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Chapter 2

RKKY interaction in a
doped pseudospin-1 fermion
system at finite temperature

2.1 Introduction

The Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction [32–34] is an
indirect exchange interaction between two localized magnetic moments
mediated by a background of electrons. It is an important characteristic
of electron system and a fundamental interaction responsible for magnetic
ordering in spin glasses and alloys. Besides three dimensions, it has been
extensively studied for the electron gas in one [56] and two [57] dimensions.
After the experimental discovery of graphene, the RKKY interaction in
systems with Dirac-like dispersion attracted a great interest [58–67] due
to the richness of their structures. Moreover, the final results for the
complete structure of the RKKY interaction in graphene were obtained
only after a decade of debates [61, 68]. The RKKY interaction was studied
also in strained graphene [69], bilayer graphene [70, 71], biased single-layer
silicene [72], 8-Pmmn borophene [73], on the surface of three-dimensional
Dirac semimetals [74].

Graphene has given a start to a proliferation of fermionic quasiparti-
cles emerging in condensed matter systems which have no counterparts
in particle physics where Poincaré symmetry constrains fermions to the
three types: Dirac, Weyl, and Majorana (not discovered yet) particles
with spin 1/2. In condensed matter systems, symmetries are less restric-
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tive and besides fermions with pseudospin 1/2 other types of fermions with
a higher pseudospin can appear in two- and three-dimensional solids. A
recent paper [15] has given a classification of possible low-energy fermionic
excitations protected by space group symmetries of lattices in solid state
systems with spin-orbit coupling and time-reversal symmetry. The T3 lat-
tice provides one of the well-known realizations of pseudospin-1 fermions
in two dimensions [11, 12]. Pseudospin-1 fermions appear also in the
Lieb [21] and kagome lattices [75]. Recently an experimental evidence of
Dirac fermions as well as flat bands was reported in the antiferromag-
netic kagome metal FeSn [23]. Also, the realizations of Lieb lattice as
electronic lattice formed by the surface state electrons of Cu(111) [7] as
well as the Lieb-like lattices in covalent-organic frameworks were reported
[9, 10]. Fermions of different pseudospins may coexist in some lattices,
for example, Dirac and pseudospin-1 fermions are found to coexist in the
α − T3 model [76], the edge-centered honeycomb lattice [77], and the 2D
triangular kagome lattice [78], Weyl fermions coexist with pseudospin-1
and pseudospin-3/2 fermions in transition metal silicides [79] under the
protection of crystalline symmetries.

In this work we analyze the RKKY interaction in the so-called α−T3
model [13] which contains the mixing of Dirac and pseudospin-1 fermions
as low-energy excitations. The α − T3 model is a tight-binding model
of two-dimensional fermions on the T3 (or dice) lattice whose atoms are
situated at vertices of hexagonal lattice and the hexagons centers [11,
80]. The parameter α describes the relative strength of couplings between
the honeycomb lattice sites and the central site. Thus, as α changes the
α − T3 model reveals a smooth transition from graphene (α = 0) to dice
or T3 lattice (α = 1). Since the α − T3 model has three sites per unit
cell, the electron states in this model are described by three-component
fermions. It is natural then that the spectrum of the model is comprised
of three bands. Two of them form Dirac cones as in graphene, and the
third band is completely flat, dispersionless, and has zero energy in the
whole Brillouin zone [13]. All three bands meet at the K and K ′ points,
which are situated at the corners of the Brillouin zone. In the linear
order in momentum deviations from the K and K ′ points, the low-energy
Hamiltonian of the dice model with α = 1 describes massless pseudospin-1
fermions and is given by the scalar product of momentum and the spin-1
matrices.

Recently several physical quantities have been studied in the α − T3
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model such as orbital susceptibility [13], optical and magneto-optical con-
ductivity [49, 81–83], magnetotransport [76, 84–86]. The role of transverse
magnetic field on zitterbewegung was studied in Ref.[87] and the enhance-
ment of thermoelectric properties of a nanoribbon made of α− T3 model
was discussed in a recent paper [88]. The stability of flat band with re-
spect to different perturbations such as terminations of the lattice as well
as the phenomenon of atomic collapse the Coulomb field of the charged
impurity were studied in Refs.[14, 89, 90].

The presence of completely flat energy band is a remarkable feature
of the considered model, for example, it results in strong paramagnetic
response in a magnetic field [13]. In general, the Fermi systems hosting
flat bands attract a lot of attention last time because quenching of the
kinetic energy strongly enhances the role of electron-electron and other
interactions and may lead to the realization of many very interesting cor-
related states. The most striking recent example is the observation of
superconductivity in twisted bilayer graphene [6] when tuned to special
"magic angles" at which isolated and relatively flat bands appear. The
three-bands models with a flat band found their applicability in many
physical systems (see, for example, reviews [91, 92]), surprisingly even
for the description of equatorial waves [93]. The special role of flat zero
Landau level on RKKY interaction in graphene was analyzed in Ref.[63].

The RKKY interaction of impurities placed on dice lattice demon-
strates larger richness compared to graphene. As in case of graphene,
the RKKY interaction can be written as a product of oscillating part
fab(R) resulting from intervalley scattering times an interaction integral
I(R) (a, b refer to sublattices A,B,C). We show that while some relative
locations of impurities can be reduced to graphene case (multiplied by α
dependent coefficients), there is also a new type of interaction. Like in
graphene, the RKKY interaction in undoped α−T3 model decays as 1/R3

while there are envelope oscillations for finite doping at large distances.
We also show that in some cases the flat band gives an essential contribu-
tion in the RKKY interaction, especially for the undoped case and small
temperature.

The paper is organized as follows: In Sec.2.2 we discuss a general ex-
pression for the RKKY interaction. In Sec.2.3 we describe the general
properties of the α− T3 model and derive the corresponding Green func-
tions in the mixed real space - frequency representation. In Sec.2.4 we
calculate the RKKY interaction for impurities placed on different sublat-
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tices of dice lattice, concentrating on the most interesting case of impurity
positions which is absent in graphene. In Appendix 2.6 we present the ex-
pression for the retarded Green’s function of pseudospin-1 excitations near
K points. In Appendices 2.7 and 2.8 we derive the exact expressions for
interaction integrals in terms of Mellin-Barnes type integrals.

2.2 Basic formulas
Generally, the RKKY interaction defined by second-order correction to
the free energy δF = 1

2T TrV G0V G0, where trace goes over all degrees of
freedom. Here the free Green function is defined by the standard tight-
binding or low energy Hamiltonian, which contains contributions from
both valleys. The interaction potential of impurity and electron spins is
given by [63, 65]

V (µ1,µ2) ≡ V (µ1) + V (µ2) = −λ [S1 · sδ (r−R1)Pµ1 + S2 · sδ (r−R2)Pµ2 ] ,
(2.1)

where Si are the spin operators of impurities and s = ~σ/2 is the spin of
itinerant electrons. The spin-spin coupling constant can be estimated as
λ ' 1eV. The sublattice projectors are denoted by Pµ, and can be written
as the following diagonal matrices PA = diag(1, 0, 0), PC = diag(0, 1, 0)
and PB = diag(0, 0, 1). The contribution, which accounts for the interac-
tion between two different spins, is given by

δF12 = λ2~2

2 S1S2

1/T∫
0

dτ tr [Pµ1G0(R1,R2; τ)Pµ2G0(R2,R1;−τ)] . (2.2)

Using the following Fourier decomposition of imaginary-time Green func-
tion,

G0(τ) = T
∑
n

G0 (iωn) e−iωnτ , ωn = (2n+ 1)πT, (2.3)

we can replace the integral over imaginary time τ by T ∑
iωn

. For example,

for δF12 we get

δF12 = λ2~2

2 S1S2T
∑
n

tr [Pµ1G0(R1,R2; iωn + µ)Pµ2G0(R2,R1; iωn + µ)] ,

(2.4)
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where we introduced the chemical potential µ. Performing the sum over
the Matsubara frequencies by means of the formula

T
∑
n

f(iωn) = −
∞∫
−∞

dω

π
nF (ω)ImfR(ω + iε), (2.5)

where nF (ω) = 1/(exp(ω/T ) + 1) is the Fermi distribution function and
superscript R denotes retarded function. Hence we find an effective RKKY
interaction between two magnetic impurities with the spins S1, and S2,
sitting at the positions R1 and R2

δF12 = Jµ1µ2S1S2, Jµ1µ2 = (λ2~2/4)χµ1µ2(R1,R2), (2.6)

where χ is the spin-independent susceptibility, however, it depends upon
whether atoms belong to the same or different sublattices.

χµ1µ2(R1,R2) = (2.7)

− 2
π

∞∫
−∞

dωnF (ω)Im tr [Pµ1G0(R1,R2;ω + µ)Pµ2G0(R2,R1;ω + µ)] .

After calculating the trace, the role of projectors is reduced to taking
specific components of Green functions Gµ1µ2 and Gµ2µ1 .

2.3 Green function of the α− T3 model

The lattice Green’s function in the tight-binding approximation for α−T3
model Hamiltonian (1.3) is given by

G0(ω,k) = (ω −H0(k))−1 = 1
ω (ω2 − |f(k)|2)× ω2 − sin2 Θ |f(k)|2 ω cos Θf(k) 1

2 sin(2Θ)f(k)2

ω cos Θf∗(k) ω2 ω sin Θf(k)
1
2 sin(2Θ)f∗(k)2 ω sin Θf∗(k) ω2 − cos2 Θ|f(k)|2

 . (2.8)
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In the low-energy model near the K(K ′) points (ξ = ±), it can be decom-
posed as

Gξ0(ω,k) = 1
ω (ω2 − (~vFk)2)× (2.9) ω2 − sin2 Θ~2v2

Fk
2 ω cos Θ~vFk−,ξ sin(2Θ)

2 (~vFk−,ξ)2

ω cos Θ~vFk+,ξ ω2 ω sin Θ~vFk−,ξ
sin(2Θ)

2 (~vFk+,ξ)2 ω sin Θ~vFk+,ξ ω2 − cos2 Θ(~vFk)2

 ,
with notation k±,ξ = ξkx±iky. As was shown in Sec.2.2, the representation
of Green’s function in the mixed coordinate-frequency variables (r, ω) is
the most useful for the calculation of susceptibility, and related to Eq.(2.9)
by Fourier transformation over wave number k. The Fourier transform
of full retarded low-energy Green’s function should contain contributions
from both valleys

G0(R1,R2, ω) = 1
ΩBZ

∫
d2q

(2π)2 e
iq·(R1−R2)

×
[
eiK(R1−R2)G0(q +K, ω) + eiK

′(R1−R2)G0
(
q +K ′, ω

)]
, (2.10)

where K and K ′ are any two adjacent Dirac points in the Brillouin zone,
and ΩBZ = 2

3
√

3d2 is the area of the BZ. Replacing wave number by deriva-
tive in the matrix part of (2.9), and performing integration as shown in
Appendix 2.6, we obtain the Green function in valley ξ:

GR0 (R1 −R2, ω, ξ) = 1
ΩBZ

ω

4(~vF )2× −i cos2 ΘH(1)
0 (z) cos Θξe−iξφH(1)

1 (z) i sin(2Θ)
2 e−2iξφH

(1)
2 (z)

cos ΘξeiξφH(1)
1 (z) −iH(1)

0 (z) sin Θξe−iξφH(1)
1 (z)

i sin(2Θ)
2 e2iξφH

(1)
2 (z) sin ΘξeiξφH(1)

1 (z) −i sin2 ΘH(1)
0 (z)

 ,
(2.11)

where we used notation z = |R|(ω + iε)/~vF , and H(1)
n (z) is the Hankel

function of the first kind. The polar angle of the vectorR1−R2 is denoted
by φ. Below we insert Eq.(2.11) into (2.10) and then calculate suscepti-
bility and the RKKY interaction via Eq.(2.7) in all 6 relative positions of
impurities AA, AB, BB, AC, BC, CC.
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In addition, it is important to note that the second quantized tight-
binding Hamiltonian of α− T3 model

Ĥ =
∫
BZ

d2k

(2π)2 Ψ̂†kH0(k)Ψ̂k (2.12)

possesses the particle-hole symmetry, which is realized by antiunitary op-
erator Ĉ. It acts on the second quantized wave functions Ψ̂ as

ĈΨ̂Ĉ−1 = SΨ̂∗, S = diag(1, −1, 1). (2.13)

The invariance of the Hamiltonian Ĥ under the particle-hole symmetry,
ĈĤĈ−1 = Ĥ, is guaranteed if the following condition is satisfied:

SH0(k)S = −H0(k), (2.14)

which is automatically fulfilled for the momentum space Hamiltonian in
Eq.(1.3). Below we show that this symmetry gives restrictions on the
sign of the RKKY interactions, similar to the graphene case considered in
Ref.[59].

2.4 RKKY interaction of impurities on dice lat-
tice

As was noted before, there are 6 different relative positions of impurities.
The corresponding exchange interactions are

JAA(R) = 4C
~2v2

F

cos4 ΘfAA(R)I0(R,µ, T ), (2.15)

JBB(R) = 4C
~2v2

F

sin4 ΘfBB(R)I0(R,µ, T ), (2.16)

JCC(R) = 4C
~2v2

F

fCC(R)I0(R,µ, T ), (2.17)

JAC(R) = 4C
~2v2

F

cos2 ΘfAC(R)I1(R,µ, T ), (2.18)

JBC(R) = 4C
~2v2

F

sin2 ΘfBC(R)I1(R,µ, T ), (2.19)

JAB(R) = C

~2v2
F

sin2(2Θ)fAB(R)I2(R,µ, T ). (2.20)



24 Chapter 2. RKKY interaction in pseudospin-1 fermion system

In these expressions we introduced short-hand notations R = R1 − R2
and C = 3λ2~2d2/64πt2. The temperature-independent functions fµ1µ2

describe oscillations from contribution of different K points for impurities
placed on µ1 and µ2 sublattices

fµµ(R) = 1 + cos
(
K −K ′

)
R, (2.21)

fAB(R) = 1 + cos[(K −K ′)R− 4φ],
fBA(R) = 1 + cos[(K −K ′)R+ 4φ], (2.22)
fAC(R) = fCB(R) = 1− cos((K −K ′)R− 2φ), (2.23)
fBC(R) = fCA(R) = 1− cos((K −K ′)R+ 2φ). (2.24)

The functions fµ1µ2 are the only ones which depend on the direction of the
vector R while other functions are direction-independent. In the graphene
limit, Θ = 0 or Θ = π/2, only three interactions are left, which correspond
to coupled lattices C and A (B). The AB interaction type vanishes in both
graphene cases and reaches its maximum value in dice model Θ = π/4.

The frequency integrals on the right-hand side of the expressions are

In(R,µ, T ) =
∫ ∞
−∞

dωf(ω)
e
ω−µ
T + 1

, (2.25)

f(ω) = Im
[
(ω + iε)2

(
H(1)
n

((ω + iε)R
~vF

))2]
.

We find that the most interesting is the AB case, which cannot be re-
duced to any known graphene cases due to the lattice geometry, which
corresponds to the appearance of the H(1)

2 (z) function. For the functions
H

(1)
0 (z+ iε) and H(1)

1 (z+ iε) we can take the limit ε→ 0 in the integrand,
however, this is not the case for H(1)

2 (z + iε) due to its more singular be-
havior when z → 0 which is a reflection of a special role of the flat band
with ω = 0. Near ω = 0 we find the singular term in the following integral

(ω + iε)2
(
H

(1)
2

((ω + iε)R
~vF

))2
' − 16(~vF )4

π2R4(ω + iε)2 −
8(~vF )2

π2R2 , (2.26)

hence

Im
[
(ω + iε)2

(
H

(1)
2

((ω + iε)R
~vF

))2]
' 32εω(~vF )4

π2R4(ω2 + ε2)2 ;

32εω(~vF )4

π2R4(ω2 + ε2)2 → −
16(~vF )4

πR4 δ′(ω), ε→ 0. (2.27)
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Adding and subtracting the term 16(~vF )4/π2R4(ω + iε)2 in the expres-
sion

I2(R,µ, T ) =
∞∫
−∞

dω

e
ω−µ
T + 1

Im
[
(ω + iε)2

(
H

(1)
2

((ω + iε)R
~vF

))2
+

+ 16(~vF )4

π2R4(ω + iε)2 −
16(~vF )4

π2R4(ω + iε)2

]
, (2.28)

we can safely take the limit ε = 0 for the first two terms in the square
brackets while the third term produces an additional contribution

I2(R,µ, T ) =
∞∫
−∞

dωω2

e
ω−µ
T + 1

Im
[(
H

(1)
2

(
ωR

~vF

))2
]
− 4(~vF )4

πR4
1

T cosh2 µ
2T
.

(2.29)

For finite µ the additional term does not contribute in the zero temper-
ature limit, T → 0, while at zero chemical potential, µ = 0, it gives a
divergent contribution ∼ −1/T .

The evaluation of the integral (2.25) with ε = 0 represents a nontrivial
task due to the combination of Bessel functions. It can be written as

In(R,µ, T ) = 2
(~vF
R

)3 ∞∫
0

dxx2Jn (x)Yn (x)
( 1
zex/a + 1

+ z

ex/a + z
− 1

)
,

(2.30)

where a = TR
~vF and z = e−µ/T . The last term in brackets is divergent at

the upper limit, that corresponds to physical divergence at ω = −∞ in
Eq.(2.25). In such a case one can introduce frequency cut-off, or another
well defined regularization [59, 61]. We choose the regularization by re-
placing x2 by xα−1 and take the limit α = 3 only in finite expressions. We
checked that the frequency cut-off regularization gives the same result.
Eq.(2.30) is written in terms of the corresponding more general integral
I(α, ν, z, a), Eq.(2.65), studied in Appendix 2.7, as follows

In(R,µ, T ) =
(~vF
R

)3
I(α = 3, n, z, a), n = 0, 1,

I2(R,µ, T ) =
(~vF
R

)3
[
I(α = 3, n = 2, z, a)− 4~vF

πRT

1
cosh2(µ/2T )

]
.

(2.31)
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Generally, the answer can be expressed as inverse Mellin transform (see
Eq.(2.74) or (2.79)) which is suitable for studying different physically rel-
evant asymptotics such as low and high temperature expansions, or the
behavior at large distances R.

2.4.1 Small temperature expansion

To find small temperature corrections at finite chemical potential, one can
apply the Sommerfeld expansion for the frequency integral (2.25) rewriting
it in the form

In(R,µ, T ) =
µ∫

−∞

dωf(ω) + T

∞∫
0

dx[f(µ+ Tx)− f(µ− Tx)
ex + 1

'
µ∫

−∞

dωf(ω) + π2T 2

6 f ′(µ) +O

(
T

µ

)4
. (2.32)

Using the first equality, one can evaluate interaction numerically. As dis-
cussed in Appendix 2.7, we can find all terms of the expansion in powers
of T/µ. Here we present only two lowest terms of this expansion, which
are given by (2.85).

In(R,µ, T ) =
(~vF
R

)3
[

1√
π
G30

24

(
(kFR)2

∣∣∣ 2, 1
0, 3

2 ,
3
2 + n, 3

2 − n

)

+2π3/2T 2

3µ2 G30
24

(
(kFR)2

∣∣∣ 2, 1
2

3
2 ,

3
2 ,

3
2 + n, 3

2 − n

)]
, (2.33)

where we defined the Fermi momentum as kF = µ/~vF . Clearly, non-
analytic in the temperature term in I2 (2.31) does not contribute in the
Sommerfeld expansion. For zero temperature, using the value of Meijer
function at zero argument,

G30
24

(
0
∣∣∣ 2, 1

0, 3
2 ,

3
2 + n, 3

2 − n

)
= (4n2 − 1)

√
π

8 , (2.34)

we get for exchange integrals of undoped α− T3 system

J0
AA(R) = −~vF cos4 Θ

2R3 CfAA(R), J0
AC(R) = 3~vF cos2 Θ

2R3 CfAC(R),

J0
AB(R) = 15~vF sin2(2Θ)

8R3 CfAB(R). (2.35)
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For Θ = 0, J0
AA(R) and J0

AC(R) coincide with expressions derived in [61,
68]. [Note that our definition of the constant C coincides up to a sign
with Ref.[68] while Ref.[61] uses a different definition.] The minus sign for
the exchange interaction means ferromagnetic coupling for spins while the
positive sign corresponds to antiferromagnetic one. We see that couplings
J0
AB, J

0
AC describing the interaction of impurities on different sublattices

are of antiferromagnetic nature in undoped α − T3 system, like in the
case of graphene [58, 59, 61]. For angles Θ close to π/4 (dice model) the
coupling J0

AB is significantly larger than graphene-like couplings: |J0
AB| >

|J0
AC | > |J0

AA|. All couplings feature 1/R3 behavior familiar in graphene.
At finite doping, the short distance (or small kF ) behavior is given by

JAA(R) = J0
AA(R)

[
1− 32(kFR)3

3π

(
ln
(
kFR

2

)
+ γ − 1

3

)]
,(2.36)

JAC(R) = J0
AC(R)

[
1− 16(kFR)3

9π

]
, (2.37)

JAB(R) = J0
AB(R)

[
1− 8(kFR)3

45π

]
. (2.38)

Expanding Eq.(2.33) at large values kFR, we find the following re-
sults for the exchange interactions when both impurities are on the same
sublattice AA or couple to different sublattices (AC and AB, for example):

JAA(R, µ, T ) = 8
π
J0
AA(R)

[
kFR sin(2kFR) + 1

4 cos(2kFR)

− 2π2T 2R2

3(~vF )2

(
kFR sin(2kFR)− 3

4 cos(2kFR)
)]

, (2.39)

JAC(R, µ, T ) = 8
3πJ

0
AC(R)

[
kFR sin (2kFR) + 5

4 cos (2kFR)

− 2π2R2T 2

3(~vF )2

(
kFR sin (2kFR) + 1

4 cos (2kFR)
)]

, (2.40)

JAB(R, µ, T ) = − 8
15πJ

0
AB(R)

[
kFR sin(2kFR) + 17

4 cos(2kFR)

− 2π2T 2R2

3(~vF )2

(
kFR sin(2kFR) + 13

4 cos(2kFR)
)]

. (2.41)

One should note that the exchange interactions oscillate with a distance R.
The terms with sin(2kFR) in square brackets are equal in all cases while
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Figure 2.1. RKKY interactions as functions of kFR at zero temperature and
finite chemical potential calculated through Meijer G-functions. (Left panel)
RKKY interactions normalized to their values at µ = 0 and divided by kFR.
(Right panel) RKKY interactions (solid lines) versus their asymptotic expansions,
Eqs.(2.39)-(2.41), at T = 0 (dashed lines) with the same normalizations.

more decreasing terms with cos 2kFR are different and have the largest
amplitude in case of magnetic impurities situated on sublattices A and B.
Zero temperature behavior is given by first two oscillating factors in square
brackets. A comparison of Eqs.(2.39)-(2.41) with the exact formulas (2.33)
shows that these asymptotic expressions work quite well for kFR > 0.5 in
AA case and kFR > 1.5 in AB case (the right panel in Fig.2.1). We note
that while the normalized couplings JAA/J0

AA, JAC/J
0
AC oscillate in phase,

the coupling JAB/J0
AB oscillates out of phase (see left panel in Fig.2.1).

Physically this is related to the fact that A atom does not interact directly
with B atom but only indirectly via the hub atom C.

We also compare the Sommerfeld expansion (2.33) with numerically
calculated interaction (via the first expression in (2.32)) at temperature
T = 50K and chemical potential µ = 0.1 eV (see Fig.2.2). The approx-
imations work very well in a large interval of distances. As one can see
from the asymptotic expressions (2.39)-(2.41), the temperature correction
grows with distance. Thus, when 2π2T 2R2

3(~vF )2 ∼ 0.5, the next terms in expan-
sion (2.82) become important.

2.4.2 Large distance behavior at finite temperature

In this section we present an exchange interaction in physically relevant
case of large distances and finite temperature, thus obtaining more general
asymptotic than in Eqs.(2.39)-(2.41). For this purpose we use the general
expansion in powers of T/µ (See Eq.(2.87) in Appendix 2.7). However,
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Figure 2.2. (Left panel) Numerically calculated interactions (solid lines) are
compared with the second-order Sommerfeld expansion (2.33) (dashed lines).
The chemical potential equals µ = 0.1 eV and temperature T = 50K. Distances
are measured in terms of the lattice constant al =

√
3d = 0.246nm. The expan-

sion parameter in Eq.(2.82) equals 2πT
µ ≈ 0.3. (Right panel) AB interaction at

R = 20al and µ = 0.01 eV (solid line) and Sommerfeld expansion Eq.(2.33) with
additional term from Eq.(2.29) (dashed line). The nonmonotonic dependence on
temperature comes from an additional term in integral (2.29), while the nonsin-
gular part remains constant due to very small value of (kFR)2. Also we note
that the sign of interaction changes with temperature.

instead of taking several terms of this expansion we sum up the leading
asymptotic terms in series. The obtained Eq.(2.91) allows us to recover
approximations similar to those in Ref.[68] using one general expression.
Here we present the result for the new AB-type interaction integral

JAB(R, µ, T ) = − 8
15J

0
AB(R) R

~vF
F1

[
kFR sin (2kFR) + 15

4 cos (2kFR)

+ πR

~vF
F2 cos (2kFR)

]
, (2.42)

where we used the following definitions in analogy with Ref.[68]:

F1 = T

sinh
(

2πTR
~vF

) , F2 = T

tanh
(

2πTR
~vF

) . (2.43)

Again in this case the term with cos(2kFR) in square brackets has much
larger magnitude comparing to the other two interactions JAA, JAC , which
are similar to graphene case in [68]. This is an interesting property of AB-
type interaction.

As was mentioned in Ref.[68], the term which is proportional to the
product F1F2 should have a nonmonotonic dependence on temperature.
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Here we should note that depending on relative distance between impuri-
ties, other terms in square brackets in Eq.(2.42) can destroy this effect.

2.4.3 Zero chemical potential

The results in the case of zero chemical potential are not given in the
literature in its fullest form even for graphene. Only partial results can
be found in the recent paper [64]. Here we discuss the asymptotics for
low and high temperature which follow from expansion of the expression
(2.79).

Firstly, we start from the low temperature limit. In fact, it is easier
to determine a low temperature expansion of the integral (2.25) itself.
Making replacement x→ ax in Eq.(2.69), we find

In(µ = 0) =
(~vF
R

)3
[
−2C2,n + 4a3

∫ ∞
0

x2dx

ex + 1Jn(ax)Yn(ax)
]
, (2.44)

where a is defined in Eq.(2.30). Expanding the product of Bessel functions
near zero, and then performing integration over x, we find the following
expressions for interactions:

JAA(R, 0, T ) = J0
AA(R)×[

1 + 16
π
a3 (−6ζ(3) ln(a)− 6ζ ′(3) + ζ(3)(ln(16)− 9)

)]
,

(2.45)

JAC(R, 0, T ) = J0
AC(R)

[
1− 16a3ζ(3)

π

]
, (2.46)

JAB(R, 0, T ) = J0
AB(R)

[
1− 32

15πa −
8a3ζ(3)

5π

]
, (2.47)

where ζ(x) denotes the Riemann zeta-function. Note that the leading
temperature correction is of order T 3 (or T 3 log T ) instead of T 2 in the
case of finite chemical potential (see left panel in Fig.2.3). In addition one
should note the presence of singular 1/T term in the AB interaction. As
was shown in Eqs.(2.26)-(2.29), this term comes from singular behavior of
H2 function, and is related to the effects of flat band. The effect of this
term is demonstrated on right panel in Fig.2.3. Such singular behavior
of the AB interaction at low temperature can be used as a benchmark of
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flat band physics in experiment, for example, in the recently discovered
systems [7, 23].

The case of high temperatures (or large distances) is much more com-
plicated. The details of calculation are presented in Appendix 2.8, and
here we present main results for the AA, AC and AB cases:

JAA(R, 0, T ) = J0
AA(R) 16a2

sinh(2πa)

(
π

tanh(2πa) −
1
4a

)
, (2.48)

JAC(R, 0, T ) = J0
AC(R) 16a2

3 sinh(2πa)

(
π

tanh(2πa) + 3
4a

)
, (2.49)

JAB(R, 0, T ) = −J0
AB(R) 16a2

15 sinh(2πa)

(
π

tanh(2πa) + 15
4a

)
. (2.50)

The main difference between the last expression for the AB interaction
and the AA, AC cases is the changed sign of interaction in Eq.(2.50)
comparing to Eq.(2.47). This change comes from the additional term in
Eq.(2.29), which is related to existence of flat band, and exactly cancels
1/R4 term in integral, see Appendix 2.8. As is seen, all exchange inter-
actions exponentially decrease at large RT � 1 in the absence of doping.
Mathematically this comes from the structure of Mellin-Barnes integral
(2.93), for details we refer the reader to Appendix 2.8.

Figure 2.3. Temperature dependence of normalized interactions AA and
AB is compared with asymptotic expressions at small values of parameter a
(2.45),(2.47) and expansions (2.48), (2.50) at large values of a. (Left panel) Non-
monotonic behavior of JAA integral, which was discussed in detail in Ref.[68].
(Right panel) Behavior of relative AB interaction, which has opposite sign com-
paring to J0

AB at zero doping, and becomes very strong as T goes to 0. Such
behavior represents a special feature of the α− T3 model and is directly related
to the existence of flat band.

.
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2.4.4 Sign of interaction at zero chemical potential and
temperature

For completeness it is worth noting the sign difference between J0
AB(R)

and the limit a → 0 in Eq.(2.47) (which is divergent). For bipartite
lattices, the signs of interactions J0(R) in undoped case and for zero
temperature are fixed by general considerations based on particle-hole
symmetry, which result in theorem proved in [59] (and generalized in [71]).
Here we find that the same arguments with particle-hole symmetry (2.13)
contain subtleties, which do not allow to fix the sign of J0

AB.
Using the fact that the ground state is particle-hole symmetric, we

find the following symmetry restriction for Green’s function:

G0(R1 −R2, τ1 − τ2) =
〈
ĈΨ1(R1, τ1)Ψ†2(R2, τ2)Ĉ−1

〉
= −SGT0 (R2 −R1, τ2 − τ1)S, (2.51)

where the operator Ĉ and the matrix S are defined in Eq.(2.13). Substi-
tuting this into susceptibility at zero temperature, we obtain

χµ1µ2 (R1 −R2) = −
∞∫
0

dτ tr
[
Pµ1G0 (R1 −R2; τ)Pµ2SG

T
0 (R1 −R2; τ)S

]
.

(2.52)

Calculating the trace, we find susceptibility in terms of single elements of
G0(r, τ)

χµµ(r) = −
∫
dτ(G0)2

µµ(r, τ), χAB(r) = −
∫
dτ(G0)2

AB(r, τ),

χAC(r) =
∫
dτ(G0)2

AC(r, τ), χBC(r) =
∫
dτ(G0)2

BC(r, τ). (2.53)

By using the Fourier transformation of Eq.(2.8),

G0(r, τ) =
∫ ∞
−∞

dω

2π

∫
BZ

d2k

(2π)2G0(k, iω) exp(−iωτ + ikr), (2.54)

one can easily check that the elements of Green’s function in imaginary
time representation G0µ1µ2(r, τ) are real. Then, (2.53) gives the following
signs for interactions at zero temperature and doping:

J0
µµ

|J0
µµ|

= −1, J0
AC

|J0
AC |

= J0
BC

|J0
BC |

= 1, J0
AB

|J0
AB|

= −1. (2.55)
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Clearly, the sign of J0
AB does not agree with our result (2.35). However,

one should note that this theorem fixes the sign of interaction only if
the integrals in (2.53) exist. This is not the case for the elements G0AB
and G0BA, because the frequency integral in (2.54) diverges at the origin.
The divergence comes from the pole at ω = 0, which is a manifestation
of highly-degenerate flat band. Therefore we cannot fix the sign of such
interaction a priori, and should find it from the physically relevant limiting
cases, µ → 0 or T → 0, and the answer depends on the order of these
limits.

2.5 Conclusions

In recent years, there was an increasing interest to materials which host
fermionic excitations with no analogues in high-energy physics [15]. In par-
ticular, the so-called pseudospin-1 fermions provide a platform for study-
ing exotic physical properties such as transport anomalies, topological
Lifshitz transitions, as well as dispersionless flat bands which may lead to
the realization of many very interesting strongly correlated states. Quasi-
particle excitations with pseudospin one can be realized in many ways, as
we discussed in Introduction.

In this paper we provided results for the RKKY interaction of mag-
netic impurities, placed on sites of T3 lattice, mediated by a background
of pseudospin-1 fermions. Our calculations are performed mainly in the
low-energy linear-band approximation where we managed to obtain gen-
eral analytical expressions for the RKKY interactions which are expressed
in terms of Mellin-Barnes type integrals for finite chemical potential and
temperature. This allowed us to obtain analytically all asymptotics from
one expression. The asymptotic behavior at large distances was analyzed
in detail. In particular, we found, that oscillatory behavior at large dis-
tances was controlled by the same two parameters, the distance between
K-points and Fermi wave vector, as in graphene.

Our results show that there are three types of interaction, two of them
(for impurities on hub and rim sites) can be reduced to graphene case while
the third one (between impurities on different rim sites) is new. This new
type of interaction, which comes as a special feature of T3 lattice geometry,
becomes very strong at small temperatures and doping. Physically this is
an effect of the flat band, which results in a singular behavior of Green’s
function at ω = 0. For bipartite lattices, it is known that the signs of
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RKKY interactions at zero temperature and in the absence of doping are
fixed by general considerations based on particle-hole symmetry, which
result in the theorem proved in [59] (and generalized in [71]). We discussed
the subtleties of this theorem, as applied to the T3 lattice, related to the
existence of a dispersionless flat band. The breakdown of the theorem for
the interaction J0

AB is refered to the divergence of the Green’s function at
zero energy due to flat band. The divergence is regularized in the presence
of finite temperature and/or doping, but taking the limits µ = 0 and T = 0
depends on the order of these limits what is reflected in the last term in the
integral I2(R,µ, T ) of Eq.(2.31). This dramatic change of behavior could
be utilized to reveal the presence of a flat band in experiment and can
be tested, for example, in recently discovered flat-band systems, such as
kagome metal FeSn [23], Lieb-like lattices in covalent-organic frameworks
[9, 10] or the electronic Lieb lattice formed by the surface state electrons
of Cu(111) [7]. The RKKY interaction may lead to the realization of
magnetic order in these materials.

The described strong temperature dependence in α − T3 lattice sys-
tems may manifest also in Friedel oscillations. The last ones could be
detected using STM-based quasiparticle interference measurements [94].
As is known, the flat band emerging in tiny-angle twisted bilayer graphene
results in a strong sensitivity to perturbations leading to strongly corre-
lated states including superconductivity [1]. While the RKKY interaction
was already studied in bilayer graphene [68, 71], the corresponding calcu-
lation for twisted bilayer graphene is still ahead.

2.6 Appendix: Green’s function in coordinate-
frequency representation

The contribution to the retarded Green’s function in r space (2.10) from
one K point is given by Fourier transform

GR0 (R1 −R2, ω, ξ) = 1
ΩBZ

∫
d2k

(2π)2 e
ik(R1−R2)Gξ0(k, ω + iε). (2.56)
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Using the expression for Green function in the low energy model (2.9) and
replacing wave numbers by derivatives, we write

GR0 (r, ω, ξ) = 1
ω
× ω2 + sin2 Θ~2v2

F∂
2
r −iω cos Θ~vF∂−,ξ −1

2 sin(2Θ)(~vF∂−,ξ)2

−iω cos Θ~vF∂+,ξ ω2 −iω sin Θ~vF∂−,ξ
−1

2 sin(2Θ)(~vF∂+,ξ)2 −iω sin Θ~vF∂+,ξ ω2 + cos2 Θ(~vF∂r)2

×
× 1

ΩBZ

∫
d2k

(2π)2
eikr

(ω + iε)2 − (~vFk)2 . (2.57)

Here ∂±,ξ = ξ∂x ± i∂y. Now we integrate over the angle and then use the
formula 2.12.4.28 from book [95],∫ ∞

0

xν+1Jν(cx)
x2 + z2 dx = zνKν(cz), c > 0, Re z > 0, (2.58)

and get

F (r) =
∫

d2k

(2π)2
eikr

(ω + iε)2 − (~vFk)2 =
∞∫
0

dkk

2π
J0(k|r|)

(ω + iε)2 − (~vFk)2

= − 1
2π(~vF )2K0

(−i|r|(ω + iε)
~vF

)
, (2.59)

where J0andK0 are the Bessel’s functions. Using the relation between
Macdonald’s functions and the Hankel function of first kind,

H(1)
ν (z) = −2i

π
e−

iπν
2 Kν

(
ze−

iπ
2
)
, z = |r|(ω + iε)

~vF
, (2.60)

we find

F (r) = − i

4(~vF )2H
(1)
0

( |r|(ω + iε)
~vF

)
. (2.61)

Next, we evaluate all matrix elements of Green’s function. Let’s calculate
all needed derivatives

(~vF )2∂2
rF (r) = iω2

4(~vF )2H
(1)
0 (z) , (2.62)

~vF (ξ∂x ± i∂y)F (r) = ξ
iωe±iξφ

4(~vF )2H
(1)
1 (z) , (2.63)

(~vF )2(ξ∂x ± i∂y)2F (r) = − iω
2e±2iξφ

4(~vF )2 H
(1)
2 (z) . (2.64)
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Substituting these expressions back to Green’s function, we find result
which is given by Eq.(2.11) in the main text. Note that all elements of
the Green function are proportional to ω.

2.7 Appendix: Evaluation of the interaction in-
tegral

In this Appendix we consider the integral

I(α, ν, z, a) = 2
∞∫
0

dxxα−1Jν (x)Yν (x)
( 1
zex/a + 1

+ z

ex/a + z
− 1

)
,

− 1 < Reα < 1. (2.65)

In the region 0 < α < 1 we can calculate the terms in round brackets sep-
arately, for example, the term with −1 can be evaluated using Eq.2.24.3.1
from the book [96],

Cα,ν =
∞∫
0

dzzα−1Jν(z)Yν(z) = − 1
2
√
π

Γ
(
α
2
)

Γ
(
α
2 + ν

)
Γ
(

1+α
2

)
Γ
(
1 + ν − α

2
) , (2.66)

which gives the following values for α = 3 and ν = 0, 1, 2:

C3,0 = 1
16 , C3,1 = − 3

16 , C3,2 = −15
16 . (2.67)

Thus, we can rewrite the integral as follows

I(α, ν, z, a) = −2Cα,ν + J(α, ν, z, a), (2.68)

where, for ν ≥ 0 and Reα > 0,

J(α, ν, z, a) = 2
∞∫
0

dxxα−1Jν (x)Yν (x)
( 1
zex/a + 1

+ z

ex/a + z

)
. (2.69)

We calculate the last integral using the Mellin transform

J(α, ν, z, s) =
∫ ∞

0
daas−1J(α, ν, z, a)

= 2
∫ ∞

0
dxxα−1Jν(x)Yν(x)

∫ ∞
0

daas−1
( 1
zex/a + 1

+ z

ex/a + z

)
. (2.70)
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After the change a→ ax and then a→ 1/a Eq.(2.70) takes the form

J(α, ν, z, s) =
∫ ∞

0
dxxα+s−1Jν(x)Yν(x)Q(s, z), 0 < α+ s < 1, (2.71)

where

Q(s, z) = 2
∫ ∞

0
daa−s−1

( 1
zea + 1 + z

ea + z

)
, Re s < 0. (2.72)

The function Q(s, z) possesses the symmetry Q(s, 1/z) = Q(s, z). The
integral over x in Eq.(2.71) is evaluated using Eq.(2.66). There exists the
range of parameters α, s where the Mellin transform J(α, ν, s, z) is defined.
We obtain for 0 < α+ Re s < 0, ν ≥ 0:

J(α, ν, s, z) = −
Γ
(
ν + α+s

2
)

Γ
(
α+s

2
)

2
√
πΓ
(
α+1+s

2

)
Γ
(
ν + 1− α+s

2
)Q(s, z), (2.73)

hence

I(α, ν, z, a) = −2Cα,ν −
1

2πi

γ+i∞∫
γ−i∞

ds a−s
Γ
(
ν + α+s

2
)

Γ
(
α+s

2
)
Q(s, z)

2
√
πΓ
(
α+1+s

2

)
Γ
(
ν + 1− α+s

2
) ,

(2.74)
where the contour separates poles of the function Q(s, z) (at s = 0 and
s = 2n + 1, n=0, 1,. . . , see below) from poles of gamma functions in the
numerator. The integrals in Eq.(2.72) can be evaluated explicitly through
the polylogarithm function [97] and we get

Q(s, z) = −2Γ(−s) [Li−s(−1/z) + Li−s(−z)] . (2.75)

The function Lis(z) has the following properties. It is an analytical func-
tion of complex variables s, z. For fixed z, it does not have poles or branch
cuts in a finite region of complex s-plane, the point s =∞ is the only (es-
sential) singularity. For fixed s, Lis(z) does not have poles and essential
singularities but has a cut in the z-plane along the interval [1,∞], where
it is continuous from below side of the cut. It has the symmetry property
with respect to complex conjugation Lis∗(z∗) = Li∗s(z) for z not belonging
to the interval (−∞, 0).

Analytic continuation of Lis(z) into the region |z| > 1 can be per-
formed by means of the formula (see Eq.(1.11.16) in [98])

Lis(z) + eiπsLis
(1
z

)
= (2π)s

Γ(s) e
iπs/2ζ

(
1− s, 1

2 + ln(−z)
2πi

)
, Re s < 0,

(2.76)
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where ζ(s, q) is the Hurwitz ζ-function. When s is a negative even integer,
s = −2m, m = 1, 2, . . . , we get Li−m(−z) + Li−m (−1/z) = 0. It follows
then from Eq.(2.75) that Q(s, z) has poles only for s = 0 and odd positive
s = 2n+ 1, n = 0, 1, . . . , while for even positive s = 2n the poles of Γ(−s)
are canceled by zeros of the sum of polylogarithm functions. Applying
this formula to Eq.(2.75) we get

Q(s, z) = − 1
(2π)s cos(πs/2)

[
ζ

(
1 + s,

1
2 + ln z

2πi

)
+ ζ

(
1 + s,

1
2 −

ln z
2πi

)]
.

(2.77)
Near s = 0 the function Q(s, z) behaves as

Q(s, z) ' −2
s
, (2.78)

then moving the contour in Eq.(2.74) to slightly right of the point s = 0
(γ > 0) and calculating the residue at s = 0, we get

I(α, ν, z, a) = − 1
2πi

γ+i∞∫
γ−i∞

ds a−s
Γ
(
ν + α+s

2
)

Γ
(
α+s

2
)

2
√
πΓ
(
α+1+s

2

)
Γ
(
ν + 1− α+s

2
)Q(s, z)

(2.79)

[the residue at s = 0 cancels the first term in Eq.(2.74)].
Expanding the functions ζ(s, 1/2±iv) (where v = ln z

2π ) in series around
v = 0, we find the following representation of the function Q(s, z) near
the point z = 1:

Q(s, z) = − 2
(2π)s cos(πs/2)

×
∞∑
k=0

(−1)kΓ(1 + s+ 2k)ζ(2k + 1 + s, 1/2)
Γ(1 + s)(2k)!

( ln z
2π

)2k
. (2.80)

This expansion can be used to find a high temperature expansion of
Eq.(2.79), hence the integral (2.25), when |µ|/(2πT )� 1.

To obtain the expansion at large |v| = |µ|/(2πT ) � 1 we start from
the asymptotic expansion [99]:

ζ(s, q) = 1
Γ(s)

∞∑
k=0

(
21−2k − 1

)
B2kΓ(s+ 2k − 1)

(2k)!(q − 1/2)s+2k−1 , (2.81)
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where B2k are Bernoulli numbers. For the function Q(s, z) we get the
asymptotic series at large |v|:

Q(s, z) = − 2
(2π|v|)sΓ(s+ 1)

∞∑
k=0

(−1)k
(
21−2k − 1

)
B2kΓ(s+ 2k)

(2k)!v2k . (2.82)

The first terms of the expansion of Q(s, z) at small z (large |v|) are:

Q(s, z) = − 2
(2π|v|)sΓ(s+ 1)

[
Γ(s) + Γ(s+ 2)

24v2 + 7Γ(s+ 4)
5760v4 +O

( 1
v6

)]
.

(2.83)
Hence, for small z (or µ/T � 1) we obtain, keeping two lowest terms,

I(α, ν, u) = 1
2πi

γ+i∞∫
γ−i∞

ds u−s
Γ
(
ν + α+s

2
)

Γ
(
α+s

2
)

2
√
πΓ
(
α+1+s

2

)
Γ
(
ν + 1− α+s

2
)

×

 Γ
(
s
2
)

Γ
(
1 + s

2
) + 1

6v2

Γ
(
1 + s+1

2

)
Γ
(
s+1

2

)
 , u = µR

~vF
= kFR. (2.84)

Changing s→ 2s and calculating integrals we get equivalent expressions

I(α, ν, u) = 1√
π
G30

24

(
u2
∣∣∣ α+1

2 , 1
0, α2 ,

α
2 + ν, α2 − ν

)

+ 1
6
√
πv2G

30
24

(
u2
∣∣∣ α+1

2 , 1
2

3
2 ,

α
2 ,

α
2 + ν, α2 − ν

)

= − 1√
π
G21

24

(
u2
∣∣∣ 1, α+1

2
α
2 ,

α
2 + ν, α2 − ν, 0

)

− 1
6
√
πv2G

21
24

(
u2
∣∣∣ 1

2 ,
α+1

2
α
2 ,

α
2 + ν, α2 − ν,

3
2

)
, (2.85)

where we used Eq.8.2.1.17 from [96],

Gmnpq

(
z
∣∣∣ (ap−1), b± l

b, (bq−1)

)
= (−1)lGm−1,n+1

p,q

(
z
∣∣∣ b± l, (ap−1)

(bq−1), b

)
. (2.86)

The first term in Eq.(2.85) corresponds to the case of zero temperature,
and for α = 3, ν = 0, 1 it agrees with the result of Ref.[61]. In general, the
expansion of the expression (2.82) over 1/|v| corresponds to the expansion
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over T/µ (Sommerfeld’s expansion). At large kFR, Eq.(2.85) gives for
interested cases α = 3, ν = 0, 1, 2 the results in Eqs. (2.39)-(2.41).

From our final formula (2.79) we can obtain an expansion for µ near
zero by means of Eq.(2.80), and an expansion for T � µ using Eq.(2.82).
To find a large kFR expansion at fixed RT/~vF we consider the expression
(2.79) using Q(s, z) represented by the asymptotic series (2.82),

I(α, ν, z, a) = 1√
π

∞∑
k=0

(−1)k
(
1− 22k−1

)
B2k

(2k)!v2k

× 1
2πi

γ+i∞∫
γ−i∞

ds (2πav)−s
Γ
(
ν + α+s

2
)

Γ
(
α+s

2
)

Γ
(
k + s

2
)

Γ
(
k + 1+s

2

)
Γ
(

1+s
2

)
Γ
(
1 + s

2
)

Γ
(

1+α+s
2

)
Γ
(
1 + ν − α+s

2
)

= 2√
π

∞∑
k=0

(−1)k
(
1− 22k−1

)
B2k

(2k)!v2k

×G40
35

(
(2πav)2

∣∣∣ 1
2 , 1,

1+α
2

k, k + 1
2 ,

α
2 ,

α
2 + ν, α2 − ν

)
, (2.87)

where we used the duplication formula for Γ(2k + s) and Γ(1 + s). Since
2πav = kFR, we consider the asymptotic of Meijer function at large
kFR� 1. For α = 3 and nonnegative integer ν we get

G40
35

(
(2πav)2

∣∣∣ 1
2 , 1, 2

k, k + 1
2 ,

3
2 ,

3
2 + ν, 3

2 − ν

)
'

(−1)(k+ν)(2πav)2k
√
π

[
−2πav sin(4πav) + (k − ν2 − 1/4) cos(4πav)

]
.

(2.88)
Using the representation for Bernoulli numbers(

1− 21−2k
)
B2k = (−1)k+1π

∞∫
0

dt t2k

cosh2(πt)
, (2.89)

we get after performing the summation over k,

I(3, ν, z, a) = (−1)ν+1

π

∞∫
0

dt

cosh2 t
[2at sin(4at) cos(2kFR)

+ cos(4at)
(
µR

~vF
sin(2kFR) + 4ν2 + 1

4 cos(2kFR)
)]

. (2.90)
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Calculating the integrals over t, we finally obtain

I(3, ν, z, a) = (−1)ν+1 2R2

(~vF )2F1

[
µ sin(2kFR) + ~vF (4ν2 − 1)

4R cos(2kFR)

+πF2 cos(2kFR)] , kFR� 1, (2.91)

where F1 and F2 are defined in Eq.(2.43). The last expression for ν = 0, 1
leads to the same expressions as were found in graphene for exchange
interactions [68], while the expression for ν = 2 is completely new and
corresponds to interaction between impurities on rim sites in considered
pseudospin-1 fermion system.

2.8 Appendix: Zero chemical potential and finite
temperature

Asymptotics of the integrals In with n = 0, 1 were at least partially ana-
lyzed in graphene literature, except the integral I2. However, in the case
of zero chemical potential, µ = 0, such an analysis was not performed to
the best of our knowledge. The evaluation of corresponding integrals in
the large distance limit poses a rather complicated task. This is because
the leading correction is given by exponentially small term, and thus any
power series decomposition can not give the desired result. However, our
formula (2.79) allows us to analyze the case µ = 0 straightforwardly. First,
we write the function Q(s, z = 1) from Eq.(2.80) in the form

Q(s, 1) = − 2ζ(1 + s, 1/2)
(2π)s cos(πs/2) = − 4

πs+1 Γ
(1 + s

2

)
Γ
(1− s

2

) ∞∑
k=0

1
(2k + 1)s+1 ,

(2.92)
where Re s > 0. Then for the integral (2.79) we obtain

I(α, ν, 1, a) = 2a√
π

∞∑
k=0

1
2πi

γ+i∞∫
γ−i∞

ds [πa(2k + 1)]−s−1

×
Γ
(
ν + α+s

2
)

Γ
(
α+s

2
)

Γ
(

1+s
2

)
Γ
(

1−s
2

)
Γ
(
α+1+s

2

)
Γ
(
ν + 1− α+s

2
) , 0 < γ < 1. (2.93)
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Finally, making the change s → 2s − 1 we get the expression in terms of
Meijer functions,

I(α, ν, 1, a) = 4a√
π

∞∑
k=0

G3,1
2,4

(
π2a2(2k + 1)2

∣∣∣ 0, α2
0, α−1

2 , ν + α−1
2 , α−1

2 − ν

)
.

(2.94)

The function G31
24(z) is an analytic in z function in the sector |argz| < π.

To find asymptotic behavior of J(α, ν, 1, a) at large a, we use two terms
of asymptotic expansion of Meijer function at large argument and then
evaluate the sum. Below we present results for three cases ν = 0, 1, 2:

I(3, 0, 1, a) = − 2a2

sinh(2πa)

(
π

tanh(2πa) −
1
4a

)
, a > 1. (2.95)

I(3, 1, 1, a) = 2a2

sinh(2πa)

(
π

tanh(2πa) + 3
4a

)
, a > 1. (2.96)

I(3, 2, 1, a) = 4
πa
− 2a2

sinh(2πa)

(
π

tanh(2πa) + 15
4a

)
, a > 1. (2.97)

The last expression contains the power decreasing term ∼ 1/a in contrast
to the first two expressions. This is because the corresponding Mellin-
Barnes integrand has one pole (at s = 1) to the right of the integration
contour while the integrands for α = 3 and ν = 1, 2 do not contain poles at
all in that region. Hence they have only exponentially decreasing terms,
for example, the first correction is exponentially small, ∼ a2 exp(−2πa), at
large a� 1. On the other hand, since the expression for ν = 2 decreases
as ∼ 1/a the corresponding integral in Eq.(2.30) has 1/R4 decrease with
a distance. However, as we find from Eq.(2.29) in main text, this power-
decreasing term is exactly canceled by the flat-band correction.


