
On quantum transport in flat-band materials
Oriekhov, D.

Citation
Oriekhov, D. (2023, October 4). On quantum transport in flat-band materials.
Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/3642874
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3642874
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3642874


Chapter 3

Gap generation and flat
band catalysis in dice model
with local interaction

3.1 Introduction

The experimental discovery of graphene [22] draw attention of condensed
matter physicists to the systems with relativisticlike quasiparticle spec-
trum. It was shown [15] that in crystals with special space groups more
complicated electron spectra could be realized with no analogues in high-
energy physics where the Poincare symmetry provides strong restrictions.
One remarkable example is a possibility to possess strictly flat bands [100,
101], whose high degeneracy was shown to be stabilized by permutation
symmetries [102] (for a recent review of artificial flat band systems, see
Ref.[92] and Ref.[103] where many systems with pseudospin-1 fermions
have been discussed). The dice model is the paradigmatic example of
such a system with a flat band which hosts pseudospin-1 fermions [11].

The dice model is a tight-binding model of two-dimensional fermions
living on the T3 (or dice) lattice where atoms are situated both at the
vertices of hexagonal lattice and the hexagons centers [11, 80]. Since the
dice model has three sites per unit cell, the electron states in this model are
described by three-component fermions. It is natural then that the energy
spectrum of the model is comprised of three bands. The two of them form
a Dirac cone and the third band is completely flat and has zero energy
[13]. All three bands meet at the K and K ′ points, which are situated at



44 Chapter 3. Gap generation

the corners of the Brillouin zone. The T3 lattice has been experimentally
realized in Josephson arrays [16, 17], metallic wire networks [18] and its
optical realization by laser beams was proposed in Ref.[19].

Perfectly flat bands are expected to be unstable with respect to generic
perturbations such as the presence of boundaries, magnetic field, Coulomb
impurities, and disorder. In a recent paper [89], we showed that, remark-
ably, the energy dispersion of the completely flat energy band of the dice
model is not affected by the presence of boundaries except the trivial re-
duction of the number of degenerated electron states due to the finite
spatial size of the system. It was shown also that the flat band of the
dice model remains unaltered in the presence of circularly polarized ra-
diation [104, 105] and magnetic field [12]. The electron states of gapped
pseudospin-1 fermions in the dice model for impurities with short- and
long-range potential were studied by us in Ref.[[14]] leading to qualita-
tively different results. Indeed, it was found that while the flat band
survives in the presence of a potential well, it is absent in the case of the
Coulomb potential.

It is well known that a soft kinetic spectrum favors the gap genera-
tion. For example, the low energy electron spectrum ε(p) ∼ |p|n in ABC-
stacked multilayer graphene becomes more flat with n. The interaction
parameter rs, defined as the ratio of inter-electron Coulomb interaction
energy to the Fermi energy, scales like rs ∼ n

(1−n)/2
el [106], where nel is

the electron charge density. Obviously, the electron-electron interactions
become more important at low electron density as the number of layers
n increases in ABC-stacked multilayer graphene. This suggests that the
gap generation in chiral multilayer graphene should be enhanced [35–37]
as the number of layers n becomes larger. This conclusion agrees with
the experimental findings. Meanwhile no gap is observed in monolayer
graphene at the neutrality point in the absence of external electromag-
netic fields, gap 2 meV is reported in bilayer graphene [38–41]. The
recent experiments [42, 43] demonstrate the presence of gaps of almost
room temperature magnitude ∼ 25 meV in high mobility ABC-stacked
trilayer graphene. A large interaction-induced transport gap up to 80 meV
was quite recently observed experimentally in suspended rhombohedral-
stacked tetralayer graphene [44].

Obviously, the flat band represents the most extreme case of a soft ki-
netic spectrum where the kinetic energy is completely quenched. The
above mentioned experimental results suggest that the generated gap
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should have the largest magnitude in the flat band system. This motivates
us to study the gap generation in the dice model. A recent theoretical
study of the band structure of magic angle twisted bilayer graphene [107]
also shows the crucial role of the flat band and the possibility of large
gap generation. This provides an additional motivation for the present
study. We would like to add also that since the pseudospin-1 fermions
with flat band were already realized in kagome metals such as FeSn [23]
and in electronic Lieb lattice [7], our results for the flat band catalysis of
gap generation can be tested experimentally.

To get an insight into the gap generation in the dice lattice we con-
sidered in this paper a model with local interaction. We studied both
intravalley and intervalley types of gap and analyzed their free energies.

The paper is organized as follows. The dice model and its general
properties are considered in Sec.3.2. In Sec.3.3, we study the intravalley
gap generation. The intervalley gap generation is investigated in Sec.3.4.
In Sec.3.4.3, we calculate the free energy for intra- and intervalley gap
states and discuss the phase diagram of the model. Technical details of
calculations are presented in Appendices 3.6, 3.7, 3.8.

3.2 Model
The lattice of the T3 (dice) lattice model is schematically shown in Fig.1.1.
The tight-binding equations are given by system (1.1) (with equal hop-
pings t between atoms C and A,B).

There are two values of momentum where fk = 0 in tight-binding
Hamiltonian (1.3) and all three bands meet. They are situated at the
corners of the hexagonal Brillouin zone

K = 2π
a

(1
3 ,

1√
3

)
, K ′ = 2π

a

(
−1

3 ,
1√
3

)
. (3.1)

For momenta near the K and K ′ points, the function fk is linear in q =
k − ξK, i.e., fk = vF (ξqx − iqy), vF =

√
3ta/2 is the Fermi velocity, and

ξ = ± is the valley index. In addition, we set ~ = 1 for convenience.
The low-energy Hamiltonian for electron states of the dice model in both
valleys has the form

H0(k, ξ) =

 0 ξkx − iky 0
ξkx + iky 0 ξkx − iky

0 ξkx + iky 0

 . (3.2)
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Here we absorbed dimensional constant vF /
√

2 into the definition of mo-
menta k = (vF /

√
2) q (this k should not be confused with the initial

k in the Brillouin zone in Eq.(4.25)). The Hamiltonian acts on three-
component wave functions ψT = (ψA, ψC , ψB). The electron states at the
K ′ point are described like in graphene by the interchange of the A and B
spinor components. The two valley Hamiltonian, H0(k,+1)⊕H0(k,−1),
is time-reversal invariant because of the relation H∗0 (k, ξ) = H0(−k,−ξ),
which can be directly checked for Eq.(3.2). The time-reversal operator
T for the dice model is defined in the same way as in graphene: it in-
terchanges valleys, changes the sign of momentum, and contains complex
conjugation operator [108]. The spectrum of the Hamiltonian consists of
three energy bands ±

√
2|k|, 0. Clearly, two bands form a Dirac cone and

one band is completely flat.
Although electrons interact through the Coulomb interaction V (x −

y) = e2/|x−y|, to get an insight into the gap generation for quasiparticles
in the dice model we will study the gap generation for a local Coulomb
interaction Vlocal(x − y) = Uδ2(x − y). This significantly simplifies the
analysis because the gap equations are algebraic in the Hartree–Fock ap-
proximation rather than the integral ones as for the genuine Coulomb in-
teraction. The interaction Vlocal is attractive between electrons and holes.
There are two main possibilities of order parameters of the exciton type,
namely, the intravalley and intervalley pairing which will be investigated
in the two subsequent sections.

We will study the gap generation by using the Baym–Kadanoff for-
malism [109–111]. The corresponding effective action for the quasiparti-
cle propagator G in the Hartree–Fock (mean field) approximation in the
model with the local four-fermion interaction has the form (for a similar
consideration in the case of graphene, see, e.g., [112])

Γ(G) = −i Tr
[
LnG−1S +

(
S−1G− 1

)]
+ U

2

∫
d3x

{
tr[G(x, x)G(x, x)]− [trG(x, x)]2

}
, (3.3)

where Tr and Ln are taken in the functional sense, S is the free propagator
related to Hamiltonian (3.2), and trace is taken over the valley and spinor
components. Let us begin our analysis with the case of the intravalley gap
generation.
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3.3 Intravalley gap

First of all, let us consider possible intravalley gap terms in the dice model,
whose dynamical generation will be analyzed below. Obviously, the most
general momentum-independent intravalley gap term is given by

Hgap =

 m1 c a
c∗ m2 b
a∗ b∗ m3

 . (3.4)

It is easy to check that parameters a, b, and c lead to an energy dispersion
relation which is anisotropic in momentum space. Since it is natural to
expect that the solution with the lowest energy should be isotropic in a
rotation-invariant system, we will set a = b = c = 0 in what follows. Then
m1, m2, and m3 are possible mass terms and. The electron states at the
two different valleys are independent, therefore, mi could be valley depen-
dent (note that valley-polarized states are well-known in graphene [113–
115]). Next we find the following characteristic equation which determines
the energy spectrum of the Hamiltonian H0(k, ξ) +Hgap:

(m1 − ε)
(

(m2 − ε)(m3 − ε)− k2
)

+ (ε−m3)k2 = 0, k = |k|. (3.5)

Clearly, there are three solutions of the above equation. Two of them
tend to ε(k) → ±

√
2 k at k → ∞ and describe the upper and lower

energy branches of the non-perturbated Hamiltonian (3.2). Obviously, if
m1 = −m3, then the middle branch tends to the flat energy band ε = 0 of
the free Hamiltonian (3.2) at large |k|. Therefore, we will assume in what
follows that m1 = −m3 = m. In this case, Eq.(3.5) takes the form

(ε−m2)(m2 − ε2) + 2εk2 = 0. (3.6)

The examples of spectrum defined by this equation are shown in Fig.3.1.
It is easy to check that ε = 0 is the exact solution of Eq.(3.6) for all k if
m2 = 0. The flat band solution ε = 0 is realized also if m = 0. In what
follows, we will study only solutions with m 6= 0 and m2 6= 0 when the flat
band is absent. Equation (3.6) implies that the particle-hole symmetry
could be preserved even in the case m2 6= 0 if we consider the mass term
−m2 at the valley ξ = −. Since the choice of the sign of m is irrele-
vant for the energy dispersion, without loss of generality we can assume



48 Chapter 3. Gap generation

Figure 3.1. Energy spectrum defined by Eq.(3.6) for three values of m2 (a):
m2 = 0.35m, (b): m2 = m, (c): m2 = 4m. At the middle panel the crossing
point of two bands is shown. Here energy ε and momenta k are measured in
units of m.

that m takes the same value in both valleys. Thus, we have the following
intravalley gapped Hamiltonian at valley ξ:

Hξ =

 0 ξkx − iky 0
ξkx + iky 0 ξkx − iky

0 ξkx + iky 0

+

 m 0 0
0 ξm2 0
0 0 −m

 .
(3.7)

It is worth noting that this Hamiltonian for m2 = 0 possesses the intraval-
ley particle-hole symmetry C = AK

CHξ(k) +Hξ(k)C = 0, A =

 0 0 1
0 −1 0
1 0 0

 , (3.8)

where K is the complex conjugation. The relation above can be checked
straightforwardly. The existence of this particle-hole symmetry explains
why the energy spectrum is particle-hole symmetric in a given valley for
m2 = 0. The second term in Hamiltonian (3.7) defines an ansatz for
the full inverse propagator in the theory with the Hamiltonian H0 +Vlocal,
where gap parametersm andm2 are determined by solving the Schwinger–
Dyson equation.
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3.3.1 Gap equations

Varying the Baym–Kadanoff action (3.3) with respect to G, we obtain
the following Schwinger–Dyson equation in the Hartree-Fock (mean field)
approximation:

G−1
ξ (Ω,p) = S−1

ξ (Ω,p)− i2U
v2
F

∫
dωd2k

(2π)3 Gξ(ω,k), (3.9)

where we retained only the exchange contribution because the Hartree
contribution vanishes at the neutrality point of the considered particle-
hole symmetric state. Note that Hξ does not mix states from the two
valleys, therefore, the Schwinger–Dyson equation (3.9) for the intravalley
gaps is diagonal in the valley indices. The additional factor 2/v2

F appears
due to the definition of k below Eq.(3.2).

As was discussed above, we study the gap generation in a neutral
particle-hole symmetric system with m2 and −m2 mass terms in the val-
leys + and −, respectively. Therefore, there is no need to introduce the
chemical potential. However, the valley dependent chemical potential ξµv
with opposite signs in the two valleys could be dynamically generated.
Hence it should be added to the Hamiltonian Hξ. Such chemical poten-
tial defines filling at particular valley ξ. The corresponding gap equations
for m, m2, and µv are derived in Appendix 3.6. It is useful to perform
the Wick rotation ω → iω in the gap equations (3.55)-(3.57) and inte-
grate over ω and polar angle φ. Then we obtain the following system of
equations for µv,m, and m2:

µv = U

v2
F

Λ∫
0

kdk

2π

[
k2 + r0 (m2 − r0)
(r1 − r0) (r0 − r2)sign[µv − r0] + c.p.

]
, (3.10)

m = m
U

v2
F

Λ∫
0

kdk

2π

[ (m2 − r0)
(r0 − r1)(r0 − r2)sign[µv − r0] + c.p.

]
, (3.11)

m2 = − U
v2
F

Λ∫
0

kdk

2π

[
k2 −m2 +m2r0

(r0 − r1) (r0 − r2)sign[µv − r0] + c.p.

]
, (3.12)

where c.p. means summation over two terms with cyclic permutations of
roots r0, r1, and r2. Here r0, r1, and r2 are functions of k defined in
Appendix in Eq.(3.52) and describe the momentum dispersion of energy
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bands. The symmetry under permutations of r0, r1, and r2 is obvious in
these equations. Here we also introduced an ultraviolet cutoff Λ for energy,
which is of order ~vFπ/(a

√
2), where a is the lattice constant a = 2.46 Å,

and we take vF = 106m/s as for graphene [115]. This cutoff determines
the range of applicability of the low-energy model.

3.3.2 Properties of gap equations and critical coupling con-
stant

Before solving the gap equations numerically, we should note several their
algebraic properties. At first, if a certain set m, m2, µv is a solution,
then sets with changed signs of masses and valley chemical potential, i.e.,
−m, m2, µv and m, −m2, −µv are also solutions. This follows from the
symmetry properties of roots rn defined in Eq.(3.52).

Another important property is that there are no solutions of the gap
equations (3.10)-(3.12) for weak coupling U . This can be shown in the
following way: nontrivial solutions are possible for U → 0 only if there
are poles in the integrands at k = 0. This can happen only if two bands
meet, i.e., ri(k = 0) = rj(k = 0). Near the k = 0 point the denominator
is linear in k, and the integral over d2k cancels this singularity. In other
words, there are no infrared singularities and therefore nontrivial solutions
require a critical value Uc for their appearance.

Further, let us find the critical coupling constant above which a non-
trivial solution exists. Near the critical value, both gaps m, m2 and the
valley chemical potential µv should tend to zero. Since there are no in-
frared singularities, the critical coupling constant can be found from the
ultraviolet limit of the gap equations at large k. In such a limit, the gap
equation (3.11) reduces to

m = m
U

v2
F

Λ∫
kdk

2π
1√
2k
, (3.13)

which results in the following coupling constant for m 6= 0:

Uc = 2π
√

2v2
F

Λ ≈ 8.89v
2
F

Λ . (3.14)

Finally, let us proceed to numerical solution of the gap equations. It is con-
venient to measure U in terms of v2

F /Λ. The gap equations (3.10)-(3.12)
form a set of coupled nonlinear equations. We solve them numerically by
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Figure 3.2. Solutions M = m, m2, µv for the system of gap equations (3.10)-
(3.12) as a function of coupling constant U . The critical value Uc of coupling
constant, estimated in Eq.(3.14), is marked by dashed vertical line.

using standard iterative methods (see, for example, Ref.[116]). Guessing
initial points in a wide range for both masses and valley chemical poten-
tial, we were able to find solutions just above the critical constant (3.14).
The corresponding results are shown in Fig.3.2. Near U = Uc gaps m, m2
are small and valley chemical potential µv is still several orders of magni-
tude smaller. All these dynamical parameters grow quickly with U . We
determined also the corresponding critical exponents by using numerically
obtained solutions near Uc. We found that the dynamical parameters scale
as m ∼ (U − Uc), m2 ∼ (U − Uc)1.5, and µv ∼ (U − Uc)3.3.

3.4 Intervalley gap

Since the denominator in the gap equations (3.10)-(3.12) contains the dif-
ference of energy dispersions of two bands, this difference is approximately
like that in graphene or two times less. This is the mathematical reason
for the existence of a nonzero critical coupling constant for the gap gener-
ation like in graphene. However, there is the middle completely flat band
in the dice model. This suggests that it might be favorable to consider
an intervalley gap which couples the electron and holes from different val-
leys. Additional reason to study such a gap is that similar valley-polarized
states are well-known in graphene [113–115]. As we will see below, the
most crucial property of the intervalley gap is that the difference of the en-
ergy dispersion of the flat bands in the two valleys does not increase with
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k at large k. The most general two-valley Hamiltonian which describes
the intervalley pairing is given by

H2v =
(
H+

0 P
P † H−0

)
, (3.15)

where we used the short-hand notation H±0 = H0(k,±) for the free Hamil-
tonians in the K and K ′ valleys defined by Eq.(3.2), and matrix P de-
scribes the invervalley gap and, in general, is arbitrary. Since

TH−0 T
−1 = H+

0 , T =

 0 0 1
0 1 0
1 0 0

 , (3.16)

it is convenient to exchange the A and B components of wave functions in
the K ′ valley multiplying them by T . Then the intervalley Hamiltonian
(3.15) takes the form

Hiv =
(
H+

0 F
F † −H+

0

)
, (3.17)

where its block diagonal elements differ only by sign and F = PT−1.
Hamiltonian (3.17) acts on six-component wave functions

ψT =
(
ψKA , ψ

K
C , ψ

K
B , ψ

K′
B , ψK

′
C , ψK

′
A

)
.

In order to determine the gap equation for the intervalley gap, we need to
calculate Green‘s function

G(ω,k) = 1
ω −Hiv

=
(
ω −H+

0 F
F † ω +H+

0

)−1

, (3.18)

where F should be determined self-consistently from the Schwinger-Dyson
equation which we derive below.

3.4.1 Ansatz and gap equation

Let us to consider the following ansatz for the intervalley gap with diagonal
matrix F whose elements, however, are different:

F = diag (∆,∆2,∆) (3.19)
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and, without loss of generality, we assume that ∆ and ∆2 are real. This
specific ansatz, whose first and third diagonal elements are the same, is
consistent with the intervalley particle-hole symmetry (compare it with
the particle-hole symmetry (3.8) for the intravalley electron and hole pair-
ing) because the anticommutator of the operator Civ = AKV with Hiv is
zero

{Civ, Hiv} = 0, V =
(
I 0
0 −I

)
. (3.20)

Here A is defined in Eq.(3.8), K is the complex conjugation, and V acts
on the intervalley indices. The particular form of matrix V is motivated
by the order of sublattice wave functions in 6-component spinor and is
in agreement with Eq.(3.17). Note that since the intervalley particle-hole
symmetry is preserved, it is no need to introduce the valley dependent
chemical potential ξµv like we did in the previous section for the case
of intravalley pairing, where m2 breaks the intravalley particle-hole sym-
metry. Green‘s function (3.18) for the intervalley gap function (3.19) is
derived in Appendix 3.7.

Using this Green’s function, we readily find that the Schwinger–Dyson
equation leads to the following gap equation:

F = i
2U
v2
F

∫
dωd2k

(2π)3
B

det[ω −Hiv]
, (3.21)

where B is the off-diagonal block of Green’s function defined in Eq.(3.61).
The determinant in the denominator equals

det[ω −Hiv] = (ω2 −∆2)(ω2 − a2)(ω2 − b2), (3.22)

where

a2, b2 = 1
2

(
4k2 + ∆2 + ∆2

2 ± |∆−∆2|
√

8k2 + (∆ + ∆2)2
)
. (3.23)

The corresponding spectrum is shown in Fig.3.3 for several values of ∆ and
∆2. We will find below that ∆2 � ∆ for solutions of the gap equations,
therefore, panel (c) describes the most relevant case. Equation (3.21) after
the Wick rotation ω → iω gives the equations for gap parameters which
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Figure 3.3. Energy dispersion for ∆2 = ∆ (panel (a)), ∆2 = 0.35∆ (panel (b)),
and ∆2 = 0.02∆ (panel (c)). Here ω and k are measured in units of ∆.

can be written as follows:

∆ = 2U
v2
F

∫
dωd2k

(2π)3

[
A

ω2 + a2 + B

ω2 + b2
+ C

ω2 + ∆2

]
, (3.24)

∆2 = 2U
v2
F

∫
dωd2k

(2π)3

[
∆2(a2 −∆2)− 2∆k2

(a2 − b2) (a2 + ω2) + ∆2(∆2 − b2) + 2∆k2

(a2 − b2) (b2 + ω2)

]
,

(3.25)

where a2 and b2 are defined in Eq.(3.23) and coefficients A,B,C are

A = a4∆− a2(∆3 + ∆∆2
2 + 2∆k2 + ∆2k

2) + ∆(∆∆2 + k2)(∆∆2 + 2k2)
(a2 − b2) (a2 −∆2) ,

B = A(a↔ b), C = 2∆k2 (k2 −∆2 + ∆∆2
)

(a2 −∆2) (b2 −∆2) . (3.26)

The structure of the gap equations (3.24), (3.25) implies that we can
assume without loss of generality that ∆ ≥ 0 and leave the sign of ∆2
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undefined. Then integrating over frequency and angle, we obtain (a, b > 0)

∆ = 2U
v2
F

∫ Λ

0

kdk

2π
1

a+ b

[
k2(a2 + a∆2 − k2)
a(a− b)(a+ ∆) + (a↔ b) + ∆

2

+ ∆2(∆∆2 + 3k2)
2ab

]
, (3.27)

∆2 = 2U
v2
F

∫ Λ

0

kdk

2π
1

a+ b

[
∆(∆∆2 + 2k2)

2ab + ∆2
2

]
. (3.28)

The above equations form a coupled system of equations for ∆ and ∆2.
Note the symmetry under the exchange a↔ b. We will solve this system
numerically in Subsec.3.4.3. As we argued above, the flat band should
play the principal role for intervalley gap generation. Therefore, before
finding numerical solutions to the gap equations (3.27) and (3.28), it is
instructive to study in the next subsection the intervalley gap generation
by retaining only the flat bands in the two valleys.

3.4.2 Flat band approximation

To study the intervalley gap generation in the flat band approximation
(FBA), we should find explicitly the corresponding flat band electron
states. First of all, by using Eq.(3.2), we obtain that the normalized
states of zero energy of the free Hamiltonian H+

0 are given by

ψT0 (k) = 1√
2 2π

(
1, 0, −k+

k−

)
, (3.29)

where k± = kx± iky. In order to proceed and consider the intervalley gap
generation, we should determine the eigenstates of Hamiltonian (3.17) in
the subspace composed of flat band states in two valleys, i.e.,

HivΨ = EΨ, (3.30)

where Ψ consists of the flat band states (3.29) in two valleys with two
unknown constants C1 ≡ N and C2 ≡ NC

ΨT = N

(
1, 0, −k+

k−
, C, 0, −Ck+

k−

)
. (3.31)

The eigenstate equation (3.30) for F = diag (∆,∆2,∆) gives two nontrivial
relations

E −∆C = 0, ∆− EC = 0. (3.32)
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Note that the gap ∆2 is not present in the above equations. Clearly, the
system of equations (3.32) means that there are two solutions

C = 1, E = −∆, C = −1, E = ∆. (3.33)

Obviously, the two former degenerate flat band solutions in two valleys
are now split in energy by 2∆.

Green‘s function connected with the flat band states has the form

GFB(ω,k) =
Ψ−∆Ψ†−∆
ω + ∆ + Ψ∆Ψ†∆

ω −∆ , (3.34)

where

ΨT
−∆ = 1

4π

(
1, 0, −k+

k−
, −1, 0, k+

k−

)
, ΨT

∆ = 1
4π

(
1, 0, −k+

k−
, 1, 0, −k+

k−

)
.

(3.35)

In order to study the gap generation, we should consider the off-diagonal
elements of the matrix GFB. Let us consider the upper off-diagonal block
(the consideration of the lower off-diagonal block gives the same results).
Since the element 25 of the matrix GFB is zero, we conclude that ∆2 = 0
in the flat band approximation. The elements 14 and 36 of the matrix
GFB coincide. Therefore, the ansatz with F = diag (∆,∆2,∆), whose
11 and 33 elements are the same, is indeed consistent. Thus, we have
the following gap equation in the flat band approximation defined by the
element 14 or 36 of the matrix GFB:

∆ = −i2U
v2
F

∫
dωd2k

(2π)3
1

4π

(
− 1
ω −∆ + 1

ω + ∆

)
= iU

πv2
F

∫
dωd2k

(2π)3
∆

ω2 −∆2 + iδ
. (3.36)

Integrating over ω and introducing a cut-off Λ over momentum, we easily
find the following gap in the flat band approximation:

∆ = UΛ2

8π2v2
F

. (3.37)

Clearly, the critical coupling constant is zero like in the case of the mag-
netic catalysis of the gap generation [117] in a model with local four-
fermion interaction in 2 + 1 dimensions. Note that there is no trivial so-
lution again as in the magnetic catalysis case. The calculated gap (3.37)
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Figure 3.4. Numerical solutions of the gap equations (3.27) and (3.28).

is quadratically divergent and is much larger than the gap in the lowest
Landau level (LLL) approximation. The reason is that Green‘s function
in the LLL approximation in fermion systems with relativistic-like energy
dispersion and dynamically generated mass m is quite similar to the flat
band Green‘s function (3.34)

SLLL(q) = e
− q2
|eB|

ωγ0 −m
ω2 −m2 (1− iγ1γ2) (3.38)

except that it contains an exponentially decreasing factor in momenta q
(here γ0, γ1, and γ2 are the Dirac γ-matrices). Therefore, the correspond-
ing solution to the gap equation is proportional to the magnetic field
strength |eB| rather than the cut-off squared Λ2 (see Eq.(64) in [117]).
This is the reason why the intravalley gap is so large.

In addition, we should note that the flat band approximation in the
model under consideration can be obtained as a large momentum limit of
gap equations. Assuming that ∆, ∆2 � Λ, we can approximate coeffi-
cients a, b in (3.23) as follows:

a2, b2 ≈ 2k2. (3.39)

Substituting this back in Eqs.(3.27) and (3.28), we find the following so-
lutions for gap parameters:

∆ = U

v2
F

Λ2

8π , ∆2 =
√

2UΛ∆
8πv2

F −
√

2UΛ
=

√
2

1−
√

2∆/Λ
∆2

Λ . (3.40)
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These expressions extend the results obtained in the two-band FBA dis-
cussed above and incorporate corrections from other energy bands for
∆2. Before proceeding to the numerical analysis, it is instructive to es-
timate the values of generated gaps. Using cut-off Λ = vFπ/(a

√
2), we

find ∆ = πU/(16a2). For local Coulomb interaction, we can use the corre-
sponding estimate in graphene VC = e2√3/(aπ) ≈ 3.3 eV [118]. This gives
the coupling constant U = VC/ΩBZ (here ΩBZ = 2/(

√
3a2) is the area of

the Brillouin zone), we find ∆ = 0.56 eV. Interestingly, the obtained result
qualitatively agrees with the study of gap generation in twisted graphene
bilayers near a magic angle [107], where the flat band is present. Indeed,
due to the very large length of the moire lattice unit aTBG ≈ 12nm, the
corresponding gaps are suppressed by factor a2/a2

TBG leading to gaps of
order few meV in twisted bilayer graphene. Finally, we note that it is
crucial that there are two flat bands in different valleys and our analysis
shows that the presence of a single flat band is not sufficient for the gap
generation for an arbitrary small coupling constant.

3.4.3 Numerical analysis of solutions and their free energy

In the numerical analysis, it is convenient to measure U in units of v2
F /Λ.

Like in Sec.3.3.2 we use the iteration method to solve the gap equations.
The corresponding numerical solutions are presented in Fig.3.4 and are
compared with the flat band approximation result.

One should note that gap ∆2 is one order of magnitude smaller that
gap ∆ for small values of U such that UΛ/v2

F < 2. For example, at
UΛ/v2

F = 1.4 we find ∆ ≈ 0.06Λ, ∆2 ≈ 0.005Λ. However, ∆2 grows
much faster with coupling constant U , approximately as U2, which quan-
titatively agrees with Eq.(3.40) at small coupling constant. UΛ/v2

F > 4,
the FBA solution starts to deviate from the exact solution. Of course,
we should note that the low-energy model is not applicable when gaps
become of order Λ.

Among all solutions of the Schwinger Dyson equation the stable one
is selected as the solution with the lowest free-energy density. The free
energy density of a certain solution is determined by the value of the
Baym–Kadanoff effective action (3.3) for the corresponding extremum of
the Schwinger-Dyson equation δΓ(G)/δG = 0 which takes the form [112]

Γ = −i Tr
[
LnG−1S + 1

2
(
S−1G− 1

)]
. (3.41)
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Figure 3.5. Numerical results for the free energy density Ω as a function of
coupling constant U . The free energy density Ωintra for the intravalley gap
solution is given by Eq.(3.65) and Ωiv for the intervalley gap solution is defined
in Eq.(3.67).

The free energy density is given by Ω = −Γ/TV where TV is a space-
time volume. Integrating by parts the logarithm term and omitting the
irrelevant surface term (which does not depend on gaps), we find

Ω = i

∞∫
−∞

dω

2π
2
v2
F

∫
d2k

(2π)2 tr
{
− ω

[
∂G−1(ω)
∂ω

G(ω) + S−1(ω)∂S(ω)
∂ω

]

+ 1
2
[
S−1(ω)G(ω)− 1

]}
. (3.42)

The technical details of calculation of the energy density of the intravalley
and intervalley gap solutions are presented in Appendix 3.8. Here we
present the results of numerical evaluation by using Eqs.(3.65) and (3.67)
and plot the free energies for both types of gaps in Fig.3.5. Clearly, the
intervalley gap solution is always preferable including the region above the
critical coupling constant (3.14).

3.5 Summary
We studied the gap generation in the dice model at the neutrality point.
We found that there are two main intravalley and intervalley types of the
electron-hole pairing which pairs the electron and hole states in the same
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and different valleys, respectively. The neutrality of the system provides
an important reduction of the number of order parameters. Indeed, it
turned out that the particle-hole symmetry restricts the number of pos-
sible order parameters to three in the case of the intravalley gap and the
intervalley particle-hole symmetry gives two independent order parameters
for the intervalley pairing. Thus, there are three and two gap equations
in the case of the intra- and intervalley gap generation, respectively.

To get an insight into the gap generation in the dice model and reveal
the role of the flat band, we employed a local four-fermion interaction in
our study. The main technical advantage of local interaction is that the
gap equations are algebraic and admit an efficient numerical and partially
analytic analysis. Our main finding is that the intervalley gap is generated
for an arbitrary small coupling constant unlike the intravalley gap which
requires a critical coupling constant. These qualitatively different results
are due to the crucial role which plays the flat band in the intra- and
intervalley gap generation.

Indeed, the intravalley gap pairs the electron and hole states in the
same valley, therefore, it cannot pair states from the flat band only be-
cause such states cannot be the electron and hole ones simultaneously. In
contrast, the intervalley gap relates the electron and hole states in flat
bands from different valleys. The dispersionless band has a singular den-
sity of states that strongly enhances the intervalley gap generation leading
to an extremely large gap proportional to the coupling constant times the
area of the Brillouin zone. This result agrees with the heuristic argument
that the completely flat band is the most favorable for the gap generation
[119–122]. The intervalley gap generation in the dice model is also qualita-
tively similar to that in the case of magnetic catalysis in (2+1) dimensions
in fermion systems with relativistic-like energy spectrum [117]. Indeed,
magnetic field produces completely flat Landau levels and a fermion gap
is generated for an arbitrary small coupling constant and is proportional
to the degeneracy of the lowest Landau level defined by the inverse of the
magnetic length squared l−2. Since the magnetic length is typically much
larger than the lattice constant (e.g., in graphene, l is 26 nm at B = 1T
and the lattice constant a = 0.246nm), the intravalley gap is strongly
enhanced in the dice model by factor l2/a2 ≈ 104 compared to the gap
generated due to the magnetic catalysis. Thus, we conclude that the flat
band catalysis is very efficient indeed. The underlying physical reason
is very simple. Due to the dispersionless flat band, the integration over
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momentum leads to a gap proportional to the area of the Brillouin zone,
thus, very strongly enhancing the gap. This means that even if the mid-
dle band is not completely flat, still the intervalley gap generation should
be very efficient and robust. Finally, we note that our results emphasize
and shed additional light on the important role of flat band in the gap
generation for magic angle twisted bilayer graphene.

3.6 Appendix: Intravalley Green‘s function and
gap equations

Green‘s function of quasiparticles in the dice model with intravalley gaps
at given valley ξ in momentum space equals

Gξ(ω,k) = 1
ω −Hξ + ξµv

= 1
det[ω −Hξ + ξµv]

 G11 D E
B G22 H
C F G33

 ,
(3.43)

det[ω −Hξ + ξµv] = (ω + ξµv − ξm2)((ω + ξµv)2 −m2)− 2k̃2(ω + ξµv),

where the diagonal matrix elements are

G11 = (ω + ξµv +m)(ω + ξµv − ξm2)− k2, (3.44)
G22 = (ω + ξµv)2 −m2, (3.45)
G33 = (ω + ξµv −m)(ω + ξµv − ξm2)− k2, (3.46)

and the off-diagonal elements are

D = (ω + ξµv +m)kξ−, E = (kξ−)2, B = (ω + ξµv +m)kξ+,
H = (ω + ξµv −m)kξ−, C = (kξ+)2, F = (ω + ξµv −m)kξ+, (3.47)

and kξ− = (ξkx − iky)/
√

2 and kξ+ = (ξkx + iky)/
√

2.
Clearly, all off-diagonal terms in Gξ(ω,k) depend linearly or quadrati-

cally on kξ+ and kξ−, therefore, all such terms vanish after integration over
momentum in Eq.(3.9). Hence the Schwinger–Dyson equation gives three
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equations for µv, m, and m2 for the diagonal terms. They are

ξµv = −i2U
v2
F

∫
dωd2k

(2π)3
(ω + ξµv)(ω + ξµv − ξm2)− k2

det[ω + i0sgn(ω)−Hξ + ξµv]
, (3.48)

m = i
2U
v2
F

∫
dωd2k

(2π)3
m(ω + ξµv − ξm2)

det[ω + i0sgn(ω)−Hξ + ξµv]
, (3.49)

ξm2 = i
2U
v2
F

∫
dωd2k

(2π)3
(ω + ξµv)ξm2 + k2 −m2

det[ω + i0sgn(ω)−Hξ + ξµv]
. (3.50)

Note that Eq.(3.49) for gap m is explicitly homogeneous unlike Eqs.(3.48)
and (3.50) for µv and m2. As we stated above, we seek solutions with
m 6= 0, otherwise, the flat band with ε = 0 is realized and it is not clear
how to define a half-filled state.

Since ξ equals ± in two valleys, in fact, the system of equations (3.48)-
(3.50) consists of six equations for three unknowns µv, m, and m2. It
is convenient to change the variable ω → ξω on the right-hand side of
these equations to see that this system of equations is consistent. In order
to calculate the integral over ω in the above gap equations and make
it explicitly convergent we represent the integrands as I(ω) = [I(ω) +
I(−ω)]/2 utilizing the symmetric integration in ω. The denominators in
the integrands is convenient to write in terms of roots of the cubic equation

det[ω−Hξ + ξµv] = (ω+ ξµv −m2)((ω+ ξµv)2−m2)− 2k2(ω+ ξµv) = 0
(3.51)

which are given by

rn = ωn + µv = m2
3 + 2m

√
−p3 cos

(
1
3 arccos

(
3q
2p

√
−3
p

)
− 2πn

3

)
,

(3.52)

with n = 0, 1, 2 and where

p = −
(

1 + 2k2

m2 + m2
2

3m2

)
,

q = m2
m

(
1−

1 + 2k2

m2

3 − 2m2
2

27m2

)
= m2

m

(
2
3

(
1− k2

m2

)
− 2m2

2
27m2

)
. (3.53)

Thus, the determinant can be conveniently rewritten as

det[ω −Hξ + ξµv] = (ω + ξµv − r0)(ω + ξµv − r1)(ω + ξµv − r2). (3.54)
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Then we obtain

µv = − iU
v2
F

∫
dωd2k

(2π)3

(
(ω + µv)(ω + µv −m2)− k2

det[ω + iδ −Hξ + ξµv]
−
[
µv → −µv,
m2 → −m2

])
,

(3.55)

m = iU

v2
F

∫
dωd2k

(2π)3

(
m(ω + µv −m2)

det[ω + iδ −Hξ + ξµv]
+
[
µv → −µv,
m2 → −m2

])
, (3.56)

m2 = iU

v2
F

∫
dωd2k

(2π)3

(
(ω + µv)m2 + k2 −m2

det[ω + iδ −Hξ + ξµv]
−
[
µv → −µv,
m2 → −m2

])
,

(3.57)

where δ = 0sgn(ω). This form of equations is convenient for further
integration over frequency leading to Eqs.(3.10) - (3.12) in the main text.

3.7 Appendix: Intervalley Green‘s function

For Green‘s function of the intervalley gap ansatz (3.18), we find the
following explicit expression:

Gij = 1
det[ω −Hiv]

(
A B
C D

)
, (3.58)

and the determinant in denominator equals to

det[ω −Hiv] = (ω2 −∆2)
[
ω4 − ω2(4k4 + ∆2 + ∆2

2) + (2k2 + ∆∆2)2
]
.

(3.59)

The elements of the matrix A are

A11 = ω
((

∆2 − ω2
) (

∆2
2 − ω2

)
+ 2k4 + k̃2

(
∆2 + 2∆2∆− 3ω2

))
,

A12 = k−
(
∆2 − ω2

) (
∆∆2 + 2k2 − ω2

)
,

A13 = k2
−ω

(
∆2 − 2∆∆2 − 2k2 + ω2

)
,
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A21 = k+
(
∆2 − ω2

) (
∆∆2 + 2k2 − ω2

)
,

A22 = ω
(
∆2 − ω2

) (
∆2 + 2k2 − ω2

)
,

A23 = k−
(
∆2 − ω2

) (
∆∆2 + 2k2 − ω2

)
,

A31 = k2
+ω

(
∆2 − 2∆∆2 − 2k2 + ω2

)
,

A32 = k+
(
∆2 − ω2

) (
∆∆2 + 2k2 − ω2

)
,

A33 = ω
((

∆2 − ω2
) (

∆2
2 − ω2

)
+ 2k4 + k2

(
∆2 + 2∆2∆− 3ω2

))
.

(3.60)

It turned out that B = C and the elements of B are

B11 = ∆
(
∆2 − ω2

) (
∆2

2 − ω2
)

+ 2∆k4 + k2
(
3∆2∆2 − (2∆ + ∆2)ω2

)
,

B12 = (∆−∆2) k−ω
(
∆2 − ω2

)
,

B13 = −k2
−

(
∆2∆2 − 2∆ω2 + ∆2ω

2 + 2∆k2
)
,

B21 = (∆−∆2) (−k+)ω
(
∆2 − ω2

)
,

B22 =
(
∆2 − ω2

) (
∆2
(
∆2 − ω2

)
+ 2∆k2

)
,

B23 = (∆−∆2) (−k−)ω
(
∆2 − ω2

)
,

B31 = −k2
+

(
∆2∆2 − 2∆ω2 + ∆2ω

2 + 2∆k2
)
,

B32 = (∆−∆2) k+ω
(
∆2 − ω2

)
,

B33 = ∆
(
∆2 − ω2

) (
∆2

2 − ω2
)

+ 2∆k4 + k2
(
3∆2∆2 − (2∆ + ∆2)ω2

)
.

(3.61)

Finally, the elements of D are

D11 = ω
((

∆2 − ω2
) (

∆2
2 − ω2

)
+ 2k4 + k2

(
∆2 + 2∆2∆− 3ω2

))
,

D22 = ω
(
∆2 − ω2

) (
∆2 + 2k2 − ω2

)
,

D21 = −k+(∆2 − ω2)(2k2 − ω2 + ∆∆2),
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D31 = k2
+ω(−2k2 + ∆2 + ω2 − 2∆∆2),

D12 = −k−(∆2 − ω2)(2k2 − ω2 + ∆∆2),
D32 = −k+(∆2 − ω2)(2k2 − ω2 + ∆∆2),

D13 = k2
−ω(−2k2 + ∆2 + ω2 − 2∆∆2),

D23 = −k−(∆2 − ω2)(2k2 − ω2 + ∆∆2),

D33 = ω
((

∆2 − ω2
) (

∆2
2 − ω2

)
+ 2k4 + k2

(
∆2 + 2∆2∆− 3ω2

))
.

(3.62)

In the main text we use the diagonal elements of B to write the gap
equations in the explicit form. Note, that off-diagonal components vanish
after integration over polar angle φ in momentum space.

3.8 Appendix: Evaluation of free energy
In this Appendix we present the detailed calculation of the free energy
density for intravalley and intervalley gap states in the dice model. The
final results are given by Eqs.(3.65) and (3.67).

Using expression (3.42) for the Baym–Kadanoff free energy, we denote
the integrand as

Ω̃(k, ω) = tr
{
S−1(ω)G(ω)− 1

2 − ω
[
∂G−1(ω)
∂ω

G(ω) + S−1(ω)∂S(ω)
∂ω

]}
.

(3.63)

First we evaluate the trace and perform summation over valleys, decom-
posing the result into fractions. Next it is convenient to perform the Wick
rotation ω → iω. For the intravalley gap state, we obtain

Ω̃intra(k, iω) = − 8k2

ω2 + 2k2 −
(

(µv − r0)×

m2(3m2 − 2r0 − µv)− 2k2 (4r0 + µv) + r0(3r0µv −m2(r0 + 2µv))
(r1 − r0) (r0 − r2) ((µv − r0) 2 + ω2) + c.p.

)
,

(3.64)

where (c.p.) denotes cyclic permutation of ri. The integration over fre-
quency ω is easily performed and we come at the free energy density for
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the intravalley gap state given by

Ωintra = 1
v2
F

Λ∫
0

k dk

π

[
2
√

2k +

(−2k2 (4r0 + µv) +m2 (3m2 − 2r0 − µv) + r0 (3r0µv −m2 (r0 + 2µv))
2 (r1 − r0) (r0 − r2)

× sign [µv − r0] + c.p.

)]
, (3.65)

This expression is invariant under the change of signm→ −m or (m2, µv)→
(−m2,−µv). Using the numerically found solutions from Sec.3.3 (see
Fig.3.2), we evaluate the integral over k. The corresponding results for
the free energy are shown in Fig.3.5.

In the case of the intervalley gap state, we obtain for the integrand in
the Baym–Kadanoff free energy (3.42) after the Wick rotation ω → iω

Ω̃iv(k, ω) = ∆2

∆2 + ω2 −
8k2

2k2 + ω2

+ ∆2 (2∆2
2 + ω2)+ ∆2

2ω
2 + 12∆∆2k

2 + 8k2 (2k2 + ω2)
(ω2 + a2)(ω2 + b2) .

(3.66)

Expanding the middle fraction and performing integration over ω, we find
the free energy density for the intervalley gap state

Ωiv = − 2
v2
F

Λ∫
0

kdk

2π

[ |∆|
2 − 2

√
2k+

(
a2∆2

2 + ∆2 (a2 − 2∆2
2
)

+ 8k2 (a2 − 2k2)− 12∆∆2k
2

2a (a2 − b2) + (a↔ b)
)]

.

(3.67)

The free energy density Ω for the intervalley gap from Sec.3.4.3 is shown
in Fig.3.5 by red dashed line.


