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Chapter 1

Introduction

1.1 Preface

This thesis is devoted to the study of the role of flat bands in transport
and interacting properties of atomically-thin materials.

Flat band is defined as a part of Bloch band with macroscopically large
region of momentum space with nearly constant dispersion. Why the flat
bands are so important? The answer is given by considerations coming
from classical physics (mechanics, electrodynamics). The equations of
motion for a single particle in external potential U are captured by the
Lagrangian function L = T −U or Hamiltonian H = T +U with T being
a kinetic energy. The definition of flat band says that T is approximately
constant in some parameter range - region in momentum space. Adjusting
the energy level to this constant level T̃ = T−T0, we find that L̃ = T̃−U ≈
U . This means that the physics of a particle are determined solely by an
external potential. Such situation in not typical for classical physics. The
clear consequence of this estimation appears in quantum systems: even
weak potential or interactions inside the system lead to instability of the
initial ground state and re-configuration. In the modern experiments the
investigation of possible new ground states in a flat band systems is a
young topic which appeared just 5 years ago with a discovery of magic
angle twisted bilayer graphene [1]. Nevertheless, the enormous attention
led to appearance of many thousands of papers with number of intriguing
results. The most prominent examples are discoveries of superconductivity
and Mott insulating states in magic angle twisted bilayer [1] and trilayer
[2], superconducting states in Bernal bilayer [3] and ABC trilayer graphene
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[4], and Kagome metals [5].
In this thesis several theoretical predictions for the new ground states

in flat band systems are discussed. One might ask why the ground state of
flat band systems is so hard to calculate? The reason is that the presence
of flat band enhances the role of all interactions. Thus, a very rigorous
symmetry analysis and precise estimation of each of interaction constants
is required to build a phase diagram and understand which phase domi-
nates. In the Chapter 2 the strong enhancement of RKKY spin-spin inter-
actions is predicted. For the case when the screened Coulomb interaction
is present, the possibility of formation of excitonic gap with intervalley-
polarized order is discussed in Chapter 3. These results can be viewed as a
building blocks for future theory of phase diagram in flat band materials.
Based on experiments like [1, 6] it is expected that one would have the
competition between all these correlated states, and as an example the
final ground state might have unconventional type of superconductivity.
Also the high controllability in experiments with 2D materials might allow
to tune and select which of interactions will be dominating in particular
setup. Other main chapters of this thesis are devoted to the study of the
role of flat bands in a non-interacting case. Such situation is typical for
realizations of flat band materials in artificial systems such as STM-type
experiments with electronic lattices [7], optical lattice realizations [8] or
superlattice structures in organic chemical frameworks [9, 10].

1.2 Examples of simple tight-binding models with
flat bands

Next, let us introduce the particular examples of flat band models studied
in this thesis. The main idea behind these lattices is that they have simple
geometry and the tight-binding description gives simple Hamiltonians that
can be analyzed with analytical and numerical methods. The two lattices,
dice and Lieb, discussed below are examples of bipartite lattices where
connection between two different sublattices is made only via hopping
parameters to third sublattice.

1.2.1 Dice lattice and α− T3 model

The dice (also called T3) lattice is probably historically the first tight-
binding model with flat bands. It was firstly studied by B. Sutherland
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Figure 1.1. The dice (also called T3) lattice whose red points display atoms
of the A sublattice, blue points describe the B sublattice, and the green points
define the C sublattice. The vectors a1 = (

√
3, 0)d and a2 = (

√
3/2, 3/2)d are

the basis vectors of the C sublattice. The nearest neighbor hopping parameters
between hub (C) and rim (A, B) atoms are t1 and t2.

in 1986 [11] as an example where localization of wave functions happens
due to local topology. The α − T3 model describes quasiparticles in two
dimensions on the dice lattice schematically shown in Fig.1.1, where d
denotes the distance between neighbor atoms. This lattice has a unit cell
with three different lattice sites whose two sites (A,C) like in graphene
form a honeycomb lattice with hopping amplitude tAC = t1 and additional
B sites at the center of each hexagon are connected to the C sites with
hopping amplitude tBC = t2. The C atoms are called hub centers, while
A and B are rim sites, and electrons hop between rim and hub atoms only.
Two hopping parameters t1 and t2 are not equal, in general, and the dice
model corresponds to the limit t1 = t2. The lattice structure and basis
vectors a1 = (

√
3, 0)d, a2 = (

√
3/2, 3/2)d are shown on Fig.1.1. Since

there are three atoms per unit cell, the wave functions can be written in
terms of 3-component vectors with elements assigned to each sublattice.
This leads to the so-called pseudospin S = 1 description.

The tight-binding equations are [12]:

εΨC(r) = −t1
∑
j

ΨA(r + δAj )− t2
∑
j

ΨB(r − δAj ),

εΨA(r) = −t1
∑
j

ΨC(r − δAj ),

εΨB(r) = −t2
∑
j

ΨC(r + δAj ), (1.1)
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where the vectors δAj connect nearest neighbor atoms C to atoms A:

δA1 = a1 + a2
3 , δA2 = a3 − a1

3 , δA3 = −a2 + a3
3 with a3 = a2 − a1.

(1.2)

The corresponding tight-binding Hamiltonian in momentum space reads
[13]

H0(k) =

 0 fk cos Θ 0
f∗k cos Θ 0 fk sin Θ

0 f∗k sin Θ 0

 , α ≡ tan Θ = t2
t1
,

fk = −
√
t21 + t22 (1 + e−ika2 + e−ika3), (1.3)

and acts on three-component wave functions with the following order of
components ΨT = (ΨA,ΨC ,ΨB). As was noted in Introduction, the angle
Θ can be used to interpolate between graphene and dice model. Thus, our
results can be compared with graphene literature by taking limit Θ → 0
or Θ→ π

2 .
It is easy to derive the energy spectrum of the above Hamiltonian,

which is qualitatively the same for any α and consists of three bands:
the zero-energy flat band, ε0(k) = 0, whose existence is protected by the
particle-hole symmetry, and two dispersive bands

ε±(k) = ±|fk| = ±
√
t21 + t22

[
3 + 2(cos(a1k) + cos(a2k) + cos(a3k))

]1/2
.

(1.4)
The eigenvectors in the whole Brillouin zone (BZ) are given by Eq.(2) in
[13] (gapless case) and by Eq.(5) in [14] (gapped case). For dispersionless
band the wave function is localized on atoms of sublattices A,B while it
is zero on hub atoms C. The presence of a completely flat band with zero
energy is perhaps one of the remarkable properties of the α − T3 lattice
model.

There are six values of momentum for which fk = 0 and all three
bands intersect. They are situated at corners of the hexagonal Brillouin
zone. The two inequivalent points, for example, are

K = 2π
d

(√
3

9 ,
1
3

)
, K ′ = 2π

d

(
−
√

3
9 ,

1
3

)
. (1.5)
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For momenta near the K-points, k = K(K ′) + k̃, we find that fk is
linear in k̃, i.e., fk = ~vF (ξk̃x − ik̃y) with valley index ξ = ±, where
vF = 3td/2~ is the Fermi velocity, and in what follows we omit for the
simplicity of notation the tilde over momentum. As for lattice parameters
we take their numerical values the same as in graphene. Hence, in the
linear order to momentum deviations from the K and K ′ points, the
low-energy Hamiltonian describes massless pseudospin-1 fermions [12, 13]
which for equal hoppings, Θ = π/4, is given by the scalar product of
momentum and the spin-1 matrices:

Hξ(k) = ~vF (ξSxkx + Syky) ,

Sx = 1√
2

 0 1 0
1 0 1
0 1 0

 , Sy = 1√
2

 0 −i 0
i 0 −i
0 i 0

 (1.6)

where k = q−Kξ is the wave vector measured relative to the Dirac points
located at Kξ = ξ4π/(3

√
3a) {1, 0}, corresponding to K (ξ = +) and K ′

(ξ = −) points, and vF = 3ta/(
√

2~) is the Fermi velocity. This Hamilto-
nian reminds a Dirac-type Hamiltonian (relativistic dispersion) but now
for spin-1 particles. Such effective Hamiltonians, that do not occur for
elementary particles in high-energy physics, attracted much attention in
the last years [15].

The T3 lattice was experimentally realized in Josephson arrays [16, 17]
as well as in a network made of metallic wires tailored in a high mobil-
ity two-dimensional electron gas [18], and its optical realization by laser
beams was proposed in Ref.[19]. The atomic-scale realization of dice lat-
tice is missing because of the complexity of hopping structure (the hop-
pings between neighboring A and B sublattices should be strongly sup-
pressed).

1.2.2 Lieb lattice

The Lieb lattice is schematically shown in Fig.1.2. It was studied by E. H.
Lieb in 1989 [20] in connection with specific properties of Heisenberg spin
model on it. This lattice consists of three square sublattices, with atoms
placed in the corners and in the middle of each side of big squares forming
a line-centered-square lattice. The tight-binding equations describing this
lattice are very similar to Eq.(1.1), the only difference comes from the
orientation of vectors connecting nearest neighbors δj . The tight-binding
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a1

a2

A

B

C

Figure 1.2. The Lieb lattice whose red points display atoms of the A sublattice,
blue points describe the B sublattice, and the green points define the C sublat-
tice. The vectors a1 = (1, 0)a and a2 = (0, 1)a are the basis vectors of the B
sublattice. The nearest neighbor hopping parameters between hub (B) and rim
(A, C) atoms are t1 and t2.

Hamiltonian was described in Ref.[21]:

H0 =

 0 −2t cos (kxa/2) 0
−2t cos (kxa/2) 0 −2t cos (kya/2)

0 −2t cos (kya/2) 0

 (1.7)

Notably, the dispersion contains only single Dirac cone inside first Bril-
louin zone (see Fig.1.2). This Hamiltonian reduces to the following low-
energy model near the center of BZ kx,y = π

a + qx,y:

HLieb =

 0 vF qx 0
vF qx 0 vF qy

0 vF qy 0

 . (1.8)

The energy dispersions defined by this Hamiltonian are given by three
bands, one is flat band and the other two are dispersive bands (see Fig.4.4c):

ε0 = 0, ε± = ±2t
√

cos2 (kxa/2) + cos2 (kya/2). (1.9)

The notable property of both dice and Lieb lattices in that flat band is
placed at charge-neutrality point. Below we discuss the structure of wave
functions in flat band in real space.

The experimental realization of Lieb lattice on atomic scale was made
with the help of STM technique that creates an electronic lattice on surface
of substrate [7].
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Figure 1.3. The configuration of flat band state wave function that is localized
around one of the hub sites. While the components of the wave function on a
hub (green C) sites are zeros, the sign-alternating components on A and B sites
compose a localized state.

1.2.3 Structure of flat band wave functions on a lattice

The main feature of the models described above in the presence of exactly
flat band at the charge-neutrality point in the spectrum. it is easy to find
flat band solutions in momentum space from tight-binding Hamiltonian.
But the question arises - how such states are organized on a lattice? The
answer on this question was the historical motivation that attracted atten-
tion to these lattices [11, 20] well before the first atomically-thin material
was experimentally realized [22].

Let us look on tight-binding equations (1.1). The flat band placed at
zero energy results in three equations:

0 = −t1
∑
j

ΨA(r + δAj )− t2
∑
j

ΨB(r − δAj ),

0 = −t1
∑
j

ΨC(r − δAj ), 0 = −t2
∑
j

ΨC(r + δAj ). (1.10)

The two last equations are equivalent and give the same solution ΨC(r) =
0. The first equation gives algebraic relation on components of wave func-
tion on A and B sublattices, that can be easily satisfied by choosing the
sign structures of the components according to the Fig.1.3. For exam-
ple, all B-components are equal to ΨB = −t1/t2ΨA. The state shown in
Fig.1.3 is localized around one of the sublattice C sites. For each site one
can build correspond state, thus having the high degeneracy of such flat
band of the order of number of atoms in the sample. The experiments
[16–18] have confirmed the existence of novel localization effects, which
arise due to the presence of flat band in the spectrum of T3 lattice.
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1.3 Beyond exactly flat bands: high-order van
Hove singularities

In experiments with atomically-thin crystals it is typical to have not ex-
actly flat bands due to different next nearest neighbor hopping terms, role
of substrates and similar effects [1, 23]. The general concept that captures
relatively “flat” parts of band in a dispersion are called saddle points. The
corresponding pronounced divergent peaks in density of states are called
van Hove singularities. The original concept was studied by L. van Hove in
1953 [24]. Recently, a generalization of the concept, called high-order van
Hove singularities, was introduced by Liang Fu group [25]. The difference
between these concepts is the following:

1) The term “flat bands” in this Thesis is used to describe bands
that have constant dispersion, thus representing mathematically precise
flatness of the band. The corresponding density of states has a Dirac
delta-function peak;

2) the usual van Hove singularities correspond to momentum-dependent
dispersion ε(kx, ky) ∼ k2

x − k2
y and give logarithmically-divergent density

of states;
3) the high-order van Hove singularities give power law divergent den-

sity of states.
All such features in the band structure are expected to produce strongly

correlated states (superconductivity, etc) at corresponding doping due to
high density of states and small group velocity of quasiparticles [26–28].
However, some observable signatures might be different and the Sixth
Chapter 6 studies such differences for orbital susceptibility. The classifi-
cation of high-order van Hove singularities was given in Refs.[29, 30], and
the field of discovering materials with them only starts its growing.

1.4 Zero energy modes: Majorana zero modes
and Andreev bound states

When the flat band is placed close to charge-neutrality point in the sys-
tem the whole reach physical picture coming from flat bands becomes
easily accessible for experimental studies. In addition to discussion of
possible physical effects related to the flat bands in 2D crystals, this the-
sis also contains several results related to another type of states placed
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near charge-neutrality point: Majorana zero modes and Andreeev bound
states.

In the past decades the great attention was given to a possibility of
making topologically protected quantum qubit. One of the key possibili-
ties was to use so-called Majorana zero modes - a collective excitations in
superconductors that are bound to zero energy (charge neutrality point)
and are non-Abelian anions.

However, they are typically mimicked by another non-topological modes
placed at or around charge neutrality point - Andreeev bound states. Such
bound states appear in Josephson junctions. In this case mimicking means
that the expected observable signatures of Majorana zero modes are nearly
exactly reproduced by Andreev bound states.

Modern experimental state of this is the following: there are devised
that host Majorana modes, however their manufacturing is related to enor-
mously complicated process of reducing disorder [31]. Still a next gener-
ation of experiments is required to make Majorana zero modes accessible
for quantum computing.

In this thesis chapters 7 and 8 are devoted to Majorana zero modes
and the signatures mimicked by Andreev bound states.

1.5 About this thesis

Below follows the brief description of chapter contents:

1.5.1 Chapter 2

The Second chapter is devoted to the study of spin-spin interaction be-
tween two impurities placed on a 2D dice lattice. Such interaction is
mediated by the electrons of a lattice. It is called Ruderman-Kittel-
Kasuya-Yoshida [32–34] spin-spin interaction. The RKKY interaction was
calculated using the effective low-energy theory that works close to charge-
neutrality point and captures flat band and Dirac cones. The standard
approximation of RKKY interaction which uses non-interacting Green’s
function of the electrons was used. The main results concerning the role
of flat band are the following: the RKKY interaction between two im-
purities is strongly enhanced and diverges as inverse temperature when
chemical potential placed at flat band level. At the same time enhance-
ment is finite but large when the chemical potential is close to flat band
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level. Such picture holds only for certain positions of impurities related to
the localization of flat band wave functions. Apart from that, the descrip-
tion of the RKKY interaction for arbitrary temperatures and positions of
chemical potential are given in terms of exact analytic expressions.

Apart from that, the chapter contains important mathematical results
for the physics of RKKY interaction in graphene. The interaction integrals
are calculated in the most general fashion with both finite temperature
and chemical potential taken into account. The exact analytic expressions
obtained there allow one to analyze dependencies on physical parameters
and relative positions of impurities on different sublattices as well as obtain
short exponentially-precise asymptotic expressions.

1.5.2 Chapter 3

In the Third Chapter the role of flat band in dynamical generation of
excitonic gap is studied. Excitons are bound states of electron and holes
tied by an attractive Coulomb interaction. The excitonic gap in the spec-
trum appears when it is energetically favorable to create excitons out of
electrons and holes that have energies close to charge-neutrality point.
Experimentally and theoretically it was found that the excitonic gap is
generated in multilayer graphene (see Refs.[35–44]) and the more softer
dispersion is - the larger gap is generated. Such picture is in agreement
with simple considerations about the role of kinetic and potential energies
discussed in the Preface (1.1) of this Introduction.

As the flat bands represent the most soft type of kinetic energy, it
is expected that the dynamical excitonic gap generation should be favor-
able. In the Chapter 3 several possible gap parameters for dice lattice
are studied that satisfy symmetries and correspond to different pairings
in sublattice spaces. It is shown that among several possible scenarios one
dominates as energetically more favorable. The excitonic gap in such case
has an intervalley type (pairing happens for quasiparticles from different
valleys). For the formation of corresponding order parameter (excitonic
gap) the flat band plays a role of catalyst. Similarly to chemical reac-
tions, where the catalyst does not disappear during reaction but helps it
to proceed more efficiently, the excitonic gap formation splits flat band
into two but leaves both of them perfectly flat. But, the flat band enor-
mously enhances the energy gap size. These predictions suggest that such
mechanism might compete with superconductivity in flat band systems
and dominate in their transport properties at intermediate temperatures
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leading to insulating state.
In addition, it is important to underline that the type of excitonic

gap that is favorable due to flat band catalysis has particular type of
symmetry. In other words, not every type of excitonic order parameter is
enhanced in the presence of flat band. The studies of such valley-mixing
order parameters in more complicated systems such as twisted bilayer
graphene are very active ongoing topic [45, 46].

1.5.3 Chapter 4

In the Fourth Chapter of this thesis the role of flat bands in the optical
properties of dice and Lieb lattices was analyzed. For this purpose a
zitterbewegung method, firstly introduced by J. Cserti et.al. [47], was
generalized to be used for different effective models.

The calculation of optical conductivity is based on a Kubo formula for
linear response. However, for most typical models the analytical calcula-
tions quickly become very complicated and the full integration cannot be
performed. The idea behind zitterbewegung method is to convert part of
calculation complexity into solution of differential equations - Heisenberg
equations of motion. For particles with positive and negative energy bands
in spectrum such equations predict a trembling motion, zitterbewegung
(firstly discovered by Schrödinger in 1930 [48]). Trembling motion in this
case means that the position of free propagating wave packet performs
oscillations with very small amplitude and high frequency.

In the case of optical conductivity the solutions of Heisenberg equa-
tions and proper substitution of results into current response correlators
allowed to perform full calculation for a number of effective models. In
the Fourth Chapter we firstly analyzed the optical conductivity of semi-
Dirac model where the Dirac cones can move with varying parameters
of the model and merge into one. The obtained exact expressions cap-
ture the contributions of different transitions into optical condctivity. In
particular, the role of anisotropy and contribution of transitions between
van Hove singularities into the high peaks in conductivity were shown. In
addition, the dice and Lieb flat band models were studied. Notably, the
flat bands always support transitions from the dispersive bands, but in
the case of dice model no transitions between two dispersive bands are
allowed [49]. This is in contrast to what is found for the Lieb lattice in
Chapter Four.

Additional mathematical result in the Chapter is that the zitterbewe-



12 Chapter 1. Introduction

gung method can be applied to effective models with complicated matrix
algebras. This enhances the potential applicability of a method to new sys-
tems with other pseudospin structures frequently uncovered in last years
[15].

1.5.4 Chapter 5

The Fifth Chapter is devoted to the study of bilayer dice lattices. As it is
known from experiments, the different stackings of the same single-atom-
thick lattices give the systems with very different properties. The most
prominent example is the twisted bilayer graphene [1], where the proper
rotation angle between layers allowed to achieve superconductivity. The
idea of the Fifth Chapter is to study more simple stackings of two identical
dice lattices with different sublattices aligned on top of each other. Since
the dice lattice itself has flat band in spectrum and thus contains the
pseudospin-1 fermions as effective quasiparticles, it is interesting to see
whether bilayer configuration would preserve such quasiparticles.

The results of the Chapter show that while the triply degenerate
points are always preserved, the effective dispersion of quasiparticles might
change. The classification of all commensurate simple stackings is per-
formed and it is shown that one can achieve pseudospin-1, semi-Dirac
type of dispersion (with different dispersion law - linear and quadratic de-
pending on direction) or nodal line crossings where two bands cross each
other along high-symmetry line. Also the triple points are shifted from
the charge-neutrality points, which means that the pseudospin-1 quasi-
particles would be accessible upon doping. The results of this Chapter
show how reach physics one could obtain out of bilayer stacking of a very
simple flat band model.

The studies of such multilayer systems might explain how the prop-
erties of underlying simple flat band models result in nontrivial physics
observed in more complicated crystals. As an example, one could think
about Kagome metals where the perfect flat-band lattice is placed as a
layer of 3D crystal [23] and several such layers separated from each other
are present in chemically-stable order in a sample.

1.5.5 Chapter 6

In the Sixth Chapter the discussion about the role of flat bands in mag-
netic properties of 2D crystals is extended to the case of high-order van
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Hove singularities. As it was shown in the literature, the usual van Hove
singularities lead to paramagnetic response of the system [50], the exactly
flat bands in the dice lattice lead to very strong paramagnetic response
[13]. The corresponding paramagnetic response is manifestedvi a Dirac
delta-function shape of the orbital susceptibility as function of chemical
potential. Notably, in dice lattice this paramagnetic response dominates
the diamagnetic Delta-like response of Dirac cones, which was present in
graphene [51].

The focus of the Chapter is concentrated on studying the role of not
perfectly flat bands - high-order van Hove singulatiries, in orbital suscepti-
bility. As an example, the square-octagon lattice is analyzed. Such lattice
was expected to occur as a stable 2D graphene allotrope - T-graphene, [52],
but now is studied in connection with transition-metal dichalcogenides
[53]. The chapter contains detailed characterization of tight-binding model
describing square-octagon lattice, effective models that have form of 1)
relativistic pseudospin-1 type and 2) second-order that capture precisely
dispersion of high-order saddle point. Based on these models it is shown
that paramagnetic contribution from van Hove singularity is weaker than
that of flat band. The numerical calculations of orbital susceptibility show
that the para-to-diamagnetic phase transition is possible if the parameters
of the system are tuned.

The results on orbital susceptibility presented in the chapter show that
magnetic properties of van Hove singularities of different kinds are more
complicated that for exactly flat bands, and the full analysis of their role
in orbital susceptibility for the novel 2D materials should be performed in
future.

Next follow the additional chapters that are not focused on flat bands,
but are related to zero-energy modes.

1.5.6 Chapter 7

This is the first out of two chapters devoted to the study of the Majorana
zero modes and Andreev bound states. The topic of this Chapter is fo-
cused on the ways of distinguishing Majorana zero modes from Majorana
fermions via transport experiments.

Majorana fermions in superconductors are coherent superpositions of
electrons and holes. At the same time, Majorana zero modes are collective
modes related to the winding of superconducting phase field by 2π that
form a vortex. Such vortex typically contains bound state at zero energy,
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which is called Majorana zero mode (MZM). While Majorana fermions
satisfy usual Fermi-Dirac statistics, the MZMs satisfy non-Abelian anyon
statistics. The transport of MZMs is governed by edge vortices that are
domain walls with phase jump π on the boundary of superconductor.

As a way to distinguish these two “Majoranas” from each other, the
measurement of shot noise in two similar devices (see Fig.7.1) is proposed.
The shot noise power is calculated as a charge variance per injected sin-
gle electron charge. For the Majorana fermion the result is known [54]
ans constitutes e2 per injected fermion. For MZM it is found to be de-
pendent on the separation between two vortices on the edge. Thus, the
shot noise has a nonlocal nature that signatures about long-range corre-
lations between vortices. As an experimentally measurable consequence,
the voltage dependence of shot noise can be used: for Majorana fermions
shot noise increases linearly with growing voltage V , while for MZM it
grows as V log V .

1.5.7 Chapter 8

The Eighth Chapter is devoted to the study of effect that happens very
similarly for Andreev bound states and Majorana modes. This effect,
firstly predicted by S-J. Choi et.al. [55] in 2020 for Majorana qubit, is
manifested as appearance of sharp voltage steps in the current-voltage
characteristic for DC current injected into resistively-shunted junction
with qubit. Notably, while Josephson junctions with quantum dots were
studied experimentally for many decades, such effect was found only now.

However, it is known that Andreev levels close to charge-neutrality
point typically mimic the behavior of topological qubits with Majorana
modes. The study in the Chapter is performed for current-biased, resis-
tively shunted quantum-dot Josephson junction. One of the key properties
of this system is the existence of resonant state on the quantum dot. Such
state leads to the appearance of particle-hole symmetric pair of Andreev
bound states with finite lifetime. The existence of gaps separating these
bound states from continuum of states in superconductors and from each
other allows one to achieve nontrivial dynamics of the junction.

The results presented in the Chapter are the following: the non-
topological Josephson junction demonstrates similar voltage staircase (
sharp steps in average voltage for slowly changing current). In addition,
there is a hysteresis curve - when current is slowly increased and then
decreased, averaged voltage follow different path and the stairs appear at
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different absolute values of current. Also there are found several minor
distinctions from Majorana qubit behavior, which shows that Andreev
levels do not fully mimic the topological qubit physics, but difference are
hard to measure. To make effect observable the size of gaps should be not
too small - which is different to typically studied systems with closed gap
between levels.
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