+p cos(ptvF ) sin(∆tvF ))
p(p2−∆2)

qy sin(ptvF )(∆(2q2
x+q2

y) sin(ptvF )−pq2
x sin(∆tvF ))

p2(p2−∆2)
qx sin(ptvF )(p(q2

x−q2
y) sin(∆tvF )+2∆q2

y sin(ptvF ))
p2(p2−∆2)

− qx sin(ptvF ) cos(∆tvF )
p

pq2
x(p cos(ptvF ) cos(∆tvF )−∆ sin(ptvF ) sin(∆tvF ))+∆2q2

y cos(2ptvF )+(p2−∆2)q2
y

p2(p2−∆2)
∆q2

x sin(ptvF ) cos(∆tvF )+pq2
x cos(ptvF ) sin(∆tvF )+∆q2

y sin(2ptvF )
p(p2−∆2)

−
√

3qy sin(ptvF )(pq2
x sin(∆tvF )+∆q2

y sin(ptvF ))
p2(p2−∆2)



T

.
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Integrating over t and s in Eqs.(4.4), (4.7) we find:

Reσxx(ω) = 2ππe
2v2
F

2ω

∞∫
−∞

dE[f(E)− f(E + ω)]
∞∫
0

k dk

(2π)2

[
δ (E − pvF )

×
(

∆2δ (ω + 2pvF ) + δ(ω)(p2 −∆2)
p2 −

(∆
2p −

1
2

)
δ(ω + (p−∆)vF )

)

+ δ (E + pvF )×(
∆2δ (ω − 2pvF ) + δ(ω)(p2 −∆2)

p2 + (∆ + p)δ ((p+ ∆)vF − ω)
2p

)

+ δ (E −∆vF )×((1
2 −

∆
2p

)
δ(ω − (p−∆)vF ) +

(∆
2p + 1

2

)
δ(ω + (p+ ∆)vF )

)]
,

(4.110)

where k =
√
q2
x + q2

y . At the same time we find Im σ[x,y] = 0 after taking
the trace of the product of velocities. Next, we calculate the integrals
which involve the delta-functions, first we integrate over E and then over
momenta, we get the expression

Reσxx(ω) = e2

4

δ(ω)
∞∫

∆vF

pvFd(pvF )
(

1
4T cosh2((pvF − µ)/2T )

+

+ 1
4T cosh2((pvF + µ)/2T )

)
p2 −∆2

p2 +

+Θ(|ω| − 2∆vF )
[

2∆2v2
F

ω2

(
f

(
−|ω|2

)
− f

( |ω|
2

))
+

+1
2(f(∆vF − |ω|)− f(∆vF ))

]
+ f(∆vF )− f(∆vF + |ω|)

2

]
, (4.111)

which is in fact Eq.(4.52) in the main text after restoring ~. The remaining
integral can be evaluated in terms of the polylogarithm functions.


