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Chapter 1

Introduction

1.1 Preface

This thesis is devoted to the study of the role of flat bands in transport
and interacting properties of atomically-thin materials.

Flat band is defined as a part of Bloch band with macroscopically large
region of momentum space with nearly constant dispersion. Why the flat
bands are so important? The answer is given by considerations coming
from classical physics (mechanics, electrodynamics). The equations of
motion for a single particle in external potential U are captured by the
Lagrangian function L = T −U or Hamiltonian H = T +U with T being
a kinetic energy. The definition of flat band says that T is approximately
constant in some parameter range - region in momentum space. Adjusting
the energy level to this constant level T̃ = T−T0, we find that L̃ = T̃−U ≈
U . This means that the physics of a particle are determined solely by an
external potential. Such situation in not typical for classical physics. The
clear consequence of this estimation appears in quantum systems: even
weak potential or interactions inside the system lead to instability of the
initial ground state and re-configuration. In the modern experiments the
investigation of possible new ground states in a flat band systems is a
young topic which appeared just 5 years ago with a discovery of magic
angle twisted bilayer graphene [1]. Nevertheless, the enormous attention
led to appearance of many thousands of papers with number of intriguing
results. The most prominent examples are discoveries of superconductivity
and Mott insulating states in magic angle twisted bilayer [1] and trilayer
[2], superconducting states in Bernal bilayer [3] and ABC trilayer graphene
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[4], and Kagome metals [5].
In this thesis several theoretical predictions for the new ground states

in flat band systems are discussed. One might ask why the ground state of
flat band systems is so hard to calculate? The reason is that the presence
of flat band enhances the role of all interactions. Thus, a very rigorous
symmetry analysis and precise estimation of each of interaction constants
is required to build a phase diagram and understand which phase domi-
nates. In the Chapter 2 the strong enhancement of RKKY spin-spin inter-
actions is predicted. For the case when the screened Coulomb interaction
is present, the possibility of formation of excitonic gap with intervalley-
polarized order is discussed in Chapter 3. These results can be viewed as a
building blocks for future theory of phase diagram in flat band materials.
Based on experiments like [1, 6] it is expected that one would have the
competition between all these correlated states, and as an example the
final ground state might have unconventional type of superconductivity.
Also the high controllability in experiments with 2D materials might allow
to tune and select which of interactions will be dominating in particular
setup. Other main chapters of this thesis are devoted to the study of the
role of flat bands in a non-interacting case. Such situation is typical for
realizations of flat band materials in artificial systems such as STM-type
experiments with electronic lattices [7], optical lattice realizations [8] or
superlattice structures in organic chemical frameworks [9, 10].

1.2 Examples of simple tight-binding models with
flat bands

Next, let us introduce the particular examples of flat band models studied
in this thesis. The main idea behind these lattices is that they have simple
geometry and the tight-binding description gives simple Hamiltonians that
can be analyzed with analytical and numerical methods. The two lattices,
dice and Lieb, discussed below are examples of bipartite lattices where
connection between two different sublattices is made only via hopping
parameters to third sublattice.

1.2.1 Dice lattice and α− T3 model

The dice (also called T3) lattice is probably historically the first tight-
binding model with flat bands. It was firstly studied by B. Sutherland
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Figure 1.1. The dice (also called T3) lattice whose red points display atoms
of the A sublattice, blue points describe the B sublattice, and the green points
define the C sublattice. The vectors a1 = (

√
3, 0)d and a2 = (

√
3/2, 3/2)d are

the basis vectors of the C sublattice. The nearest neighbor hopping parameters
between hub (C) and rim (A, B) atoms are t1 and t2.

in 1986 [11] as an example where localization of wave functions happens
due to local topology. The α − T3 model describes quasiparticles in two
dimensions on the dice lattice schematically shown in Fig.1.1, where d
denotes the distance between neighbor atoms. This lattice has a unit cell
with three different lattice sites whose two sites (A,C) like in graphene
form a honeycomb lattice with hopping amplitude tAC = t1 and additional
B sites at the center of each hexagon are connected to the C sites with
hopping amplitude tBC = t2. The C atoms are called hub centers, while
A and B are rim sites, and electrons hop between rim and hub atoms only.
Two hopping parameters t1 and t2 are not equal, in general, and the dice
model corresponds to the limit t1 = t2. The lattice structure and basis
vectors a1 = (

√
3, 0)d, a2 = (

√
3/2, 3/2)d are shown on Fig.1.1. Since

there are three atoms per unit cell, the wave functions can be written in
terms of 3-component vectors with elements assigned to each sublattice.
This leads to the so-called pseudospin S = 1 description.

The tight-binding equations are [12]:

εΨC(r) = −t1
∑
j

ΨA(r + δAj )− t2
∑
j

ΨB(r − δAj ),

εΨA(r) = −t1
∑
j

ΨC(r − δAj ),

εΨB(r) = −t2
∑
j

ΨC(r + δAj ), (1.1)
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where the vectors δAj connect nearest neighbor atoms C to atoms A:

δA1 = a1 + a2
3 , δA2 = a3 − a1

3 , δA3 = −a2 + a3
3 with a3 = a2 − a1.

(1.2)

The corresponding tight-binding Hamiltonian in momentum space reads
[13]

H0(k) =

 0 fk cos Θ 0
f∗k cos Θ 0 fk sin Θ

0 f∗k sin Θ 0

 , α ≡ tan Θ = t2
t1
,

fk = −
√
t21 + t22 (1 + e−ika2 + e−ika3), (1.3)

and acts on three-component wave functions with the following order of
components ΨT = (ΨA,ΨC ,ΨB). As was noted in Introduction, the angle
Θ can be used to interpolate between graphene and dice model. Thus, our
results can be compared with graphene literature by taking limit Θ → 0
or Θ→ π

2 .
It is easy to derive the energy spectrum of the above Hamiltonian,

which is qualitatively the same for any α and consists of three bands:
the zero-energy flat band, ε0(k) = 0, whose existence is protected by the
particle-hole symmetry, and two dispersive bands

ε±(k) = ±|fk| = ±
√
t21 + t22

[
3 + 2(cos(a1k) + cos(a2k) + cos(a3k))

]1/2
.

(1.4)
The eigenvectors in the whole Brillouin zone (BZ) are given by Eq.(2) in
[13] (gapless case) and by Eq.(5) in [14] (gapped case). For dispersionless
band the wave function is localized on atoms of sublattices A,B while it
is zero on hub atoms C. The presence of a completely flat band with zero
energy is perhaps one of the remarkable properties of the α − T3 lattice
model.

There are six values of momentum for which fk = 0 and all three
bands intersect. They are situated at corners of the hexagonal Brillouin
zone. The two inequivalent points, for example, are

K = 2π
d

(√
3

9 ,
1
3

)
, K ′ = 2π

d

(
−
√

3
9 ,

1
3

)
. (1.5)



1.2 Examples of simple tight-binding models with flat bands 5

For momenta near the K-points, k = K(K ′) + k̃, we find that fk is
linear in k̃, i.e., fk = ~vF (ξk̃x − ik̃y) with valley index ξ = ±, where
vF = 3td/2~ is the Fermi velocity, and in what follows we omit for the
simplicity of notation the tilde over momentum. As for lattice parameters
we take their numerical values the same as in graphene. Hence, in the
linear order to momentum deviations from the K and K ′ points, the
low-energy Hamiltonian describes massless pseudospin-1 fermions [12, 13]
which for equal hoppings, Θ = π/4, is given by the scalar product of
momentum and the spin-1 matrices:

Hξ(k) = ~vF (ξSxkx + Syky) ,

Sx = 1√
2

 0 1 0
1 0 1
0 1 0

 , Sy = 1√
2

 0 −i 0
i 0 −i
0 i 0

 (1.6)

where k = q−Kξ is the wave vector measured relative to the Dirac points
located at Kξ = ξ4π/(3

√
3a) {1, 0}, corresponding to K (ξ = +) and K ′

(ξ = −) points, and vF = 3ta/(
√

2~) is the Fermi velocity. This Hamilto-
nian reminds a Dirac-type Hamiltonian (relativistic dispersion) but now
for spin-1 particles. Such effective Hamiltonians, that do not occur for
elementary particles in high-energy physics, attracted much attention in
the last years [15].

The T3 lattice was experimentally realized in Josephson arrays [16, 17]
as well as in a network made of metallic wires tailored in a high mobil-
ity two-dimensional electron gas [18], and its optical realization by laser
beams was proposed in Ref.[19]. The atomic-scale realization of dice lat-
tice is missing because of the complexity of hopping structure (the hop-
pings between neighboring A and B sublattices should be strongly sup-
pressed).

1.2.2 Lieb lattice

The Lieb lattice is schematically shown in Fig.1.2. It was studied by E. H.
Lieb in 1989 [20] in connection with specific properties of Heisenberg spin
model on it. This lattice consists of three square sublattices, with atoms
placed in the corners and in the middle of each side of big squares forming
a line-centered-square lattice. The tight-binding equations describing this
lattice are very similar to Eq.(1.1), the only difference comes from the
orientation of vectors connecting nearest neighbors δj . The tight-binding
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a1

a2

A

B

C

Figure 1.2. The Lieb lattice whose red points display atoms of the A sublattice,
blue points describe the B sublattice, and the green points define the C sublat-
tice. The vectors a1 = (1, 0)a and a2 = (0, 1)a are the basis vectors of the B
sublattice. The nearest neighbor hopping parameters between hub (B) and rim
(A, C) atoms are t1 and t2.

Hamiltonian was described in Ref.[21]:

H0 =

 0 −2t cos (kxa/2) 0
−2t cos (kxa/2) 0 −2t cos (kya/2)

0 −2t cos (kya/2) 0

 (1.7)

Notably, the dispersion contains only single Dirac cone inside first Bril-
louin zone (see Fig.1.2). This Hamiltonian reduces to the following low-
energy model near the center of BZ kx,y = π

a + qx,y:

HLieb =

 0 vF qx 0
vF qx 0 vF qy

0 vF qy 0

 . (1.8)

The energy dispersions defined by this Hamiltonian are given by three
bands, one is flat band and the other two are dispersive bands (see Fig.4.4c):

ε0 = 0, ε± = ±2t
√

cos2 (kxa/2) + cos2 (kya/2). (1.9)

The notable property of both dice and Lieb lattices in that flat band is
placed at charge-neutrality point. Below we discuss the structure of wave
functions in flat band in real space.

The experimental realization of Lieb lattice on atomic scale was made
with the help of STM technique that creates an electronic lattice on surface
of substrate [7].
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Figure 1.3. The configuration of flat band state wave function that is localized
around one of the hub sites. While the components of the wave function on a
hub (green C) sites are zeros, the sign-alternating components on A and B sites
compose a localized state.

1.2.3 Structure of flat band wave functions on a lattice

The main feature of the models described above in the presence of exactly
flat band at the charge-neutrality point in the spectrum. it is easy to find
flat band solutions in momentum space from tight-binding Hamiltonian.
But the question arises - how such states are organized on a lattice? The
answer on this question was the historical motivation that attracted atten-
tion to these lattices [11, 20] well before the first atomically-thin material
was experimentally realized [22].

Let us look on tight-binding equations (1.1). The flat band placed at
zero energy results in three equations:

0 = −t1
∑
j

ΨA(r + δAj )− t2
∑
j

ΨB(r − δAj ),

0 = −t1
∑
j

ΨC(r − δAj ), 0 = −t2
∑
j

ΨC(r + δAj ). (1.10)

The two last equations are equivalent and give the same solution ΨC(r) =
0. The first equation gives algebraic relation on components of wave func-
tion on A and B sublattices, that can be easily satisfied by choosing the
sign structures of the components according to the Fig.1.3. For exam-
ple, all B-components are equal to ΨB = −t1/t2ΨA. The state shown in
Fig.1.3 is localized around one of the sublattice C sites. For each site one
can build correspond state, thus having the high degeneracy of such flat
band of the order of number of atoms in the sample. The experiments
[16–18] have confirmed the existence of novel localization effects, which
arise due to the presence of flat band in the spectrum of T3 lattice.
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1.3 Beyond exactly flat bands: high-order van
Hove singularities

In experiments with atomically-thin crystals it is typical to have not ex-
actly flat bands due to different next nearest neighbor hopping terms, role
of substrates and similar effects [1, 23]. The general concept that captures
relatively “flat” parts of band in a dispersion are called saddle points. The
corresponding pronounced divergent peaks in density of states are called
van Hove singularities. The original concept was studied by L. van Hove in
1953 [24]. Recently, a generalization of the concept, called high-order van
Hove singularities, was introduced by Liang Fu group [25]. The difference
between these concepts is the following:

1) The term “flat bands” in this Thesis is used to describe bands
that have constant dispersion, thus representing mathematically precise
flatness of the band. The corresponding density of states has a Dirac
delta-function peak;

2) the usual van Hove singularities correspond to momentum-dependent
dispersion ε(kx, ky) ∼ k2

x − k2
y and give logarithmically-divergent density

of states;
3) the high-order van Hove singularities give power law divergent den-

sity of states.
All such features in the band structure are expected to produce strongly

correlated states (superconductivity, etc) at corresponding doping due to
high density of states and small group velocity of quasiparticles [26–28].
However, some observable signatures might be different and the Sixth
Chapter 6 studies such differences for orbital susceptibility. The classifi-
cation of high-order van Hove singularities was given in Refs.[29, 30], and
the field of discovering materials with them only starts its growing.

1.4 Zero energy modes: Majorana zero modes
and Andreev bound states

When the flat band is placed close to charge-neutrality point in the sys-
tem the whole reach physical picture coming from flat bands becomes
easily accessible for experimental studies. In addition to discussion of
possible physical effects related to the flat bands in 2D crystals, this the-
sis also contains several results related to another type of states placed
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near charge-neutrality point: Majorana zero modes and Andreeev bound
states.

In the past decades the great attention was given to a possibility of
making topologically protected quantum qubit. One of the key possibili-
ties was to use so-called Majorana zero modes - a collective excitations in
superconductors that are bound to zero energy (charge neutrality point)
and are non-Abelian anions.

However, they are typically mimicked by another non-topological modes
placed at or around charge neutrality point - Andreeev bound states. Such
bound states appear in Josephson junctions. In this case mimicking means
that the expected observable signatures of Majorana zero modes are nearly
exactly reproduced by Andreev bound states.

Modern experimental state of this is the following: there are devised
that host Majorana modes, however their manufacturing is related to enor-
mously complicated process of reducing disorder [31]. Still a next gener-
ation of experiments is required to make Majorana zero modes accessible
for quantum computing.

In this thesis chapters 7 and 8 are devoted to Majorana zero modes
and the signatures mimicked by Andreev bound states.

1.5 About this thesis

Below follows the brief description of chapter contents:

1.5.1 Chapter 2

The Second chapter is devoted to the study of spin-spin interaction be-
tween two impurities placed on a 2D dice lattice. Such interaction is
mediated by the electrons of a lattice. It is called Ruderman-Kittel-
Kasuya-Yoshida [32–34] spin-spin interaction. The RKKY interaction was
calculated using the effective low-energy theory that works close to charge-
neutrality point and captures flat band and Dirac cones. The standard
approximation of RKKY interaction which uses non-interacting Green’s
function of the electrons was used. The main results concerning the role
of flat band are the following: the RKKY interaction between two im-
purities is strongly enhanced and diverges as inverse temperature when
chemical potential placed at flat band level. At the same time enhance-
ment is finite but large when the chemical potential is close to flat band
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level. Such picture holds only for certain positions of impurities related to
the localization of flat band wave functions. Apart from that, the descrip-
tion of the RKKY interaction for arbitrary temperatures and positions of
chemical potential are given in terms of exact analytic expressions.

Apart from that, the chapter contains important mathematical results
for the physics of RKKY interaction in graphene. The interaction integrals
are calculated in the most general fashion with both finite temperature
and chemical potential taken into account. The exact analytic expressions
obtained there allow one to analyze dependencies on physical parameters
and relative positions of impurities on different sublattices as well as obtain
short exponentially-precise asymptotic expressions.

1.5.2 Chapter 3

In the Third Chapter the role of flat band in dynamical generation of
excitonic gap is studied. Excitons are bound states of electron and holes
tied by an attractive Coulomb interaction. The excitonic gap in the spec-
trum appears when it is energetically favorable to create excitons out of
electrons and holes that have energies close to charge-neutrality point.
Experimentally and theoretically it was found that the excitonic gap is
generated in multilayer graphene (see Refs.[35–44]) and the more softer
dispersion is - the larger gap is generated. Such picture is in agreement
with simple considerations about the role of kinetic and potential energies
discussed in the Preface (1.1) of this Introduction.

As the flat bands represent the most soft type of kinetic energy, it
is expected that the dynamical excitonic gap generation should be favor-
able. In the Chapter 3 several possible gap parameters for dice lattice
are studied that satisfy symmetries and correspond to different pairings
in sublattice spaces. It is shown that among several possible scenarios one
dominates as energetically more favorable. The excitonic gap in such case
has an intervalley type (pairing happens for quasiparticles from different
valleys). For the formation of corresponding order parameter (excitonic
gap) the flat band plays a role of catalyst. Similarly to chemical reac-
tions, where the catalyst does not disappear during reaction but helps it
to proceed more efficiently, the excitonic gap formation splits flat band
into two but leaves both of them perfectly flat. But, the flat band enor-
mously enhances the energy gap size. These predictions suggest that such
mechanism might compete with superconductivity in flat band systems
and dominate in their transport properties at intermediate temperatures
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leading to insulating state.
In addition, it is important to underline that the type of excitonic

gap that is favorable due to flat band catalysis has particular type of
symmetry. In other words, not every type of excitonic order parameter is
enhanced in the presence of flat band. The studies of such valley-mixing
order parameters in more complicated systems such as twisted bilayer
graphene are very active ongoing topic [45, 46].

1.5.3 Chapter 4

In the Fourth Chapter of this thesis the role of flat bands in the optical
properties of dice and Lieb lattices was analyzed. For this purpose a
zitterbewegung method, firstly introduced by J. Cserti et.al. [47], was
generalized to be used for different effective models.

The calculation of optical conductivity is based on a Kubo formula for
linear response. However, for most typical models the analytical calcula-
tions quickly become very complicated and the full integration cannot be
performed. The idea behind zitterbewegung method is to convert part of
calculation complexity into solution of differential equations - Heisenberg
equations of motion. For particles with positive and negative energy bands
in spectrum such equations predict a trembling motion, zitterbewegung
(firstly discovered by Schrödinger in 1930 [48]). Trembling motion in this
case means that the position of free propagating wave packet performs
oscillations with very small amplitude and high frequency.

In the case of optical conductivity the solutions of Heisenberg equa-
tions and proper substitution of results into current response correlators
allowed to perform full calculation for a number of effective models. In
the Fourth Chapter we firstly analyzed the optical conductivity of semi-
Dirac model where the Dirac cones can move with varying parameters
of the model and merge into one. The obtained exact expressions cap-
ture the contributions of different transitions into optical condctivity. In
particular, the role of anisotropy and contribution of transitions between
van Hove singularities into the high peaks in conductivity were shown. In
addition, the dice and Lieb flat band models were studied. Notably, the
flat bands always support transitions from the dispersive bands, but in
the case of dice model no transitions between two dispersive bands are
allowed [49]. This is in contrast to what is found for the Lieb lattice in
Chapter Four.

Additional mathematical result in the Chapter is that the zitterbewe-
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gung method can be applied to effective models with complicated matrix
algebras. This enhances the potential applicability of a method to new sys-
tems with other pseudospin structures frequently uncovered in last years
[15].

1.5.4 Chapter 5

The Fifth Chapter is devoted to the study of bilayer dice lattices. As it is
known from experiments, the different stackings of the same single-atom-
thick lattices give the systems with very different properties. The most
prominent example is the twisted bilayer graphene [1], where the proper
rotation angle between layers allowed to achieve superconductivity. The
idea of the Fifth Chapter is to study more simple stackings of two identical
dice lattices with different sublattices aligned on top of each other. Since
the dice lattice itself has flat band in spectrum and thus contains the
pseudospin-1 fermions as effective quasiparticles, it is interesting to see
whether bilayer configuration would preserve such quasiparticles.

The results of the Chapter show that while the triply degenerate
points are always preserved, the effective dispersion of quasiparticles might
change. The classification of all commensurate simple stackings is per-
formed and it is shown that one can achieve pseudospin-1, semi-Dirac
type of dispersion (with different dispersion law - linear and quadratic de-
pending on direction) or nodal line crossings where two bands cross each
other along high-symmetry line. Also the triple points are shifted from
the charge-neutrality points, which means that the pseudospin-1 quasi-
particles would be accessible upon doping. The results of this Chapter
show how reach physics one could obtain out of bilayer stacking of a very
simple flat band model.

The studies of such multilayer systems might explain how the prop-
erties of underlying simple flat band models result in nontrivial physics
observed in more complicated crystals. As an example, one could think
about Kagome metals where the perfect flat-band lattice is placed as a
layer of 3D crystal [23] and several such layers separated from each other
are present in chemically-stable order in a sample.

1.5.5 Chapter 6

In the Sixth Chapter the discussion about the role of flat bands in mag-
netic properties of 2D crystals is extended to the case of high-order van
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Hove singularities. As it was shown in the literature, the usual van Hove
singularities lead to paramagnetic response of the system [50], the exactly
flat bands in the dice lattice lead to very strong paramagnetic response
[13]. The corresponding paramagnetic response is manifestedvi a Dirac
delta-function shape of the orbital susceptibility as function of chemical
potential. Notably, in dice lattice this paramagnetic response dominates
the diamagnetic Delta-like response of Dirac cones, which was present in
graphene [51].

The focus of the Chapter is concentrated on studying the role of not
perfectly flat bands - high-order van Hove singulatiries, in orbital suscepti-
bility. As an example, the square-octagon lattice is analyzed. Such lattice
was expected to occur as a stable 2D graphene allotrope - T-graphene, [52],
but now is studied in connection with transition-metal dichalcogenides
[53]. The chapter contains detailed characterization of tight-binding model
describing square-octagon lattice, effective models that have form of 1)
relativistic pseudospin-1 type and 2) second-order that capture precisely
dispersion of high-order saddle point. Based on these models it is shown
that paramagnetic contribution from van Hove singularity is weaker than
that of flat band. The numerical calculations of orbital susceptibility show
that the para-to-diamagnetic phase transition is possible if the parameters
of the system are tuned.

The results on orbital susceptibility presented in the chapter show that
magnetic properties of van Hove singularities of different kinds are more
complicated that for exactly flat bands, and the full analysis of their role
in orbital susceptibility for the novel 2D materials should be performed in
future.

Next follow the additional chapters that are not focused on flat bands,
but are related to zero-energy modes.

1.5.6 Chapter 7

This is the first out of two chapters devoted to the study of the Majorana
zero modes and Andreev bound states. The topic of this Chapter is fo-
cused on the ways of distinguishing Majorana zero modes from Majorana
fermions via transport experiments.

Majorana fermions in superconductors are coherent superpositions of
electrons and holes. At the same time, Majorana zero modes are collective
modes related to the winding of superconducting phase field by 2π that
form a vortex. Such vortex typically contains bound state at zero energy,
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which is called Majorana zero mode (MZM). While Majorana fermions
satisfy usual Fermi-Dirac statistics, the MZMs satisfy non-Abelian anyon
statistics. The transport of MZMs is governed by edge vortices that are
domain walls with phase jump π on the boundary of superconductor.

As a way to distinguish these two “Majoranas” from each other, the
measurement of shot noise in two similar devices (see Fig.7.1) is proposed.
The shot noise power is calculated as a charge variance per injected sin-
gle electron charge. For the Majorana fermion the result is known [54]
ans constitutes e2 per injected fermion. For MZM it is found to be de-
pendent on the separation between two vortices on the edge. Thus, the
shot noise has a nonlocal nature that signatures about long-range corre-
lations between vortices. As an experimentally measurable consequence,
the voltage dependence of shot noise can be used: for Majorana fermions
shot noise increases linearly with growing voltage V , while for MZM it
grows as V log V .

1.5.7 Chapter 8

The Eighth Chapter is devoted to the study of effect that happens very
similarly for Andreev bound states and Majorana modes. This effect,
firstly predicted by S-J. Choi et.al. [55] in 2020 for Majorana qubit, is
manifested as appearance of sharp voltage steps in the current-voltage
characteristic for DC current injected into resistively-shunted junction
with qubit. Notably, while Josephson junctions with quantum dots were
studied experimentally for many decades, such effect was found only now.

However, it is known that Andreev levels close to charge-neutrality
point typically mimic the behavior of topological qubits with Majorana
modes. The study in the Chapter is performed for current-biased, resis-
tively shunted quantum-dot Josephson junction. One of the key properties
of this system is the existence of resonant state on the quantum dot. Such
state leads to the appearance of particle-hole symmetric pair of Andreev
bound states with finite lifetime. The existence of gaps separating these
bound states from continuum of states in superconductors and from each
other allows one to achieve nontrivial dynamics of the junction.

The results presented in the Chapter are the following: the non-
topological Josephson junction demonstrates similar voltage staircase (
sharp steps in average voltage for slowly changing current). In addition,
there is a hysteresis curve - when current is slowly increased and then
decreased, averaged voltage follow different path and the stairs appear at
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different absolute values of current. Also there are found several minor
distinctions from Majorana qubit behavior, which shows that Andreev
levels do not fully mimic the topological qubit physics, but difference are
hard to measure. To make effect observable the size of gaps should be not
too small - which is different to typically studied systems with closed gap
between levels.
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Chapter 2

RKKY interaction in a
doped pseudospin-1 fermion
system at finite temperature

2.1 Introduction

The Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction [32–34] is an
indirect exchange interaction between two localized magnetic moments
mediated by a background of electrons. It is an important characteristic
of electron system and a fundamental interaction responsible for magnetic
ordering in spin glasses and alloys. Besides three dimensions, it has been
extensively studied for the electron gas in one [56] and two [57] dimensions.
After the experimental discovery of graphene, the RKKY interaction in
systems with Dirac-like dispersion attracted a great interest [58–67] due
to the richness of their structures. Moreover, the final results for the
complete structure of the RKKY interaction in graphene were obtained
only after a decade of debates [61, 68]. The RKKY interaction was studied
also in strained graphene [69], bilayer graphene [70, 71], biased single-layer
silicene [72], 8-Pmmn borophene [73], on the surface of three-dimensional
Dirac semimetals [74].

Graphene has given a start to a proliferation of fermionic quasiparti-
cles emerging in condensed matter systems which have no counterparts
in particle physics where Poincaré symmetry constrains fermions to the
three types: Dirac, Weyl, and Majorana (not discovered yet) particles
with spin 1/2. In condensed matter systems, symmetries are less restric-
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tive and besides fermions with pseudospin 1/2 other types of fermions with
a higher pseudospin can appear in two- and three-dimensional solids. A
recent paper [15] has given a classification of possible low-energy fermionic
excitations protected by space group symmetries of lattices in solid state
systems with spin-orbit coupling and time-reversal symmetry. The T3 lat-
tice provides one of the well-known realizations of pseudospin-1 fermions
in two dimensions [11, 12]. Pseudospin-1 fermions appear also in the
Lieb [21] and kagome lattices [75]. Recently an experimental evidence of
Dirac fermions as well as flat bands was reported in the antiferromag-
netic kagome metal FeSn [23]. Also, the realizations of Lieb lattice as
electronic lattice formed by the surface state electrons of Cu(111) [7] as
well as the Lieb-like lattices in covalent-organic frameworks were reported
[9, 10]. Fermions of different pseudospins may coexist in some lattices,
for example, Dirac and pseudospin-1 fermions are found to coexist in the
α − T3 model [76], the edge-centered honeycomb lattice [77], and the 2D
triangular kagome lattice [78], Weyl fermions coexist with pseudospin-1
and pseudospin-3/2 fermions in transition metal silicides [79] under the
protection of crystalline symmetries.

In this work we analyze the RKKY interaction in the so-called α−T3
model [13] which contains the mixing of Dirac and pseudospin-1 fermions
as low-energy excitations. The α − T3 model is a tight-binding model
of two-dimensional fermions on the T3 (or dice) lattice whose atoms are
situated at vertices of hexagonal lattice and the hexagons centers [11,
80]. The parameter α describes the relative strength of couplings between
the honeycomb lattice sites and the central site. Thus, as α changes the
α − T3 model reveals a smooth transition from graphene (α = 0) to dice
or T3 lattice (α = 1). Since the α − T3 model has three sites per unit
cell, the electron states in this model are described by three-component
fermions. It is natural then that the spectrum of the model is comprised
of three bands. Two of them form Dirac cones as in graphene, and the
third band is completely flat, dispersionless, and has zero energy in the
whole Brillouin zone [13]. All three bands meet at the K and K ′ points,
which are situated at the corners of the Brillouin zone. In the linear
order in momentum deviations from the K and K ′ points, the low-energy
Hamiltonian of the dice model with α = 1 describes massless pseudospin-1
fermions and is given by the scalar product of momentum and the spin-1
matrices.

Recently several physical quantities have been studied in the α − T3
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model such as orbital susceptibility [13], optical and magneto-optical con-
ductivity [49, 81–83], magnetotransport [76, 84–86]. The role of transverse
magnetic field on zitterbewegung was studied in Ref.[87] and the enhance-
ment of thermoelectric properties of a nanoribbon made of α− T3 model
was discussed in a recent paper [88]. The stability of flat band with re-
spect to different perturbations such as terminations of the lattice as well
as the phenomenon of atomic collapse the Coulomb field of the charged
impurity were studied in Refs.[14, 89, 90].

The presence of completely flat energy band is a remarkable feature
of the considered model, for example, it results in strong paramagnetic
response in a magnetic field [13]. In general, the Fermi systems hosting
flat bands attract a lot of attention last time because quenching of the
kinetic energy strongly enhances the role of electron-electron and other
interactions and may lead to the realization of many very interesting cor-
related states. The most striking recent example is the observation of
superconductivity in twisted bilayer graphene [6] when tuned to special
"magic angles" at which isolated and relatively flat bands appear. The
three-bands models with a flat band found their applicability in many
physical systems (see, for example, reviews [91, 92]), surprisingly even
for the description of equatorial waves [93]. The special role of flat zero
Landau level on RKKY interaction in graphene was analyzed in Ref.[63].

The RKKY interaction of impurities placed on dice lattice demon-
strates larger richness compared to graphene. As in case of graphene,
the RKKY interaction can be written as a product of oscillating part
fab(R) resulting from intervalley scattering times an interaction integral
I(R) (a, b refer to sublattices A,B,C). We show that while some relative
locations of impurities can be reduced to graphene case (multiplied by α
dependent coefficients), there is also a new type of interaction. Like in
graphene, the RKKY interaction in undoped α−T3 model decays as 1/R3

while there are envelope oscillations for finite doping at large distances.
We also show that in some cases the flat band gives an essential contribu-
tion in the RKKY interaction, especially for the undoped case and small
temperature.

The paper is organized as follows: In Sec.2.2 we discuss a general ex-
pression for the RKKY interaction. In Sec.2.3 we describe the general
properties of the α− T3 model and derive the corresponding Green func-
tions in the mixed real space - frequency representation. In Sec.2.4 we
calculate the RKKY interaction for impurities placed on different sublat-
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tices of dice lattice, concentrating on the most interesting case of impurity
positions which is absent in graphene. In Appendix 2.6 we present the ex-
pression for the retarded Green’s function of pseudospin-1 excitations near
K points. In Appendices 2.7 and 2.8 we derive the exact expressions for
interaction integrals in terms of Mellin-Barnes type integrals.

2.2 Basic formulas
Generally, the RKKY interaction defined by second-order correction to
the free energy δF = 1

2T TrV G0V G0, where trace goes over all degrees of
freedom. Here the free Green function is defined by the standard tight-
binding or low energy Hamiltonian, which contains contributions from
both valleys. The interaction potential of impurity and electron spins is
given by [63, 65]

V (µ1,µ2) ≡ V (µ1) + V (µ2) = −λ [S1 · sδ (r−R1)Pµ1 + S2 · sδ (r−R2)Pµ2 ] ,
(2.1)

where Si are the spin operators of impurities and s = ~σ/2 is the spin of
itinerant electrons. The spin-spin coupling constant can be estimated as
λ ' 1eV. The sublattice projectors are denoted by Pµ, and can be written
as the following diagonal matrices PA = diag(1, 0, 0), PC = diag(0, 1, 0)
and PB = diag(0, 0, 1). The contribution, which accounts for the interac-
tion between two different spins, is given by

δF12 = λ2~2

2 S1S2

1/T∫
0

dτ tr [Pµ1G0(R1,R2; τ)Pµ2G0(R2,R1;−τ)] . (2.2)

Using the following Fourier decomposition of imaginary-time Green func-
tion,

G0(τ) = T
∑
n

G0 (iωn) e−iωnτ , ωn = (2n+ 1)πT, (2.3)

we can replace the integral over imaginary time τ by T ∑
iωn

. For example,

for δF12 we get

δF12 = λ2~2

2 S1S2T
∑
n

tr [Pµ1G0(R1,R2; iωn + µ)Pµ2G0(R2,R1; iωn + µ)] ,

(2.4)
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where we introduced the chemical potential µ. Performing the sum over
the Matsubara frequencies by means of the formula

T
∑
n

f(iωn) = −
∞∫
−∞

dω

π
nF (ω)ImfR(ω + iε), (2.5)

where nF (ω) = 1/(exp(ω/T ) + 1) is the Fermi distribution function and
superscript R denotes retarded function. Hence we find an effective RKKY
interaction between two magnetic impurities with the spins S1, and S2,
sitting at the positions R1 and R2

δF12 = Jµ1µ2S1S2, Jµ1µ2 = (λ2~2/4)χµ1µ2(R1,R2), (2.6)

where χ is the spin-independent susceptibility, however, it depends upon
whether atoms belong to the same or different sublattices.

χµ1µ2(R1,R2) = (2.7)

− 2
π

∞∫
−∞

dωnF (ω)Im tr [Pµ1G0(R1,R2;ω + µ)Pµ2G0(R2,R1;ω + µ)] .

After calculating the trace, the role of projectors is reduced to taking
specific components of Green functions Gµ1µ2 and Gµ2µ1 .

2.3 Green function of the α− T3 model

The lattice Green’s function in the tight-binding approximation for α−T3
model Hamiltonian (1.3) is given by

G0(ω,k) = (ω −H0(k))−1 = 1
ω (ω2 − |f(k)|2)× ω2 − sin2 Θ |f(k)|2 ω cos Θf(k) 1

2 sin(2Θ)f(k)2

ω cos Θf∗(k) ω2 ω sin Θf(k)
1
2 sin(2Θ)f∗(k)2 ω sin Θf∗(k) ω2 − cos2 Θ|f(k)|2

 . (2.8)
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In the low-energy model near the K(K ′) points (ξ = ±), it can be decom-
posed as

Gξ0(ω,k) = 1
ω (ω2 − (~vFk)2)× (2.9) ω2 − sin2 Θ~2v2

Fk
2 ω cos Θ~vFk−,ξ sin(2Θ)

2 (~vFk−,ξ)2

ω cos Θ~vFk+,ξ ω2 ω sin Θ~vFk−,ξ
sin(2Θ)

2 (~vFk+,ξ)2 ω sin Θ~vFk+,ξ ω2 − cos2 Θ(~vFk)2

 ,
with notation k±,ξ = ξkx±iky. As was shown in Sec.2.2, the representation
of Green’s function in the mixed coordinate-frequency variables (r, ω) is
the most useful for the calculation of susceptibility, and related to Eq.(2.9)
by Fourier transformation over wave number k. The Fourier transform
of full retarded low-energy Green’s function should contain contributions
from both valleys

G0(R1,R2, ω) = 1
ΩBZ

∫
d2q

(2π)2 e
iq·(R1−R2)

×
[
eiK(R1−R2)G0(q +K, ω) + eiK

′(R1−R2)G0
(
q +K ′, ω

)]
, (2.10)

where K and K ′ are any two adjacent Dirac points in the Brillouin zone,
and ΩBZ = 2

3
√

3d2 is the area of the BZ. Replacing wave number by deriva-
tive in the matrix part of (2.9), and performing integration as shown in
Appendix 2.6, we obtain the Green function in valley ξ:

GR0 (R1 −R2, ω, ξ) = 1
ΩBZ

ω

4(~vF )2× −i cos2 ΘH(1)
0 (z) cos Θξe−iξφH(1)

1 (z) i sin(2Θ)
2 e−2iξφH

(1)
2 (z)

cos ΘξeiξφH(1)
1 (z) −iH(1)

0 (z) sin Θξe−iξφH(1)
1 (z)

i sin(2Θ)
2 e2iξφH

(1)
2 (z) sin ΘξeiξφH(1)

1 (z) −i sin2 ΘH(1)
0 (z)

 ,
(2.11)

where we used notation z = |R|(ω + iε)/~vF , and H(1)
n (z) is the Hankel

function of the first kind. The polar angle of the vectorR1−R2 is denoted
by φ. Below we insert Eq.(2.11) into (2.10) and then calculate suscepti-
bility and the RKKY interaction via Eq.(2.7) in all 6 relative positions of
impurities AA, AB, BB, AC, BC, CC.
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In addition, it is important to note that the second quantized tight-
binding Hamiltonian of α− T3 model

Ĥ =
∫
BZ

d2k

(2π)2 Ψ̂†kH0(k)Ψ̂k (2.12)

possesses the particle-hole symmetry, which is realized by antiunitary op-
erator Ĉ. It acts on the second quantized wave functions Ψ̂ as

ĈΨ̂Ĉ−1 = SΨ̂∗, S = diag(1, −1, 1). (2.13)

The invariance of the Hamiltonian Ĥ under the particle-hole symmetry,
ĈĤĈ−1 = Ĥ, is guaranteed if the following condition is satisfied:

SH0(k)S = −H0(k), (2.14)

which is automatically fulfilled for the momentum space Hamiltonian in
Eq.(1.3). Below we show that this symmetry gives restrictions on the
sign of the RKKY interactions, similar to the graphene case considered in
Ref.[59].

2.4 RKKY interaction of impurities on dice lat-
tice

As was noted before, there are 6 different relative positions of impurities.
The corresponding exchange interactions are

JAA(R) = 4C
~2v2

F

cos4 ΘfAA(R)I0(R,µ, T ), (2.15)

JBB(R) = 4C
~2v2

F

sin4 ΘfBB(R)I0(R,µ, T ), (2.16)

JCC(R) = 4C
~2v2

F

fCC(R)I0(R,µ, T ), (2.17)

JAC(R) = 4C
~2v2

F

cos2 ΘfAC(R)I1(R,µ, T ), (2.18)

JBC(R) = 4C
~2v2

F

sin2 ΘfBC(R)I1(R,µ, T ), (2.19)

JAB(R) = C

~2v2
F

sin2(2Θ)fAB(R)I2(R,µ, T ). (2.20)
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In these expressions we introduced short-hand notations R = R1 − R2
and C = 3λ2~2d2/64πt2. The temperature-independent functions fµ1µ2

describe oscillations from contribution of different K points for impurities
placed on µ1 and µ2 sublattices

fµµ(R) = 1 + cos
(
K −K ′

)
R, (2.21)

fAB(R) = 1 + cos[(K −K ′)R− 4φ],
fBA(R) = 1 + cos[(K −K ′)R+ 4φ], (2.22)
fAC(R) = fCB(R) = 1− cos((K −K ′)R− 2φ), (2.23)
fBC(R) = fCA(R) = 1− cos((K −K ′)R+ 2φ). (2.24)

The functions fµ1µ2 are the only ones which depend on the direction of the
vector R while other functions are direction-independent. In the graphene
limit, Θ = 0 or Θ = π/2, only three interactions are left, which correspond
to coupled lattices C and A (B). The AB interaction type vanishes in both
graphene cases and reaches its maximum value in dice model Θ = π/4.

The frequency integrals on the right-hand side of the expressions are

In(R,µ, T ) =
∫ ∞
−∞

dωf(ω)
e
ω−µ
T + 1

, (2.25)

f(ω) = Im
[
(ω + iε)2

(
H(1)
n

((ω + iε)R
~vF

))2]
.

We find that the most interesting is the AB case, which cannot be re-
duced to any known graphene cases due to the lattice geometry, which
corresponds to the appearance of the H(1)

2 (z) function. For the functions
H

(1)
0 (z+ iε) and H(1)

1 (z+ iε) we can take the limit ε→ 0 in the integrand,
however, this is not the case for H(1)

2 (z + iε) due to its more singular be-
havior when z → 0 which is a reflection of a special role of the flat band
with ω = 0. Near ω = 0 we find the singular term in the following integral

(ω + iε)2
(
H

(1)
2

((ω + iε)R
~vF

))2
' − 16(~vF )4

π2R4(ω + iε)2 −
8(~vF )2

π2R2 , (2.26)

hence

Im
[
(ω + iε)2

(
H

(1)
2

((ω + iε)R
~vF

))2]
' 32εω(~vF )4

π2R4(ω2 + ε2)2 ;

32εω(~vF )4

π2R4(ω2 + ε2)2 → −
16(~vF )4

πR4 δ′(ω), ε→ 0. (2.27)
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Adding and subtracting the term 16(~vF )4/π2R4(ω + iε)2 in the expres-
sion

I2(R,µ, T ) =
∞∫
−∞

dω

e
ω−µ
T + 1

Im
[
(ω + iε)2

(
H

(1)
2

((ω + iε)R
~vF

))2
+

+ 16(~vF )4

π2R4(ω + iε)2 −
16(~vF )4

π2R4(ω + iε)2

]
, (2.28)

we can safely take the limit ε = 0 for the first two terms in the square
brackets while the third term produces an additional contribution

I2(R,µ, T ) =
∞∫
−∞

dωω2

e
ω−µ
T + 1

Im
[(
H

(1)
2

(
ωR

~vF

))2
]
− 4(~vF )4

πR4
1

T cosh2 µ
2T
.

(2.29)

For finite µ the additional term does not contribute in the zero temper-
ature limit, T → 0, while at zero chemical potential, µ = 0, it gives a
divergent contribution ∼ −1/T .

The evaluation of the integral (2.25) with ε = 0 represents a nontrivial
task due to the combination of Bessel functions. It can be written as

In(R,µ, T ) = 2
(~vF
R

)3 ∞∫
0

dxx2Jn (x)Yn (x)
( 1
zex/a + 1

+ z

ex/a + z
− 1

)
,

(2.30)

where a = TR
~vF and z = e−µ/T . The last term in brackets is divergent at

the upper limit, that corresponds to physical divergence at ω = −∞ in
Eq.(2.25). In such a case one can introduce frequency cut-off, or another
well defined regularization [59, 61]. We choose the regularization by re-
placing x2 by xα−1 and take the limit α = 3 only in finite expressions. We
checked that the frequency cut-off regularization gives the same result.
Eq.(2.30) is written in terms of the corresponding more general integral
I(α, ν, z, a), Eq.(2.65), studied in Appendix 2.7, as follows

In(R,µ, T ) =
(~vF
R

)3
I(α = 3, n, z, a), n = 0, 1,

I2(R,µ, T ) =
(~vF
R

)3
[
I(α = 3, n = 2, z, a)− 4~vF

πRT

1
cosh2(µ/2T )

]
.

(2.31)
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Generally, the answer can be expressed as inverse Mellin transform (see
Eq.(2.74) or (2.79)) which is suitable for studying different physically rel-
evant asymptotics such as low and high temperature expansions, or the
behavior at large distances R.

2.4.1 Small temperature expansion

To find small temperature corrections at finite chemical potential, one can
apply the Sommerfeld expansion for the frequency integral (2.25) rewriting
it in the form

In(R,µ, T ) =
µ∫

−∞

dωf(ω) + T

∞∫
0

dx[f(µ+ Tx)− f(µ− Tx)
ex + 1

'
µ∫

−∞

dωf(ω) + π2T 2

6 f ′(µ) +O

(
T

µ

)4
. (2.32)

Using the first equality, one can evaluate interaction numerically. As dis-
cussed in Appendix 2.7, we can find all terms of the expansion in powers
of T/µ. Here we present only two lowest terms of this expansion, which
are given by (2.85).

In(R,µ, T ) =
(~vF
R

)3
[

1√
π
G30

24

(
(kFR)2

∣∣∣ 2, 1
0, 3

2 ,
3
2 + n, 3

2 − n

)

+2π3/2T 2

3µ2 G30
24

(
(kFR)2

∣∣∣ 2, 1
2

3
2 ,

3
2 ,

3
2 + n, 3

2 − n

)]
, (2.33)

where we defined the Fermi momentum as kF = µ/~vF . Clearly, non-
analytic in the temperature term in I2 (2.31) does not contribute in the
Sommerfeld expansion. For zero temperature, using the value of Meijer
function at zero argument,

G30
24

(
0
∣∣∣ 2, 1

0, 3
2 ,

3
2 + n, 3

2 − n

)
= (4n2 − 1)

√
π

8 , (2.34)

we get for exchange integrals of undoped α− T3 system

J0
AA(R) = −~vF cos4 Θ

2R3 CfAA(R), J0
AC(R) = 3~vF cos2 Θ

2R3 CfAC(R),

J0
AB(R) = 15~vF sin2(2Θ)

8R3 CfAB(R). (2.35)
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For Θ = 0, J0
AA(R) and J0

AC(R) coincide with expressions derived in [61,
68]. [Note that our definition of the constant C coincides up to a sign
with Ref.[68] while Ref.[61] uses a different definition.] The minus sign for
the exchange interaction means ferromagnetic coupling for spins while the
positive sign corresponds to antiferromagnetic one. We see that couplings
J0
AB, J

0
AC describing the interaction of impurities on different sublattices

are of antiferromagnetic nature in undoped α − T3 system, like in the
case of graphene [58, 59, 61]. For angles Θ close to π/4 (dice model) the
coupling J0

AB is significantly larger than graphene-like couplings: |J0
AB| >

|J0
AC | > |J0

AA|. All couplings feature 1/R3 behavior familiar in graphene.
At finite doping, the short distance (or small kF ) behavior is given by

JAA(R) = J0
AA(R)

[
1− 32(kFR)3

3π

(
ln
(
kFR

2

)
+ γ − 1

3

)]
,(2.36)

JAC(R) = J0
AC(R)

[
1− 16(kFR)3

9π

]
, (2.37)

JAB(R) = J0
AB(R)

[
1− 8(kFR)3

45π

]
. (2.38)

Expanding Eq.(2.33) at large values kFR, we find the following re-
sults for the exchange interactions when both impurities are on the same
sublattice AA or couple to different sublattices (AC and AB, for example):

JAA(R, µ, T ) = 8
π
J0
AA(R)

[
kFR sin(2kFR) + 1

4 cos(2kFR)

− 2π2T 2R2

3(~vF )2

(
kFR sin(2kFR)− 3

4 cos(2kFR)
)]

, (2.39)

JAC(R, µ, T ) = 8
3πJ

0
AC(R)

[
kFR sin (2kFR) + 5

4 cos (2kFR)

− 2π2R2T 2

3(~vF )2

(
kFR sin (2kFR) + 1

4 cos (2kFR)
)]

, (2.40)

JAB(R, µ, T ) = − 8
15πJ

0
AB(R)

[
kFR sin(2kFR) + 17

4 cos(2kFR)

− 2π2T 2R2

3(~vF )2

(
kFR sin(2kFR) + 13

4 cos(2kFR)
)]

. (2.41)

One should note that the exchange interactions oscillate with a distance R.
The terms with sin(2kFR) in square brackets are equal in all cases while
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Figure 2.1. RKKY interactions as functions of kFR at zero temperature and
finite chemical potential calculated through Meijer G-functions. (Left panel)
RKKY interactions normalized to their values at µ = 0 and divided by kFR.
(Right panel) RKKY interactions (solid lines) versus their asymptotic expansions,
Eqs.(2.39)-(2.41), at T = 0 (dashed lines) with the same normalizations.

more decreasing terms with cos 2kFR are different and have the largest
amplitude in case of magnetic impurities situated on sublattices A and B.
Zero temperature behavior is given by first two oscillating factors in square
brackets. A comparison of Eqs.(2.39)-(2.41) with the exact formulas (2.33)
shows that these asymptotic expressions work quite well for kFR > 0.5 in
AA case and kFR > 1.5 in AB case (the right panel in Fig.2.1). We note
that while the normalized couplings JAA/J0

AA, JAC/J
0
AC oscillate in phase,

the coupling JAB/J0
AB oscillates out of phase (see left panel in Fig.2.1).

Physically this is related to the fact that A atom does not interact directly
with B atom but only indirectly via the hub atom C.

We also compare the Sommerfeld expansion (2.33) with numerically
calculated interaction (via the first expression in (2.32)) at temperature
T = 50K and chemical potential µ = 0.1 eV (see Fig.2.2). The approx-
imations work very well in a large interval of distances. As one can see
from the asymptotic expressions (2.39)-(2.41), the temperature correction
grows with distance. Thus, when 2π2T 2R2

3(~vF )2 ∼ 0.5, the next terms in expan-
sion (2.82) become important.

2.4.2 Large distance behavior at finite temperature

In this section we present an exchange interaction in physically relevant
case of large distances and finite temperature, thus obtaining more general
asymptotic than in Eqs.(2.39)-(2.41). For this purpose we use the general
expansion in powers of T/µ (See Eq.(2.87) in Appendix 2.7). However,
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Figure 2.2. (Left panel) Numerically calculated interactions (solid lines) are
compared with the second-order Sommerfeld expansion (2.33) (dashed lines).
The chemical potential equals µ = 0.1 eV and temperature T = 50K. Distances
are measured in terms of the lattice constant al =

√
3d = 0.246 nm. The expan-

sion parameter in Eq.(2.82) equals 2πT
µ ≈ 0.3. (Right panel) AB interaction at

R = 20al and µ = 0.01 eV (solid line) and Sommerfeld expansion Eq.(2.33) with
additional term from Eq.(2.29) (dashed line). The nonmonotonic dependence on
temperature comes from an additional term in integral (2.29), while the nonsin-
gular part remains constant due to very small value of (kFR)2. Also we note
that the sign of interaction changes with temperature.

instead of taking several terms of this expansion we sum up the leading
asymptotic terms in series. The obtained Eq.(2.91) allows us to recover
approximations similar to those in Ref.[68] using one general expression.
Here we present the result for the new AB-type interaction integral

JAB(R, µ, T ) = − 8
15J

0
AB(R) R

~vF
F1

[
kFR sin (2kFR) + 15

4 cos (2kFR)

+ πR

~vF
F2 cos (2kFR)

]
, (2.42)

where we used the following definitions in analogy with Ref.[68]:

F1 = T

sinh
(

2πTR
~vF

) , F2 = T

tanh
(

2πTR
~vF

) . (2.43)

Again in this case the term with cos(2kFR) in square brackets has much
larger magnitude comparing to the other two interactions JAA, JAC , which
are similar to graphene case in [68]. This is an interesting property of AB-
type interaction.

As was mentioned in Ref.[68], the term which is proportional to the
product F1F2 should have a nonmonotonic dependence on temperature.
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Here we should note that depending on relative distance between impuri-
ties, other terms in square brackets in Eq.(2.42) can destroy this effect.

2.4.3 Zero chemical potential

The results in the case of zero chemical potential are not given in the
literature in its fullest form even for graphene. Only partial results can
be found in the recent paper [64]. Here we discuss the asymptotics for
low and high temperature which follow from expansion of the expression
(2.79).

Firstly, we start from the low temperature limit. In fact, it is easier
to determine a low temperature expansion of the integral (2.25) itself.
Making replacement x→ ax in Eq.(2.69), we find

In(µ = 0) =
(~vF
R

)3
[
−2C2,n + 4a3

∫ ∞
0

x2dx

ex + 1Jn(ax)Yn(ax)
]
, (2.44)

where a is defined in Eq.(2.30). Expanding the product of Bessel functions
near zero, and then performing integration over x, we find the following
expressions for interactions:

JAA(R, 0, T ) = J0
AA(R)×[

1 + 16
π
a3 (−6ζ(3) ln(a)− 6ζ ′(3) + ζ(3)(ln(16)− 9)

)]
,

(2.45)

JAC(R, 0, T ) = J0
AC(R)

[
1− 16a3ζ(3)

π

]
, (2.46)

JAB(R, 0, T ) = J0
AB(R)

[
1− 32

15πa −
8a3ζ(3)

5π

]
, (2.47)

where ζ(x) denotes the Riemann zeta-function. Note that the leading
temperature correction is of order T 3 (or T 3 log T ) instead of T 2 in the
case of finite chemical potential (see left panel in Fig.2.3). In addition one
should note the presence of singular 1/T term in the AB interaction. As
was shown in Eqs.(2.26)-(2.29), this term comes from singular behavior of
H2 function, and is related to the effects of flat band. The effect of this
term is demonstrated on right panel in Fig.2.3. Such singular behavior
of the AB interaction at low temperature can be used as a benchmark of
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flat band physics in experiment, for example, in the recently discovered
systems [7, 23].

The case of high temperatures (or large distances) is much more com-
plicated. The details of calculation are presented in Appendix 2.8, and
here we present main results for the AA, AC and AB cases:

JAA(R, 0, T ) = J0
AA(R) 16a2

sinh(2πa)

(
π

tanh(2πa) −
1
4a

)
, (2.48)

JAC(R, 0, T ) = J0
AC(R) 16a2

3 sinh(2πa)

(
π

tanh(2πa) + 3
4a

)
, (2.49)

JAB(R, 0, T ) = −J0
AB(R) 16a2

15 sinh(2πa)

(
π

tanh(2πa) + 15
4a

)
. (2.50)

The main difference between the last expression for the AB interaction
and the AA, AC cases is the changed sign of interaction in Eq.(2.50)
comparing to Eq.(2.47). This change comes from the additional term in
Eq.(2.29), which is related to existence of flat band, and exactly cancels
1/R4 term in integral, see Appendix 2.8. As is seen, all exchange inter-
actions exponentially decrease at large RT � 1 in the absence of doping.
Mathematically this comes from the structure of Mellin-Barnes integral
(2.93), for details we refer the reader to Appendix 2.8.

Figure 2.3. Temperature dependence of normalized interactions AA and
AB is compared with asymptotic expressions at small values of parameter a
(2.45),(2.47) and expansions (2.48), (2.50) at large values of a. (Left panel) Non-
monotonic behavior of JAA integral, which was discussed in detail in Ref.[68].
(Right panel) Behavior of relative AB interaction, which has opposite sign com-
paring to J0

AB at zero doping, and becomes very strong as T goes to 0. Such
behavior represents a special feature of the α− T3 model and is directly related
to the existence of flat band.

.



32 Chapter 2. RKKY interaction in pseudospin-1 fermion system

2.4.4 Sign of interaction at zero chemical potential and
temperature

For completeness it is worth noting the sign difference between J0
AB(R)

and the limit a → 0 in Eq.(2.47) (which is divergent). For bipartite
lattices, the signs of interactions J0(R) in undoped case and for zero
temperature are fixed by general considerations based on particle-hole
symmetry, which result in theorem proved in [59] (and generalized in [71]).
Here we find that the same arguments with particle-hole symmetry (2.13)
contain subtleties, which do not allow to fix the sign of J0

AB.
Using the fact that the ground state is particle-hole symmetric, we

find the following symmetry restriction for Green’s function:

G0(R1 −R2, τ1 − τ2) =
〈
ĈΨ1(R1, τ1)Ψ†2(R2, τ2)Ĉ−1

〉
= −SGT0 (R2 −R1, τ2 − τ1)S, (2.51)

where the operator Ĉ and the matrix S are defined in Eq.(2.13). Substi-
tuting this into susceptibility at zero temperature, we obtain

χµ1µ2 (R1 −R2) = −
∞∫
0

dτ tr
[
Pµ1G0 (R1 −R2; τ)Pµ2SG

T
0 (R1 −R2; τ)S

]
.

(2.52)

Calculating the trace, we find susceptibility in terms of single elements of
G0(r, τ)

χµµ(r) = −
∫
dτ(G0)2

µµ(r, τ), χAB(r) = −
∫
dτ(G0)2

AB(r, τ),

χAC(r) =
∫
dτ(G0)2

AC(r, τ), χBC(r) =
∫
dτ(G0)2

BC(r, τ). (2.53)

By using the Fourier transformation of Eq.(2.8),

G0(r, τ) =
∫ ∞
−∞

dω

2π

∫
BZ

d2k

(2π)2G0(k, iω) exp(−iωτ + ikr), (2.54)

one can easily check that the elements of Green’s function in imaginary
time representation G0µ1µ2(r, τ) are real. Then, (2.53) gives the following
signs for interactions at zero temperature and doping:

J0
µµ

|J0
µµ|

= −1, J0
AC

|J0
AC |

= J0
BC

|J0
BC |

= 1, J0
AB

|J0
AB|

= −1. (2.55)
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Clearly, the sign of J0
AB does not agree with our result (2.35). However,

one should note that this theorem fixes the sign of interaction only if
the integrals in (2.53) exist. This is not the case for the elements G0AB
and G0BA, because the frequency integral in (2.54) diverges at the origin.
The divergence comes from the pole at ω = 0, which is a manifestation
of highly-degenerate flat band. Therefore we cannot fix the sign of such
interaction a priori, and should find it from the physically relevant limiting
cases, µ → 0 or T → 0, and the answer depends on the order of these
limits.

2.5 Conclusions

In recent years, there was an increasing interest to materials which host
fermionic excitations with no analogues in high-energy physics [15]. In par-
ticular, the so-called pseudospin-1 fermions provide a platform for study-
ing exotic physical properties such as transport anomalies, topological
Lifshitz transitions, as well as dispersionless flat bands which may lead to
the realization of many very interesting strongly correlated states. Quasi-
particle excitations with pseudospin one can be realized in many ways, as
we discussed in Introduction.

In this paper we provided results for the RKKY interaction of mag-
netic impurities, placed on sites of T3 lattice, mediated by a background
of pseudospin-1 fermions. Our calculations are performed mainly in the
low-energy linear-band approximation where we managed to obtain gen-
eral analytical expressions for the RKKY interactions which are expressed
in terms of Mellin-Barnes type integrals for finite chemical potential and
temperature. This allowed us to obtain analytically all asymptotics from
one expression. The asymptotic behavior at large distances was analyzed
in detail. In particular, we found, that oscillatory behavior at large dis-
tances was controlled by the same two parameters, the distance between
K-points and Fermi wave vector, as in graphene.

Our results show that there are three types of interaction, two of them
(for impurities on hub and rim sites) can be reduced to graphene case while
the third one (between impurities on different rim sites) is new. This new
type of interaction, which comes as a special feature of T3 lattice geometry,
becomes very strong at small temperatures and doping. Physically this is
an effect of the flat band, which results in a singular behavior of Green’s
function at ω = 0. For bipartite lattices, it is known that the signs of
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RKKY interactions at zero temperature and in the absence of doping are
fixed by general considerations based on particle-hole symmetry, which
result in the theorem proved in [59] (and generalized in [71]). We discussed
the subtleties of this theorem, as applied to the T3 lattice, related to the
existence of a dispersionless flat band. The breakdown of the theorem for
the interaction J0

AB is refered to the divergence of the Green’s function at
zero energy due to flat band. The divergence is regularized in the presence
of finite temperature and/or doping, but taking the limits µ = 0 and T = 0
depends on the order of these limits what is reflected in the last term in the
integral I2(R,µ, T ) of Eq.(2.31). This dramatic change of behavior could
be utilized to reveal the presence of a flat band in experiment and can
be tested, for example, in recently discovered flat-band systems, such as
kagome metal FeSn [23], Lieb-like lattices in covalent-organic frameworks
[9, 10] or the electronic Lieb lattice formed by the surface state electrons
of Cu(111) [7]. The RKKY interaction may lead to the realization of
magnetic order in these materials.

The described strong temperature dependence in α − T3 lattice sys-
tems may manifest also in Friedel oscillations. The last ones could be
detected using STM-based quasiparticle interference measurements [94].
As is known, the flat band emerging in tiny-angle twisted bilayer graphene
results in a strong sensitivity to perturbations leading to strongly corre-
lated states including superconductivity [1]. While the RKKY interaction
was already studied in bilayer graphene [68, 71], the corresponding calcu-
lation for twisted bilayer graphene is still ahead.

2.6 Appendix: Green’s function in coordinate-
frequency representation

The contribution to the retarded Green’s function in r space (2.10) from
one K point is given by Fourier transform

GR0 (R1 −R2, ω, ξ) = 1
ΩBZ

∫
d2k

(2π)2 e
ik(R1−R2)Gξ0(k, ω + iε). (2.56)
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Using the expression for Green function in the low energy model (2.9) and
replacing wave numbers by derivatives, we write

GR0 (r, ω, ξ) = 1
ω
× ω2 + sin2 Θ~2v2

F∂
2
r −iω cos Θ~vF∂−,ξ −1

2 sin(2Θ)(~vF∂−,ξ)2

−iω cos Θ~vF∂+,ξ ω2 −iω sin Θ~vF∂−,ξ
−1

2 sin(2Θ)(~vF∂+,ξ)2 −iω sin Θ~vF∂+,ξ ω2 + cos2 Θ(~vF∂r)2

×
× 1

ΩBZ

∫
d2k

(2π)2
eikr

(ω + iε)2 − (~vFk)2 . (2.57)

Here ∂±,ξ = ξ∂x ± i∂y. Now we integrate over the angle and then use the
formula 2.12.4.28 from book [95],∫ ∞

0

xν+1Jν(cx)
x2 + z2 dx = zνKν(cz), c > 0, Re z > 0, (2.58)

and get

F (r) =
∫

d2k

(2π)2
eikr

(ω + iε)2 − (~vFk)2 =
∞∫
0

dkk

2π
J0(k|r|)

(ω + iε)2 − (~vFk)2

= − 1
2π(~vF )2K0

(−i|r|(ω + iε)
~vF

)
, (2.59)

where J0andK0 are the Bessel’s functions. Using the relation between
Macdonald’s functions and the Hankel function of first kind,

H(1)
ν (z) = −2i

π
e−

iπν
2 Kν

(
ze−

iπ
2
)
, z = |r|(ω + iε)

~vF
, (2.60)

we find

F (r) = − i

4(~vF )2H
(1)
0

( |r|(ω + iε)
~vF

)
. (2.61)

Next, we evaluate all matrix elements of Green’s function. Let’s calculate
all needed derivatives

(~vF )2∂2
rF (r) = iω2

4(~vF )2H
(1)
0 (z) , (2.62)

~vF (ξ∂x ± i∂y)F (r) = ξ
iωe±iξφ

4(~vF )2H
(1)
1 (z) , (2.63)

(~vF )2(ξ∂x ± i∂y)2F (r) = − iω
2e±2iξφ

4(~vF )2 H
(1)
2 (z) . (2.64)
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Substituting these expressions back to Green’s function, we find result
which is given by Eq.(2.11) in the main text. Note that all elements of
the Green function are proportional to ω.

2.7 Appendix: Evaluation of the interaction in-
tegral

In this Appendix we consider the integral

I(α, ν, z, a) = 2
∞∫
0

dxxα−1Jν (x)Yν (x)
( 1
zex/a + 1

+ z

ex/a + z
− 1

)
,

− 1 < Reα < 1. (2.65)

In the region 0 < α < 1 we can calculate the terms in round brackets sep-
arately, for example, the term with −1 can be evaluated using Eq.2.24.3.1
from the book [96],

Cα,ν =
∞∫
0

dzzα−1Jν(z)Yν(z) = − 1
2
√
π

Γ
(
α
2
)

Γ
(
α
2 + ν

)
Γ
(

1+α
2

)
Γ
(
1 + ν − α

2
) , (2.66)

which gives the following values for α = 3 and ν = 0, 1, 2:

C3,0 = 1
16 , C3,1 = − 3

16 , C3,2 = −15
16 . (2.67)

Thus, we can rewrite the integral as follows

I(α, ν, z, a) = −2Cα,ν + J(α, ν, z, a), (2.68)

where, for ν ≥ 0 and Reα > 0,

J(α, ν, z, a) = 2
∞∫
0

dxxα−1Jν (x)Yν (x)
( 1
zex/a + 1

+ z

ex/a + z

)
. (2.69)

We calculate the last integral using the Mellin transform

J(α, ν, z, s) =
∫ ∞

0
daas−1J(α, ν, z, a)

= 2
∫ ∞

0
dxxα−1Jν(x)Yν(x)

∫ ∞
0

daas−1
( 1
zex/a + 1

+ z

ex/a + z

)
. (2.70)
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After the change a→ ax and then a→ 1/a Eq.(2.70) takes the form

J(α, ν, z, s) =
∫ ∞

0
dxxα+s−1Jν(x)Yν(x)Q(s, z), 0 < α+ s < 1, (2.71)

where

Q(s, z) = 2
∫ ∞

0
daa−s−1

( 1
zea + 1 + z

ea + z

)
, Re s < 0. (2.72)

The function Q(s, z) possesses the symmetry Q(s, 1/z) = Q(s, z). The
integral over x in Eq.(2.71) is evaluated using Eq.(2.66). There exists the
range of parameters α, s where the Mellin transform J(α, ν, s, z) is defined.
We obtain for 0 < α+ Re s < 0, ν ≥ 0:

J(α, ν, s, z) = −
Γ
(
ν + α+s

2
)

Γ
(
α+s

2
)

2
√
πΓ
(
α+1+s

2

)
Γ
(
ν + 1− α+s

2
)Q(s, z), (2.73)

hence

I(α, ν, z, a) = −2Cα,ν −
1

2πi

γ+i∞∫
γ−i∞

ds a−s
Γ
(
ν + α+s

2
)

Γ
(
α+s

2
)
Q(s, z)

2
√
πΓ
(
α+1+s

2

)
Γ
(
ν + 1− α+s

2
) ,

(2.74)
where the contour separates poles of the function Q(s, z) (at s = 0 and
s = 2n + 1, n=0, 1,. . . , see below) from poles of gamma functions in the
numerator. The integrals in Eq.(2.72) can be evaluated explicitly through
the polylogarithm function [97] and we get

Q(s, z) = −2Γ(−s) [Li−s(−1/z) + Li−s(−z)] . (2.75)

The function Lis(z) has the following properties. It is an analytical func-
tion of complex variables s, z. For fixed z, it does not have poles or branch
cuts in a finite region of complex s-plane, the point s =∞ is the only (es-
sential) singularity. For fixed s, Lis(z) does not have poles and essential
singularities but has a cut in the z-plane along the interval [1,∞], where
it is continuous from below side of the cut. It has the symmetry property
with respect to complex conjugation Lis∗(z∗) = Li∗s(z) for z not belonging
to the interval (−∞, 0).

Analytic continuation of Lis(z) into the region |z| > 1 can be per-
formed by means of the formula (see Eq.(1.11.16) in [98])

Lis(z) + eiπsLis
(1
z

)
= (2π)s

Γ(s) e
iπs/2ζ

(
1− s, 1

2 + ln(−z)
2πi

)
, Re s < 0,

(2.76)
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where ζ(s, q) is the Hurwitz ζ-function. When s is a negative even integer,
s = −2m, m = 1, 2, . . . , we get Li−m(−z) + Li−m (−1/z) = 0. It follows
then from Eq.(2.75) that Q(s, z) has poles only for s = 0 and odd positive
s = 2n+ 1, n = 0, 1, . . . , while for even positive s = 2n the poles of Γ(−s)
are canceled by zeros of the sum of polylogarithm functions. Applying
this formula to Eq.(2.75) we get

Q(s, z) = − 1
(2π)s cos(πs/2)

[
ζ

(
1 + s,

1
2 + ln z

2πi

)
+ ζ

(
1 + s,

1
2 −

ln z
2πi

)]
.

(2.77)
Near s = 0 the function Q(s, z) behaves as

Q(s, z) ' −2
s
, (2.78)

then moving the contour in Eq.(2.74) to slightly right of the point s = 0
(γ > 0) and calculating the residue at s = 0, we get

I(α, ν, z, a) = − 1
2πi

γ+i∞∫
γ−i∞

ds a−s
Γ
(
ν + α+s

2
)

Γ
(
α+s

2
)

2
√
πΓ
(
α+1+s

2

)
Γ
(
ν + 1− α+s

2
)Q(s, z)

(2.79)

[the residue at s = 0 cancels the first term in Eq.(2.74)].
Expanding the functions ζ(s, 1/2±iv) (where v = ln z

2π ) in series around
v = 0, we find the following representation of the function Q(s, z) near
the point z = 1:

Q(s, z) = − 2
(2π)s cos(πs/2)

×
∞∑
k=0

(−1)kΓ(1 + s+ 2k)ζ(2k + 1 + s, 1/2)
Γ(1 + s)(2k)!

( ln z
2π

)2k
. (2.80)

This expansion can be used to find a high temperature expansion of
Eq.(2.79), hence the integral (2.25), when |µ|/(2πT )� 1.

To obtain the expansion at large |v| = |µ|/(2πT ) � 1 we start from
the asymptotic expansion [99]:

ζ(s, q) = 1
Γ(s)

∞∑
k=0

(
21−2k − 1

)
B2kΓ(s+ 2k − 1)

(2k)!(q − 1/2)s+2k−1 , (2.81)
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where B2k are Bernoulli numbers. For the function Q(s, z) we get the
asymptotic series at large |v|:

Q(s, z) = − 2
(2π|v|)sΓ(s+ 1)

∞∑
k=0

(−1)k
(
21−2k − 1

)
B2kΓ(s+ 2k)

(2k)!v2k . (2.82)

The first terms of the expansion of Q(s, z) at small z (large |v|) are:

Q(s, z) = − 2
(2π|v|)sΓ(s+ 1)

[
Γ(s) + Γ(s+ 2)

24v2 + 7Γ(s+ 4)
5760v4 +O

( 1
v6

)]
.

(2.83)
Hence, for small z (or µ/T � 1) we obtain, keeping two lowest terms,

I(α, ν, u) = 1
2πi

γ+i∞∫
γ−i∞

ds u−s
Γ
(
ν + α+s

2
)

Γ
(
α+s

2
)

2
√
πΓ
(
α+1+s

2

)
Γ
(
ν + 1− α+s

2
)

×

 Γ
(
s
2
)

Γ
(
1 + s

2
) + 1

6v2

Γ
(
1 + s+1

2

)
Γ
(
s+1

2

)
 , u = µR

~vF
= kFR. (2.84)

Changing s→ 2s and calculating integrals we get equivalent expressions

I(α, ν, u) = 1√
π
G30

24

(
u2
∣∣∣ α+1

2 , 1
0, α2 ,

α
2 + ν, α2 − ν

)

+ 1
6
√
πv2G

30
24

(
u2
∣∣∣ α+1

2 , 1
2

3
2 ,

α
2 ,

α
2 + ν, α2 − ν

)

= − 1√
π
G21

24

(
u2
∣∣∣ 1, α+1

2
α
2 ,

α
2 + ν, α2 − ν, 0

)

− 1
6
√
πv2G

21
24

(
u2
∣∣∣ 1

2 ,
α+1

2
α
2 ,

α
2 + ν, α2 − ν,

3
2

)
, (2.85)

where we used Eq.8.2.1.17 from [96],

Gmnpq

(
z
∣∣∣ (ap−1), b± l

b, (bq−1)

)
= (−1)lGm−1,n+1

p,q

(
z
∣∣∣ b± l, (ap−1)

(bq−1), b

)
. (2.86)

The first term in Eq.(2.85) corresponds to the case of zero temperature,
and for α = 3, ν = 0, 1 it agrees with the result of Ref.[61]. In general, the
expansion of the expression (2.82) over 1/|v| corresponds to the expansion
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over T/µ (Sommerfeld’s expansion). At large kFR, Eq.(2.85) gives for
interested cases α = 3, ν = 0, 1, 2 the results in Eqs. (2.39)-(2.41).

From our final formula (2.79) we can obtain an expansion for µ near
zero by means of Eq.(2.80), and an expansion for T � µ using Eq.(2.82).
To find a large kFR expansion at fixed RT/~vF we consider the expression
(2.79) using Q(s, z) represented by the asymptotic series (2.82),

I(α, ν, z, a) = 1√
π

∞∑
k=0

(−1)k
(
1− 22k−1

)
B2k

(2k)!v2k

× 1
2πi

γ+i∞∫
γ−i∞

ds (2πav)−s
Γ
(
ν + α+s

2
)

Γ
(
α+s

2
)

Γ
(
k + s

2
)

Γ
(
k + 1+s

2

)
Γ
(

1+s
2

)
Γ
(
1 + s

2
)

Γ
(

1+α+s
2

)
Γ
(
1 + ν − α+s

2
)

= 2√
π

∞∑
k=0

(−1)k
(
1− 22k−1

)
B2k

(2k)!v2k

×G40
35

(
(2πav)2

∣∣∣ 1
2 , 1,

1+α
2

k, k + 1
2 ,

α
2 ,

α
2 + ν, α2 − ν

)
, (2.87)

where we used the duplication formula for Γ(2k + s) and Γ(1 + s). Since
2πav = kFR, we consider the asymptotic of Meijer function at large
kFR� 1. For α = 3 and nonnegative integer ν we get

G40
35

(
(2πav)2

∣∣∣ 1
2 , 1, 2

k, k + 1
2 ,

3
2 ,

3
2 + ν, 3

2 − ν

)
'

(−1)(k+ν)(2πav)2k
√
π

[
−2πav sin(4πav) + (k − ν2 − 1/4) cos(4πav)

]
.

(2.88)
Using the representation for Bernoulli numbers(

1− 21−2k
)
B2k = (−1)k+1π

∞∫
0

dt t2k

cosh2(πt)
, (2.89)

we get after performing the summation over k,

I(3, ν, z, a) = (−1)ν+1

π

∞∫
0

dt

cosh2 t
[2at sin(4at) cos(2kFR)

+ cos(4at)
(
µR

~vF
sin(2kFR) + 4ν2 + 1

4 cos(2kFR)
)]

. (2.90)
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Calculating the integrals over t, we finally obtain

I(3, ν, z, a) = (−1)ν+1 2R2

(~vF )2F1

[
µ sin(2kFR) + ~vF (4ν2 − 1)

4R cos(2kFR)

+πF2 cos(2kFR)] , kFR� 1, (2.91)

where F1 and F2 are defined in Eq.(2.43). The last expression for ν = 0, 1
leads to the same expressions as were found in graphene for exchange
interactions [68], while the expression for ν = 2 is completely new and
corresponds to interaction between impurities on rim sites in considered
pseudospin-1 fermion system.

2.8 Appendix: Zero chemical potential and finite
temperature

Asymptotics of the integrals In with n = 0, 1 were at least partially ana-
lyzed in graphene literature, except the integral I2. However, in the case
of zero chemical potential, µ = 0, such an analysis was not performed to
the best of our knowledge. The evaluation of corresponding integrals in
the large distance limit poses a rather complicated task. This is because
the leading correction is given by exponentially small term, and thus any
power series decomposition can not give the desired result. However, our
formula (2.79) allows us to analyze the case µ = 0 straightforwardly. First,
we write the function Q(s, z = 1) from Eq.(2.80) in the form

Q(s, 1) = − 2ζ(1 + s, 1/2)
(2π)s cos(πs/2) = − 4

πs+1 Γ
(1 + s

2

)
Γ
(1− s

2

) ∞∑
k=0

1
(2k + 1)s+1 ,

(2.92)
where Re s > 0. Then for the integral (2.79) we obtain

I(α, ν, 1, a) = 2a√
π

∞∑
k=0

1
2πi

γ+i∞∫
γ−i∞

ds [πa(2k + 1)]−s−1

×
Γ
(
ν + α+s

2
)

Γ
(
α+s

2
)

Γ
(

1+s
2

)
Γ
(

1−s
2

)
Γ
(
α+1+s

2

)
Γ
(
ν + 1− α+s

2
) , 0 < γ < 1. (2.93)
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Finally, making the change s → 2s − 1 we get the expression in terms of
Meijer functions,

I(α, ν, 1, a) = 4a√
π

∞∑
k=0

G3,1
2,4

(
π2a2(2k + 1)2

∣∣∣ 0, α2
0, α−1

2 , ν + α−1
2 , α−1

2 − ν

)
.

(2.94)

The function G31
24(z) is an analytic in z function in the sector |argz| < π.

To find asymptotic behavior of J(α, ν, 1, a) at large a, we use two terms
of asymptotic expansion of Meijer function at large argument and then
evaluate the sum. Below we present results for three cases ν = 0, 1, 2:

I(3, 0, 1, a) = − 2a2

sinh(2πa)

(
π

tanh(2πa) −
1
4a

)
, a > 1. (2.95)

I(3, 1, 1, a) = 2a2

sinh(2πa)

(
π

tanh(2πa) + 3
4a

)
, a > 1. (2.96)

I(3, 2, 1, a) = 4
πa
− 2a2

sinh(2πa)

(
π

tanh(2πa) + 15
4a

)
, a > 1. (2.97)

The last expression contains the power decreasing term ∼ 1/a in contrast
to the first two expressions. This is because the corresponding Mellin-
Barnes integrand has one pole (at s = 1) to the right of the integration
contour while the integrands for α = 3 and ν = 1, 2 do not contain poles at
all in that region. Hence they have only exponentially decreasing terms,
for example, the first correction is exponentially small, ∼ a2 exp(−2πa), at
large a� 1. On the other hand, since the expression for ν = 2 decreases
as ∼ 1/a the corresponding integral in Eq.(2.30) has 1/R4 decrease with
a distance. However, as we find from Eq.(2.29) in main text, this power-
decreasing term is exactly canceled by the flat-band correction.



Chapter 3

Gap generation and flat
band catalysis in dice model
with local interaction

3.1 Introduction

The experimental discovery of graphene [22] draw attention of condensed
matter physicists to the systems with relativisticlike quasiparticle spec-
trum. It was shown [15] that in crystals with special space groups more
complicated electron spectra could be realized with no analogues in high-
energy physics where the Poincare symmetry provides strong restrictions.
One remarkable example is a possibility to possess strictly flat bands [100,
101], whose high degeneracy was shown to be stabilized by permutation
symmetries [102] (for a recent review of artificial flat band systems, see
Ref.[92] and Ref.[103] where many systems with pseudospin-1 fermions
have been discussed). The dice model is the paradigmatic example of
such a system with a flat band which hosts pseudospin-1 fermions [11].

The dice model is a tight-binding model of two-dimensional fermions
living on the T3 (or dice) lattice where atoms are situated both at the
vertices of hexagonal lattice and the hexagons centers [11, 80]. Since the
dice model has three sites per unit cell, the electron states in this model are
described by three-component fermions. It is natural then that the energy
spectrum of the model is comprised of three bands. The two of them form
a Dirac cone and the third band is completely flat and has zero energy
[13]. All three bands meet at the K and K ′ points, which are situated at
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the corners of the Brillouin zone. The T3 lattice has been experimentally
realized in Josephson arrays [16, 17], metallic wire networks [18] and its
optical realization by laser beams was proposed in Ref.[19].

Perfectly flat bands are expected to be unstable with respect to generic
perturbations such as the presence of boundaries, magnetic field, Coulomb
impurities, and disorder. In a recent paper [89], we showed that, remark-
ably, the energy dispersion of the completely flat energy band of the dice
model is not affected by the presence of boundaries except the trivial re-
duction of the number of degenerated electron states due to the finite
spatial size of the system. It was shown also that the flat band of the
dice model remains unaltered in the presence of circularly polarized ra-
diation [104, 105] and magnetic field [12]. The electron states of gapped
pseudospin-1 fermions in the dice model for impurities with short- and
long-range potential were studied by us in Ref.[[14]] leading to qualita-
tively different results. Indeed, it was found that while the flat band
survives in the presence of a potential well, it is absent in the case of the
Coulomb potential.

It is well known that a soft kinetic spectrum favors the gap genera-
tion. For example, the low energy electron spectrum ε(p) ∼ |p|n in ABC-
stacked multilayer graphene becomes more flat with n. The interaction
parameter rs, defined as the ratio of inter-electron Coulomb interaction
energy to the Fermi energy, scales like rs ∼ n

(1−n)/2
el [106], where nel is

the electron charge density. Obviously, the electron-electron interactions
become more important at low electron density as the number of layers
n increases in ABC-stacked multilayer graphene. This suggests that the
gap generation in chiral multilayer graphene should be enhanced [35–37]
as the number of layers n becomes larger. This conclusion agrees with
the experimental findings. Meanwhile no gap is observed in monolayer
graphene at the neutrality point in the absence of external electromag-
netic fields, gap 2 meV is reported in bilayer graphene [38–41]. The
recent experiments [42, 43] demonstrate the presence of gaps of almost
room temperature magnitude ∼ 25 meV in high mobility ABC-stacked
trilayer graphene. A large interaction-induced transport gap up to 80 meV
was quite recently observed experimentally in suspended rhombohedral-
stacked tetralayer graphene [44].

Obviously, the flat band represents the most extreme case of a soft ki-
netic spectrum where the kinetic energy is completely quenched. The
above mentioned experimental results suggest that the generated gap
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should have the largest magnitude in the flat band system. This motivates
us to study the gap generation in the dice model. A recent theoretical
study of the band structure of magic angle twisted bilayer graphene [107]
also shows the crucial role of the flat band and the possibility of large
gap generation. This provides an additional motivation for the present
study. We would like to add also that since the pseudospin-1 fermions
with flat band were already realized in kagome metals such as FeSn [23]
and in electronic Lieb lattice [7], our results for the flat band catalysis of
gap generation can be tested experimentally.

To get an insight into the gap generation in the dice lattice we con-
sidered in this paper a model with local interaction. We studied both
intravalley and intervalley types of gap and analyzed their free energies.

The paper is organized as follows. The dice model and its general
properties are considered in Sec.3.2. In Sec.3.3, we study the intravalley
gap generation. The intervalley gap generation is investigated in Sec.3.4.
In Sec.3.4.3, we calculate the free energy for intra- and intervalley gap
states and discuss the phase diagram of the model. Technical details of
calculations are presented in Appendices 3.6, 3.7, 3.8.

3.2 Model
The lattice of the T3 (dice) lattice model is schematically shown in Fig.1.1.
The tight-binding equations are given by system (1.1) (with equal hop-
pings t between atoms C and A,B).

There are two values of momentum where fk = 0 in tight-binding
Hamiltonian (1.3) and all three bands meet. They are situated at the
corners of the hexagonal Brillouin zone

K = 2π
a

(1
3 ,

1√
3

)
, K ′ = 2π

a

(
−1

3 ,
1√
3

)
. (3.1)

For momenta near the K and K ′ points, the function fk is linear in q =
k − ξK, i.e., fk = vF (ξqx − iqy), vF =

√
3ta/2 is the Fermi velocity, and

ξ = ± is the valley index. In addition, we set ~ = 1 for convenience.
The low-energy Hamiltonian for electron states of the dice model in both
valleys has the form

H0(k, ξ) =

 0 ξkx − iky 0
ξkx + iky 0 ξkx − iky

0 ξkx + iky 0

 . (3.2)
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Here we absorbed dimensional constant vF /
√

2 into the definition of mo-
menta k = (vF /

√
2) q (this k should not be confused with the initial

k in the Brillouin zone in Eq.(4.25)). The Hamiltonian acts on three-
component wave functions ψT = (ψA, ψC , ψB). The electron states at the
K ′ point are described like in graphene by the interchange of the A and B
spinor components. The two valley Hamiltonian, H0(k,+1)⊕H0(k,−1),
is time-reversal invariant because of the relation H∗0 (k, ξ) = H0(−k,−ξ),
which can be directly checked for Eq.(3.2). The time-reversal operator
T for the dice model is defined in the same way as in graphene: it in-
terchanges valleys, changes the sign of momentum, and contains complex
conjugation operator [108]. The spectrum of the Hamiltonian consists of
three energy bands ±

√
2|k|, 0. Clearly, two bands form a Dirac cone and

one band is completely flat.
Although electrons interact through the Coulomb interaction V (x −

y) = e2/|x−y|, to get an insight into the gap generation for quasiparticles
in the dice model we will study the gap generation for a local Coulomb
interaction Vlocal(x − y) = Uδ2(x − y). This significantly simplifies the
analysis because the gap equations are algebraic in the Hartree–Fock ap-
proximation rather than the integral ones as for the genuine Coulomb in-
teraction. The interaction Vlocal is attractive between electrons and holes.
There are two main possibilities of order parameters of the exciton type,
namely, the intravalley and intervalley pairing which will be investigated
in the two subsequent sections.

We will study the gap generation by using the Baym–Kadanoff for-
malism [109–111]. The corresponding effective action for the quasiparti-
cle propagator G in the Hartree–Fock (mean field) approximation in the
model with the local four-fermion interaction has the form (for a similar
consideration in the case of graphene, see, e.g., [112])

Γ(G) = −i Tr
[
LnG−1S +

(
S−1G− 1

)]
+ U

2

∫
d3x

{
tr[G(x, x)G(x, x)]− [trG(x, x)]2

}
, (3.3)

where Tr and Ln are taken in the functional sense, S is the free propagator
related to Hamiltonian (3.2), and trace is taken over the valley and spinor
components. Let us begin our analysis with the case of the intravalley gap
generation.
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3.3 Intravalley gap

First of all, let us consider possible intravalley gap terms in the dice model,
whose dynamical generation will be analyzed below. Obviously, the most
general momentum-independent intravalley gap term is given by

Hgap =

 m1 c a
c∗ m2 b
a∗ b∗ m3

 . (3.4)

It is easy to check that parameters a, b, and c lead to an energy dispersion
relation which is anisotropic in momentum space. Since it is natural to
expect that the solution with the lowest energy should be isotropic in a
rotation-invariant system, we will set a = b = c = 0 in what follows. Then
m1, m2, and m3 are possible mass terms and. The electron states at the
two different valleys are independent, therefore, mi could be valley depen-
dent (note that valley-polarized states are well-known in graphene [113–
115]). Next we find the following characteristic equation which determines
the energy spectrum of the Hamiltonian H0(k, ξ) +Hgap:

(m1 − ε)
(

(m2 − ε)(m3 − ε)− k2
)

+ (ε−m3)k2 = 0, k = |k|. (3.5)

Clearly, there are three solutions of the above equation. Two of them
tend to ε(k) → ±

√
2 k at k → ∞ and describe the upper and lower

energy branches of the non-perturbated Hamiltonian (3.2). Obviously, if
m1 = −m3, then the middle branch tends to the flat energy band ε = 0 of
the free Hamiltonian (3.2) at large |k|. Therefore, we will assume in what
follows that m1 = −m3 = m. In this case, Eq.(3.5) takes the form

(ε−m2)(m2 − ε2) + 2εk2 = 0. (3.6)

The examples of spectrum defined by this equation are shown in Fig.3.1.
It is easy to check that ε = 0 is the exact solution of Eq.(3.6) for all k if
m2 = 0. The flat band solution ε = 0 is realized also if m = 0. In what
follows, we will study only solutions with m 6= 0 and m2 6= 0 when the flat
band is absent. Equation (3.6) implies that the particle-hole symmetry
could be preserved even in the case m2 6= 0 if we consider the mass term
−m2 at the valley ξ = −. Since the choice of the sign of m is irrele-
vant for the energy dispersion, without loss of generality we can assume
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Figure 3.1. Energy spectrum defined by Eq.(3.6) for three values of m2 (a):
m2 = 0.35m, (b): m2 = m, (c): m2 = 4m. At the middle panel the crossing
point of two bands is shown. Here energy ε and momenta k are measured in
units of m.

that m takes the same value in both valleys. Thus, we have the following
intravalley gapped Hamiltonian at valley ξ:

Hξ =

 0 ξkx − iky 0
ξkx + iky 0 ξkx − iky

0 ξkx + iky 0

+

 m 0 0
0 ξm2 0
0 0 −m

 .
(3.7)

It is worth noting that this Hamiltonian for m2 = 0 possesses the intraval-
ley particle-hole symmetry C = AK

CHξ(k) +Hξ(k)C = 0, A =

 0 0 1
0 −1 0
1 0 0

 , (3.8)

where K is the complex conjugation. The relation above can be checked
straightforwardly. The existence of this particle-hole symmetry explains
why the energy spectrum is particle-hole symmetric in a given valley for
m2 = 0. The second term in Hamiltonian (3.7) defines an ansatz for
the full inverse propagator in the theory with the Hamiltonian H0 +Vlocal,
where gap parametersm andm2 are determined by solving the Schwinger–
Dyson equation.



3.3 Intravalley gap 49

3.3.1 Gap equations

Varying the Baym–Kadanoff action (3.3) with respect to G, we obtain
the following Schwinger–Dyson equation in the Hartree-Fock (mean field)
approximation:

G−1
ξ (Ω,p) = S−1

ξ (Ω,p)− i2U
v2
F

∫
dωd2k

(2π)3 Gξ(ω,k), (3.9)

where we retained only the exchange contribution because the Hartree
contribution vanishes at the neutrality point of the considered particle-
hole symmetric state. Note that Hξ does not mix states from the two
valleys, therefore, the Schwinger–Dyson equation (3.9) for the intravalley
gaps is diagonal in the valley indices. The additional factor 2/v2

F appears
due to the definition of k below Eq.(3.2).

As was discussed above, we study the gap generation in a neutral
particle-hole symmetric system with m2 and −m2 mass terms in the val-
leys + and −, respectively. Therefore, there is no need to introduce the
chemical potential. However, the valley dependent chemical potential ξµv
with opposite signs in the two valleys could be dynamically generated.
Hence it should be added to the Hamiltonian Hξ. Such chemical poten-
tial defines filling at particular valley ξ. The corresponding gap equations
for m, m2, and µv are derived in Appendix 3.6. It is useful to perform
the Wick rotation ω → iω in the gap equations (3.55)-(3.57) and inte-
grate over ω and polar angle φ. Then we obtain the following system of
equations for µv,m, and m2:

µv = U

v2
F

Λ∫
0

kdk

2π

[
k2 + r0 (m2 − r0)
(r1 − r0) (r0 − r2)sign[µv − r0] + c.p.

]
, (3.10)

m = m
U

v2
F

Λ∫
0

kdk

2π

[ (m2 − r0)
(r0 − r1)(r0 − r2)sign[µv − r0] + c.p.

]
, (3.11)

m2 = − U
v2
F

Λ∫
0

kdk

2π

[
k2 −m2 +m2r0

(r0 − r1) (r0 − r2)sign[µv − r0] + c.p.

]
, (3.12)

where c.p. means summation over two terms with cyclic permutations of
roots r0, r1, and r2. Here r0, r1, and r2 are functions of k defined in
Appendix in Eq.(3.52) and describe the momentum dispersion of energy
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bands. The symmetry under permutations of r0, r1, and r2 is obvious in
these equations. Here we also introduced an ultraviolet cutoff Λ for energy,
which is of order ~vFπ/(a

√
2), where a is the lattice constant a = 2.46 Å,

and we take vF = 106m/s as for graphene [115]. This cutoff determines
the range of applicability of the low-energy model.

3.3.2 Properties of gap equations and critical coupling con-
stant

Before solving the gap equations numerically, we should note several their
algebraic properties. At first, if a certain set m, m2, µv is a solution,
then sets with changed signs of masses and valley chemical potential, i.e.,
−m, m2, µv and m, −m2, −µv are also solutions. This follows from the
symmetry properties of roots rn defined in Eq.(3.52).

Another important property is that there are no solutions of the gap
equations (3.10)-(3.12) for weak coupling U . This can be shown in the
following way: nontrivial solutions are possible for U → 0 only if there
are poles in the integrands at k = 0. This can happen only if two bands
meet, i.e., ri(k = 0) = rj(k = 0). Near the k = 0 point the denominator
is linear in k, and the integral over d2k cancels this singularity. In other
words, there are no infrared singularities and therefore nontrivial solutions
require a critical value Uc for their appearance.

Further, let us find the critical coupling constant above which a non-
trivial solution exists. Near the critical value, both gaps m, m2 and the
valley chemical potential µv should tend to zero. Since there are no in-
frared singularities, the critical coupling constant can be found from the
ultraviolet limit of the gap equations at large k. In such a limit, the gap
equation (3.11) reduces to

m = m
U

v2
F

Λ∫
kdk

2π
1√
2k
, (3.13)

which results in the following coupling constant for m 6= 0:

Uc = 2π
√

2v2
F

Λ ≈ 8.89v
2
F

Λ . (3.14)

Finally, let us proceed to numerical solution of the gap equations. It is con-
venient to measure U in terms of v2

F /Λ. The gap equations (3.10)-(3.12)
form a set of coupled nonlinear equations. We solve them numerically by
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Figure 3.2. Solutions M = m, m2, µv for the system of gap equations (3.10)-
(3.12) as a function of coupling constant U . The critical value Uc of coupling
constant, estimated in Eq.(3.14), is marked by dashed vertical line.

using standard iterative methods (see, for example, Ref.[116]). Guessing
initial points in a wide range for both masses and valley chemical poten-
tial, we were able to find solutions just above the critical constant (3.14).
The corresponding results are shown in Fig.3.2. Near U = Uc gaps m, m2
are small and valley chemical potential µv is still several orders of magni-
tude smaller. All these dynamical parameters grow quickly with U . We
determined also the corresponding critical exponents by using numerically
obtained solutions near Uc. We found that the dynamical parameters scale
as m ∼ (U − Uc), m2 ∼ (U − Uc)1.5, and µv ∼ (U − Uc)3.3.

3.4 Intervalley gap

Since the denominator in the gap equations (3.10)-(3.12) contains the dif-
ference of energy dispersions of two bands, this difference is approximately
like that in graphene or two times less. This is the mathematical reason
for the existence of a nonzero critical coupling constant for the gap gener-
ation like in graphene. However, there is the middle completely flat band
in the dice model. This suggests that it might be favorable to consider
an intervalley gap which couples the electron and holes from different val-
leys. Additional reason to study such a gap is that similar valley-polarized
states are well-known in graphene [113–115]. As we will see below, the
most crucial property of the intervalley gap is that the difference of the en-
ergy dispersion of the flat bands in the two valleys does not increase with
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k at large k. The most general two-valley Hamiltonian which describes
the intervalley pairing is given by

H2v =
(
H+

0 P
P † H−0

)
, (3.15)

where we used the short-hand notation H±0 = H0(k,±) for the free Hamil-
tonians in the K and K ′ valleys defined by Eq.(3.2), and matrix P de-
scribes the invervalley gap and, in general, is arbitrary. Since

TH−0 T
−1 = H+

0 , T =

 0 0 1
0 1 0
1 0 0

 , (3.16)

it is convenient to exchange the A and B components of wave functions in
the K ′ valley multiplying them by T . Then the intervalley Hamiltonian
(3.15) takes the form

Hiv =
(
H+

0 F
F † −H+

0

)
, (3.17)

where its block diagonal elements differ only by sign and F = PT−1.
Hamiltonian (3.17) acts on six-component wave functions

ψT =
(
ψKA , ψ

K
C , ψ

K
B , ψ

K′
B , ψK

′
C , ψK

′
A

)
.

In order to determine the gap equation for the intervalley gap, we need to
calculate Green‘s function

G(ω,k) = 1
ω −Hiv

=
(
ω −H+

0 F
F † ω +H+

0

)−1

, (3.18)

where F should be determined self-consistently from the Schwinger-Dyson
equation which we derive below.

3.4.1 Ansatz and gap equation

Let us to consider the following ansatz for the intervalley gap with diagonal
matrix F whose elements, however, are different:

F = diag (∆,∆2,∆) (3.19)
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and, without loss of generality, we assume that ∆ and ∆2 are real. This
specific ansatz, whose first and third diagonal elements are the same, is
consistent with the intervalley particle-hole symmetry (compare it with
the particle-hole symmetry (3.8) for the intravalley electron and hole pair-
ing) because the anticommutator of the operator Civ = AKV with Hiv is
zero

{Civ, Hiv} = 0, V =
(
I 0
0 −I

)
. (3.20)

Here A is defined in Eq.(3.8), K is the complex conjugation, and V acts
on the intervalley indices. The particular form of matrix V is motivated
by the order of sublattice wave functions in 6-component spinor and is
in agreement with Eq.(3.17). Note that since the intervalley particle-hole
symmetry is preserved, it is no need to introduce the valley dependent
chemical potential ξµv like we did in the previous section for the case
of intravalley pairing, where m2 breaks the intravalley particle-hole sym-
metry. Green‘s function (3.18) for the intervalley gap function (3.19) is
derived in Appendix 3.7.

Using this Green’s function, we readily find that the Schwinger–Dyson
equation leads to the following gap equation:

F = i
2U
v2
F

∫
dωd2k

(2π)3
B

det[ω −Hiv]
, (3.21)

where B is the off-diagonal block of Green’s function defined in Eq.(3.61).
The determinant in the denominator equals

det[ω −Hiv] = (ω2 −∆2)(ω2 − a2)(ω2 − b2), (3.22)

where

a2, b2 = 1
2

(
4k2 + ∆2 + ∆2

2 ± |∆−∆2|
√

8k2 + (∆ + ∆2)2
)
. (3.23)

The corresponding spectrum is shown in Fig.3.3 for several values of ∆ and
∆2. We will find below that ∆2 � ∆ for solutions of the gap equations,
therefore, panel (c) describes the most relevant case. Equation (3.21) after
the Wick rotation ω → iω gives the equations for gap parameters which
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Figure 3.3. Energy dispersion for ∆2 = ∆ (panel (a)), ∆2 = 0.35∆ (panel (b)),
and ∆2 = 0.02∆ (panel (c)). Here ω and k are measured in units of ∆.

can be written as follows:

∆ = 2U
v2
F

∫
dωd2k

(2π)3

[
A

ω2 + a2 + B

ω2 + b2
+ C

ω2 + ∆2

]
, (3.24)

∆2 = 2U
v2
F

∫
dωd2k

(2π)3

[
∆2(a2 −∆2)− 2∆k2

(a2 − b2) (a2 + ω2) + ∆2(∆2 − b2) + 2∆k2

(a2 − b2) (b2 + ω2)

]
,

(3.25)

where a2 and b2 are defined in Eq.(3.23) and coefficients A,B,C are

A = a4∆− a2(∆3 + ∆∆2
2 + 2∆k2 + ∆2k

2) + ∆(∆∆2 + k2)(∆∆2 + 2k2)
(a2 − b2) (a2 −∆2) ,

B = A(a↔ b), C = 2∆k2 (k2 −∆2 + ∆∆2
)

(a2 −∆2) (b2 −∆2) . (3.26)

The structure of the gap equations (3.24), (3.25) implies that we can
assume without loss of generality that ∆ ≥ 0 and leave the sign of ∆2
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undefined. Then integrating over frequency and angle, we obtain (a, b > 0)

∆ = 2U
v2
F

∫ Λ

0

kdk

2π
1

a+ b

[
k2(a2 + a∆2 − k2)
a(a− b)(a+ ∆) + (a↔ b) + ∆

2

+ ∆2(∆∆2 + 3k2)
2ab

]
, (3.27)

∆2 = 2U
v2
F

∫ Λ

0

kdk

2π
1

a+ b

[
∆(∆∆2 + 2k2)

2ab + ∆2
2

]
. (3.28)

The above equations form a coupled system of equations for ∆ and ∆2.
Note the symmetry under the exchange a↔ b. We will solve this system
numerically in Subsec.3.4.3. As we argued above, the flat band should
play the principal role for intervalley gap generation. Therefore, before
finding numerical solutions to the gap equations (3.27) and (3.28), it is
instructive to study in the next subsection the intervalley gap generation
by retaining only the flat bands in the two valleys.

3.4.2 Flat band approximation

To study the intervalley gap generation in the flat band approximation
(FBA), we should find explicitly the corresponding flat band electron
states. First of all, by using Eq.(3.2), we obtain that the normalized
states of zero energy of the free Hamiltonian H+

0 are given by

ψT0 (k) = 1√
2 2π

(
1, 0, −k+

k−

)
, (3.29)

where k± = kx± iky. In order to proceed and consider the intervalley gap
generation, we should determine the eigenstates of Hamiltonian (3.17) in
the subspace composed of flat band states in two valleys, i.e.,

HivΨ = EΨ, (3.30)

where Ψ consists of the flat band states (3.29) in two valleys with two
unknown constants C1 ≡ N and C2 ≡ NC

ΨT = N

(
1, 0, −k+

k−
, C, 0, −Ck+

k−

)
. (3.31)

The eigenstate equation (3.30) for F = diag (∆,∆2,∆) gives two nontrivial
relations

E −∆C = 0, ∆− EC = 0. (3.32)
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Note that the gap ∆2 is not present in the above equations. Clearly, the
system of equations (3.32) means that there are two solutions

C = 1, E = −∆, C = −1, E = ∆. (3.33)

Obviously, the two former degenerate flat band solutions in two valleys
are now split in energy by 2∆.

Green‘s function connected with the flat band states has the form

GFB(ω,k) =
Ψ−∆Ψ†−∆
ω + ∆ + Ψ∆Ψ†∆

ω −∆ , (3.34)

where

ΨT
−∆ = 1

4π

(
1, 0, −k+

k−
, −1, 0, k+

k−

)
, ΨT

∆ = 1
4π

(
1, 0, −k+

k−
, 1, 0, −k+

k−

)
.

(3.35)

In order to study the gap generation, we should consider the off-diagonal
elements of the matrix GFB. Let us consider the upper off-diagonal block
(the consideration of the lower off-diagonal block gives the same results).
Since the element 25 of the matrix GFB is zero, we conclude that ∆2 = 0
in the flat band approximation. The elements 14 and 36 of the matrix
GFB coincide. Therefore, the ansatz with F = diag (∆,∆2,∆), whose
11 and 33 elements are the same, is indeed consistent. Thus, we have
the following gap equation in the flat band approximation defined by the
element 14 or 36 of the matrix GFB:

∆ = −i2U
v2
F

∫
dωd2k

(2π)3
1

4π

(
− 1
ω −∆ + 1

ω + ∆

)
= iU

πv2
F

∫
dωd2k

(2π)3
∆

ω2 −∆2 + iδ
. (3.36)

Integrating over ω and introducing a cut-off Λ over momentum, we easily
find the following gap in the flat band approximation:

∆ = UΛ2

8π2v2
F

. (3.37)

Clearly, the critical coupling constant is zero like in the case of the mag-
netic catalysis of the gap generation [117] in a model with local four-
fermion interaction in 2 + 1 dimensions. Note that there is no trivial so-
lution again as in the magnetic catalysis case. The calculated gap (3.37)
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Figure 3.4. Numerical solutions of the gap equations (3.27) and (3.28).

is quadratically divergent and is much larger than the gap in the lowest
Landau level (LLL) approximation. The reason is that Green‘s function
in the LLL approximation in fermion systems with relativistic-like energy
dispersion and dynamically generated mass m is quite similar to the flat
band Green‘s function (3.34)

SLLL(q) = e
− q2
|eB|

ωγ0 −m
ω2 −m2 (1− iγ1γ2) (3.38)

except that it contains an exponentially decreasing factor in momenta q
(here γ0, γ1, and γ2 are the Dirac γ-matrices). Therefore, the correspond-
ing solution to the gap equation is proportional to the magnetic field
strength |eB| rather than the cut-off squared Λ2 (see Eq.(64) in [117]).
This is the reason why the intravalley gap is so large.

In addition, we should note that the flat band approximation in the
model under consideration can be obtained as a large momentum limit of
gap equations. Assuming that ∆, ∆2 � Λ, we can approximate coeffi-
cients a, b in (3.23) as follows:

a2, b2 ≈ 2k2. (3.39)

Substituting this back in Eqs.(3.27) and (3.28), we find the following so-
lutions for gap parameters:

∆ = U

v2
F

Λ2

8π , ∆2 =
√

2UΛ∆
8πv2

F −
√

2UΛ
=

√
2

1−
√

2∆/Λ
∆2

Λ . (3.40)
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These expressions extend the results obtained in the two-band FBA dis-
cussed above and incorporate corrections from other energy bands for
∆2. Before proceeding to the numerical analysis, it is instructive to es-
timate the values of generated gaps. Using cut-off Λ = vFπ/(a

√
2), we

find ∆ = πU/(16a2). For local Coulomb interaction, we can use the corre-
sponding estimate in graphene VC = e2√3/(aπ) ≈ 3.3 eV [118]. This gives
the coupling constant U = VC/ΩBZ (here ΩBZ = 2/(

√
3a2) is the area of

the Brillouin zone), we find ∆ = 0.56 eV. Interestingly, the obtained result
qualitatively agrees with the study of gap generation in twisted graphene
bilayers near a magic angle [107], where the flat band is present. Indeed,
due to the very large length of the moire lattice unit aTBG ≈ 12nm, the
corresponding gaps are suppressed by factor a2/a2

TBG leading to gaps of
order few meV in twisted bilayer graphene. Finally, we note that it is
crucial that there are two flat bands in different valleys and our analysis
shows that the presence of a single flat band is not sufficient for the gap
generation for an arbitrary small coupling constant.

3.4.3 Numerical analysis of solutions and their free energy

In the numerical analysis, it is convenient to measure U in units of v2
F /Λ.

Like in Sec.3.3.2 we use the iteration method to solve the gap equations.
The corresponding numerical solutions are presented in Fig.3.4 and are
compared with the flat band approximation result.

One should note that gap ∆2 is one order of magnitude smaller that
gap ∆ for small values of U such that UΛ/v2

F < 2. For example, at
UΛ/v2

F = 1.4 we find ∆ ≈ 0.06Λ, ∆2 ≈ 0.005Λ. However, ∆2 grows
much faster with coupling constant U , approximately as U2, which quan-
titatively agrees with Eq.(3.40) at small coupling constant. UΛ/v2

F > 4,
the FBA solution starts to deviate from the exact solution. Of course,
we should note that the low-energy model is not applicable when gaps
become of order Λ.

Among all solutions of the Schwinger Dyson equation the stable one
is selected as the solution with the lowest free-energy density. The free
energy density of a certain solution is determined by the value of the
Baym–Kadanoff effective action (3.3) for the corresponding extremum of
the Schwinger-Dyson equation δΓ(G)/δG = 0 which takes the form [112]

Γ = −i Tr
[
LnG−1S + 1

2
(
S−1G− 1

)]
. (3.41)
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Figure 3.5. Numerical results for the free energy density Ω as a function of
coupling constant U . The free energy density Ωintra for the intravalley gap
solution is given by Eq.(3.65) and Ωiv for the intervalley gap solution is defined
in Eq.(3.67).

The free energy density is given by Ω = −Γ/TV where TV is a space-
time volume. Integrating by parts the logarithm term and omitting the
irrelevant surface term (which does not depend on gaps), we find

Ω = i

∞∫
−∞

dω

2π
2
v2
F

∫
d2k

(2π)2 tr
{
− ω

[
∂G−1(ω)
∂ω

G(ω) + S−1(ω)∂S(ω)
∂ω

]

+ 1
2
[
S−1(ω)G(ω)− 1

]}
. (3.42)

The technical details of calculation of the energy density of the intravalley
and intervalley gap solutions are presented in Appendix 3.8. Here we
present the results of numerical evaluation by using Eqs.(3.65) and (3.67)
and plot the free energies for both types of gaps in Fig.3.5. Clearly, the
intervalley gap solution is always preferable including the region above the
critical coupling constant (3.14).

3.5 Summary
We studied the gap generation in the dice model at the neutrality point.
We found that there are two main intravalley and intervalley types of the
electron-hole pairing which pairs the electron and hole states in the same
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and different valleys, respectively. The neutrality of the system provides
an important reduction of the number of order parameters. Indeed, it
turned out that the particle-hole symmetry restricts the number of pos-
sible order parameters to three in the case of the intravalley gap and the
intervalley particle-hole symmetry gives two independent order parameters
for the intervalley pairing. Thus, there are three and two gap equations
in the case of the intra- and intervalley gap generation, respectively.

To get an insight into the gap generation in the dice model and reveal
the role of the flat band, we employed a local four-fermion interaction in
our study. The main technical advantage of local interaction is that the
gap equations are algebraic and admit an efficient numerical and partially
analytic analysis. Our main finding is that the intervalley gap is generated
for an arbitrary small coupling constant unlike the intravalley gap which
requires a critical coupling constant. These qualitatively different results
are due to the crucial role which plays the flat band in the intra- and
intervalley gap generation.

Indeed, the intravalley gap pairs the electron and hole states in the
same valley, therefore, it cannot pair states from the flat band only be-
cause such states cannot be the electron and hole ones simultaneously. In
contrast, the intervalley gap relates the electron and hole states in flat
bands from different valleys. The dispersionless band has a singular den-
sity of states that strongly enhances the intervalley gap generation leading
to an extremely large gap proportional to the coupling constant times the
area of the Brillouin zone. This result agrees with the heuristic argument
that the completely flat band is the most favorable for the gap generation
[119–122]. The intervalley gap generation in the dice model is also qualita-
tively similar to that in the case of magnetic catalysis in (2+1) dimensions
in fermion systems with relativistic-like energy spectrum [117]. Indeed,
magnetic field produces completely flat Landau levels and a fermion gap
is generated for an arbitrary small coupling constant and is proportional
to the degeneracy of the lowest Landau level defined by the inverse of the
magnetic length squared l−2. Since the magnetic length is typically much
larger than the lattice constant (e.g., in graphene, l is 26 nm at B = 1T
and the lattice constant a = 0.246nm), the intravalley gap is strongly
enhanced in the dice model by factor l2/a2 ≈ 104 compared to the gap
generated due to the magnetic catalysis. Thus, we conclude that the flat
band catalysis is very efficient indeed. The underlying physical reason
is very simple. Due to the dispersionless flat band, the integration over
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momentum leads to a gap proportional to the area of the Brillouin zone,
thus, very strongly enhancing the gap. This means that even if the mid-
dle band is not completely flat, still the intervalley gap generation should
be very efficient and robust. Finally, we note that our results emphasize
and shed additional light on the important role of flat band in the gap
generation for magic angle twisted bilayer graphene.

3.6 Appendix: Intravalley Green‘s function and
gap equations

Green‘s function of quasiparticles in the dice model with intravalley gaps
at given valley ξ in momentum space equals

Gξ(ω,k) = 1
ω −Hξ + ξµv

= 1
det[ω −Hξ + ξµv]

 G11 D E
B G22 H
C F G33

 ,
(3.43)

det[ω −Hξ + ξµv] = (ω + ξµv − ξm2)((ω + ξµv)2 −m2)− 2k̃2(ω + ξµv),

where the diagonal matrix elements are

G11 = (ω + ξµv +m)(ω + ξµv − ξm2)− k2, (3.44)
G22 = (ω + ξµv)2 −m2, (3.45)
G33 = (ω + ξµv −m)(ω + ξµv − ξm2)− k2, (3.46)

and the off-diagonal elements are

D = (ω + ξµv +m)kξ−, E = (kξ−)2, B = (ω + ξµv +m)kξ+,
H = (ω + ξµv −m)kξ−, C = (kξ+)2, F = (ω + ξµv −m)kξ+, (3.47)

and kξ− = (ξkx − iky)/
√

2 and kξ+ = (ξkx + iky)/
√

2.
Clearly, all off-diagonal terms in Gξ(ω,k) depend linearly or quadrati-

cally on kξ+ and kξ−, therefore, all such terms vanish after integration over
momentum in Eq.(3.9). Hence the Schwinger–Dyson equation gives three
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equations for µv, m, and m2 for the diagonal terms. They are

ξµv = −i2U
v2
F

∫
dωd2k

(2π)3
(ω + ξµv)(ω + ξµv − ξm2)− k2

det[ω + i0sgn(ω)−Hξ + ξµv]
, (3.48)

m = i
2U
v2
F

∫
dωd2k

(2π)3
m(ω + ξµv − ξm2)

det[ω + i0sgn(ω)−Hξ + ξµv]
, (3.49)

ξm2 = i
2U
v2
F

∫
dωd2k

(2π)3
(ω + ξµv)ξm2 + k2 −m2

det[ω + i0sgn(ω)−Hξ + ξµv]
. (3.50)

Note that Eq.(3.49) for gap m is explicitly homogeneous unlike Eqs.(3.48)
and (3.50) for µv and m2. As we stated above, we seek solutions with
m 6= 0, otherwise, the flat band with ε = 0 is realized and it is not clear
how to define a half-filled state.

Since ξ equals ± in two valleys, in fact, the system of equations (3.48)-
(3.50) consists of six equations for three unknowns µv, m, and m2. It
is convenient to change the variable ω → ξω on the right-hand side of
these equations to see that this system of equations is consistent. In order
to calculate the integral over ω in the above gap equations and make
it explicitly convergent we represent the integrands as I(ω) = [I(ω) +
I(−ω)]/2 utilizing the symmetric integration in ω. The denominators in
the integrands is convenient to write in terms of roots of the cubic equation

det[ω−Hξ + ξµv] = (ω+ ξµv −m2)((ω+ ξµv)2−m2)− 2k2(ω+ ξµv) = 0
(3.51)

which are given by

rn = ωn + µv = m2
3 + 2m

√
−p3 cos

(
1
3 arccos

(
3q
2p

√
−3
p

)
− 2πn

3

)
,

(3.52)

with n = 0, 1, 2 and where

p = −
(

1 + 2k2

m2 + m2
2

3m2

)
,

q = m2
m

(
1−

1 + 2k2

m2

3 − 2m2
2

27m2

)
= m2

m

(
2
3

(
1− k2

m2

)
− 2m2

2
27m2

)
. (3.53)

Thus, the determinant can be conveniently rewritten as

det[ω −Hξ + ξµv] = (ω + ξµv − r0)(ω + ξµv − r1)(ω + ξµv − r2). (3.54)
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Then we obtain

µv = − iU
v2
F

∫
dωd2k

(2π)3

(
(ω + µv)(ω + µv −m2)− k2

det[ω + iδ −Hξ + ξµv]
−
[
µv → −µv,
m2 → −m2

])
,

(3.55)

m = iU

v2
F

∫
dωd2k

(2π)3

(
m(ω + µv −m2)

det[ω + iδ −Hξ + ξµv]
+
[
µv → −µv,
m2 → −m2

])
, (3.56)

m2 = iU

v2
F

∫
dωd2k

(2π)3

(
(ω + µv)m2 + k2 −m2

det[ω + iδ −Hξ + ξµv]
−
[
µv → −µv,
m2 → −m2

])
,

(3.57)

where δ = 0sgn(ω). This form of equations is convenient for further
integration over frequency leading to Eqs.(3.10) - (3.12) in the main text.

3.7 Appendix: Intervalley Green‘s function

For Green‘s function of the intervalley gap ansatz (3.18), we find the
following explicit expression:

Gij = 1
det[ω −Hiv]

(
A B
C D

)
, (3.58)

and the determinant in denominator equals to

det[ω −Hiv] = (ω2 −∆2)
[
ω4 − ω2(4k4 + ∆2 + ∆2

2) + (2k2 + ∆∆2)2
]
.

(3.59)

The elements of the matrix A are

A11 = ω
((

∆2 − ω2
) (

∆2
2 − ω2

)
+ 2k4 + k̃2

(
∆2 + 2∆2∆− 3ω2

))
,

A12 = k−
(
∆2 − ω2

) (
∆∆2 + 2k2 − ω2

)
,

A13 = k2
−ω

(
∆2 − 2∆∆2 − 2k2 + ω2

)
,
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A21 = k+
(
∆2 − ω2

) (
∆∆2 + 2k2 − ω2

)
,

A22 = ω
(
∆2 − ω2

) (
∆2 + 2k2 − ω2

)
,

A23 = k−
(
∆2 − ω2

) (
∆∆2 + 2k2 − ω2

)
,

A31 = k2
+ω

(
∆2 − 2∆∆2 − 2k2 + ω2

)
,

A32 = k+
(
∆2 − ω2

) (
∆∆2 + 2k2 − ω2

)
,

A33 = ω
((

∆2 − ω2
) (

∆2
2 − ω2

)
+ 2k4 + k2

(
∆2 + 2∆2∆− 3ω2

))
.

(3.60)

It turned out that B = C and the elements of B are

B11 = ∆
(
∆2 − ω2

) (
∆2

2 − ω2
)

+ 2∆k4 + k2
(
3∆2∆2 − (2∆ + ∆2)ω2

)
,

B12 = (∆−∆2) k−ω
(
∆2 − ω2

)
,

B13 = −k2
−

(
∆2∆2 − 2∆ω2 + ∆2ω

2 + 2∆k2
)
,

B21 = (∆−∆2) (−k+)ω
(
∆2 − ω2

)
,

B22 =
(
∆2 − ω2

) (
∆2
(
∆2 − ω2

)
+ 2∆k2

)
,

B23 = (∆−∆2) (−k−)ω
(
∆2 − ω2

)
,

B31 = −k2
+

(
∆2∆2 − 2∆ω2 + ∆2ω

2 + 2∆k2
)
,

B32 = (∆−∆2) k+ω
(
∆2 − ω2

)
,

B33 = ∆
(
∆2 − ω2

) (
∆2

2 − ω2
)

+ 2∆k4 + k2
(
3∆2∆2 − (2∆ + ∆2)ω2

)
.

(3.61)

Finally, the elements of D are

D11 = ω
((

∆2 − ω2
) (

∆2
2 − ω2

)
+ 2k4 + k2

(
∆2 + 2∆2∆− 3ω2

))
,

D22 = ω
(
∆2 − ω2

) (
∆2 + 2k2 − ω2

)
,

D21 = −k+(∆2 − ω2)(2k2 − ω2 + ∆∆2),
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D31 = k2
+ω(−2k2 + ∆2 + ω2 − 2∆∆2),

D12 = −k−(∆2 − ω2)(2k2 − ω2 + ∆∆2),
D32 = −k+(∆2 − ω2)(2k2 − ω2 + ∆∆2),

D13 = k2
−ω(−2k2 + ∆2 + ω2 − 2∆∆2),

D23 = −k−(∆2 − ω2)(2k2 − ω2 + ∆∆2),

D33 = ω
((

∆2 − ω2
) (

∆2
2 − ω2

)
+ 2k4 + k2

(
∆2 + 2∆2∆− 3ω2

))
.

(3.62)

In the main text we use the diagonal elements of B to write the gap
equations in the explicit form. Note, that off-diagonal components vanish
after integration over polar angle φ in momentum space.

3.8 Appendix: Evaluation of free energy
In this Appendix we present the detailed calculation of the free energy
density for intravalley and intervalley gap states in the dice model. The
final results are given by Eqs.(3.65) and (3.67).

Using expression (3.42) for the Baym–Kadanoff free energy, we denote
the integrand as

Ω̃(k, ω) = tr
{
S−1(ω)G(ω)− 1

2 − ω
[
∂G−1(ω)
∂ω

G(ω) + S−1(ω)∂S(ω)
∂ω

]}
.

(3.63)

First we evaluate the trace and perform summation over valleys, decom-
posing the result into fractions. Next it is convenient to perform the Wick
rotation ω → iω. For the intravalley gap state, we obtain

Ω̃intra(k, iω) = − 8k2

ω2 + 2k2 −
(

(µv − r0)×

m2(3m2 − 2r0 − µv)− 2k2 (4r0 + µv) + r0(3r0µv −m2(r0 + 2µv))
(r1 − r0) (r0 − r2) ((µv − r0) 2 + ω2) + c.p.

)
,

(3.64)

where (c.p.) denotes cyclic permutation of ri. The integration over fre-
quency ω is easily performed and we come at the free energy density for
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the intravalley gap state given by

Ωintra = 1
v2
F

Λ∫
0

k dk

π

[
2
√

2k +

(−2k2 (4r0 + µv) +m2 (3m2 − 2r0 − µv) + r0 (3r0µv −m2 (r0 + 2µv))
2 (r1 − r0) (r0 − r2)

× sign [µv − r0] + c.p.

)]
, (3.65)

This expression is invariant under the change of signm→ −m or (m2, µv)→
(−m2,−µv). Using the numerically found solutions from Sec.3.3 (see
Fig.3.2), we evaluate the integral over k. The corresponding results for
the free energy are shown in Fig.3.5.

In the case of the intervalley gap state, we obtain for the integrand in
the Baym–Kadanoff free energy (3.42) after the Wick rotation ω → iω

Ω̃iv(k, ω) = ∆2

∆2 + ω2 −
8k2

2k2 + ω2

+ ∆2 (2∆2
2 + ω2)+ ∆2

2ω
2 + 12∆∆2k

2 + 8k2 (2k2 + ω2)
(ω2 + a2)(ω2 + b2) .

(3.66)

Expanding the middle fraction and performing integration over ω, we find
the free energy density for the intervalley gap state

Ωiv = − 2
v2
F

Λ∫
0

kdk

2π

[ |∆|
2 − 2

√
2k+

(
a2∆2

2 + ∆2 (a2 − 2∆2
2
)

+ 8k2 (a2 − 2k2)− 12∆∆2k
2

2a (a2 − b2) + (a↔ b)
)]

.

(3.67)

The free energy density Ω for the intervalley gap from Sec.3.4.3 is shown
in Fig.3.5 by red dashed line.



Chapter 4

Optical conductivity of
semi-Dirac and
pseudospin-1 models:
Zitterbewegung approach

4.1 Introduction
The optical studies of electronic systems is one of the main sources of in-
formation about charge dynamics in different condensed matter systems:
high-Tc superconducting cuprates [123, 124], graphene [125–130], topo-
logical insulators [131] together with Dirac and Weyl materials [132–134].
Recently it was shown [15] that in crystals with special space symmetry
groups more complicated quasiparticle spectra could be realized with no
analogues in high-energy physics where the Poincare symmetry provides
strong restrictions. Some of such systems possess strictly flat (dispersion-
less) bands [92, 100, 101] with high degeneracy potentially leading to a
large enhancement of some physical quantities.

In the present paper we develop the method to calculate frequency-
dependent optical and Hall conductivities in low-energy models containing
also new types of quasiparticles. The presented method is based on the
solution of the Heisenberg equations for the time-dependent quasiparticle
velocity operators, which also describe the phenomena of zitterbewegung
(trembling motion) [47, 135]. The formulation of this method is very
similar to the proper time approach of Schwinger [136] and the obtained
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expressions extend previously derived formulas for longitudinal conductiv-
ity in Refs.[137, 138]. We rewrite the Kubo formula through quasiparticle
velocity correlators, and use the solutions of the Heisenberg equations. We
demonstrate the applicability of the described method to the semi-Dirac
model and gapped pseudospin-1 models of the dice and Lieb lattices. As a
result, we obtain closed-form analytic expressions, which in turn are used
to investigate the dependence of conductivities on frequency, gap size and
temperature.

The phenomenon of Dirac points merging in two-dimensional materials
has received much attention in the literature [139–141]. Such system was
realized experimentally in optical lattices [142] and in microwave cavities
[143]. The analytical and numerical calculations of optical conductiv-
ity for semi-Dirac systems were discussed in several recent papers [144–
148]. Quite recently the magneto-conductivity of the semi-Dirac model
was studied [149].

The dice model is a tight-binding model of two-dimensional fermions
living on the T3 (or dice) lattice where atoms are situated both at the
vertices of hexagonal lattice and the hexagons centers [11, 80]. Since the
dice model has three sites per unit cell, the electron states in this model
are described by three-component fermions and the energy spectrum of
the model is comprised of three bands. The two of them form Dirac cones
and the third band is completely flat and has zero energy [12, 13]. The
T3 lattice has been experimentally realized in Josephson arrays [16, 17],
metallic wire networks [18] and its optical realization by laser beams was
proposed in Refs.[12, 19]. The optical and Hall conductivities for the
α − T3 model were studied in Refs. [49, 150–152]. We show that our
method allows one to obtain fully analytic expressions for the case of Sz
model even without magnetic field, thus extending the previous results.

Another example of pseudospin-1 system considered in this paper is
the gapped low-energy model of the Lieb lattice [21]. Due to the presence
of flat band in spectrum [21, 153, 154], the Lieb lattice served as a platform
for theoretical studies of many strongly-correlated phenomena - ferromag-
netism [20, 155] and superconductivity [156, 157]. The Lieb lattice was
realized in many experimental setups: arrays of optical waveguides [8,
158] via the surface state electrons of Cu(111) confined by an array of
carbon monoxide molecules [7], in vacancy lattice in chlorine monolayer
on Cu(100) surface [159] and in covalent organic frameworks [9, 10].

The chapter is organized as follows: in Sec.4.2 we present the most
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Figure 4.1. Spectrum given by Hamiltonian Hsemi in Eq.(4.9). The values of
gap parameter are (a) ∆ = 1, (b) ∆ = 0 and (c) ∆ = −1. We choose units
v = 1, a = 1. The panel (a) represents a fully gapped regime, while the panel (c)
corresponds to the regime with two Dirac cones separated by 2

√
∆/a along the

x-direction.

general formulas for the optical and Hall conductivity in terms of quasi-
particle velocity correlators. In Sec.4.3 we apply the method for a simple,
but physically reach semi-Dirac model with merging Diral cones. Next,
we apply the described approach to calculate the optical conductivity of
the gapped dice model. For this purpose in Sec.4.4.1 we solve the Heisen-
berg equations for the dice model with gap and discuss properties of the
quasiparticle dynamics. Combining the results with general formulas for
conductivity in Sec.4.4.2, we find the optical and Hall conductivity and
analyze their dependence on external frequency. Finally, in Sec.4.5 we
perform similar calculation for the Lieb lattice model, whose underlying
matrix algebra is much more complicated. In the Appendices we present
the details of Kubo formula transformations and conductivity integrals
evaluation.

4.2 Expression for conductivity through particle
velocity correlators

The method described below is an extension of the approach used in
Ref.[135] to an arbitrary pseudospin model with different dispersions. We
start the derivation from the Kubo formula for frequency-dependent elec-
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trical conductivity tensor written in the following form [138]:

σµν(ω) = i

(ω + iε)V

×
[
〈τµν〉 −

i

~

∫ ∞
0

dtei(ω+iε)t Tr (ρ̂ [Jµ(t), Jν(0)])
]
, (4.1)

where V is the volume (area) of the system, ρ̂ = exp (−βH) /Z is the
density matrix with the Hamiltonian H in the grand canonical ensem-
ble, Z = Tr exp (−βH) is the partition function, β = 1/kBT , and Jµ
are the current operators. The diamagnetic or stress tensor 〈τµν〉 in
the Kubo formula (4.1) is a thermal average of the operator defined as
τµν = ∂2H/∂(Aµ/c)∂(Aν/c). In the case of a linear dispersion law the
term with 〈τµν〉 in Eq.(4.1) is absent. In what follows we set ~ = 1 and
restore it in the final expressions.

The important symmetry properties of the conductivity are

Reσµν(ω) = Reσµν(−ω), (4.2)
Im σµν(ω) = − Im σµν(−ω). (4.3)

Using the representation of conductivity tensor through the correlation
functions of currents (see Ref.[137] and Appendix 4.7) and expressing them
in terms of time-dependent particle velocity correlators, we arrive at the
following general expressions:

Reσ{µ,ν}(ω) = e2

2ω

∫ ∞
−∞

dEρ(E) [f(E)− f(E + ω)]

×
∫ ∞
−∞

dteiωt
〈
v{µ(t)vν}(0)

〉
E
, (4.4)

where the velocity operator vµ(t) = eiHtvµ(0)e−iHt. Here we defined the
microcanonical average of an operator Â at given energy E as

〈Â〉E = Tr[δ(E − Ĥ)Â]
Tr[δ(E − Ĥ)]

(4.5)

where Tr[δ(E − Ĥ)] = ρ(E)V and ρ(E) is the density of states (DOS). It
is easy to check that the last expression is real using〈

v{µ(−t)vν}(0)
〉∗
E

=
〈
v{µ(t)vν}(0)

〉
E
. (4.6)
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The expression (4.4) for T = 0 is in accordance with Ref.[160] for diagonal
conductivity. The numerator in Eq.(4.5) can be represented using the
Fourier transformation:

Tr[δ(E − Ĥ)Â] = V

2π

∫ ∞
−∞

dseiEs Tr [e−iĤsÂ]

= V

2π

∫ ∞
−∞

dseiEs
∫

d2p

(2π)2 tr [e−iH(p)sÂ(p)]. (4.7)

Similarly, for the imaginary antisymmetric part of conductivity we have

Im σ[µ,ν](ω) = e2

2ω Im
∫ ∞
−∞

dEρ(E) [f(E)− f(E + ~ω)]

×
∫ ∞
−∞

dteiωt
〈
v[µ(t)vν](0)

〉
E
. (4.8)

We note that the integral over t is purely imaginary due to the property〈
v[µ(−t)vν](0)

〉∗
E

= −
〈
v[µ(t)vν](0)

〉
E
.

To calculate Im σ{µ,ν}(ω) and Reσ[µ,ν](ω) we use the Kramers-Krönig
relation (4.60). The equations (4.4) and (4.8) together with Eqs.(4.5) and
(4.7) allow one to obtain the final result after two Fourier transformations.

4.3 Optical conductivity of the semi-Dirac model

In this section we analyze the conductivity of the semi-Dirac model, which
was extensively used to describe the low-energy physics of phosphorene
[144, 147, 148, 161, 162]. The main feature of such model is that it mixes
linear and quadratic terms in the Hamiltonian

Hsemi =
(
∆ + ap2

x

)
σx + vpyσy. (4.9)

The dispersion defined by this Hamiltonian consists of two bands:

ε± = ±
√

(ap2
x + ∆) 2 + v2p2

y. (4.10)

The spectrum described by Eq.(4.10) is presented in Fig.4.1. By tuning
the gap parameters, one can achieve a completely different types of spec-
trum - fully gapped, one band-touching point or two band-touching points
separated by 2

√
∆/a distance along px momentum.
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Writing the Heisenberg equations for this Hamiltonian, we find

v(t) = dx

dt
= −i[x(t), Hsemi(t)] = (2apx(t)σx(t), vσy(t)), (4.11)

dpi
dt

= −i[pi, Hsemi] = 0. (4.12)

From the first equation we find that velocity depends on momentum px(t),
which does not evolve as a result of the second equation: px(t) = px(0).
Also, velocity depends on the Pauli matrices, which evolve with time ac-
cording to another Heisenberg equation:

dσ(t)
dt

= −i[σ(t), Hsemi] = 2[p̃(0)× σ(t)]. (4.13)

Here we used notation p̃(0) = [∆ + ap2
x, vpy, 0] and the fact that the com-

mutator of the Pauli matrices is [σi(t), σj(t)] = 2iεijkσk(t). Cross means
the vector product of p̃ and σ. The initial condition for the Pauli matri-
ces is σ(0) = (σx, σy, σz), thus the operator σ(0) is in the Schrödinger
picture, i.e., it is time independent.

Equation (4.13) describes the time evolution of the pseudospin degree
of freedom in terms of Pauli matrices acting on states in Hilbert space.
Such an unusual temporal evolution of matrix operators first appeared
in the original paper by Schrödinger [48] on the zitterbewegung of the
electron described by the Dirac Hamiltonian. It is clear from Eq.(4.13)
that the pseudospin vector σ(t) precesses around the vector p. Below
we demonstrate that similar Heisenberg equations describe the dynamics
of pseudospin degree of freedom for another matrix types depending on
effective Hamiltonian of quasiparticles.

The Heisenberg equation above gives a system of differential equations
for matrices σ̇i(t) = Pijσj(t), Pij = 2εikj p̃k, whose solution is

σi(t) =
(
ePt
)
ij

(p̃)σj(0),
(
ePt
)
ij

(p̃) =
p̃2
y cos(2p̃t)+p̃2

x

p̃2
p̃xp̃y(1−cos(2p̃t))

p̃2
p̃y sin(2p̃t)

p̃
p̃xp̃y(1−cos(2p̃t))

p̃2
p̃2
x cos(2p̃t)+p̃2

y

p̃2 − p̃x sin(2p̃t)
p̃

− p̃y sin(2p̃t)
p̃

p̃x sin(2p̃t)
p̃ cos(2p̃t)

 . (4.14)

Here we denoted p̃ =
√
p̃2
x + p̃2

y. The time-dependent velocity is obtained
from these solutions by combining them with Eq.(4.11). The velocity vi(t)
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contains zitterbewegung terms which stem from the oscillatory terms (the
cosine and sine terms) in Eq.(4.14).

The zitterbewegung phenomenon was first regarded as a relativistic
effect related to the Dirac equation and describing “trembling” or oscilla-
tory motion of the center of a free wave packet [48, 163]. The appearance
of zitterbewegung phenomena in graphene and other two-dimensional con-
densed matter systems [47, 135, 164] indicates that the effect is not purely
relativistic, originating from inter-band transitions between states with
positive and negative energy. The direct experimental observation of the
zitterbewegung became recently possible in a Bose–Einstein condensate of
ultracold atoms [165].

We now proceed by calculating the traces of velocity products with ma-
trix exponential of the Hamiltonian as they appear in Eq.(4.7). Due to the
anisotropy in the electron dispersion, the conductivity is also anisotropic,
therefore, we present the results of its calculation in separate sections.

4.3.1 Optical conductivity in xx-direction

We start with the evaluation of real part of optical conductivity in the
x-direction. For this purpose we start with the calculation of trace which
has the form as in Eq.(4.7):

Tr [e−iHsemisvx(t)vx(0)] =
∫

d2p

(2π)2
8a2p2

x

ε2
+
×(

v2p2
y cos ((s− 2t)ε+) +

(
ap2

x + ∆
)

2 cos (sε+)
)
. (4.15)

Next we substitute this result into the expression for the real part of the
xx longitudinal conductivity (4.4), and calculate the Fourier transforms
over t and s. The result has the form of double integral:

Reσxx(ω) = e2

ω

∫ ∞
−∞

dE

2π [f(E)− f(E + ω)]
∫
d2p

2a2p2
x

ε2
+

×
[
δ (E + ε+)

(
v2p2

yδ (ω + 2ε−) + δ(ω)
(
ap2

x + ∆
)2
)

+ δ (E + ε−)
(
v2p2

yδ (ω + 2ε+) + δ(ω)
(
ap2

x + ∆
)2
)]

. (4.16)

The procedure of integration over momentum depends on the sign of
∆ parameter, and is described in details in Appendix 4.8. The main trick
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Figure 4.2. Real part of longitudinal interband ac conductivity in x- and y-
directions (top and bottom plots) as a function of frequency for the fixed values of
gap ∆ for the semi-Dirac model. The frequency is measured in units of ω0 = v2/a.
The normalization parameters are σ0 = e2√a

2π~v for the x-direction and σ0 = e2v
2π~
√
a

for the y-direction. The values of gap parameter are (a) ∆/ω0 = 1, (b) ∆/ω0 = 0
and (c) ∆/ω0 = −1.
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in calculation is to introduce modified polar coordinates, which take into
account the anisotropy of dispersion (4.10) in each case ∆ < 0, ∆ = 0 and
∆ > 0 with the proper regions of integration. As a result, we were able
to express all integrals in terms of complete elliptic integrals. The results
for the real part of interband ac and intraband dc conductivities are:

Reσinterxx (ω) = sgnω e2

2π~

√
2|ω|a
4v

[
f

(
−ω2

)
− f

(
ω

2

)]
×

×



2Θ(|∆| − |ω/2|)Ixx3 (2∆/|ω|)
+2Θ(|ω/2| − |∆|)Ixx1 (2∆/|ω|)

, ∆ < 0,

16π3/2

5
√

2Γ2( 1
4 ) , ∆ = 0,

2Θ(|ω/2| −∆)Ixx1 (2∆/|ω|), ∆ > 0.

(4.17)

The integrals Ixx1 , Ixx3 , and similar integrals occurring below, are defined
in Appendix 4.8, they are given in terms of complete elliptic integrals of
the first and second kind.

We plot the conductivity Reσinterxx (ω) as a function of ω at different
values of ∆ in upper plots of Fig.4.2. In all plots we set Ta = 0.1, and
absorb v and a parameters into normalization constant σ0. As is seen, the
behavior of the conductivities at small frequencies, ω < 2|∆|, is radically
different for ∆ > 0 and ∆ < 0: the case ∆ > 0 corresponds to insulating
phase while ∆ ≤ 0 corresponds to metallic phase.

The analytic expression (4.17) allows one to get asymptotes at small
and large ω, for example, in the most interesting case ∆ < 0 they are

Reσinterxx (ω) ' e2

2π~


√
|∆|a
v

πω
8T cosh2 µ

2T
, ω → 0,

√
ωa
v

4π3/2

5Γ2( 1
4 ) , ω →∞.

(4.18)

In the intraband part of conductivity with δ(ω) the result contains
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Figure 4.3. Real part of xx (a) and yy (b) intraband dc conductivities as
functions of the gap ∆ for different values of chemical potential. The temperature
is equal to T = 0.1ω0 in both cases with ω0 = v2/a. The pronounced peak at
µ = 0 in panel (b) manifests the possibility of dc transport through the charge-
neutrality point.

integral over energy,

Reσintraxx (ω) = δ(ω) e
2√a

4π~vT

∫ ∞
−∞

dE|E|3/2

cosh2
(
E−µ
2T

)×

×



2Θ(|∆| − |E|)Ixx4 (∆/|E|)
+2Θ(|E| − |∆|)Ixx2 (∆/|E|)

, ∆ < 0,

3π3/2

10
√

2Γ2( 5
4 ) , ∆ = 0,

2Θ(|E| −∆)Ixx2 (∆/|E|), ∆ > 0.

(4.19)

The integral over energy can be evaluated analytically only in the special
case of zero temperature T → 0. We plot Reσintraxx as a function of the
gap parameter ∆ in Fig.4.3. One can observe the monotonous decrease
with growing ∆ for all values of chemical potential.

4.3.2 Optical conductivity in the y-direction

For the longitudinal conductivity along the y-direction the technical de-
tails of calculation are very similar to the xx-case. They are presented in
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Appendix 4.8. The results for interband ac optical conductivity are:

Reσinteryy (ω) = sgnω e2

2π~
v

4
√

2|ω|a

[
f

(
−ω2

)
− f

(
ω

2

)]
×

×



2Θ(|∆| − |ω/2|)Iyy4 (2∆/|ω|)+
+2Θ(|ω/2| − |∆|)Iyy2 (2∆/|ω|)

, ∆ < 0,

Γ2( 1
4 )

3
√

2π , ∆ = 0,

2Θ(|ω/2| −∆)Iyy2 (2∆/|ω|), ∆ > 0.

(4.20)

They are presented in Fig.4.2 in lower panels for all three different cases of
∆. As is seen in the lower panel in Fig.4.2(c), the optical conductivity in
the y-direction diverges at the point ω = −2∆ for ∆ < 0. This divergence
was also observed in numerical calculations in Refs.[146, 147]. Using our
exact expressions, we can derive asymptotic expansions in the integrals
Iyy2 (2∆/|ω|) and Iyy4 (2∆/|ω|) at ω = 2|∆| for negative ∆. Expanding the
integrals near this point up to leading order, we find:

Iyy2 (2∆/|ω|)ω→2|∆|+ ≈
1√
2

log 2|∆|
ω − 2|∆| + const, (4.21)

Iyy4 (2∆/|ω|)ω→2|∆|− ≈
1√
2

log 2|∆|
|2∆| − ω + const. (4.22)

The logarithmic singularity has the same amplitudes from both sides. In
Ref.[147] this singularity was related to the joint density of states for
initial and final states involved in an optical transition, hence the van
Hove singularity appears at ω = 2|∆|, while the density of states itself
has a van Hove logarithmic singularity at ω = |∆|. The density of states
for the considered system was derived in Ref.[140], it is expressed also in
terms of complete elliptic integrals of the first and second kind.

We also present the asymptotes for the case ∆ < 0 at small and large
ω:

Reσinteryy (ω) ' e2

2π~


v√
|∆|a

πω
32T cosh2 µ

2T
, ω → 0,

v√
ωa

Γ2( 1
4 )

24
√
π
, ω →∞.

(4.23)
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For intraband dc optical conductivity we find

Reσintrayy (ω) = δ(ω) e2

16π~T

∫ ∞
−∞

dE

cosh2
(
E−µ
2T

) v√|E|√
a
×

×



2Θ(|∆| − |E|)Iyy3 (∆/|E|)+
+2Θ(|E| − |∆|)Iyy1 (∆/|E|)

, ∆ < 0,

√
2Γ2( 1

4 )
3
√
π

, ∆ = 0,

2Θ(|E| −∆)Iyy1 (∆/|E|), ∆ > 0.

(4.24)

Interband and intraband conductivities were studied recently in Ref.[147]
at zero temperature, the authors have obtained also asymptotic expres-
sions at small and large frequencies. We checked that their asymptotics
follow straightforwardly from our analytical results for T = 0 while at
finite temperature we get different dependence for Reσinteryy (ω) when ω
goes to zero.

Finally, in Fig.4.3 we plot intraband parts as functions of the gap ∆ for
different values of chemical potential. The interesting feature presented in
Fig.4.3(b) is the appearance of a small peak near ∆ = 0 on the negative
side at small chemical potentials. This peak can be related to the crossing
of saddle point level with chemical potential. At zero chemical potential
this peak appears only at small ∆ values and attain maximum for ∆ ≈ 0,
which shows that temperature-broadened van Hove singularities intersect
with the Fermi level and allow transport even at zero frequency. Such
signature can be used as a manifestation of the regime that is close to
topological transition with ∆ in dc transport measurements.

4.4 Optical conductivity of gapped dice model

4.4.1 Solution of the Heisenberg equations for the quasi-
particle in dice model

The T3 (dice) lattice is schematically shown in Fig.1.1. The correspond-
ing tight-binding Hamiltonian is expressed through the function fk =
−
√

2t(1 + e−ika2 + e−ika3) with equal hoppings t between atoms C (green
hubs) and A,B (red, blue rim sites) [12, 80] and the corresponding energy
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Figure 4.4. Possible interband transitions which contribute to optical conduc-
tivity and define frequency thresholds for gapped dice and Lieb lattice models.

spectrum is [13]

ε0 = 0,

ε± = ±
√

2t
[
3 + 2(cos(a1k) + cos(a2k) + cos(a3k))

]1/2
, (4.25)

where a1 = (1, 0)a and a2 = (1/2,
√

3/2)a are the basis vectors of the
triangle sublattices and a3 = a2 − a1 with the lattice constant denoted
by a.

There are two values of momentum where fk = 0 and all three bands
meet. They are situated at the corners of the hexagonal Brillouin zone

K = 2π
a

(1
3 ,

1√
3

)
, K ′ = 2π

a

(
−1

3 ,
1√
3

)
. (4.26)

For momenta near the K and K ′ points, the function fk is linear in p =
k − ξK, i.e., fk = vF (ξpx − ipy), vF =

√
3ta/2 is the Fermi velocity, and

ξ = ± is the valley index. In addition, we set ~ = 1 for convenience. The
low-energy Hamiltonian near K(K’) ξ = ±1 three-band-touching point
reads:

Hdice = vF (pxSx + ξpySy + pzSz), (4.27)

with a constant gap vF pz and pseudospin-1 matrices Si are

Sx = 1√
2

 0 1 0
1 0 1
0 1 0

 , Sy = 1√
2

 0 −i 0
i 0 −i
0 i 0

 ,
Sz =

 1 0 0
0 0 0
0 0 −1

 . (4.28)



80 Chapter 4. Zitterbewegung approach for optical conductivity

These matrices form a closed algebra with respect to commutator opera-
tion: [Si, Sj ] = iεijkSk.

The Sz-type term in the Hamiltonian Hdice describes the spectral gap,
which can be opened by adding on-site potential on A and B sites [14],
in the Haldane model [151] or dynamically generated in special cases of
electron-electron interactions [166] and in the Floquet setup under circu-
larly polarized radiation [167, 168].

Let us perform analysis for K (ξ = 1) valley, and then account for
K’ valley with proper sign changes. The Heisenberg equations for the
coordinate and momentum operators in this case take the form:

v(t) = dx

dt
= −i[x(t), Hdice] = vFS(t), (4.29)

dp

dt
= −i[p(t), Hdice] = 0. (4.30)

Again, using the solution of the second equation, that states p(t) = p(0),
we arrive at the following Heisenberg equation for matrices Si:

dSi(t)
dt

= −i[Si(t), Hdice] = iPijSj(t), (4.31)

with

Pij = ivF εijkpk = ivF

 0 pz −py
−pz 0 px
py −px 0

 . (4.32)

The solution of this equation has the form

Si(t) =
(
eiP t

)
ij
Sj(0), (4.33)

where the matrix exponential is(
eiP t

)
ij

=
(p2
y+p2

z) cos(ptvF )+p2
x

p2
pxpyC−ppz sin(ptvF )

p2
pxpzC+ppy sin(ptvF )

p2

pxpyC+ppz sin(ptvF )
p2

(p2
x+p2

z) cos(ptvF )+p2
y

p2
pypzC−ppx sin(ptvF )

p2

pxpzC−ppy sin(ptvF )
p2

ppx sin(ptvF )+pypzC
p2

(p2
x+p2

y) cos(ptvF )+p2
z

p2

 .
(4.34)
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Here we used the notation p =
√
p2
x + p2

y + p2
z and C = 1−cos (ptvF ). The

eigenvalues of the matrix P are ±vF p, 0. The matrix exponential greatly
simplifies for the gapless case with pz = 0 (compare with Eq.(4.14)):

(
eiP t

)
ij

(pz = 0) =

=


p2
y cos(ptvF )+p2

x

p2
pxpy(1−cos(ptvF ))

p2
py sin(ptvF )

p
pxpy(1−cos(ptvF ))

p2
p2
x cos(ptvF )+p2

y

p2 −px sin(ptvF )
p

−py sin(ptvF )
p

px sin(ptvF )
p cos (ptvF )

 . (4.35)

Thus, from the solutions (4.33) and (4.34) we find the time-dependent
velocity operators:

vx(t) =vF


(
p2
y + p2

z

)
cos (ptvF ) + p2

x

p2 Sx+

+pxpy(1− cos (ptvF ))− ppz sin (ptvF )
p2 Sy+

+pxpz(1− cos (ptvF )) + ppy sin (ptvF )
p2 Sz

)
, (4.36)

vy(t) =vF
(
pxpy(1− cos (ptvF )) + ppz sin (ptvF )

p2 Sx+

+
(
p2
x + p2

z

)
cos (ptvF ) + p2

y

p2 Sy+

+pypz(1− cos (ptvF ))− ppx sin (ptvF )
p2 Sz

)
. (4.37)

Below we insert these results into Eqs.(4.4) and (4.8) to evaluate the lon-
gitudinal and Hall conductivities. Again, we see that the velocities vi(t)
contain zitterbewegung terms which stem from the oscillating terms.
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4.4.2 Longitudinal and Hall conductivities in massive dice
model

Substituting the obtained velocities into Eqs.(4.5),(4.7) and performing
Fourier transform over pairs of (s, E) and (t, ω) variables, we find

Ft,s Tr [e−iHsvx(t)vx(0)] =

πv2
F δ(E)

(
p2 + p2

z

2p2

)
(δ (ω − pvF ) + δ (ω + pvF )) +

+ πv2
F δ (E + pvF )

(
p2 + p2

z

2p2 δ (ω − pvF ) + p2 − p2
z

p2 δ(ω)
)

+

+ πv2
F δ (E − pvF )

(
p2 + p2

z

2p2 δ (ω + pvF ) + p2 − p2
z

p2 δ(ω)
)
, (4.38)

Ft,s Tr [e−iHsv[x,(t)vy](0)] = v2
F pz
ip
×[

δ(ω − pvF )δ(E + pvF )− δ(ω + pvF )δ(E − pvF )

− δ(E)δ(ω + pvF )− δ(ω − pvF )
]
. (4.39)

where the double Fourier transform is defined as

Ft,sf(t, s) =
∫ ∞
−∞

dt ds

(2π)2 e
iωt+iEsf(t, s) (4.40)

Using the first expression in the general formula for longitudinal conduc-
tivity, we find:

Reσxx(ω) = e2

4~

δ(ω)
∫ ∞
−∞

dE

4T cosh2
(
E−µ
2T

)×
× E2 −∆2v2

F

|E|
Θ (|E| −∆vF ) +

+ ω2 + ∆2v2
F

2ω2 Θ (|ω| −∆vF ) [f(−|ω|)− f(|ω|)]
]
, (4.41)

where we relabeled pz = ∆ > 0 and took into account the presence of
two valleys that contribute equally. Note that the term proportional to
Θ(|ω| − ∆vF ) defines the energy threshold after which the transitions
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from and to flat band become possible. However, no special threshold
is present for transitions between the two dispersive bands, which means
that only transitions through flat band are possible. This was already
pointed out for the gapless dice model in Refs.[49, 152]. In addition we
note that in the gapless limit the obtained expression agrees with that
obtained for arbitrary pseudospin models with the same matrix algebra
[Si, Sj ] = iεijkSk in Ref.[169].

Similarly, for the imaginary part of the Hall conductivity in one valley
we find

Im σ[x,y](ω) = e2pzvF
4~ω Θ (|ω| − vF |pz|) [f(|ω|)− f(−|ω|)]. (4.42)

Note that the Hall conductivity is proportional to the gap parameter pz
and the sum over two valleys with different signs of pz will lead to the
zero total Hall conductivity. This is because the system is T-invariant,
and the operation of T-invariance interchanges K and K’ valleys [14].
These conductivities are shown in Fig.4.5 for different values of chemical
potential and temperature.

Using the Kramers-Kronig relations, one can evaluate the real part of
the Hall conductivity, see Eq.(4.106). At zero temperature we find the
following expression:

Reσxy(ω) = −e
2vF pz
4π~ω log

∣∣∣∣max(|µ|, vF |pz|) + ω

max(|µ|, vF |pz|)− ω

∣∣∣∣ . (4.43)

At the energy ω = max(|µ|, vF |pz|), there is a logarithmic divergence
in the Hall conductivity. For large energies, ω → ∞, this expression
approaches zero as ∼ 1/ω2. This expression is very similar to those ob-
tained in graphene-like systems (see, for example, [170, 171]). The dc limit
ω → 0 leads to the quantized Hall conductivity Reσxy = −e2sign(pz)/h
for |µ| ≤ vF |pz| in the absence of a magnetic field [172].

4.5 Optical conductivity of the Lieb model
In this section we evaluate the optical conductivity of the gapped Lieb
model [21] using the method presented above. The main complication
arises in solving Heisenberg equations for matrices: due to commutation
relations the whole set of the Gell-Mann matrices enters the calculation.
Below we show how one can still perform calculation and arrive at rela-
tively simple expression for the conductivity. We start with description
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Figure 4.5. Panels (a) and (b): the real part of optical conductivity for gapped
dice and Lieb lattices given by Eqs.(4.41) and (4.52) at temperature T = 0.1∆vF .
Panel (c): the real part of intraband dc conductivity which is the same for both
lattices (for dice lattice in a single valley).
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of the main properties of the Lieb lattice and corresponding low-energy
model.

4.5.1 Lieb lattice and low-energy model

The Lieb lattice is schematically shown in Fig.1.2. It consists of three
square sublattices, with atoms placed in the corners and in the middle
of each side of big squares forming a line-centered-square lattice. The
tight-binding Hamiltonian, described in Ref.[21], reduces to the following
low-energy model near the center of BZ kx,y = π

a + qx,y:

HLieb =

 ∆vF vF qx 0
vF qx −∆vF vF qy

0 vF qy ∆vF

 , (4.44)

where the site energies are set as εB = εC = −εA = ∆vF . In terms of the
Gell-Mann λ-matrices the Hamiltonian takes the form

HLieb = vF

[
λ1qx + λ6qy + ∆

(
λ0
3 + λ3 −

λ8√
3

)]
. (4.45)

Here λ0 is the 3 × 3 unit matrix. The energy dispersions defined by this
Hamiltonian are given by three bands, one is flat band and the other two
are dispersive bands (see Fig.4.4c):

ε0 = ∆vF , ε± = ±vF
√

∆2 + q2
x + q2

y . (4.46)

Let us check the T-invariance of this Hamiltonian. The operator T should
contain complex conjugation, the change of the sign of both momenta and
contain the proper matrix transformation in sublattice space:

T̂H(q)T̂−1 = H(−q), T̂ = FK̂. (4.47)

In the absence of the gap the matrix F has the form

F =

1 0 0
0 −1 0
0 0 1

 . (4.48)

Thus we conclude that the gap presented in Ref.[21] does not break T-
invariance. Consequently, the Hall conductivity is zero in this model in
the absence of a magnetic field.
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4.5.2 Solution of the Heisenberg equations

The Heisenberg equations for the coordinate and momentum operators
are very similar to that obtained in previous sections: velocities evolve
with time as the corresponding matrices in the Hamiltonian near qx and
qy, and the momenta do not evolve at all. The nontrivial part comes
from the equation that describes the evolution of matrices. The system of
equations for the Gell-Mann matrices has the form:

dλi(t)
dt

= −i[λi(t), HLieb] = vFAijλj(t), (4.49)

where we used the commutation relations [λi, λk] = 2ifikjλj with fikj
being the structure constants of the su(3) algebra, hence the matrix Aij
has the form:

A =



0 −2∆ 0 0 qy 0 0 0
2∆ 0 −2qx −qy 0 0 0 0
0 2qx 0 0 0 0 −qy 0
0 qy 0 0 0 0 −qx 0
−qy 0 0 0 0 qx 0 0

0 0 0 0 −qx 0 2∆ 0
0 0 qy qx 0 −2∆ 0 −

√
3qy

0 0 0 0 0 0
√

3qy 0


. (4.50)

For the eigenvalues of the matrix vFAij we find:

a1,2 = 0, a3,4 = ±2ipvF
a5,6 = ±ivF (∆ + p), a7,8 = ±ivF (p−∆), (4.51)

where we defined p =
√
q2
x + q2

y + ∆2. The initial conditions for velocities
are vx(0) = vFλ1, vy(0) = vFλ6. After calculation of the matrix expo-
nent exp[At], we find velocities at time t by taking the corresponding rows
in resulting matrix - the first for vx and the sixth for vy. The solutions for
vx and vy are defined as vectors in the Gell-Mann basis - see Eqs.(4.108)
and (4.109) in Appendix 4.11. The identity matrix is not present because
it does not evolve with time and the coefficient before this matrix is zero.
Next we evaluate the conductivity using the obtained solutions vx,y(t) and
previously established method.
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4.5.3 Optical conductivity

Performing trace evaluation and using the double-Fourier transform, we
arrive at the following final answer for the optical conductivity of the Lieb
lattice in the x-direction (see Appendix 4.11):

Reσxx(ω) = e2

4~

δ(ω)
∫ ∞
−∞

dE

4T cosh2
(
E−µ
2T

)×
× E2 −∆2v2

F

|E|
Θ (|E| −∆vF ) +

+Θ(|ω| − 2∆vF )
[

2∆2v2
F

ω2

(
f

(
−|ω|2

)
− f

( |ω|
2

))
+

+f(∆vF − |ω|)− f(∆vF )
2

]
+ f(∆vF )− f(∆vF + |ω|)

2

]
. (4.52)

For the conductivity in the y-direction we find the same answer.
The physical meaning of the terms in Eq.(4.52) is the following: the

first term corresponds to intraband dc conductivity, the second term de-
scribes interband transitions through the gap - that is why the threshold is
2∆vf , and the last term corresponds to transitions between flat and upper
dispersive band. This conductivity is presented in Fig.4.5 in comparision
with gapped dice model. Qualitatively, the behavior of conductivities in
both models is similar.

The interesting difference compared to the dice model conductivity
(4.41) is the presence of both dispersive-to-dispersive band transitions
and dispersive-to-flat band transitions in the interband ac part of optical
conductivity (schematically shown in Fig.4.4c).

4.6 Conclusions
In the present paper we further developed the approach of Refs.[47, 135]
for calculating longitudinal and Hall conductivities of systems with arbi-
trary pseudospin and dispersion law of quasiparticles. The conductivities
are written through quasiparticle velocity correlators at time t for states of
energy E which also describe the phenomenon of zitterbewegung. For non-
interacting systems the Heisenberg equations for velocities can be solved
that allows one to significantly reduce the complexity of the conductivity
calculation and obtain in some cases closed-form analytic expressions. The
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method under consideration is well adapted also to the presence of impu-
rities in the system. The velocity correlators in this case can be computed
numerically utilizing time dependent Schrödinger equation with averaging
over impurities [138, 173].

We applied this method to evaluate the optical conductivity of the
semi-Dirac model, which is an example of low-energy theory with anisotropic
spectrum. We obtained exact expressions which allowed us to identify the
signatures of topological phase transition with gap closing and merging
Dirac points. The previously unobserved result is the peak in the in-
traband dc conductivity along the y-direction at zero chemical potential
when the two Dirac cones nearly merge with each other. Physically, one
would expect that this is related to the intersection of broadened van Hove
singularities with the Fermi level. Such an intersection leads to the ap-
pearance of a number of propagating states carrying a nonzero current. At
low temperatures, nonzero transport through the charge-neutrality point
may indicate the appearance of a topological phase transition.

In addition, we analyzed two gapped pseudospin-1 models that corre-
spond to dice and Lieb lattices. The optical conductivities for the con-
sidered gap parameters were not studied previously. The key physical
difference that we observed is the fact that in the gapped Lieb model all
transitions between three bands (dispersive-to-flat, flat-to-dispersive and
between two dispersive) contribute to the optical conductivity at large
frequencies, while in dice lattice only transitions to and from flat band
play a role.

4.7 Appendix: Derivation of general conductiv-
ity expressions from Kubo formula
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4.7.1 Expression of the conductivity tensor through re-
tarded correlation function

It is well known that the conductivity (4.1) can be written through the
Fourier transform of the retarded correlation function Πr

µν(t):

Πr
µν(t) = −iθ(t) 〈[Jµ(t)Jν(0)]〉

σµν(ω) = iKµν(ω + iε)
ω + iε

,

Kµν(ω + iε) = 〈τ〉
V
δµν +

Πr
µν(ω + iε)

V
. (4.53)

The function Πr
µν(ω) can be obtained by analytical continuation from its

imaginary time expression
(
Πr
µν(ω) = Πµν (iωm → ω + iε)). For nonin-

teracting fermions, using the Matsubara diagram technique for evaluating
τ -ordered product of operators we get

Πµν (iωm) = 1
β

∞∑
n=−∞

Tr
[
jµ

1
iΩn −H0

jν
1

iΩn − iωm −H0

]
. (4.54)

In the energy representation it takes the form

Πµν (iωm) = 1
β

∑
α,β

jαβµ jβαν

∞∑
n=−∞

1
(iΩn − Eβ) (iΩn − iωm − Eα) . (4.55)

The summation over the Matsubara frequencies can be easily performed,
thus we get

Πµν (iωm) =
∑
α,β

jαβµ jβαν
f (Eα)− f (Eβ)
Eα − Eβ + iωm

, (4.56)

where f(E) is the Fermi-Dirac distribution function, f(E) = 1/(exp(β(E−
µ)) + 1). We now write

Jαβµ Jβαν = Jαβ{µ J
βα
ν} + Jαβ[µ J

βα
ν] , (4.57)

where J{µJν} ≡ (JµJν + JνJµ) /2 and J[µJν] ≡ (JµJν − JνJµ) /2 denote
symmetric and antisymmetric parts of the tensor JµJν , respectively. Us-
ing hermiticity of the current it is easy to show that the symmetric part
J{µJν} is a real quantity while the antisymmetric part J[µJν] is the purely
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imaginary one. Therefore, after performing analytical continuation over
frequency, we find the real symmetric part of σµν ,

Reσ{µ,ν}(ω) = πe2

V ω

∑
α,β

vαβ{µ v
βα
ν} [f (Eα)− f (Eβ)] δ (Eα − Eβ + ω) , (4.58)

where we used the relation jµ = −evµ between the current density and
the velocity (e > 0). Accordingly, for the imaginary antisymmetric part
of σµν we have

Im σ[µ,ν](ω) = πe2

V ω

∑
α,β

Im
(
vαβ[µ v

βα
ν]

)
[f (Eα)− f (Eβ)] δ (Eα − Eβ + ω) .

(4.59)

To restore remaining imaginary and real parts we can use the Kramers-
Krönig relationships,

Im σ{µ,ν}(Ω) = − 1
π

P.v.
∫ ∞
−∞

dωReσ{µ,ν}(ω)
ω − Ω ,

Reσ[µ,ν](Ω) = 1
π

P.v.
∫ ∞
−∞

dω Im σ[µ,ν](ω)
ω − Ω . (4.60)

Writing

δ (Eα − Eβ + ω) =
∫ ∞
−∞

dEδ (E − Eα) δ (E − Eβ + ω) (4.61)

we have for the symmetric part

Reσ{µ,ν}(ω)

= πe2

V ω

∑
α,β

∫ ∞
−∞

dEvαβ{µ v
βα
ν} δ (E − Eα) δ (E − Eβ + ω) [f (Eα)− f (Eβ)]

= πe2

V ω

∫ ∞
−∞

dE[f(E − ω)− f(E)] Tr
[
v{µδ(E −H)vν}δ(E −H − ω)

]
.

(4.62)

In the last line we replaced the eigenvalues Eα,β by the Hamiltonian and
sum over eigenstates by the trace over quantum numbers describing the
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system eigenstates. Similarly, for the imaginary antisymmetric part we
find:

Im σ[µ,ν](ω) = πe2

V ω

∫ ∞
−∞

dE[f(E − ω)− f(E)]

× Im Tr
[
v[µδ(E −H)vν]δ(E −H − ω)

]
. (4.63)

Using the relation between traces and velocity correlators averaged at
fixed energy (see Sec. 4.7.2), we find the results presented in the main
text, Eqs.(4.4) and (4.8).

4.7.2 Relation between trace and time-dependent velocity
operators

Let us consider the term Tr [vµδ(E −H)vνδ(E −H − ω)] in the expres-
sions (4.62) and (4.63) for interband ac conductivity. Also, Jµ(t) is the
actual current measured experimentally, the corresponding total current-
density is obtained by differentiating the Hamiltonian with respect to the
vector potential,

Jµ(r, t) = − δH

δ (Aµ(r, t)/c) . (4.64)

Using the representation for the first delta function,

δ(E −H) = 1
2π

∫ ∞
−∞

dtei(E−H)t, (4.65)

and the cyclic property of a trace, then changing the variable of integration
E → E + ω, we can write

Tr [vµδ(E −H)vνδ(E −H − ω)] = 1
2π

∫ ∞
−∞

dteiωt Tr [δ(E −H)vµ(t)vν(0)] .,
(4.66)

Defining the microcanonical average of an operator Â at given energy E,

〈Â〉E = Tr[δ(E − Ĥ)Â]
Tr[δ(E − Ĥ)]

, (4.67)

where Tr[δ(E − Ĥ)] = ρ(E)V is the total density of states (DOS), we get
the following expression for the symmetric ac conductivity through the
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correlator of velocities:

Reσ{µ,ν}(ω) = e2

2ω

∞∫
−∞

dEρ(E) [f(E)− f(E + ω)]
∞∫
−∞

dteiωt
〈
v{µ(t)vν}(0)

〉
E
.

(4.68)
It is easy to check the reality of the last expression using the relationship〈
v{µ(−t)vν}(0)

〉∗
E

=
〈
v{µ(t)vν}(0)

〉
E
.

The expression (4.4) for T = 0 is in accordance with Ref.[160] for
diagonal conductivity. Similarly, for the imaginary antisymmetric part of
conductivity we obtain

Im σ[µ,ν](ω) = e2

2ω Im
∞∫
−∞

dEρ(E) [f(E)− f(E + ω)]

×
∞∫
−∞

dteiωt
〈
v[µ(t)vν](0)

〉
E
. (4.69)

To calculate Im σ{µ,ν}(ω) and Reσ[µ,ν](ω) we use the Kramers-Krönig re-
lation (4.60).

4.8 Appendix: Momentum integration in expres-
sions for conductivity of the semi-Dirac model.

In this Appendix we discuss technical details regarding evaluation of lon-
gitudinal conductivity in the semi-Dirac model. Following Ref.[137], one
can express the diamagnetic term 〈τµµ〉 appearing in Eq.(4.1) as

〈ταα〉
V

= e2
∫
BZ

d2p

(2π)2
f(ε+(p))− f(−ε+(p))

2ε(p)

(
Φ(p) ∂

2

∂p2
α

Φ∗(p) + c.c.
)
,

(4.70)

where Φ(p) is defined by model Hamiltonian (4.9) as

Hsemi =
(

0 Φ(p)
Φ∗(p) 0

)
, Φ(p) =

(
∆ + ap2

x

)
− ivpy. (4.71)

Thus, only the 〈τxx〉 contribution is nonzero. After substituting the exact
form of the dispersion and taking derivative of Φ(p), we find that the term
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〈τxx〉 is real:
〈τxx〉
V

= e2
∫

d2p
(2π)2

2a
(
∆ + ap2

x

)
ε+(p) [f (ε+(p))− f (−ε+(p))] . (4.72)

The contribution of this term into optical conductivity does not depend
on the frequency and we neglect it in our studies.

To evaluate the real parts of longitudinal optical conductivity along the
x- and y-directions, we first calculate traces with time-dependent velocity
operators, which are obtained from Eqs.(4.11) and (4.14),

Tr [e−iHsemisvx(t)vx(0)] =

=
∫

d2p

(2π)2

8a2p2
x

(
v2p2

y cos ((s− 2t)ε+) +
(
ap2

x + ∆
)2 cos (sε+)

)
ε2

+
, (4.73)

Tr [e−iHsemisvy(t)vy(0)] =

=
∫

d2p

(2π)2

2v2
[(
ap2

x + ∆
)2 cos ((s− 2t)ε+) + v2p2

y cos (sε+)
]

ε2
+

. (4.74)

Here the notation ε+ ≡ ε+(p) was used. As described in the main text, we
then make Fourier transforms over t and s to obtain the delta-functions
under integrals which technically simplify integrals. The resulting expres-
sions for longitudinal optical conductivity are:

Reσxx(ω) = 2e2

ω

∫ ∞
−∞

dE

2π [f(E)− f(E + ω)]
∫
d2p

a2p2
x

ε2
+
×

×
[
δ (E + ε+)

(
v2p2

yδ (ω − 2ε+) + δ(ω)
(
ap2

x + ∆
)2
)

+ δ (E − ε+)
(
v2p2

yδ (ω + 2ε+) + δ(ω)
(
ap2

x + ∆
)2
)]

, (4.75)

Reσyy(ω) = e2

2ω

∫ ∞
−∞

dE

2π [f(E)− f(E + ω)]
∫
d2p

v2

ε2
+
×

×
[
δ (E + ε+)

((
ap2

x + ∆
)

2δ (ω − 2ε+) + v2δ(ω)p2
y

)
+δ (E − ε+)

((
ap2

x + ∆
)

2δ (ω + 2ε+) + v2δ(ω)p2
y

)]
. (4.76)

To perform the integration over momentum, we use the symmetry px →
−px, py → −py of the integrals and the following change of coordinates
that simplifies square root in ε+:

ap2
x + ∆ = L cosφ, vpy = L sinφ, ε+ = L. (4.77)
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For the functions even in px and py we can write

∫
d2pf(px, py) = 4

∞∫
0

dpxdpyf(px, py)

=
∞∫
0

dL

π∫
0

dφ
2Lθ(L cosφ−∆)
v
√
a(L cosφ−∆)

f

√L cosφ−∆
a

,
L sinφ
v

 . (4.78)

The presence of the theta function takes into account that the regions of
integration of the L and φ variables will be different depending on the
sign of the ∆ parameter. In what follows, we extensively use the following
integral (Eq. 3.197.8 from book [174]):

∫ u

0
xν−1(x+ a)λ(u− x)µ−1dx = aλuµ+ν−1 B(µ, ν) 2F1

(
−λ, ν;µ+ ν;−u

a

)
,

(4.79)

with arg u
a < π. Performing the momentum integration in Eqs.(4.75),

(4.76) by means of Eq .(4.78), we obtain:

xx :
∫
d2p[. . . ] = 2

√
a

v

∞∫
0

dL

π∫
0

dφL
√

(L cosφ−∆)θ(L cosφ−∆)×

[
δ (E + L)

(
sin2 φδ (ω − 2L) + δ(ω) cos2 φ

)
+δ (E − L)

(
sin2 φδ (ω + 2L) + δ(ω) cos2 φ

)]
, (4.80)

yy :
∫
d2p[. . . ] = 2v√

a

∞∫
0

dL

π∫
0

Ldφ√
L cosφ−∆

θ(L cosφ−∆)×

[
cos2 φ(δ (E + L) δ (ω − 2L) + δ(E − L)δ(ω + 2L))

+ sin2 φδ(ω)(δ(E + L) + δ (E − L))
]
. (4.81)

The integration over angle depends on the sign of ∆. For 1 > δ = ∆/L ≥
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0, we find the following four integrals:

Ixx1 (δ) =
∫ φL

0

√
cosφ− δ sin2 φdφ

= 2
√

2
15

[
2(3 + δ2)E(k)− (3 + δ)(1 + δ)K(k)

]
, (4.82)

Ixx2 (δ) =
∫ φL

0

√
cosφ− δ cos2 φdφ

=
√

2
15
[
(1 + δ)(2δ − 9)K(k) +

(
18− 4δ2

)
E(k)

]
, (4.83)

Iyy1 (δ) =
φL∫
0

sin2 φdφ√
cosφ− δ

= 2
√

2
3 [(1 + δ)K(k)− 2δE(k)] , (4.84)

Iyy2 (δ) =
φL∫
0

cos2 φdφ√
cosφ− δ

=
√

2
3 [(1− 2δ)K(k) + 4δE(k)] , (4.85)

where K(k) and E(k) are complete elliptic integrals, k =
√

1−δ
2 , and

φL = arccos(δ). To calculate the above integrals we made the variable
change x = cosφ, then used Eq.(4.79), the relation

2F1(a, b; c; z) = (1− z)−a2F1

(
a, c− b; c; z

z − 1

)
. (4.86)

and Eqs. 7.3.2.18, 7.3.2.20 and 7.3.2.75 from the book [96].
Case ∆ < 0: in this case the angular integration is separated into two

regions,

φ ∈


[
0, arccos −|∆|L

]
, L > |∆|,

[0, π], L ≤ |∆|.
(4.87)

This example can be seen as integrating with the centers in the Dirac
point. Performing integration over angle in Eqs.(4.80), (4.81) we find the
following: the integrals for L > |∆| are the same as in ∆ > 0 case with
the changes ∆ → −|∆|. The integrals for L < |∆| (|δ| > 1) are different
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and have the following form:

Ixx3 (δ < −1) =
∫ π

0

√
cosφ+ |δ| sin2 φdφ

= 4
15

√
|δ|+ 1

[
(3 + δ2)E(k′)− |δ|(|δ| − 1)K(k′)

]
, (4.88)

Ixx4 (δ < −1) =
∫ π

0

√
cosφ+ |δ| cos2 φdφ

= 2
15

√
|δ|+ 1

[
(9− 2δ2)E(k′) + 2|δ|(|δ| − 1)K(k′)

]
, (4.89)

Iyy3 (δ < −1) =
∫ π

0

sin2 φdφ√
cosφ+ |δ|

= 4
3

√
|δ|+ 1

[
|δ|E(k′)− (|δ| − 1)K(k′)

]
,

(4.90)

Iyy4 (δ < −1) =
∫ π

0

cos2 φdφ√
cosϕ+ |δ|

= 2
3
√
|δ|+ 1

[
−2|δ|(|δ|+ 1)E(k′) + (1 + 2δ2)K(k′)

]
, (4.91)

where k′ =
√

2
|δ|+1 .

Evaluating the integrals over L in all these cases gives the following
results for longitudinal conductivities in the x− and y−directions:

Reσxx(ω) = e2

4π~ω

∫ ∞
−∞

dE[f(E)− f(E + ω)]4|E|
3/2a1/2

v
×

×



2Θ(|∆| − |E|) (Ixx3 (∆/|E|)δ (ω + 2E) + Ixx4 (∆/|E|)δ(ω)) +
+2Θ(|E| − |∆|) (Ixx1 (∆/|E|)δ (ω + 2E) + Ixx2 (∆/|E|)δ(ω))

, ∆ < 0,

8π3/2

5
√

2Γ2( 1
4 ) [2δ(ω + 2E) + 3δ(ω)], ∆ = 0,

2Θ(|E| −∆) [Ixx1 (∆/|E|)δ(ω + 2E) + Ixx2 (∆/|E|)δ(ω)] , ∆ > 0,
(4.92)
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and

Reσyy(ω) = e2

4π~ω

∫ ∞
−∞

dE[f(E)− f(E + ω)]v
√
|E|√
a
×

×



2Θ(|∆| − |E|) (Iyy4 (∆/|E|)δ(ω + 2E) + Iyy3 (∆/|E|)δ(ω)) +
+2Θ(|E| − |∆|) (Iyy2 (∆/|E|)δ(ω + 2E) + Iyy1 (∆/|E|)δ(ω))

, ∆ < 0,

Γ2( 1
4 )

3
√

2π [δ(ω + 2E) + 2δ(ω)], ∆ = 0,

2Θ(|E| −∆)
[
Iyy2 (∆/|E|)δ (ω + 2E) + Iyy1 (∆/|E|)δ(ω)

]
, ∆ > 0.

(4.93)

Separating interband ac and intraband dc parts, we find the results given
by Eqs.(4.17) and (4.19) together with (4.20) and (4.24) in the main text.

4.9 Appendix: Longitudinal conductivity of the
gapped dice model.

First we evaluate traces of commutators with matrix exponential of the
Hamiltonian:

Tr [e−iHsvx(t)vx(0)] =
v2
F cos (psvF )

(
2
(
p2
y + p2

z

)
p2 cos (ptvF ) + 4p2

xp
2
)

2p4 +

+
v2
F

(
2
(
p2
y + p2

z

) (
p2 sin (psvF ) sin (ptvF ) + p2 cos (ptvF )

))
2p4 , (4.94)

Tr [e−iHsvy(t)vy(0)] =
v2
F

(
cos (psvF )

(
2
(
p2
x + p2

z

)
p2 cos (ptvF ) + 4p2

yp
2
))

2p4 +

+ v2
F

(
+2
(
p2
x + p2

z

) (
p2 sin (psvF ) sin (ptvF ) + p2 cos (ptvF )

))
2p4 . (4.95)
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Next, we Fourier transform this expressions twice with respect to t → ω
and s→ E, and integrate over the polar angle

Ft,s Tr [e−iHsvx(t)vx(0)] =

= δ(E)
(
πv2

F

(
p2 + p2

z

)
δ (ω − pvF )

2p2 + πv2
F

(
p2 + p2

z

)
δ (ω + pvF )

2p2

)
+

+ δ (E + pvF )
(
πv2

F

(
p2 + p2

z

)
δ (ω − pvF )

2p2 + π(p2 − p2
z)v2

F δ(ω)
p2

)
+

+ δ (E − pvF )
(
πv2

F

(
p2 + p2

z

)
δ (ω + pvF )

2p2 + π(p2 − p2
z)v2

F δ(ω)
p2

)
.

(4.96)

Due to isotropy of the model we get the same result for the Fourier trans-
form Ft,s Tr [e−iHsvy(t)vy(0)].

The longitudinal conductivity is given by the expression

Reσxx(ω) = πe2

ω

∞∫
−∞

dE[f(E)− f(E + ω)]
∞∫
0

k dk

(2π)2Ft,s Tr [e−iHsvx(t)vx(0)].

(4.97)

where k =
√
p2
x + p2

y. Finally, performing integrations we find

Reσxx(ω) = e2

4

[
xδ(ω)

∞∫
−∞

dE
f(E)− f(E + ω)

ω
Θ (|E| −∆) |E|

2 −∆2

|E|

+ f(−ω)− f(ω)
ω

ω2 + ∆2

2|ω| Θ(|ω| −∆)
]
, (4.98)

where in the last equality we took into account that vF pz = ∆ > 0. This
expression appears in the main text, Eq.(4.41), in slightly different form
and is plotted for different values of parameters.
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4.10 Appendix: Evalution of Hall conductivity
σxy in gapped dice model

Let us evaluate the quasiparticle velocity operator averages for the Hall
conductivity. First, we evaluate the matrix traces:

tr
[
e−ivFSps (vx(t)vy(0) + vy(t)vx(t))

]
=

= −2v2
F pxpy (cos (pvF (s− t))− 2 cos (psvF ) + cos (ptvF ))

p2 , (4.99)

tr
[
e−ivFSps (vx(t)vy(0)− vy(t)vx(0))

]
= 2v2

F pz(sin(pvF (s− t))− sin(ptvF ))
p

.

(4.100)

The first trace vanishes after the angle integration. Thus the symmetric
part is absent for the Hall conductivity, as expected. For the antisymmet-
ric part we find (again k =

√
p2
x + p2

y):

Tr [δ(E −H) (vx(t)vy(0)− vy(t)vx(0))] =

= V

2π

∞∫
−∞

dseiEs
∞∫
0

kdk

(2π)
2v2
F pz (sin (pvF (s− t))− sin (ptvF ))

p
=

= V

∞∫
0

kdk

(2π)
2v2
F pz
p
×

[
e−ipvF tδ(E + pvF )− eipvF tδ(E − pvF )

2i − δ(E) sin(ptvF )
]
. (4.101)

Next we perform integration over time and find

∫ ∞
−∞

dteiωt Tr [δ(E −H) (vx(t)vy(0)− vy(t)vx(0))] = (4.102)

= V

∫ ∞
0

kdk
2v2
F pz
p

(
δ(ω − pvF )δ(E + pvF )− δ(ω + pvF )δ(E − pvF )

2i

−δ(E)δ(ω + pvF )− δ(ω − pvF )
2i

)
.
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Thus, for the imaginary part of the Hall conductivity we find

Im σ[x,y](ω) = 1
2
e2

4~ω

∞∫
0

kdk
2v2
F pz
p

∞∫
−∞

dE[f(E)− f(E + ~ω)]

× (−δ(ω − pvF )δ(E + pvF ) + δ(ω + pvF )δ(E − pvF )+
+ δ(E)[δ(ω + pvF )− δ(ω − pvF )]) =

= e2v2
F pz

4~ω

∞∫
0

kdk

p

(
δ(ω + pvF )[f(pvF )− f(pvF + ω) + f(0)− f(ω)]−

− δ(ω − pvF )[f(−pvF )− f(−pvF + ω) + f(0)− f(ω)]
)
. (4.103)

Also in the first line we canceled ρ(E) and V with the normalization
Tr δ(E−H). The factor 1/2 in the first line of the last equation accounts
for the definition of the antisymmetric part of the tensor. Now we can
integrate over momenta and obtain

Im σ[x,y](ω > 0) = e2

4ωvF pzΘ (ω − vF |pz|) (f(ω)− f(−ω)), (4.104)

Im σ[x,y](ω < 0) = e2

4ωvF pzΘ (−ω − vF |pz|) (f(−ω)− f(ω)). (4.105)

Combining these formulas together we arrive at Eq.(4.42).
Now using the Kramers-Kronig relation we can evaluate the real part:

Reσ[x,y](Ω) = 1
π

P.v.
∞∫
−∞

dω Im σ[µ,ν](ω)
ω − Ω

= e2vF pz
4π P.v.

∞∫
−∞

dω
Θ (|ω| − vF |pz|) (f(|ω|)− f(−|ω|))

ω(ω − Ω) . (4.106)

It is easy to check that Reσ[x,y](Ω) is even function in Ω by changing the
integration variable. The integral simplifies for the zero temperature when

f (|ω|)− f (−|ω|)→ θ (µ− |ω|)− θ (|ω|+ µ) = −θ(|ω| − |µ|). (4.107)

Thus, Eq.(4.106) gives Eq.(4.43).
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The system of equations for the Gell-Mann matrices is given by Eq.(4.49)
with the initial values λi(t = 0) = λi. The solutions for the vx(t) and
vy(t) are defined as vectors in the Gell-Mann basis (the identity matrix is
not present because it does not evolve with time and the coefficient before
this matrix is zero): vx(t) = vF

(
eAt
)

1j
λj , vy(t) = vF

(
eAt
)

6j
λj where(

eAt
)

1j
and

(
eAt
)

6j
are

(1j) = (4.108)

∆2q2
x cos(2ptvF )+pq2

y(p cos(ptvF ) cos(∆tvF )−∆ sin(ptvF ) sin(∆tvF ))+(p2−∆2)q2
x

p2(p2−∆2)

− cos(ptvF )(2∆q2
x sin(ptvF )+pq2

y sin(∆tvF ))+∆q2
y sin(ptvF ) cos(∆tvF )

p(p2−∆2)
qx sin(ptvF )(∆(2q2

x+q2
y) sin(ptvF )+pq2

y sin(∆tvF ))
p2(p2−∆2)

qy sin(ptvF )(2∆q2
x sin(ptvF )+p(q2

y−q2
x) sin(∆tvF ))

p2(p2−∆2)
qy sin(ptvF ) cos(∆tvF )

p
qxqy(−∆2−p2 cos(ptvF ) cos(∆tvF )+∆2 cos(2ptvF )+∆p sin(ptvF ) sin(∆tvF )+p2)

p2(p2−∆2)
− qxqy(−∆ sin(2ptvF )+∆ sin(ptvF ) cos(∆tvF )+p cos(ptvF ) sin(∆tvF ))

p(p2−∆2)√
3qxq2

y sin(ptvF )(p sin(∆tvF )−∆ sin(ptvF ))
p2(p2−∆2)



T

,

(6j) = (4.109)

qxqy(−∆2−p2 cos(ptvF ) cos(∆tvF )+∆2 cos(2ptvF )+∆p sin(ptvF ) sin(∆tvF )+p2)
p2(p2−∆2)

qxqy(−∆ sin(2ptvF )+∆ sin(ptvF ) cos(∆tvF )+p cos(ptvF ) sin(∆tvF ))
p(p2−∆2)

qy sin(ptvF )(∆(2q2
x+q2

y) sin(ptvF )−pq2
x sin(∆tvF ))

p2(p2−∆2)
qx sin(ptvF )(p(q2

x−q2
y) sin(∆tvF )+2∆q2

y sin(ptvF ))
p2(p2−∆2)

− qx sin(ptvF ) cos(∆tvF )
p

pq2
x(p cos(ptvF ) cos(∆tvF )−∆ sin(ptvF ) sin(∆tvF ))+∆2q2

y cos(2ptvF )+(p2−∆2)q2
y

p2(p2−∆2)
∆q2

x sin(ptvF ) cos(∆tvF )+pq2
x cos(ptvF ) sin(∆tvF )+∆q2

y sin(2ptvF )
p(p2−∆2)

−
√

3qy sin(ptvF )(pq2
x sin(∆tvF )+∆q2

y sin(ptvF ))
p2(p2−∆2)



T

.
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Integrating over t and s in Eqs.(4.4), (4.7) we find:

Reσxx(ω) = 2ππe
2v2
F

2ω

∞∫
−∞

dE[f(E)− f(E + ω)]
∞∫
0

k dk

(2π)2

[
δ (E − pvF )

×
(

∆2δ (ω + 2pvF ) + δ(ω)(p2 −∆2)
p2 −

(∆
2p −

1
2

)
δ(ω + (p−∆)vF )

)

+ δ (E + pvF )×(
∆2δ (ω − 2pvF ) + δ(ω)(p2 −∆2)

p2 + (∆ + p)δ ((p+ ∆)vF − ω)
2p

)

+ δ (E −∆vF )×((1
2 −

∆
2p

)
δ(ω − (p−∆)vF ) +

(∆
2p + 1

2

)
δ(ω + (p+ ∆)vF )

)]
,

(4.110)

where k =
√
q2
x + q2

y . At the same time we find Im σ[x,y] = 0 after taking
the trace of the product of velocities. Next, we calculate the integrals
which involve the delta-functions, first we integrate over E and then over
momenta, we get the expression

Reσxx(ω) = e2

4

δ(ω)
∞∫

∆vF

pvFd(pvF )
(

1
4T cosh2((pvF − µ)/2T )

+

+ 1
4T cosh2((pvF + µ)/2T )

)
p2 −∆2

p2 +

+Θ(|ω| − 2∆vF )
[

2∆2v2
F

ω2

(
f

(
−|ω|2

)
− f

( |ω|
2

))
+

+1
2(f(∆vF − |ω|)− f(∆vF ))

]
+ f(∆vF )− f(∆vF + |ω|)

2

]
, (4.111)

which is in fact Eq.(4.52) in the main text after restoring ~. The remaining
integral can be evaluated in terms of the polylogarithm functions.



Chapter 5

Stackings and effective
models of bilayer dice
lattices

5.1 Introduction

The search for novel materials with unusual dispersion relations is one of
the major topics in modern condensed matter physics. There are several
successful examples of this search that lead to vigorous research direc-
tions. Among them, graphene is, perhaps, the most well-known example
of a solid with an unusual dispersion relation. Indeed, at low energies,
graphene’s electron quasiparticles are described by a two-dimensional (2D)
Dirac equation [22, 108, 175]. The 2D Dirac spectrum can be also real-
ized at the surface of three-dimensional (3D) topological insulators [176–
178]. Finally, the 3D linear energy spectrum appears in Weyl and Dirac
semimetals [179–183].

Intermediate between 2D and 3D materials are layered systems. The
energy spectrum of these systems can be engineered by stacking the lay-
ers in a certain order. The electronic properties of the corresponding
few-layer systems can be drastically different from their single-layer coun-
terparts. For example, bilayer graphene in the Bernal (A − B) stacking
reveals a quadratic quasiparticle spectrum in the vicinity of band touch-
ing points [108, 184, 185]. This leads to a different integer quantum
Hall effect [184, 186] and optical response [187] compared to single-layer
graphene.
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Recently, there is a surge of interest in materials containing even more
exotic energy spectra with flat bands. Among these systems, perhaps, the
most well-known is twisted bilayer graphene (TBG) [1, 6, 188–192]; see
also Ref. [193] for a review. In essence, TBG is composed of two layers
of graphene rotated with respect to each other by some angle. It was
shown [189, 190] that for the specific, so-called “magic", twist angles, 2D
isolated flat bands appear in the energy spectrum of TBG. The presence
of flat bands is directly related to the nontrivial properties of TBG includ-
ing interaction effects such as superconductivity near integer band-filling
factors [1, 6, 191, 192, 194].

While TBG receives significant attention nowadays, historically, the
appearance of flat bands was predicted a few decades ago in Kagomé [195],
dice or T3 [11, 80], and Lieb [20] lattices. A Kagomé lattice consists of
equivalent lattice points and equivalent bonds forming equilateral triangles
and regular hexagons; each hexagon is surrounded by triangles and vice
versa. A Lieb lattice is described by three sites in a square unit cell where
two of the sites are neighbored by two other sites and the third site has
four neighbors. In essence, a dice lattice has a hexagonal structure with an
additional atom placed in the center of each hexagon. The central atom
acts as a hub connected to six rims while each of the rims is connected
to three hubs; see also Fig. 5.1(a) for a dice lattice. If one of the rims is
removed, a conventional honeycomb (graphene) lattice is restored. In the
rest of this work, we focus on dice lattice as a representative system. As
for experimental setups, dice lattices were proposed in artificial systems
such as optical lattices [12, 19]; see Ref. [92] for a review. As an example
of the experimental realizations of dice lattices, we mention Josephson
arrays [17] as well as optical realizations [19].

The lattice structure of the dice model with three atoms per unit cell
leads to three bands in the energy spectrum which is similar to that in
graphene albeit with Dirac points intersected by a flat band [13]. The
corresponding low-energy spectrum can be described in terms of spin-1
fermions, which have no analogs in high-energy physics. The flat band
leads to strikingly different physical properties with a paramagnetic re-
sponse [13, 196] instead of the diamagnetic one as in graphene [197] being
a representative example. To the best of our knowledge, multi-layer dice
lattices were not investigated before and, as in multi-layer graphene, are
expected to be different from their single-layer counterparts.

In this work, we combine two vigorous research directions related to
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exotic lattices and heterostructures by studying the properties of bilayer
dice lattices 1. We classify nonequivalent commensurate stackings of dice
lattices and formulate the corresponding tight-binding and effective low-
energy models. Depending on the type of the stacking, the low-energy
spectrum comprises Dirac points intersected by flat bands, three-fold-
corrugated bands, tilted bands, or even a semi-Dirac spectrum. For the
semi-Dirac spectrum, the energy bands are anisotropic with a linear dis-
persion relation along one direction and the quadratic dispersion along
the other [139]. For all four nonequivalent stackings, the sets of band-
crossing points originating from different layers are separated in energy
with the separation determined by the interlayer coupling constant. The
obtained bilayer models are illustrated by calculating the density of states
(DOS) and the spectral function. Being strongly modified by the inter-
layer coupling, the DOS and the spectral function provide an efficient way
to distinguish the stackings and set up the stage for the investigation of
the optical response in our forthcoming work [199].

The paper is organized as follows. We discuss the key properties of
a single-layer dice lattice in Sec. 5.2. The commensurate stackings are
classified as well as the tight-binding and effective models of a bilayer dice
lattice are formulated in Sec. 5.3. The spectral functions and the DOS
for each of the four stackings are presented in Sec. 5.4. The results are
summarized in Sec. 5.5. Technical details concerning the derivation of
the effective models, low-energy spectral functions, and the properties of
the bilayer lattices at larger coupling constants are presented in Appen-
dices 5.6, 5.7, and 5.8, respectively.

5.2 Single-layer dice lattice

As a warm-up and to set up the stage for the discussion of the bilayer
dice lattice, we present the model and the key properties of a single-
layer dice lattice. In the essence, a dice lattice is a hexagonal lattice
composed of two sublattices (denoted as A and B) with additional sites (C
sublattice) placed in the center of hexagons. The resulting inter-sublattice
connections are shown in Fig. 5.1(a). As one can see, the atoms of the C
sublattice act as hubs that connect to six neighbors, while the atoms of
the A and B sublattices (rims) connect only to three neighbors.

1Bilayer dice lattices should not be confused with the double-layer lattice studied in
Ref. [198].
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Figure 5.1. Panel (a): The schematic representation of single-layer dice lattice.
The A, B, and C sites are denoted by red, blue, and green dots. Panel (b): The
energy spectrum given in Eq. (5.3) along the Γ−K−M−Γ line in the Brillouin
zone (inset). Here, t is the hopping constant.

In the basis of states corresponding to the A, C, and B sublattices,
the tight-binding Hamiltonian reads [13]

H(q) =

 0 −t
∑
j e
−iq·δj 0

−t
∑
j e

iq·δj 0 −t
∑
j e
−iq·δj

0 −t
∑
j e

iq·δj 0

 , (5.1)

where t is the hopping constant, q is the wave vector in the Brillouin zone,
and

δ1 = a {0, 1} , δ2 = a

{√
3

2 ,−1
2

}
, δ3 = a

{
−
√

3
2 ,−1

2

}
(5.2)

denote the relative positions of the sites A with respect to the sites C; a is
the distance between the neighboring A and C sites. The same vectors but
with the minus sign denote the relative positions of sites B with respect
to sites C. In this model, the A and B sublattices are equivalent.

The energy spectrum of Hamiltonian (5.1) reads

ε0 = 0, ε± = ±t
√

6

√√√√1 + 2
3 cos

(√
3aqx

)
+ 4

3 cos
(√

3
2 aqx

)
cos

(3
2aqy

)
.

(5.3)
In essence, the dispersive bands ε± are the same as in graphene where the
quasiparticle spectrum contains two nonequivalent Dirac nodes K and K ′.
We show the corresponding energy spectrum in Fig. 5.1(b).
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In the vicinity of the Dirac points, Hamiltonian (5.1) can be linearized
and reads as

Hξ(k) = ~vF (ξSxkx + Syky) , (5.4)

where k = q−Kξ is the wave vector measured relative to the Dirac points
located at Kξ = ξ4π/(3

√
3a) {1, 0}, corresponding to K (ξ = +) and K ′

(ξ = −) points, and vF = 3ta/(
√

2~) is the Fermi velocity. Further, we
introduced the following spin-1 matrices:

Sx = 1√
2

 0 1 0
1 0 1
0 1 0

 , Sy = 1√
2

 0 −i 0
i 0 −i
0 i 0

 . (5.5)

The corresponding energy spectrum contains a Dirac point intersected by
a flat band

ε0 = 0, ε± = ±~vFk. (5.6)

As we discussed in the Introduction, heterostructures made of different
stackings of single-layer graphene is a major topic in graphene physics.
In the next section, we will introduce and study the simplest multi-layer
dice lattices composed of two commensurately stacked single-layer dice
lattices.

5.3 Bilayer dice lattice

5.3.1 Stackings of bilayer dice lattices

For the bilayer dice lattice, there are a few ways to commensurately stack
two dice lattices. The most obvious way is to have the sublattices of the
same type in two layers aligned with each other. Therefore, we call this
type of stacking the aligned AA − BB − CC stacking. Other stackings
can be obtained starting from the aligned stacking by rotating or shifting
one of the layers. A commensurate stacking is obtained by rotating one
of the layers around a C site by π/3. In this case, the sublattices A and
B in one of the layers are aligned with the sublattices B and A of the
other layer. Because the hub atoms C remain aligned, we dub this type
of the stacking the hub-aligned AB −BA− CC stacking. We notice that
the A and B sublattices have different connectivity compared to the C
sublattice. Therefore, a nonequivalent stacking is realized for rotating
around an A site by π/3; rotation around a B site (with the resulting
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AC −BB −CA stacking) is equivalent since the sublattices A and B are
assumed to be interchangeable within each of the layers. This results in
the mixed AA − BC − CB stacking where the sublattices B and C in
one layer are aligned with the sublattices C and B in the other, i.e., hubs
and rims intermix. Finally, we can shift one of the layers with respect
to the other by a lattice constant. For the corresponding commensurate
stacking, the sublattices A, B, and C in one layer are aligned with the
sublattices C, A, and B in the other. We call this type of the stacking
the cyclic AB−BC −CA stacking. Other stackings are either equivalent
or non-commensurate.

Certainly, it would be interesting to determine which of these com-
mensurate stacking has the lowest energy. Such an analysis would depend
on the realization of the dice lattice and is beyond the scope of this paper.
We find it instructive, however, to remind the corresponding results for
bilayer graphene. Bilayer graphene can exist in the Bernal-stacked A−B
form and, less commonly, in the A−A form, where the layers are exactly
aligned. Using the quantum Monte Carlo methods, it was found that the
Bernal stacking is more energetically favorable [200].

Thus, there are four nonequivalent commensurate stackings in a bilayer
dice lattice: (i) aligned AA−BB−CC, (ii) hub-aligned AB−BA−CC,
(iii) mixed AA − BC − CB, and (iv) cyclic AB − BC − CA. We model
interlayer hoppings in these stackings by the following inter-layer coupling
Hamiltonians:

H(a)
c = g

 1 0 0
0 1 0
0 0 1

 , H(h)
c = g

 0 0 1
0 1 0
1 0 0

 ,
H(m)

c = g

 1 0 0
0 0 1
0 1 0

 , H(c)
c = g

 0 0 1
1 0 0
0 1 0

 , (5.7)

where g is the coupling constant. In writing Eq. (5.7), we assumed only
the nearest-neighbor tunneling. For simplicity, the coupling constants for
all sites are taken to be equivalent.

The tight-binding Hamiltonian for a bilayer dice lattice reads as

Htot(q) =
(
H(q) Hc
HT

c H(q)

)
, (5.8)

where H(q) is given by the single-layer tight-binding Hamiltonian (5.1)
and Hc is defined by one of the coupling Hamiltonians in Eq. (5.7).
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Before discussing the effective models, it is instructive to analyze the
discrete symmetries of the tight-binding Hamiltonian (5.8) and compare
them with their counterparts in a single-layer dice lattice.

5.3.2 Discrete symmetries

Discrete symmetries including charge-conjugation, time-reversal, and in-
version symmetries play an important role in many systems allowing for
the classification of electron states and order parameters. The single-layer
dice lattice respects all of these symmetries as well as possesses the C3 ro-
tational symmetry. The coupling Hamiltonian of the bilayer lattice might,
however, break one or more of the discrete symmetries. We summarize
the symmetries in Table 5.1 and provide a more detailed discussion below.

Dice lattice Charge-conjugation
symmetry

Time-
reversal
symmetry

Inversion
symmetry

Single-layer M0K̂ 13K̂ W0
Aligned
AA−BB − CC M1K̂, M2K̂ 13K̂ W1, W2

Hub-aligned
AB −BA− CC M1K̂, M2K̂ 13K̂ W1, W2

Mixed
AA−BC − CB - 13K̂ -

Cyclic
AB −BC − CA - 13K̂ W2

Table 5.1. Symmetry properties of the tight-binding Hamiltonian for a bi-
layer dice lattice (5.8) in different commensurate stackings. The tight-binding
Hamiltonian of a single-layer dice lattice is given in Eq. (5.1) and the coupling
Hamiltonians are defined in Eq. (5.7). The symmetry matrices M1,2 and W1,2
are defined in Eqs. (5.10) and (5.13).

We begin our symmetry analysis with the charge-conjugation or particle-
hole symmetry (C-symmetry). The operator of the charge-conjugation
symmetry is defined as

ĈH(q)Ĉ−1 = −H(q). (5.9)

The corresponding operator necessarily contains the complex conjugation
operator K̂ and a matrix, i.e., Ĉ = MK̂. For the aligned AA−BB−CC
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and hub-aligned AB−BA−CC stackings, there are the following matrices
M :

M1 = τz⊗M0 and M2 = iτy⊗M0 with M0 =

0 0 1
0 −1 0
1 0 0

 . (5.10)
Here, τ is the vector of the Pauli matrices defined in the layer space
and M0 is the charge-conjugation symmetry matrix for a single-layer dice
lattice [166]. No charge-conjugation symmetry exists for the mixed AA−
BC − CB and cyclic AB −BC − CA stackings.

Let us proceed to the time-reversal symmetry (T -symmetry), which is
defined as

T̂H(q)T̂−1 = H(−q), (5.11)
where T̂ 2 = 1 because we do not explicitly include the spin degree of free-
dom for the dice lattice. It is straightforward to check that the single-layer
dice lattice is time-reversal symmetric with T̂ = K̂. Since the interlayer
coupling in Eq. (5.7) is real, all stackings considered in this work are
time-reversal-symmetric.

Finally, let us analyze the inversion symmetry (P-symmetry). This
symmetry changes sign of momentum and interchanges sublattices leaving
the Hamiltonian invariant. The operator of the inversion symmetry is
P̂ = WΠq→−q where the matrix W satisfies the following equation:

WH(q) = H(−q)W. (5.12)

In a single-layer dice lattice, the sublattices A and B interchange under
the inversion symmetry. The corresponding matrix W0 is given by the
antidiagonal 3 × 3 matrix [89]. For aligned AA − BB − CC and hub-
aligned AB −BA− CC stackings, we find the following matrices:

W1 = 12 ⊗W0 and W2 = τx ⊗W0 with W0 =

0 0 1
0 1 0
1 0 0

 . (5.13)

As with the other discrete symmetries, the aligned AB−BA−CC stacking
preserves the inversion symmetry of the dice lattice. As for the hub-aligned
AB − BA − CC stacking, the interchange of the layers is equivalent to
the rotation by π/3 with respect to sites C. Since the bilayer lattice in
the hub-aligned stacking retains the C3 rotation symmetry, it is also in-
variant with respect to the interchange of the layers. On the other hand,
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the mixed AA−BC −CB stacking breaks the inversion symmetry. This
follows from the fact that the mixed stacking explicitly distinguishes one
of the sublattices (A-sublattice). It is interesting that the cyclic stack-
ing is inversion-symmetric albeit the corresponding symmetry operator
necessarily involves the interchange of layers, i.e., only the W2 matrix in
Eq. (5.13) is valid. The interchange of layers compensates for the change
made by the in-plane inversion and restores the cyclic order of atoms.

5.3.3 Energy spectrum and effective models

In this Section, we present effective low-energy Hamiltonians for bilayer
dice models and compare their energy spectra with those of the tight-
binding counterparts. In the derivation of the effective models, we follow
the standard approach used, e.g., for bilayer graphene. The details of the
derivation of the effective models can be found in Appendix 5.6. The ef-
fective models are derived assuming strong interlayer coupling compared
to momenta in the vicinity of the Dirac points, i.e., g � ~vFk. In addi-
tion, in writing linearised effective models, we focus on the K point; the
Hamiltonian for the K ′ point can be obtained by replacing kx → −kx.

As we show in Figs. 5.2–5.5, while the dispersion relation is strongly
modified by the inter-layer coupling, the band-crossing points remain gap-
less. The inter-layer coupling shifts the points in energy: instead of a dou-
bly degenerate band-crossing point at g = 0, there are two band-crossing
points located at ±g. Effective models are able to capture the most signif-
icant features of the dispersion relation in the vicinity of the band-crossing
points. To simplify the notations, we consider effective models only for the
band-crossing point at g; the effective models and the energy spectrum
for the band-crossing point at −g can be obtained by the replacement
g → −g.

Aligned AA−BB − CC stacking

We start with the simplest, aligned AA−BB−CC, stacking. The effective
Hamiltonian in the vicinity of the K point is

H
(a)
eff = g13 + ~vF (S · k) . (5.14)

As one can see, in the leading nontrivial order in ~vFk/g, the effective
model for the AA−BB−CC stacking comprises two copies of the single-
layer linearized Hamiltonians (the other copy is obtained by replacing
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Figure 5.2. The energy spectrum of the tight-binding Hamiltonian (5.8) for the
aligned AA− BB − CC stacking along the Γ−K−M− Γ line in the Brillouin
zone (panel (a)). The tight-binding and effective (see Eq. (5.15)), energy spectra
at the K point and ε > 0 are compared in panels (b) and (c), respectively. In all
panels, we set g = t.

g → −g), see Eq. (5.4), separated by 2g in energy. The energy spectrum
is given by Eq. (5.6) where the positive and negative branches are shifted
by g, respectively, i.e.,

ε0 = g, ε1 = g + ~vFk, and ε2 = g − ~vFk. (5.15)

We present the energy dispersion for the tight-binding Hamiltonian
(5.8) in Fig. 5.2(a). The energy spectrum in the vicinity of the K point
is compared with that of the effective model in Figs. 5.2(b) and 5.2(c),
respectively. Notice that the flat band remains intact. Furthermore, both
tight-binding and effective Hamiltonians are particle-hole symmetric.

Evidently, the evolution of the energy spectrum with the inter-layer
coupling constant is drastically different from that in bilayer graphene.
While the band-touching points in the latter remain at zero energy, the
band-crossing points in a bilayer dice lattice become separated in energy.
The energy spectrum at ε = 0 contains nodal rings around K points. The
cross-section of such a nodal ring is shown in Fig. 5.2; see also Fig. 5.8 for
the spectral function.

Hub-aligned AB −BA− CC stacking

In contrast to the aligned stacking considered in Sec. 5.3.3, the hub-aligned
AB−BA−CC stacking requires one to include the second-order in ~vFk/g
terms to reproduce an anisotropy of the energy dispersion. The corre-
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sponding effective Hamiltonian reads

H
(h)
eff = g13 + ~vF√

2
kx

 0 1 0
1 0 1
0 1 0

+
(~vF√

2

)2 k2
y

2g

 1 0 −1
0 2 0
−1 0 1


+ ~vF√

2
a

4
(
k2
y − k2

x

) 0 1 0
1 0 1
0 1 0

 . (5.16)

The second-order terms are responsible for the asymmetry of the energy
spectrum. We have the following energy spectrum in the vicinity of the
K point:

ε0 = g + (~vFky)2

2g , (5.17)

ε1 = g + (~vFky)2

4g + ~vF
4g

√
(~vF )2k4

y + g2
[
4kx − a(k2

x − k2
y)
]2
, (5.18)

ε2 = g + (~vFky)2

4g − ~vF
4g

√
(~vF )2k4

y + g2
[
4kx − a(k2

x − k2
y)
]2
. (5.19)

If ~vF /g � a, the terms containing ak2
x and ak2

y, i.e., the last term in
Eq. (5.16) can be neglected. Then, the energy spectrum in Eqs. (5.18)–
(5.19) corresponds to a particle-hole asymmetric version of the semi-Dirac
spectrum [139] in which the dispersion relation is linear in one direction
and quadratic in the other. The particle-hole symmetry breakdown around
each of the band-crossing points is quantified by momentum-dependent
∼ (~vFky)2/g term.

We present the energy dispersion for the tight-binding Hamiltonian
(5.8) in Fig. 5.3(a). The energy spectrum in the vicinity of the K point
is compared with that of the effective model in Figs. 5.3(b) and 5.3(c),
respectively. The spectrum is clearly anisotropic with a linear disper-
sion relation along kx and the quadratic one along ky. Furthermore,
the particle-hole symmetry is broken for the effective model (i.e., the
bands in the vicinity of the band-crossing points are particle-hole asym-
metric) but is preserved in the tight-binding one; see Fig. 5.3(a). It is
interesting to notice also that the energy spectrum for the hub-aligned
AB − BA − CC stacking retains some features of the spectrum of the
aligned AA − BB − CC stacking, namely, the band remains flat along
certain directions (ky); cf. Figs. 5.2(a) and 5.3(a). In addition, the bands
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Figure 5.3. The energy spectrum of the tight-binding Hamiltonian (5.8) for the
hub-aligned AB−BA−CC stacking along the Γ−K−M−Γ line in the Brillouin
zone (panel (a)). The tight-binding and effective, see Eqs. (5.17)–(5.19), energy
spectra at the K point and ε > 0 are compared in panels (b) and (c), respectively.
In all panels, we set g = t.

at ε = 0 intersect along lines in momentum space rather than form nodes;
see also Fig. 5.8 for the spectral function.

Mixed AA−BC − CB stacking

In the case of the mixed AA − BC − CB stacking with the coupling
Hamiltonian defined by H(m)

c in Eq. (5.7), we derive the following effective
Hamiltonian:

H
(m)
eff = ~vF

2
√

2

 0 2kx k−
2kx 0 k−
k+ k+ 0

+ ~2v2
F

16g

 k2
x + 5k2

y 0 0
0 k2

x + 5k2
y 0

0 0 2k2


+ g13 −

(~vF
4

)2 1
g

 0 k2 2ikyk−
k2 0 2ikyk−

−2ikyk+ −2ikyk+ 0


− ~vFa

8
√

2

 0 2(k2
x − k2

y) k2
+

2(k2
x − k2

y) 0 k2
+

k2
− k2

− 0

 . (5.20)

The energy spectrum up to the second order in momentum is quite
cumbersome. Therefore, we leave the second-order terms only in the ε0
branch where they are crucial to describe the anisotropy and provide
leading order corrections at kx = 0. For other branches, the second-
order terms can be neglected compared to the leading-order linear terms.
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Therefore, we have

ε0 = g − ~vF√
2
kx + (~vF )2

8g
(
k2
x + 3k2

y

)
+ ~vF

4
√

2
a
(
k2
x − k2

y

)
, (5.21)

ε1 = g + ~vF
2
√

2
kx + ~vF

2
√

2

√
3k2

x + 2k2
y, (5.22)

ε2 = g + ~vF
2
√

2
kx −

~vF
2
√

2

√
3k2

x + 2k2
y. (5.23)

We present the energy dispersion for the tight-binding Hamiltonian
(5.8) with the coupling HamiltonianH(m)

c defined in Eq. (5.7) in Fig. 5.4(a).
The tight-binding energy spectrum in the vicinity of the K point is com-
pared with that of the effective model (5.20) in Figs. 5.4(b) and 5.4(c), re-
spectively. As one can see, dispersive Dirac-like bands become anisotropic.
Furthermore, as in the case of the hub-aligned AB −BA− CC stacking,
the additional band is no longer flat but acquires a noticeable anisotropic
dispersion along all directions. Another noticeable feature of the spectrum
is the absence of particle-hole symmetry in the tight-binding and effective
models. This is qualitatively different from the hub-aligned AB−BA−CC
stacking where the particle-hole symmetry is broken only in the effective
model; cf. Figs. 5.3(a) and 5.4(a).

Compared to the aligned and hub-aligned stackings, the energy spec-
trum at ε = 0 is drastically different. As is evident from Fig. 5.4(a), the
bands no longer cross. However, the band structure retains its semimetal-
lic nature with electron and hole bands located in different parts of the
Brillouin zone.

Cyclic AB −BC − CA stacking

The effective linearized Hamiltonian for the cyclic AB−BC−CA stacking
reads

H
(c)
eff = g13 + ~vF

2
√

2

 0 k− k+
k+ 0 2k−
k− 2k+ 0

 . (5.24)

The energy spectrum is determined by the following third-order equation:

(ε− g)3 −A1 (ε− g) +A2 = 0, (5.25)

where

A1 = 27
8 (atk)2 and A2 = 27

16(at)3kx
(
k2
x − 3k2

y

)
. (5.26)
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Figure 5.4. The energy spectrum of the tight-binding Hamiltonian (5.8) for the
mixed AA − BC − CB stacking along the Γ − K −M − Γ line in the Brillouin
zone (panel (a)). The tight-binding and effective, see Eqs. (5.21)–(5.23), energy
spectra at the K point and ε > 0 are compared in panels (b) and (c), respectively.
In all panels, we set g = t.

The solutions to Eq. (5.25) are

ε0 = g + 2
√
A1
3 cos

[
1
3arccos

(
3A2
2A1

√
3
A1

)
− 2π

3

]

= g + ~vFk cos
{1

3arccos
[cos (3ϕ)√

2

]
− 2π

3

}
, (5.27)

ε1 = g + 2
√
A1
3 cos

[
1
3arccos

(
3A2
2A1

√
3
A1

)]

= g + ~vFk cos
{1

3arccos
[cos (3ϕ)√

2

]}
, (5.28)

ε2 = g + 2
√
A1
3 cos

[
1
3arccos

(
3A2
2A1

√
3
A1

)
− 4π

3

]

= g + ~vFk cos
{1

3arccos
[cos (3ϕ)√

2

]
− 4π

3

}
. (5.29)

In the second expressions in Eqs. (5.27)–(5.29), we used the polar coordi-
nate system with {kx, ky} = k {cosϕ, sinϕ}.

We present the energy dispersion for the tight-binding Hamiltonian
(5.8) with the coupling Hamiltonian H

(c)
c , see Eq. (5.7), in Fig. 5.5(a).

The tight-binding energy spectrum in the vicinity of the K point is com-
pared with that of the effective model in Figs. 5.5(b) and 5.5(c), respec-
tively. As one can see, both dispersive and flat bands become corrugated



5.4 Density of states and spectral function 117

Γ K M Γ

-4

-2

0

2

4

ϵ

t

g/t=1

(a) (b) (c)

Figure 5.5. The energy spectrum of the tight-binding Hamiltonian (5.8) for the
cyclic AB − BC − CA stacking along the Γ − K −M − Γ line in the Brillouin
zone (panel (a)). The tight-binding and effective, see Eqs. (5.27)–(5.29), energy
spectra at the K point and ε > 0 are compared in panels (b) and (c), respectively.
In all panels, we set g = t.

due to the inter-layer coupling. The corrugation has C3 symmetry, see
also Eqs. (5.27)–(5.29). Despite being linear in momentum, the effective
model captures the main features of the energy spectrum reasonably well.
The particle-hole symmetry is broken both for tight-binding and effective
models.

The low-energy spectrum |ε|/t � 1 is similar to that for the mixed
stacking and also shows a semimetallic behavior, see Fig. 5.5(a). The
electron and hole pockets form a rather intricate Kagome pattern at ε = 0,
see Fig. 5.8(d).

5.4 Density of states and spectral function

In this Section, we discuss the spectral function and the DOS for the
bilayer dice lattices. To start with, we introduce the Green function in
the momentum space

G(ω ± i0; k) = i

~ω − µ−H(k)± i0 , (5.30)

where H(k) is the Hamiltonian (effective or tight-binding), µ is the Fermi
energy, and signs ± define the retarded (+) and advanced (−) Green
functions. By using the Green function (5.30), we define the spectral
function

A(ω; k) = 1
2π [G(ω + i0; k)−G(ω − i0; k)]

∣∣∣
µ=0

. (5.31)
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While the complete information about the spectral properties is provided
by the spectral function A(ω; k), another useful quantity measured in, e.g.,
scanning tunneling spectroscopy experiments, is the DOS ν(ω) defined as

ν(ω) =
∫

d2k

(2π)2 tr{A(ω; k)}, (5.32)

where the integration proceeds over the Brillouin zone if the tight-binding
Hamiltonian is used.

The explicit form of the Green and spectral functions is rather cum-
bersome even for the effective Hamiltonians. Only the case of the aligned
AA−BB−CC stacking is relatively simple because it corresponds to two
copies of a single-layer dice model. The Green function for the effective
model of the aligned stacking reads

G(a)(ω; k) = i

D(a)(ω)
×

(~ω − g)2 − (~vF k)2

2
~vF k−√

2 (~ω − g) (~vF k−)2

2
~vF k+√

2 (~ω − g) (~ω − g)2 ~vF k−√
2 (~ω − g)

(~vF k+)2

2
~vF k+√

2 (~ω − g) (~ω − g)2 − (~vF k)2

2

 . (5.33)

Here, we used the effective Hamiltonian H
(a)
eff given in Eq. (5.14) and

defined

D(a) ≡ det
(
~ω −H(a)

eff

)
= (~ω − g)

[
(~ω − g)2 − (~vFk)2

]
. (5.34)

The spectral function is

A(a)(ω; k) = −iD(a)(ω)F (a)(ω)G(a)(ω; k), (5.35)

where

F (a)(ω) = 1
(~vFk)2

{
δ (~ω − g − ~vFk) + δ(~ω − g + ~vFk)

2 − δ(~ω − g)
}
.

(5.36)
Then the DOS reads as

ν(a)(ω) = 1
2π(~vF )2

{
Λ2

2 δ(~ω − g) + |~ω − g|
}
, (5.37)

where Λ is the energy cutoff. The first term in Eq. (5.37) is related to the
flat band and the second term has the same form as the DOS in monolayer
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graphene. The DOS (5.37) is essentially the same as for a single-layer dice
model [12].

The spectral functions for the four stackings are presented in Fig. 5.6.
We focus on the energies in the vicinity of the band-touching points and
set g/t = 1. As one can see, there is a rather intricate pattern where
the particle-hole symmetry is evidently broken for all stackings except the
aligned one; see Figs. 5.6(a) and 5.6(e). Furthermore, the spectral func-
tions explicitly show an asymmetry of the energy spectrum in the vicinity
of the band touching points. The shape of the spectrum is noticeably
different for the energies below and above the band crossing point for
the hub-aligned AB − BA − CC stacking which is related to its pecu-
liar particle-hole asymmetric semi-Dirac spectrum; see Fig. 5.3 as well as
Figs. 5.6(b) and 5.6(f). The Dirac point intersected with the tilted band
can be inferred from Figs. 5.6(c) and 5.6(g) for the mixed AA−BC−CB
stacking. Finally, the asymmetry is related primarily to the additional C3-
corrugated band for the cyclic AB − BC − CA stacking; see Figs. 5.6(d)
and 5.6(h).

By integrating the spectral function over the Brillouin zone, we obtain
the DOS in Fig. 5.7. As expected, the DOS has the simplest structure for
the aligned AA−BB−CC stacking and reveals the peaks corresponding
to the flat bands at ~ω = ±g as well as two sets of smaller peaks corre-
sponding to the van Hove singularities; see Fig. 5.7(a). A similar structure
of the DOS with well-pronounced peaks at ~ω = ±g is observed for the
hub-aligned AB − BA − CC stacking with, however, different locations
of the van Hove singularities; see Fig. 5.7(b). The DOS for the mixed
AA − BC − CB and cyclic AB − BC − CA stackings has a rather com-
plicated structure with several peaks and absent particle-hole symmetry.
In both cases, there are peaks near ~ω = 0 and ~ω = −g, while the DOS
at ~ω = g is suppressed. Unlike the aligned and hub-aligned stackings
where the peaks at ~ω = ±g are related to flat or partially flat (having a
softer dispersion relation along one of the directions) bands, all peaks for
the mixed and cyclic stackings correspond to the extrema in the energy
spectrum. Another difference between these stackings is related to the
particle-hole symmetry. The DOS for the aligned and hub-aligned stack-
ings are particle-hole symmetric and demonstrate approximate particle-
hole symmetry around the band-crossing points (see Appendix 5.8 for the
results at larger g where the approximate symmetry becomes evident).
On the other hand, there is no particle-hole symmetry of any form for the
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Figure 5.6. The spectral functions in the vicinity of the band-crossing points.
The upper and lower panels correspond to ~ω/t = 0.9 and ~ω/t = 1.1, re-
spectively. The columns represent the results for the aligned AA − BB − CC
(panels (a) and (e)), hub-aligned AB − BA − CC (panels (b) and (f)), mixed
AA−BC −CB (panels (c) and (g)), and cyclic AB−BC −CA (panels (d) and
(h)) stackings. In all panels, we set g = t. We use tight-binding models with the
spectral function defined in Eq. (5.31) and introduce a phenomenological broad-
ening Γ = 0.05 t by replacing i0→ iΓ in the Green function.

mixed AA − BC − CB and cyclic AB − BC − CA stackings; this result
persists also for larger g, see Appendix 5.8.

5.5 Summary
In this work, we introduced and classified the nonequivalent commensurate
stackings for a bilayer dice (T3) lattice. These four stackings are the
aligned AA−BB−CC, hub-aligned AA−BC−CB, mixed AB−BA−CC,
and cyclic AB−BC−CA stacking. Other stackings are either equivalent
or non-commensurate. We found that the bilayer dice model demonstrates
a unique energy spectrum for each of the stackings.
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Figure 5.7. The density of states for bilayer dice lattices. Panel (a): aligned
AA − BB − CC (solid red line) and mixed AA − BC − CB (dashed blue line).
Panel (b): hub-aligned AB−BA−CC (solid red line) and cyclic AB−BC−CA
(dashed blue line). For all stackings, we employed the tight-binding model with
the spectral function defined in Eq. (5.31) and introduced the phenomenological
broadening Γ/t = 0.005 by replacing i0→ iΓ in the Green function.

In all stackings considered in this work, three energy bands intersect
at the K and K ′ points; the band-crossing points are separated in energy
with the separation determined by the inter-layer coupling constant g.
The spectrum of the aligned AA − BB − CC stacking resembles that
of two copies of the single-layer dice model and contains Dirac points
intersected by a completely flat in the whole Brillouin zone band; see
Fig. 5.2. The hub-aligned AB−BA−CC stacking allows one to realize the
semi-Dirac spectrum in the vicinity of the band-crossing points, for which
the dispersion relation is quadratic in one direction and linear in the other;
see Fig. 5.3. An unusual spectrum composed of a Dirac point intersected
by a tilted anisotropic band occurs for the mixed AA−BC−CB stacking;
see Fig. 5.4. Somewhat similar to the case of the hub-aligned AB−BA−
CC stacking, all bands have a semi-Dirac spectrum. Finally, the cyclic
AB−BC−CA stacking realizes an anisotropic energy spectrum with a C3-
corrugated additional band intersecting the Dirac point; see Fig. 5.5. The
low-energy spectrum, i.e., at |ε| � g, also depends on the stackings and
shows either nodal-line crossings (aligned and hub-aligned stackings) or
semimetallic behavior (mixed and cyclic stackings) where conduction and
valence bands acquire the same energy but are separated in the Brillouin
zone. Therefore, similar to multi-layer graphene structures, a multi-layer
dice lattice also holds the potential to be a flexible platform for realizing
different types of quasiparticle spectra.
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To clarify the shape of the energy spectrum and set up the stage for
analytical calculations, we derived effective low-energy models in the vicin-
ity of the band-crossing points. The corresponding models are given in
Eqs. (5.14), (5.16), (5.20), and (5.24). The energy spectrum of these
models captures the main features of the tight-binding spectrum such as
the anisotropy of the dispersion relation. Furthermore, the effective mod-
els allow us to introduce effective particle-hole symmetry with respect to
the band-crossing points. In particular, both tight-binding and effective
models are particle-hole symmetric for the aligned AA−BB−CC stack-
ing. While the tight-binding model is particle-hole symmetric, there is no
particle-hole symmetry for the effective model of the hub-aligned AB −
BA−CC stacking. The other two stackings, i.e., the mixed AA−BC−CB
and cyclic AB − BC − CA ones, both tight-binding and effective mod-
els are particle-hole asymmetric. The derived effective models might be
useful in various applications including the studies of transport, collective
modes, edge states, etc.

We used the obtained tight-binding models to calculate the spectral
function and the DOS in Sec. 5.4; see Figs. 5.6 and 5.7. The spectral
function provides an access to the cross-sections of the energy dispersion,
which could become rather intricate for certain stackings. The nontrivial
band structure of the bilayer dice model also has a direct manifestation
in the DOS. In particular, the flat band of the aligned AA − BB − CC
stacking leads to peaks corresponding to the band-crossing points. The
peaks are also observed for the hub-aligned AB − BA − CC stacking
due to a soft dispersion relation of the additional band. On the other
hand, the DOS of the mixed AA − BC − CB and cyclic AB − BC −
CA stackings is dominated by the van Hove singularities related to the
features of the spectrum away from the band-crossing points. In solid-
state realizations of the dice lattice, the spectral function and the DOS
can be probed via angle-resolved photoemission and scanning tunneling
spectroscopy experiments.

In the derivation of bilayer dice models, we have made a few simpli-
fying assumptions related to the structure of the lattice and the coupling
Hamiltonian. First, we considered only commensurate stackings where
sublattices of both layers are aligned. In writing the coupling Hamiltoni-
ans (5.7), only the nearest-neighbor hopping and equal coupling constants
for all sites were assumed. The breakdown of the symmetry between the
A and B sublattices might lead to a few additional stackings. It would be
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also interesting to investigate which of the proposed stackings is the most
energetically favorable. These studies are beyond this work and will be
reported elsewhere. Finally, we notice that the rich energy spectrum and
nontrivial DOS promise unusual optical responses of bilayer dice lattices.
The studies of the optical response will be presented in our forthcoming
work [199].

5.6 Appendix: Derivation of the effective model
In this Section, we discuss the derivation of the effective low-energy Hamil-
tonians presented in Sec. 5.3.3; see also Ref. [185] for the corresponding
discussion for bilayer graphene. We focus on the dynamics in the vicinity
of band crossing points, i.e., at |ε| ≈ g. Then, the off-diagonal terms in the
Hamiltonian (5.8) with the coupling Hamiltonians defined in Eq. (5.7) are
assumed to be large compared to the diagonal ones, i.e., g/(~vF q) � 1.
In this case, it is convenient to transform the full Hamiltonian (5.8) into
a new basis where the part of the Hamiltonian responsible for the inter-
layer coupling, i.e., the Hamiltonian (5.8) with H(q) = 0, is diagonal.
This allows us to separate the low- and high-energy (with respect to the
band-crossing point at ε = g) parts of the full Hamiltonian as

H =
(
hL u
u† hH

)
, (5.38)

where hL and hH correspond to low- and high-energy states, respectively.
The coupling between them is denoted by u. Now, the off-diagonal terms
are small compared to the diagonal ones. In the latter, it is convenient to
separate

hL = h
(0)
L + δhL and hH = h

(0)
H + δhH. (5.39)

Here, h(0)
L and h

(0)
H are large compared to δhL and δhH, respectively. In

addition, we separate ε = ε(0) + δε. For the effective model for the Dirac
point at ε = g, we have h(0)

L = g13, h(0)
H = −g13, and ε(0) = g. The

corrections δhL, δhH, and δε are determined by deviations from the band-
crossing point, e.g., δε ∼ ~vFk.

By using the eigenvalue equation HΨ = εΨ with H given in Eq. (5.38)
and Ψ = {ψL, ψH}, we can re-express the high-energy states via the low-
energy ones:

ψH = (ε13 − hH)−1 u†ψL. (5.40)
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This allows us to write an equation for ψL only,[
hL + u (ε13 − hH)−1 u†

]
ψL = εψL. (5.41)

By using Eq. (5.39) and expanding up to the leading nontrivial order in
deviations from the band-crossing point, we obtain

(ε13 − hH)−1 =
(
ε(0)13 − h(0)

H + δε13 − δhH
)−1

≈
[
1−

(
ε(0)13 − h(0)

H

)−1
(δε13 − δhH)

] (
ε(0)13 − h(0)

H

)−1
. (5.42)

This allows us to rewrite Eq. (5.41) as{
h

(0)
L − ε

(0)13 + δhL + u

[
1 +

(
ε(0)13 − h(0)

H

)−1
δhH

]
× (5.43)

×
(
ε(0)13 − h(0)

H

)−1
u†
}
ψL = δε

[
13 + u

(
ε(0)13 − h(0)

H

)−2
u†
]
ψL.

By introducing the wave function χ = S1/2ψL, which has a proper norm,
i.e., χ†χ = ψ†LψL + ψ†HψH, we rewrite Eq. (5.43) in the conventional form
Heffχ = δε χ. Therefore, the effective Hamiltonian reads

Heff = S−1/2
{
h

(0)
L − ε

(0)13 + δhL

+u
[
13 +

(
ε(0)13 − h(0)

H

)−1
δhH

] (
ε(0)13 − h(0)

H

)−1
u†
}
S−1/2, (5.44)

where
S = 13 + u

(
ε(0)13 − h(0)

H

)−2
u†. (5.45)

We use Eqs. (5.44) and (5.45) to derive the effective models in Sec. 5.3.3.
While the calculations are straightforward, the intermediate expressions
are bulky. Therefore, we do not present them here.

5.7 Appendix: Spectral functions at low energies
~ω = 0

For the sake of completeness, let us also show the spectral function at
~ω = 0 in Fig. 5.8. As one can see, the low-energy (ε = 0) spectrum
demonstrates nodal rings either surrounding the K-points (aligned stack-
ing) or the Γ-point (hub-aligned stacking); see Figs. 5.8(a) and 5.8(b). The
mixed stacking is characterized by separated patches. The most intricate,
Kagome, pattern occurs for the cyclic stacking shown in Fig. 5.8(d).
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Figure 5.8. The spectral functions at ~ω = 0. We used the aligned AA−BB−
CC (panel (a)), hub-aligned AB−BA−CC (panel (b)), mixed AA−BC −CB
(panel (c)), and cyclic AB − BC − CA (panel (d)) stackings. In all panels, we
set g = t. Green points represent the positions of the band-crossing points. We
use tight-binding models with the spectral function defined in Eq. (5.31) and
introduce the phenomenological broadening Γ = 0.05 t by replacing i0 → iΓ in
the Green function.

5.8 Appendix: Results for g/t > 1
Let us discuss the case of strong inter-layer coupling g/t & 1. It corre-
sponds to a somewhat exotic system where the inter-layer coupling con-
stant g is larger than the in-layer hopping parameter t. Nevertheless, it
might be relevant for artificial systems.

We show the energy spectrum and the DOS for the four nonequivalent
stackings in Fig. 5.9. Compared to the case of smaller coupling constant,
cf. with Figs. 5.2–5.5 and Fig. 5.7, the spectra and the DOS for the
low- and high-energy parts of the tight-binding model do not overlap.
The shape of the energy spectrum away from the band-crossing points
becomes less relevant at larger g/t for the aligned AA−BB−CC stacking.
Further, the particle-hole symmetry with respect to the band crossing
points becomes evident for the aligned AA − BB − CC and hub-aligned
AB − BA − CC stackings; see Figs. 5.9(a), 5.9(e), 5.9(b), and 5.9(f). In
agreement with the effective model, the anisotropy of the additional band
is suppressed at larger g; cf. red lines in Figs. 5.9(b) and 5.9(f). The
particle-hole asymmetry and complicated structure of the DOS remain
for the mixed AA − BC − CB and cyclic AB − BC − CA stackings; see
Figs. 5.9(c), 5.9(g), 5.9(d), and 5.9(h).
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Figure 5.9. The energy spectrum (top row) and the corresponding DOS (bottom
row) for the tight-binding Hamiltonian (5.8) along the Γ−K−M−Γ line in the
Brillouin zone at g/t = 5. The columns represent the results for the aligned
AA − BB − CC (panels (a) and (e)), hub-aligned AB − BA − CC (panels (b)
and (f)), mixed AA−BC −CB (panels (c) and (g)), and cyclic AB−BC −CA
(panels (d) and (h)) stackings.



Chapter 6

Orbital susceptibility of
T-graphene: Interplay of
high-order van Hove
singularities and Dirac cones

6.1 Introduction
Possible existence of two new graphene allotropes, planar tetragraphene
(or octagraphene) and buckled T-graphene composed of carbon octagons
with tetrarings, was demonstrated some time ago using the Density Func-
tional Theory (DFT) [52]. Several previous attempts to find such al-
lotropes were made in Refs.[201, 202]. It was noted that planar T-graphene
allotrope should be the most stable one after graphene while the buckled
T-graphene is not stable, and its fully relaxed state is very similar to
planar T-graphene [179]. Recently, the tetragraphene allotrope has been
predicted to possess superconductivity with critical temperature up to
around 20.8 K [203].

Some geometrical and electronic properties, as well as low-energy physics
of octagraphene were studied in Ref.[204], the phase diagrams were ana-
lyzed and the existence of Mott metal-insulator phase transitions in the
Hubbard model on square-octagon lattice was pointed out in [205–209].
In addition, structural and electronic properties of T-graphene and its
modifications were studied by DFT calculations in Refs.[210–213] and the
kinetic stability with time was analyzed in Ref.[214]. Later, it was shown
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[53] that the 2D monolayers of Zn2O2 and Zn4O4 also have nearly ideal
square-octagon lattice. In recent paper [53] the stability of multilayer
materials such as ZnO composed of square-octagon lattice was studied
with the help of DFT technique. Also it was shown that MoS2 transi-
tion metal dichalcogenide with square-octagon lattice can possess Dirac
fermions with Fermi velocity comparable to that of graphene [207]. The
coexistence of Dirac fermions and nearly flat bands seems to be a very
interesting property of square-octagon lattice and motivates us to study
physical quantities such as orbital susceptibility in terms on newly intro-
duced concept of high-order van Hove singularities [25].

As is known, when the doping level approaches VHS, system can ex-
hibit strong responses such as orbital paramagnetism in two-dimensional
case [50] or chiral superconductivity in the case of graphene [26]. An
ordinary VHS in two-dimensional electron system corresponds to loga-
rithmic divergence of the density of states (DOS). The distinctive feature
of high-order VHS is a more singular, power-law divergence of DOS with
an asymmetric peak [25, 215]. At the same time, the recent studies of
two-dimensional lattices uncovered a wide family of exotic band struc-
tures [15] with flat bands and multi-band touching points, at which the
quasiparticles are effectively described by high-pseudospin Hamiltonians.
Flat bands can be considered as a limiting case of VHS with delta-function
divergence of DOS.

The prominent examples of materials with high-order VHS of different
kind are bilayer graphene with tuned dispersion with the help of an inter-
layer voltage bias [216], Sr3Ru2O7 [217] and β − YbAlB4 [218]. Recently
it was also shown that when a high-order VHS is placed close to the Fermi
level, density wave, Pomeranchuk orders, and superconductivity can all be
enhanced [27]. The role of high-order VHS on different types of instabil-
ities in twisted bilayer graphene was analyzed in Ref.[219]. The presence
of van Hove singularities in twisted bilayer graphene [220] can lead to
valley magnetism [221], density waves and unconventional superconduc-
tivity [222] such as topological and nematic superconductivity [223], the
so-called "high-Tc" phase diagram [28], Kohn-Luttinger superconductivity
[224].

The orbital susceptibility [225] measures the response of a time-reversal
invariant electronic system to an external magnetic field. To evaluate
susceptibility of T-graphene analytically and numerically we use the for-
mulas for susceptibility derived in Refs.[226] and [227]. We analyze the
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A

B

C

D

Figure 6.1. T-graphene lattice structure, which is described in main text. Each
sublattice is denoted by its own color. Black dashed rectangle encircles one
elementary cell. The hopping parameters between two small squares are t1 and
inside each small square - t2.

role of VHS of both kinds in orbital susceptibility for electrons on square-
octagon lattice. Particularly, we show that the flat lines in tight-binding
band structure, which were firstly mentioned in Ref.[206], also represent
high-order VHS with inverse square root divergence of DOS.

The paper is organized as follows. In Sec.6.2 we describe the tight-
binding Hamiltonian of square-octagon lattice. Then, in Sec.6.3 we de-
rive effective low-energy Hamiltonians that describe bands around highly-
symmetric points in Brillouin zone (BZ). Also we identify the type of VHS
which are present in T-graphene. In Sec.6.4 we perform numerical eval-
uation of susceptibility, and then analyze the qualitative physical effects
of Dirac cones (Sec.6.4.2) and VHS using effective low-energy expansion
(Secs. 6.4.3 and 6.4.4). The role of high-order VHS is discussed also
in the Conclusions (Sec.6.5) where we summarize the obtained results.
In Appendix 6.6 we analyze flat lines in the dispersion of middle bands,
and in Appendix 6.7 we present expressions for the Green’s functions of
tight-binding and Löwdin Hamiltonians.

6.2 Tight-binding model

The square-octagon lattice consists of four atoms per unit cell which form a
small square, and is shown on Fig.6.1. According to Ref.[202], the numeri-
cal values for all nearest neighbor interatomic distances are approximately
equal to 1.429Å and lattice constant a = 3.47Å for T-graphene. Ref.[204]
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gives the intra-square, 1.48Å, and inter-squares, 1.35Å, distances, and sim-
ilar values were reported in Ref.[53]. The basis vectors of Bravais lattice
and reciprocal lattice are

a1 = (a, 0), a2 = (0, a);

b1 =
(

0, 2π
a

)
, b2 =

(2π
a
, 0
)
. (6.1)

In the tight-binding model, we take hopping parameters between atoms
in two neighboring small squares to be t1, and inside small square t2. The
corresponding tight-binding Hamiltonian has the form [204, 206]

HTg(k) = −


0 t2 t1e

ikxa t2
t2 0 t2 t1e

ikya

t1e
−ikxa t2 0 t2
t2 t1e

−ikya t2 0

 . (6.2)

and acts on the four-component wave functions ψ = (ψA, ψB, ψC , ψD)
(see Fig.6.1 for sublattice labels). The above mentioned difference in in-
teratomic distances can effectively described by tuning the hopping pa-
rameters t1 and t2. The values of these hopping parameters can be taken
from DFT calculations: t1 = 2.9 eV and t2 = 2.5 eV were used in Ref.[204],
while t1 = 2.98 eV and t2 = 2.68 eV were found from DFT calculations in-
side one layer of octagraphene [228].

The spectrum can be found from the equation det[εI −HTg(k)] = 0,
which after simplification reduces to [204, 206]

ε4 − 2
(
t21 + 2t22

)
ε2 + 4t1t22ε (cos (akx) + cos (aky))−

− 4t21t22 cos (akx) cos (aky) + t41 = 0, (6.3)

and has the form of depressed quartic equation. The spectrum is symmet-
ric with respect to rotations on the angle π

4 in k-space, because the lattice
has a C4 point symmetry group. Also the spectrum is symmetric with re-
spect to transformations ε→ −ε together with kx → kx± π

a , ky → ky ± π
a

(called chiral symmetry in [206]). The Brillouin zone of square-octagon
lattice is a square with −π

a < kx, ky <
π
a . The corresponding highly-

symmetric points are defined as

Γ = (0, 0), M =
(
±π
a
,±π

a

)
,

X =
(
±π
a
, 0
)
,

(
0,±π

a

)
, (6.4)



6.3 Spectrum structure around highly-symmetric points: van Hove
singularities 131

Figure 6.2. Spectrum which is given by Eq.(6.3) for three values of parameter
α = t2/t1: panel (a) α = 1

3 , panel (b) α = 1 and panel (c) α = 3
2 . The energy ε is

measured in units of hopping parameter t1. On the panel (b) one can observe the
three-band-touching points where the two Dirac cones meet nearly flat middle
band. Black lines denote the lines of constant energies.

and are located in the center, corners and the middle of each square site,
respectively. It is convenient to measure the energy in terms of t1 hopping
parameter, and introduce the dimensionless ratio of hopping parameters
α = t2/t1. The 3D plots of the spectrum defined by Eq.(6.3) for several
values of α are shown in Fig.6.2, while the 2D plots along highly-symmetric
lines are represented in Fig.6.3. For α = 1, near the three-band-touching
points Γ and M , one observes almost flat middle bands [206]. These two
middle bands support completely flat energy lines, which are extended over
full BZ. Below we proceed with description of highly-symmetric points in
terms of van Hove singularities in the DOS.

6.3 Spectrum structure around highly-symmetric
points: van Hove singularities

Firstly, let us present general definitions that will be used throughout the
text. By definition, the one-electron DOS per spin is given by

D(ε) =
4∑
i=1

∫
BZ

d2k

(2π)2 δ [ε− εi(k)] , (6.5)

with i running over the band dispersions εi(k) found from Eq.(6.3). Due
to chiral symmetry the DOS is an even function of energy. The ordinary
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VHS with the logarithmic diverging DOS occurs at saddle point ks of a
particular band in which

∇kε(k) = 0 and detD < 0, (6.6)

where Dij ≡ 1
2∂i∂jε(k) is the 2× 2 Hessian matrix of a dispersion ε(k) at

ks. Here and below we use short-hand notation ∂i = ∂ki . After proper
rotation of a basis, the dispersion around saddle point can be conveniently
represented as ε−εs ≈ −ζp2

x+βp2
y with wave vector deviation p = k−ks.

The two coefficients ζ and β are the eigenvalues of D and satisfy the
condition −ζβ = detD < 0.

The high-order VHS corresponds to saddle point with the following
properties [25]:

∇kε = 0 and detD = 0. (6.7)

This class of VHS can be divided into two types: ζ = β = 0 (multicrit-
ical VHS), or ζ 6= 0, β = 0. The DOS is expected to have a power-law
divergence at such points. The position of all VHS can be found by dif-
ferentiating Eq.(6.3) and setting ∇kε = 0, from which we get the system
of equations:

sin(akx) (ε− t1 cos(aky)) = 0,
sin(aky) (ε− t1 cos(akx)) = 0. (6.8)

Below we perform expansion of the energy spectrum of T-graphene
around highly-symmetric points and flat lines and identify the correspond-
ing VHS type with the DOS divergence.

6.3.1 Γ and M points

Before proceeding with calculation, we underline that previously men-
tioned symmetry of spectrum makes these two points equivalent up to
change of energy sign. Thus, the analysis around the Γ point can be
directly translated to the M point and vice versa by chiral symmetry.

To find the approximate expressions for band energies around highly-
symmetric points, we perform the series expansion of spectral equation
(6.3). We write ε = ε

(0)
i + δ, with ε(0)

i is the energy of i-th band exactly
at the given point in k-space. Then, we expand equation into series in δ
and ka (measured from the given point), and find the solution for δ in
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leading order. Performing this for Γ point, we find the following results in
the case α > 1:

ε1
t1
≈− 1− 2α+ α|k|2a2

4(α+ 1) , (6.9)

ε2,3
t1
≈1− a2α

4 (α2 − 1)

[
α|k|2 ±

√(
α2|k|4 − 4(α2 − 1)k2

xk
2
y

)]
, (6.10)

ε4
t1
≈− 1 + 2α+ α|k|2a2

4(α− 1) . (6.11)

The numbering of bands goes from the lower one to the upper one (for
α < 1 the indices 2 and 4 should be interchanged). From expression
(6.9) one can conclude that spectrum of tight-binding Hamiltonian (6.2)
is bounded by −1− 2α < ε < 1 + 2α at zero temperature. In particular,
it follows from Eq.(6.10) that the top of band ε3 has completely flat lines
along kx and ky axes.

In the case α = 1 we find the following expansions for three upper
bands (which have triply degenerate point (see also Ref.[206])):

ε1
t1
≈ −3 + 1

8a
2|k|2, ε3

t1
≈ 1−

k2
xk

2
ya

2

2|k|2 ,
ε2,4
t1
≈ 1± a√

2
|k| −

a2
(
k2
x − k2

y

)
2

16|k|2 .

(6.12)

The two bands ε2,4 form Dirac cones with Fermi velocity vF = at1/
√

2~
with additional square-order corrections in |k|a. The middle band ε3 is
completely flat in first-order approximation, but has nontrivial anisotropic
corrections of second-order in |k|a.

The Γ and M points define the energy boundaries of each band (see
Fig.6.2). For α ≤ 1 the bands are in the ranges [−1− 2α,−1], [−1,−1 +
2α], [1 − 2α, 1], [1, 1 + 2α] measured in units of t1. It follows from the
expansions (6.9)-(6.11) taken at k = 0. We find that the gap near ε = 0
opens for α < 1/2. For the α ≥ 1 the bands’ energy ranges are ε/t1 ∈
[−1− 2α, 1− 2α], [−1, 1] for both middle bands, and [−1 + 2α, 1 + 2α]. In
this case the gaps are opened for α > 1 above ε = t1 and below ε = −t1,
respectively. These features of spectrum are manifested in vanishing DOS
in corresponding gap energy ranges, see Fig.6.3.

Next, we identify the type of VHS at ε3 = t1 in α = 1 case. For
this purpose, we evaluate the DOS contribution for each band separately,
taking the leading term in wavevector expansion. The integration over
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wavevector in Eq.(6.5) is extended to cut-off parameter Λ of effective ex-
pansions (6.12). Then, the Dirac cones give the standard graphene-like
result:

D2(ε) +D4(ε) = |ε− t1|
πa2t21

. (6.13)

The evaluation of DoS for middle nearly flat band is more complicated,
but can be performed in polar coordinates:

D3(ε . t1) =
∫ Λ

0

∫ 2π

0

kdkdφ

(2π)2 δ

[
ε− t1 + t1

k2a2 sin2(2φ)
8

]
. (6.14)

We emphasize the fact that the middle band contributes only for ε < t1
and the corresponding DOS is asymmetric. The integration over k is easily
performed, and the integration over angle can be confined to first quadrant
with adding a total factor 4. Then, one should integrate in the limits where
the solutions under delta-function are possible φmin < φ < φmax:

φmin = 1
2 arcsin

√8(1− ε/t1)
Λ2a2

 , φmax = π

2 −
1
2 arcsin

√8(1− ε/t1)
Λ2a2

 .
(6.15)

Thus, the integral for DOS becomes

D3(ε . t1) = 1
t1a2

∫ φmax

φmin

dφ
4

sin2(2φ) ≈
2
t1a

Λ√
2(1− ε/t1)

. (6.16)

with the 1/
√

1− ε/t1 divergence, as was noted previously. This power-law
divergence together with asymmetry of the DOS clearly indicates, that this
point corresponds to high-order VHS (see middle peaks of the DOS in all
panels of Fig.6.3). Below we show that this holds true for all points on flat
lines in the dispersion ε3(k). Also one should note that this singularity has
larger exponent κ = 1/2 (which is defined as D3(ε ≤ t1) ∼ |t1−ε|−κ) than
in twisted bilayer graphene (κ = 1/4, [25]), and the same as in Sr3Ru2O7
[217] and β −YbAlB4 [218] materials.

Above we have found the long wavelength expansions of spectrum for
small values of wavevector k. However, these expansions are violated if
the model parameter α approaches 1. In this case we can use another
series expansion of the spectrum: we assume that |1−α| ∼ |ka| are of the
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Figure 6.3. The spectrum of T -graphene along the closed path X − Γ −M −
X and DOS for α = 1/3, 1 and α = 3/2. DOS is plotted on the right of
each spectrum, and is measured in units of 1

a2t1
. DOS is regularized with finite

broadening of levels, Γ = 0.01t1 to make plots smooth.

same order. Then, we replace both terms |1−α| and |ka| in Eq.(6.3) with
ζ|1 − α| and ζ|ka|, respectively, and expand the obtained equation into
powers of ζ. This guaranties that expansions keep contributions from both
small values |1−α| and |ka| in the same leading order. Next, we solve the
approximate spectral equation around each band, as for Eqs.(6.9)-(6.11),
and set finally ζ = 1, we find

ε1
t1

= −1− 2α+
(k2
x + k2

y)a2

8 ,
ε3
t1

= 1−
k2
xk

2
ya

2

2(k2
x + k2

y)
,

ε2,4
t1

= 1−

(1− α)±

√
(k2
x + k2

y)a2

2 + (1− α)2

 . (6.17)

The last two expressions show that the |1 − α| competes with |k|a and
their larger value defines the spectrum form in the leading order.
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6.3.2 X-points and flat lines

At X point the eigenvalues of Hamiltonian (6.2) are

εX1,4 = ∓t1
√

1 + 4α2, εX2,3 = ∓t1. (6.18)

The energies ε1,4 belong to lower and upper and bands, respectively, and
the energies ε2,3 belong to flat lines for the points in k-space, which are
situated in the middle between band-touching points. In Appendix 6.6
we show how the flat lines are related to the C4 point symmetry group
of the lattice and structure of tight-binding Hamiltonian. Performing the
series expansion of spectral equation in the same way as discussed above
Eq.(6.9) but for wavevectors around X = (0, πa ), we find:

ε1 ≈ εX1 + t1a
2

4

[
k2
x

(
1 + t1

εX1

)
−
(
ky −

π

a

)2
(

1− t1
εX1

)]
, (6.19)

ε4 ≈ εX4 + t1a
2

4

[
k2
x

(
1 + t1

εX4

)
−
(
ky −

π

a

)2
(

1− t1
εX4

)]
. (6.20)

These two dispersion relations represent ordinary VHS, defined via the
conditions (6.6). The Hessian matrix is diagonal and its’ elements are
the derivatives of above dispersion relations with respect to wavevectors,
D = diag(∂xxε, ∂yyε). The DOS exhibits a logarithmic divergence around
ε = εX1 and ε = εX4 : D1,4(ε) ∼ log

(
Λa2t1
|ε−εX1,4|

)
. These upper and lower

peaks in DOS are clearly visible on Fig.6.3.
Next, we find the series expansion of ε2,3 bands’ dispersion around

X point. Due to chiral symmetry mentioned after Eq.(6.3), it suffices to
make expansion only for upper band, while for lower band it can be found
by appropriate change of wavevectors. Expanding the spectral equation
(6.3) for third band around energy ε3 = t1 into series in kxa, we find:

ε3 ≈ t1 − t1

[
k2
xa

2

2 − k4
xa

4

4α2(1− cos(kya))

]
. (6.21)

This approximation works well only for k4
xa

4

4α2(1−cos(kya)) <
k2
xa

2

2 , since this
band has ε3 ≤ t1 energy for all points in BZ. The Hessian matrix for
the dispersion (6.21) has only one nonzero component on diagonal D =
diag

(
− t1a2

2 , 0
)
. Thus, we observe that the middle bands at X-point and
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in other points of flat line where 1 − cos(kya) 6= 1 exhibit a high-order
saddle point (detD = 0). One can check that the DOS for dispersion
(6.21) has a inverse square root divergence 1/

√
t1 − ε with energy, with

benchmark asymmetry:

D3(ε . t1) =
∫

d2k

(2π)2 δ

[
ε− t1

(
1− k2

xa
2

2

)]
= Λ√

2π2at1
√

1− ε/t1
.

(6.22)

In Fig.6.3 we present dispersion relations for T -graphene along the path
X −Γ−M −X which represents the main features in spectrum (left part
of each panel) and DOS (regularized by finite level broadening, right part
of each panel) for the values α = 1/3, 1 and α = 3/2. Note that the path
length in M −Γ direction is

√
2 times larger than that in X−M or Γ−X

directions. Our plots show that at energies ∓t1
√

1 + 4α2 DOS exhibits
logarithmic divergences, which are the standard VHS at X points. At
the same time, the much stronger peaks in DOS correspond to flat lines
in spectrum at energies ∓t1 which are ’high-order’ VHS. Our results for
spectra agree with the results of Refs.[204–206], however, the dispersion
ε3 in Eq.(6.12) was not recognized as the one exhibiting high-order VHS.

Fig.6.3 demonstrates also evolution of DOS as the function of the
hopping parameter α. At ε = 0 we find that for α < 1/2 there are no
states (insulating phase), while for larger α the states are present. For
energies |ε| < t1 the DOS is always finite for α > 1/2 meaning metallic
behavior. On the other hand, for energies |ε| > t1 and α > 1 we observe
the presence of gaps in the DOS.

In Sec.6.4 we will study the behavior of orbital susceptibility around
van Hove singularities.

6.3.3 Effective models of band touching point: linear and
quadratic approximations

In the tight-binding model of square-octagon lattice the band touching
exists at two highly-symmetric points - Γ and M . Since they are related
by chiral symmetry (see discussion after Eq.(6.3)), we need to build an
effective Hamiltonian only at one of these points. As was proposed in
Ref.[206], one can perform a rotation to C4v basis utilizing the following
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unitary matrix

UC4v = 1
2


1
√

2 0 1
1 0

√
2 −1

1 −
√

2 0 1
1 0 −

√
2 −1

 , (6.23)

which acts on four-component wave functions in sublattice space, defined
below Eq.(6.2). After such unitary transformation we obtain the following
first-order effective SU(3) Hamiltonian near the Γ point:

H
(1)
SU(3) = t1


1 0 − iakx√

2
0 1 iaky√

2
iakx√

2 − iaky√
2 2α− 1

 . (6.24)

This Hamiltonian is useful for understanding how the Dirac cones emerge
in spectrum for α = 1. The spectrum defined by this Hamiltonian is

ε0
t1

= 1, ε±
t1

= α±

√
a2|k|2

2 + (α− 1)2, (6.25)

where ε0 corresponds to the ε3 band of tight-binding model, and ε−,+ to
the bands ε2,4 respectively. The corresponding eigenvectors are

Ψ0 = 1
|k|

(ky, kx, 0) ,

Ψ− = (ikxa,−ikya,
√

2(1− ε−))√
2 (|k|2a2 + 2(1− α)(1− ε−))

,

Ψ+ = (−ikxa, ikya,
√

2(ε+ − 1))√
2 (|k|2a2 + 2(α− 1)(ε+ − 1))

. (6.26)

One should note that the linear Hamiltonian of such type does not capture
the spectral structure of middle band. Instead, the middle band is treated
as completely flat, and the corresponding effective theory is an example
of pseudospin-1 fermion models (see Ref.[229] for topological classification
of such theories). Since the aim of present paper is to analyze the role of
high-order VHS, we need to build the effective Hamiltonian that correctly
captures the dispersion of middle band at leading order in |k|a. The
needed dispersion is presented, for example, in Eq.(6.12) in the α = 1
case.
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To find corresponding effective Hamiltonian, we use Löwdin method
[230], which is also called Löwdin partitioning (the example calculation
for Lieb-kagome Hamiltonian was performed in Ref.[231]). The idea is to
perform the rotation of the full tight-binding Hamiltonian (6.2) via the
unitary transformation (6.23), and then represent it in a block-like form:

H =
(
Hαα Hαβ

Hβα Hββ

)
, (6.27)

where the α subspace describes SU(3) band-touching and β subspace cor-
responds to lower band, decoupled from other three bands by relatively
large gap. Then, the effective second-order Hamiltonian around band-
touching is written as

Hα = Hαα +Hαβ (ε0 −Hββ)−1Hβα, (6.28)

where ε0 = ε2,3(k = 0) = t1. For Γ point this Hamiltonian has the
following form

H
(2)
SU(3) = ε̂(0) + t1


−a2(2α+1)k2

x
4(α+1)

a2kxky
4(α+1) − iakx√

2
a2kxky
4(α+1) −a2(2α+1)k2

y

4(α+1)
iaky√

2
iakx√

2 − iaky√
2

k2a2

4

 , (6.29)

where ε̂(0) = t1diag(1, 1, 2α−1) . Such simple Hamiltonian is particularly
useful when the proper dispersion of all three bands is needed at leading
order.

6.4 Orbital susceptibility
In this section we study the manifestation of T-graphene spectrum fea-
tures considered above, in particular, VHS of both kinds, in the orbital
susceptibility. The susceptibility measures the response of a electronic
system to an external magnetic field and is defined standardly as the sec-
ond derivative of the grand canonical potential at zero field. The main
formula, which is most suitable in our case for numerical calculation, was
given in Ref.[232], the more general formula was derived in Ref.[227]. The
susceptibility can be represented as

χorb (µ, T ) = −µ0e
2

12~2
Im
πS

∫ ∞
−∞

nF(ε) Tr X̂dε. (6.30)
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Here nF (ε) = 1/(e(ε−µ)/T + 1) is the Fermi distribution, µ0 = 4π × 10−7

in SI units and S is the area of the sample. The operator X̂ is written
in terms of zero-field Green function G(k) and Bloch Hamiltonian H(k),
and ∂x,y are partial derivatives over momenta:

X̂ = G(k)∂2
xH(k)G(k)∂2

yH(k)−G(k)∂2
xyH(k)G(k)∂2

xyH(k)+
+ 2 ([G(k)∂xH(k), G(k)∂yH(k)])2 . (6.31)

The trace operation contains the integral over the BZ and the trace over
band indices:

Tr(•) =
∑
k

tr(•) = S

∫
BZ

d2k

4π2 tr(•). (6.32)

The orbital susceptibility can be rewritten in several other forms, one of
them without commutator [227],

χorb (µ, T ) = −µ0e
2

12~2
Im
πS

∫ +∞

−∞
nF (ε) Tr {GHxxGHyy

− GHxyGHxy − 4 (GHxGHxGHyGHy −GHxGHyGHxGHy)}dε.
(6.33)

Here G = G(k) is the Green function and H i, H ij denote the first and
second derivatives of Hamiltonian with respect to components of momenta
ki,j and the trace contains momenta integration, as defined in Eq. (6.32).
The last formula can be also rewritten [227] in terms of previously found
one by Gomez-Santos [226],

χorb(µ, T ) = −µ0e
2

2~2
Im
πS

∫ +∞

−∞
nF (ε) Tr {GHxGHyGHx

× GHy + 1
2 (GHxGHy +GHyGHx)GHxy

}
dε. (6.34)

Here the first term represents the Fukuyama result [233]. Three formulas
for susceptibility are equivalent of course, and the use of a specific formula
depends on possible simplifications, for example, for Hamiltonians linear
in momenta the expressions (6.31) or (6.33) are preferred since the terms
with second derivatives H ij vanish.

To check the numerical results below we use the sum rule which states
that the integral of the orbital susceptibility over the whole band vanishes:∫

χorb(µ, T )dµ = 0. (6.35)
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The derivation of the sum rule for general tight-binding model was given in
Ref.[13]. Below we apply the formulas for orbital susceptibility to partic-
ular models, namely - tight-binding model of tetragraphene and effective
low-energy SU(3) models.

6.4.1 Application of general formulas to tetragraphene

Let us now apply the formula (6.30) to tetragraphene Hamiltonian (6.2).
Since the second derivatives ∂2

xyH and ∂2
yxH vanish, the operator X̂ re-

duces to

X̂ = G(k)∂2
xH(k)G(k)∂2

yH(k) + 2 ([G(k)∂xH(k), G(k)∂yH(k)])2 .

(6.36)

The Green’s function is given in Appendix 6.7. Then, calculating the
trace of X̂ for each term separately, we find the expressions presented
in Appendix by Eqs.(6.59) and (6.60). We denote the first term with
second derivatives in (6.36) as “term 1” and the term with commutator
as “term 2”. Here and thereafter we use dimensionless energy parameter
ε → ε/t1 to simplify the form of expressions. One should notice that the
numerators in both terms (6.59) and (6.60) are real, thus the imaginary
part comes fully from integration over energy due to the presence of sin-
gular denominators. We write the determinants as

4∏
i=1

(ε − εi(k)), where

εi(k) are band energies measured in units of t1.
One can use also an alternative expression (6.34) for susceptibility

obtaining shorter expression

χorb(µ, T ) = −µ0e
2t1

2~2
Im
π

+∞∫
−∞

dεnF (t1ε)
∫
BZ

d2k

4π2 tr {GHxGHyGHxGHy} .

(6.37)

Evaluating the trace, we find

tr {GHxGHyGHxGHy} =
(

2αa(ε2 − 1)
det[ε− 1

t1
H(k)]

)4

sin2(kxa) sin2(kya).

(6.38)

The advantage of this formula is that the numerator is much simpler
comparing to Eqs.(6.59)-(6.60). However, the larger power of denominator
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makes it harder to perform numerical calculation, since the behavior at
band-touching point is more singular.

The integrals over energy can be evaluated analytically using Cauchy
formula with residues. Next, we need to calculate the integrals over
wavevector in full BZ. They are cumbersome and can be performed only
numerically.

The numerical evaluation can be performed by sampling many points
in BZ, and replacing integral by a quadrature sum. For this purpose
we use Monte Carlo approach - it converges very fast with increasing
number of sample points for multidimensional integrals. Taking N sample
points in BZ, the integral over d2k is replaced by the sum

∫
BZ

d2k
(2π)2 f(k) =

1
N

∑
j f(kj). Then, the final formula used in evaluation is

χorb (µ, T ) = χ0
N

N∑
j=1

[∑
i

res
ε=εi

nF (t1ε)fR(ε)
]
k=kj

. (6.39)

The residues were evaluated analytically using expressions (6.59)-(6.60),
and the band energy solutions of spectral equation (6.3) were substituted
numerically into final expressions. Here we introduced the scale factor for
susceptibility χ0 = µ0e

2a2t1/12~2.
The results of evaluation for χ as a function of chemical potential are

shown in Fig.6.4. We have checked that good convergence is reached for
N = 105 and N = 5 × 105 for the terms (6.59) and (6.60), respectively.
The errors of integration become in this case several orders less than the
absolute values of susceptibility. As a test, we checked that the sum rule,
which is given by Eq.(6.35), holds true with the same precision.

The orbital susceptibility exhibits standard weak diamagnetic peaks
near the edges of the spectrum, which can be easily understood from the
Landau-Peierls (LP) formula [227, 232, 234, 235],

χLP(µ, T ) = µ0e
2

12~2

4∑
i=1

∫
d2k

4π2n
′
F (εi)

(
∂2
xεi∂

2
yεi − ∂2

xyεi∂
2
xyεi

)
, (6.40)

which takes into account only intraband contributions. Here n′F (ε) is a
derivative of the Fermi distribution function. We note that the LP contri-
bution in total susceptibility comes from the first two terms in Eq.(6.31)
which contain second derivatives.

In the case of T-graphene only the lower (upper) band gives strong
contribution to the orbital susceptibility at the lower (upper) edge of the
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spectrum. This can be clearly seen from Figs.6.2 and 6.3, since at lower
(upper) edge the corresponding band in Γ (M) point is separated by a large
gap from other three bands. The dispersion of this band is quadratic in
momenta, see Eq.(6.9), and both derivatives in first term of LP formula
are positive. The second term exactly vanishes, and thus the LP suscep-
tibility is negative because n′F (ε) < 0. These peaks are clearly visible
in susceptibility described by the red line (term 1) in panels a) - c) of
Fig.6.4 (leftmost and rightmost negative peaks). At the same time, the
Landau-Peierls formula does not capture the contribution of high-order
saddle points. This is because the large contribution from a Fermi func-
tion derivative n′F (εi) is compensated by vanishing determinant of Hessian
matrix that is present in round brackets.

At the ordinary van Hove points, which are placed on upper and lower
bands at X-points at the energy levels εX1,4 = ∓

√
1 + 4α2, one finds strong

paramagnetic peaks. These peaks are also well-described by the Landau-
Peierls formula (6.40). Substituting series expansion (6.19) or (6.20), one
finds that only the first term in Landau-Peierls formula is nonzero, and
have positive sign due to opposite signs of ∂2

x and ∂2
y derivatives. More-

over, due to the divergent DOS at this energy level, the contribution of this
band dominates and leads to strong paramagnetism. This is also related
to famous magnetic breakdown phenomena [234], where the quasiclassical
approximation in terms of electronic orbits fails in the vicinity of saddle
points due to effects of tunneling from one trajectory to the neighboring
one that leads to rotation of the electron in a direction opposite to the
direction of classical rotation (see Ref.[50] for physical picture of this phe-
nomenon). Large paramagnetic peaks coming from the Landau-Peierls
formula are well seen in the red line (term 1) in the left panel of Fig.6.4
(α = 1/3). Due to the sum rule (6.35) they are almost compensated by
diamagnetic contribution in the green line (term 2). The competition of
two terms in Eq.(6.36) leads to several dia- to paramagnetic transitions
when we continuously change the chemical potential µ (see Fig.6.4). The
susceptibility for α = 3/2 behaves qualitatively similar to the case with
α = 1/3.

The behavior of the susceptibility is more interesting when the hop-
ping parameter α is close to unity. At the Fermi level µ = 0 the orbital
susceptibility does not exhibit any peculiar properties. However, when the
doping is tuned to band-touching point µ = t1, one can expect nontrivial
behavior of susceptibility due to presence of massless fermions forming a
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Dirac cone and flat lines with high-order VHS of DOS. Near the energy
levels µ = ±t1 (see the panels b) and d) in Fig.6.4) we find strong diamag-
netic and paramagnetic peaks. Since the contribution of high-order VHS
is suppressed in the LP formula (term 1) we are left with diamagnetic
contribution from the term 2 due to Dirac excitations when |µ| ' t1. On
the other hand, when |µ| / t1 there is a strong paramagnetic contribution
in the term 2 from high-order VHS. The existence of the orbital paramag-
netism is a necessary condition to cancel the diamagnetic contribution in
order to satisfy the sum rule (6.35). The competition of these two contri-
butions leads to a sharp dia- to paramagnetic transition at |µ| ≈ t1 (see
panels b), d) in Fig.6.4. This transition manifests itself in Fig.6.5 where
the susceptibility at µ = t1 is plotted as a function of α (blue line).

Below we analyze the orbital susceptibility for effective linear and
quadratic Hamiltonians given by Eqs.(6.24) and (6.29) to obtain some
insights into the physics of these peculiar features.

6.4.2 Analytical results in effective pseudospin-1 model around
band-touching

Let us firstly use the linear effective Hamiltonian around band-touching
point to find an analytical approximation for the susceptibility. It is given
by Eq.(6.24), and we omit the dimensional parameter t1, restoring it in
the final expressions for susceptibility,

H3 ≡
HSU(3)
t1

=


1 0 − iakx√

2
0 1 iaky√

2
iakx√

2 − iaky√
2 2α− 1

 . (6.41)

The corresponding Green’s function is

GSU(3) = 1
det[ε−H3]×

ε2 − a2k2
y

2 − 2α(ε− 1)− 1 −1
2a

2kxky − ia(ε−1)kx√
2

−a2kxky
2 ε2 − a2k2

x
2 − 2α(ε− 1)− 1 ia(ε−1)ky√

2
ia(ε−1)kx√

2 − ia(ε−1)ky√
2 (ε− 1)2

 .
(6.42)
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Figure 6.4. The dependence of susceptibility χ on chemical potential µ, mea-
sured in units of t1 hopping parameter, for three values of α: a) 1/3, b) 1, c) 3/2.
The susceptibility is normalized to scale factor χ0 = µ0e

2a2t1/12~2. The legend
on panel (b) shows the lines definitions in panels a) - c): dashed and dash-dotted
lines correspond to first and second term contributions in X̂ (see Eq.(6.36)), while
the solid line describes the total susceptibility (the different ranges in y-axis are
taken for better visibility). Panel d) shows the total susceptibility for three values
of α.
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The determinant in denominator is simple

det[ε−H3] = 1− ε
2

(
a2k2 + 2(ε− 1)(2α− ε− 1)

)
(6.43)

and gives two Dirac cones and the flat band at ε = 1. The first derivatives
of Hamiltonian are,

Hx
3 = a√

2

 0 0 −i
0 0 0
i 0 0

 , Hy
3 = a√

2

 0 0 0
0 0 i
0 −i 0

 , (6.44)

while all second derivatives are zero. Then, we can apply the formula
(6.34), which in our case reduces to

χorb(µ, T ) = −µ0e
2t1

2~2
Im
πS

+∞∫
−∞

nF (ε) Tr {GHxGHyGHxGHy}dε. (6.45)

Calculating the matrix trace we come at the orbital susceptibility given
by the triple integral,

χorb(µ, T ) = −µ0e
2t1

2~2
Im
π

∫ +∞

−∞
nF (t1ε)dε

×
∫
d2k

4π2
16a8k2

xk
2
y(

a2
(
k2
x + k2

y

)
+ 2(ε− 1)(2α− ε− 1)

)4 . (6.46)

The integration over momenta is easily performed using polar coordinates∫
d2k

4π2
16a8k2

xk
2
y(

a2
(
k2
x + k2

y

)
+ 2(ε− 1)(2α− ε− 1)

)4

= a2

12π ×


1

2(α−1)

(
1
ε−1 −

1
ε+1−2α

)
, α 6= 1,

− 1
(ε−1)2 , α = 1.

(6.47)

Then, using the formula

Im
∫ +∞

−∞

f(E)
(E − α)j dE = − π

(j − 1)!f
(j−1)(α), (6.48)

for susceptibility we finally obtain:

χorb(µ, T ) = −χ0
2π


1

2(α−1) (nF (t1(2α− 1))− nF (t1)) , α 6= 1,
t1n
′
F (t1), α = 1.

(6.49)
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Note that the case α = 1 is the limit of the upper case with α 6= 1. The
result for α = 1 has the same functional structure as the susceptibility for
low-energy model of graphene [227], but differs in numerical factor and
sign. The latter difference is connected with the presence of flat band
in spectrum. In such a case the flat band plays the crucial role giving
strong delta-like paramagnetic response of the system at µ = t1 instead
of diamagnetic, which was a result of two Dirac cones in graphene. Note
however, that the linear effective Hamiltonian does not capture the correct
dispersion of the middle band. The model contains completely flat band
and the spectrum (6.25) is similar to a gapped dice model where the para-
magnetic contribution from flat band exceeds diamagnetic contribution
from Dirac cones (see Ref.[196])

The plot of effective susceptibility defined by Eq.(6.49) is shown in
Fig.6.5 as a function of a hopping parameter α. On the plot it is denoted
as “Eq.(24)” effective theory. We compare its dependence on α with total
susceptibility of actual model evaluated numerically. The doping level µ =
t1 coincides with the band touching point at which the high-order VHS and
Dirac point are present for α = 1. The numerical calculations demonstrate
the presence of dia- to paramagnetic transition at α ≈ 0.94, which is
absent in the low-energy result (6.49). Thus, we should analyze more
precise effective model, which is given by the second-order Hamiltonian
Eq.(6.29).

6.4.3 Paramagnetic-diamagnetic phase transition at band-
touching point and second-order effective Hamilto-
nian

The calculation of orbital susceptibility for the second-order effective Hamil-
tonian (6.29) involves all terms in X̂ operator (6.31), because all first and
second derivatives of Hamiltonian (6.29) over ki are nonzero. The corre-
sponding Green’s function is presented in Appendix, see Eq.(6.61). Since
the calculations quickly become cumbersome, we present only numerical
results here. For the integrals over wave number k we use Monte-Carlo
method. The energies for each point in k-space are found from Eq.(6.63)
and then we use the integration formula (6.39) multiplied by volume factor
Λ2a2/π2. Here Λ is a cut-off parameter, that defines the region of appli-
cability of second-order effective Hamiltonian (6.29). We estimated it as
Λ ≈ 0.8 1

a by comparing exact spectrum with one obtained from Eq.(6.63).
The orbital susceptibility for the effective Hamiltonian (6.29) at the
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Figure 6.5. The dependence of orbital susceptibility on relative strength
of tight-binding parameters α = t2/t1 for µ = 1.0t1 and T = 0.05t1. The
numerically-evaluated total susceptibility (solid blue line) is compared with sus-
ceptibility obtained from effective pseudospin-1 Hamiltonians (6.24) (gray dash-
dotted line) and (6.29) (magenta dashed line).

band-touching point µ = 1.0t1 as a function of a hopping parameter α is
presented in Fig.6.5. It is clearly seen that this Hamiltonian exhibits dia-
to paramagnetic transition at α = 0.94 in agreement with tight-binding
Hamiltonian and in contrast to the linear effective Hamiltonian (6.24).
Qualitatively, one can expect that such a transition occurs due to the
presence of Dirac cones, which give strong diamagnetism in graphene [197,
227], and the proximity of a high-order VHS that should result in strong
paramagnetism. The competition between these two opposite responses
together with the weak role of fourth band leads to a dia- to paramagnetic
transition.

6.4.4 The role of van Hove singularities

Let us discuss the role of van Hove singularities in T-graphene. For the
ordinary VHS the orbital susceptibility exhibits paramagnetic peak [50].
This can be understood using the standard Landau-Peierls formula for
contribution of single band [227]. In T-graphene, at the doping level
µ = ±t1, one meets the three-band-touching points, at which two Dirac
cones and middle band with flat lines intersect. In a single-layer graphene
the presence of Dirac cones leads to singular diamagnetic contribution
into orbital susceptibility χ ∼ −χ0δ(µ) at zero temperature [197]. In the
gapped dice model, spectrum of which is similar to (6.25), the param-
agnetic contribution due to a flat band exceeds diamagnetic contribution
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from Dirac cones (see Ref.[196]). In the case of T-graphene, the presence
of middle band, which is not flat anymore but contains flat lines with
high-order VH singularities on it, leads to strong paramagnetic contri-
bution competing with diamagnetic contribution from Dirac cones, thus
resulting in sign change of the orbital susceptibility.

High-order Van Hove singularities manifest themselves in many phys-
ical quantities as was reported in, e.g., Refs. [27, 28, 216–224]. In the
present paper we focused on the magnetic susceptibility of non-interacting
electrons in square-octagon lattice. However, one should expect the mani-
festation of high-order VHS of T-graphene also in other physical quantities
besides orbital susceptibility which is a subject for future studies. We note
that the accessibility of doping levels beyond the van Hove singularity was
demonstrated in recent experiment for single-layer graphene [236].

6.5 Conclusions

In this paper we have studied the spectrum structure of tight-binding
model for square-octagon lattice and analyzed the emergence of Dirac
cones and van Hove singularities of different type. Firstly, we found that
the singularities in DOS, that correspond to the flat lines in spectrum
of T-graphene, represent VHS of high-order. Their benchmarks are large
divergence exponent κ = 1/2 (instead of logarithmic divergence for ordi-
nary VHS) and asymmetry of DOS near corresponding energy level. Such
high-order saddle points in spectrum are intermediate between the ordi-
nary saddle points and completely flat bands. Also, using the Löwdin par-
titioning, we derived an effective second-order Hamiltonian that correctly
captures dispersions of three bands near the high-order saddle point.

Secondly, we have studied the orbital susceptibility of electrons on
square-octagon lattice. We have found that while for ordinary VHS there
are standard paramagnetic peaks predicted long ago by Vignale [50], the
recently introduced high-order VHS [25] manifest themselves in a more
complicated way. The tight-binding magnetic susceptibility exhibits sev-
eral dia- to paramagnetic transitions when a chemical potential runs the
whole zone.

Studying the orbital susceptibility at band-touching point (µ = t1)
as a function of the tight-binding hoppings ratio α, we found a dia- to
paramagnetic transition at α ≈ 0.94. Its existence can be qualitatively
understood due to competitions of contributions from Dirac cones, which
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give strong diamagnetism, and high-order VHS that result in strong para-
magnetism. The effective low-energy pseudospin-1 Hamiltonian near the
Γ point (6.24) correctly describes paramagnetic contribution but does not
capture the dia- to paramagnetic transition. On the other hand, the effec-
tive Hamiltonian (6.29), which keeps second-order terms in a wavevector
expansion, correctly reproduces the dia- to paramagnetic transition at
α = 0.94 given by the tight-binding Hamiltonian.

The tight-binding parameter α can be varied due to in-plane defor-
mations keeping C4 symmetry, thus allowing to verify the dia- to param-
agnetic transition in experiment. Though it is not probably easy to fine-
tune the hopping parameters experimentally, one can observe the different
phases by analyzing different materials that are based on square-octagon
lattice (see Refs. [53, 211]). Also, the T-graphene model can be real-
ized experimentally with cold fermionic atoms in an optical lattice, or in
phononic crystals [237]. In these cases it could be possible to test directly
the sign change of the susceptibility as a function of α. In further stud-
ies of the T-graphene model it would be interesting to include impurities
and interactions. In the recent publication [238] the role of high-order
VHS in the orbital magnetic susceptibility was studied for twisted bilayer
graphene. These studies complement the analysis in the present work.

6.6 Appendix: Flat lines in dispersion of middle
bands and lattice symmetry

In this Appendix we show that the flat lines in spectrum are related to
the C4 point symmetry group. Also we show, that every point of flat line
represents a high-order saddle point. Firstly, one can check that setting
kx = 0 (or ky = 0) in spectral equation (6.3), it can be factorized:

(ε− 1)
(
−
(
4α2 + 1

)
ε+ 4α2 cos(aky) + ε3 + ε2 − 1

)
= 0. (6.50)

Here we used scaled energy parameter ε, measured in units of t1. Thus,
we find the middle band dispersion ε = 1, which describes a flat line. The
same property of spectral equation holds true for kxa = ±π and kya = ±π
lines, with ε = −1.

The wavevector in tight-binding Hamiltonian (6.2) is measured from Γ
point. Performing the rotation to the basis of C4 symmetry group via the
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unitary matrix given in Eq.(6.23), we find the transformed Hamiltonian
U †C4v

HUC4v . Along flat line direction kx = 0 (and similarly for ky = 0)
the Hamiltonian reduces to the matrix

U †C4v
HUC4v(kx = 0, ky) = t1

2 ×
−1− 4α− cos (aky) 0 i

√
2 sin (aky) −1 + cos (aky)

0 2 0 0
−i
√

2 sin (aky) 0 2 cos (aky) i
√

2 sin (aky)
−1 + cos (aky) 0 −i

√
2 sin (aky) −1 + 4α− cos (aky)

 .
(6.51)

Thus, one can conclude that the presence of flat lines is protected not only
by C4 symmetry, but also by the geometry of tight-binding model. As was
noted in Ref.[206], at the Γ point the flat lines represent nearly flat band
(two lines intersect at the angle π

2 ). When the two hopping parameters are
equal, α = 1, the corresponding linear low-energy model (6.24) treats the
middle band as completely flat and is similar to a pseudospin-1 model.
However, in the second order approximation (see Eq.(6.29)) the middle
band becomes dispersive. This fact distinguishes this pseudospin-1 model
from other models, such as Lieb [21], Kagome [75] or α − T3 [13, 14, 89]
models, where the presence of exactly flat band is supported by the lattice
geometry in tight-binding approximation.

Finally, expanding the spectral equation (6.3) near the flat line kx = 0
up to second order in kxa, we find

δ4 − 4δ3 + 4
(
1− α2

)
δ2 + 2α2δ

(
(kxa)2 − 2 cos(kya) + 2

)
+ 2α2(kxa)2(cos(kya)− 1) = 0. (6.52)

Here δ = 1 − ε measures the deviation of energy from flat line value. In
this equation we can omit the third and fourth order corrections (δ3 and
δ4), and obtain simple quadratic equation. The solution, that corresponds
to the flat line, has the following approximate behavior

δ ≈ k2
xa

2

2 − k4
xa

4

4α2 (cos (kya)− 1) . (6.53)

The determinant of Hessian matrix for such a solution is always zero.
Thus we conclude, that every point on a flat line is a high-order saddle
point.
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6.7 Appendix: Green’s function of tight-binding
and Löwdin Hamiltonians

In this Appendix we calculate the Green function of the tight-binding
Hamiltonian (6.2). Standardly it is defined as

G(k, ε) = 1
t1

(
ε− 1

t1
H(k)

)−1
(6.54)

for energy ε measured in units of t1. Using the formula for adjoint matrix,
we find the simple but long expression. For the clarity, we write the
Green’s function in block form:

G(k, ε) = 1
t1 det[ε− 1

t1
H(k)]

(
G11 G12
G†12 G22

)
. (6.55)

The corresponding blocks are given by the following expressions:

G11(k, ε) = (6.56)[
ε(−2α2 + ε2 − 1) + 2α2 cos kya αe−ikya(−ε+ eikxa)(−1 + εeikya)
αe−ikxa(−1 + εeikxa)(−ε+ eikya) ε(−2α2 + ε2 − 1) + 2α2 cos kxa

]
,

G12(k, ε) = (6.57)[
2α2(ε− cos kya)− (ε2 − 1)eikxa α(−ε+ eikxa)(ε− eikya)

α(−ε+ eikxa)(ε− eikya) 2α2(ε− cos kxa)− (ε2 − 1)eikya

]
,

G22(k, ε) = (6.58)[
ε(−2α2 + ε2 − 1) + 2α2 cos kya αe−ikxa(−1 + εeikxa)(−ε+ eikya)
αe−ikya(−ε+ eikxa)(−1 + εeikya) ε(−2α2 + ε2 − 1) + 2α2 cos kxa

]
.

These expressions are used to evaluate the traces for “term 1” and “term
2” (first and second terms in Eq.(6.36)):

tr [term 1] = a4

det[ε− 1
t1
H(k)]2

×[
4α2

((
ε2 + 1

)
cos(kxa)− 2ε

) ((
ε2 + 1

)
cos(kya)− 2ε

) ]
, (6.59)
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tr [term 2] = 16α2a4

det[ε− 1
t1
H(k)]3

×[
t21α

2
(
ε2 + 2

)2
+ 2α2ε2 cos(2kya)(ε cos(kxa)− 1)2 +

+ ε
(
α2ε

(
ε2 + 2

)
cos(2kxa) +

(
(ε2 − 1)2 − 4ε2α2

(
ε2 + 2

))
cos(kxa)

)
+ cos(kya)

(
−2
(
2α2 + 1

)
ε3 − 8α2ε− 4α2ε3 cos(2kxa)

+
(
4αε− ε2 + 1

) (
4αε+ ε2 − 1

)
cos(kxa) + ε5 + ε

)
− ε2

(
ε2 − 1

)2
]
.

(6.60)

For the second-order effective Hamiltonian (6.29), which is obtained with
the help of Löwdin partitioning method, the Green’s function is (we set
a = 1 to simplify the notation)

G = 1

t1 det
[
ε−

H
(2)
SU(3)(k)
t1

]× (6.61)


G11 −kxky(k2+16α−4ε+4)

16(α+1) − ikx(2(ε−1)+α(k2
y+2ε−2))

2
√

2(α+1)

−kxky(k2+16α−4ε+4)
16(α+1) G22

i(2(ε−1)+α(k2
x+2ε−2))ky

2
√

2(α+1)
ikx(2(ε−1)+α(k2

y+2ε−2))
2
√

2(α+1) − i(2(ε−1)+α(k2
x+2ε−2))ky

2
√

2(α+1) G33


(6.62)

where

G11 =
[
1− k

2

4 − 2α+ ε

] [
(2α+ 1)k2

y

4(α+ 1) + ε− 1
]
−
k2
y

2 ,

G22 =
[

(2α+ 1)k2
x

4(α+ 1) + ε− 1
] [

1− k
2

4 − 2α+ ε

]
− k2

x

2 ,

G33 = (ε− 1)2 +
(2α+ 1)k2(ε− 1) + αk2

xk
2
y

4(α+ 1) .



154 Chapter 6. T-graphene

and the determinant is given by the following third-order polynomial:

det

ε− H
(2)
SU(3)(k)
t1

 = ε3 − ε2 (α (8α− k2 + 12
)

+ 4
)

4(α+ 1)

− ε
(
−32(α+ 1)(4α− 1) + αk4 cos(4φ) + (3α+ 2)k4 + 16α(2α+ 1)k2)

32(α+ 1)

− 128
(
2α2 + α− 1

)
+ αk6 + 4(α− 2)(2α+ 1)k4

128(α+ 1)

+ 32α(4α+ 1)k2 + αk4 (8α+ k2 + 4
)

cos(4φ)
128(α+ 1) . (6.63)

These expressions were used above for the calculation of orbital suscepti-
bility from the effective second-order model.



Chapter 7

Shot noise distinguishes
Majorana fermions from
vortices injected in the edge
mode of a chiral p-wave
superconductor

7.1 Introduction

A chiral p-wave superconductor is the superconducting counterpart to a
quantum Hall insulator [239]: Both are two-dimensional materials with a
gapped bulk and gapless modes that circulate unidirectionally (chirally)
along the boundary. Backscattering is suppressed when the counterprop-
agating edge modes are widely separated. The resulting unit transmission
probability for quasiparticles injected into an edge mode implies a quan-
tized thermal conductance for both systems — half as large in the su-
perconductor because the quasiparticles are Majorana fermions [240–242]
(coherent superpositions of electrons and holes) rather than the Dirac
fermions (independent electrons and holes) of an integer quantum Hall
edge mode.

This close correspondence [243] between topological insulators, as in
the integer quantum Hall effect, and topological superconductors, as in
chiral p-wave superconductivity, refers to their fermionic quasiparticle ex-
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citations. The superconducting phase allows for an additional collective
degree of freedom, a winding of the phase field forming a vortex, with
non-Abelian rather than fermionic exchange statistics [241, 244]. Vortices
are typically immobile, pinned to defects in the bulk, but they may also
be mobile phase boundaries in the edge mode. The 2π winding of the
superconducting phase around a bulk vortex corresponds on the edge to
a π-phase domain wall for Majorana fermions [245].

It is the purpose of this chapter to identify electrical signatures of edge
vortices, and to distinguish these from the familiar electronic transport
properties of Majorana fermions [246–254]. For that purpose we contrast
the two injection geometries shown in Fig. 7.1. Majorana fermions are
injected by a voltage source, contacted via a tunnel junction to an edge
mode. The analogous edge vortex injector is a flux-biased Josephson junc-
tion. A 2π increment of the superconducting phase difference φ injects one
vortex into each of the opposite edges [255].

If the edge modes would propagate in the same direction, the vortices
could fuse in a metal contact [256]. This fusion process is associated with
a noiseless charge transport of ±e/2 [257, 258]. (The sign depends on
how the world lines of the vortices are braided.) For counterpropagating
edge modes as in Fig. 7.1 the vortices cannot fuse, they will enter different
contacts to the left and to the right of the Josephson junction. The charge
transfer into each contact is zero on average, but it is not noiseless: The
injection process produces shot noise, in the case of edge vortices as well
in the case of Majorana fermions.

The equal-weight electron-hole superposition that is characteristic of a

Figure 7.1. Topological superconductor with chiral Majorana edge modes. In
panel a) a voltage bias across a tunnel junction injects Majorana fermions into
the right-moving edge mode. In panel b) a flux bias across a Josephson junction
injects edge vortices in the counter-propagating edge modes. The two injection
processes can be detected and distinguished by shot noise measurements.
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Majorana fermion results in a charge variance of e2 per injected fermion,
producing a quantized shot noise power [54]. We find that the charge
variance per edge vortex is nonlocal, it depends logarithmically on the
separation L between pairs of vortices on the same edge:

VarQvortex = e2

π2 ln(L/λ), for L� λ. (7.1)

Here λ is the width of the π-phase domain wall, which sets the size of
the edge vortex core. The dependence on the ratio L/λ persists when
L� λ, so when the domain walls do not overlap. This nonlocality signals
the long-range correlation that exists between vortices in a topological
superconductor.

The outline of this paper is as follows. In the next section we formulate
the general scattering theory on which our analysis is based. The Majo-
rana nature of the quasiparticle excitations implies that expectation values
of pairs of creation operators do not vanish — as they would for Dirac
fermions. This technical complication plays no role for DC transport, but
needs to be accounted for in the case of time dependent perturbations,
when inelastic scattering plays a role [259]. In Sec. 7.3 we generalize a
relationship between the charge variance and the average particle current
derived in Ref. [54] for DC transport to the time dependent setting. The
charge noise of the edge vortices is calculated in Sec. 7.4 and compared
with the known result [260] for Majorana fermions in Sec. 7.5. We pro-
pose a voltage-biased geometry in which the edge vortices produce a shot
noise power that increases ∝ V lnV — in contrast to the linear voltage
dependence of the Majorana fermion noise power.

7.2 Trace formula for the variance of the trans-
ferred charge

We start with a general inelastic scattering formulation, in terms of a set
of fermionic quasiparticle operators an(E) for the incoming modes and
bn(E) for the outgoing modes, related by the energy dependent scattering
matrix,

bn(E) =
∫ ∞
−∞

dE′

2π
∑
m

Snm(E,E′)am(E′). (7.2)

Each mode index n = 1, 2, . . . N contains an electron and hole component
in a Nambu spinor. Pauli matrices σx, σy, σz act on the spinor degree of



158Chapter 7. Distinguishing Majorana fermions from vortices by shot noise

freedom (with σ0 the 2× 2 unit matrix). The scattering matrix is unitary
and constrained by particle-hole symmetry,

S(E,E′) = σxS
∗(−E,−E′)σx. (7.3)

We seek the charge transferred by quasiparticle excitations at E > 0
into a subset M of the N electron-hole modes. The projector DM selects
theseM modes and the projector P+ selects positive energies. The charge
operator for the outgoing modes is

Q = e

∫ ∞
0

dE

2π

M∑
n=1

b†n(E)σzbn(E) ≡ eb†σzDP+b. (7.4)

The scattering matrix converts this into an expression in terms of the
incoming mode operators,

Q = ea† · S†σzDP+S · a. (7.5)

In these equations the Pauli matrix σz accounts for the opposite charge
±e of the electron and hole components of the Nambu spinor. (For ease
of notation we will set e ≡ 1 in many of the equations.)

Moments of Q are evaluated by taking pairwise contractions of a, a†,
each of which are given by the Fermi function f(E),

〈a†n(E)am(E′)〉 = f(E)σ0δnmδ(E − E′),
〈a†n(E)a†m(E′)〉 = f(E)σxδnmδ(E + E′). (7.6)

The second contraction is anomalous [259], it does not vanish because of
the particle-hole symmetry relation a(E) = σxa

†(−E). If the scattering
is elastic the anomalous contraction which couples +E to −E does not
contribute — but in the more general case of inelastic scattering it cannot
be ignored for any moment higher than the first.

In the zero-temperature limit the Fermi function f(E) = (1+eE/kBT )−1

becomes a projector P− onto negative energies. We will take that limit
in what follows. This also means that thermal noise from the incoming
modes need not be considered.

Carrying out the contractions we find the average 〈Q〉 and the variance
VarQ = 〈Q2〉 − 〈Q〉2 of the transferred charge,

〈Q〉 = TrP−S†σzDP+S, (7.7)
VarQ = TrP−S†DP+S − TrP−S†σzDP+SP−S†σzDP+S

− TrP−S†σzDP+SP−S†σzDP−S. (7.8)
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The third term in Eq. (7.8) originates from the anomalous contraction
in combination with the particle-hole symmetry relation (7.3). The third
term combines with the second term to remove one energy projector,

VarQ = TrP−S†DP+S − TrP−S†σzDP+SP−S†σzDS. (7.9)

While Eq. 7.7 for the average charge has an intuitive interpretation
of scattering from filled states at E < 0 to empty states at E > 0, the
formula (7.9) for the charge noise is less intuitive. As a check, we show
in App. 7.6 that it agrees with the more general Klich formula of full
counting statistics [261].

7.3 Correspondence between charge variance and
average particle number

We apply the general scattering theory to the setting of Fig. 7.1b. There
are M electron-hole modes in each metal contact, N = 2M in total,
coupled via a pair of counterpropagating Majorana edge modes. The
coupling is inelastic because of a time dependent phase difference φ(t)
across the Josephson junction that separates the two contacts. The 2π
increment of φ imposed by a flux bias injects an edge vortex into each
contact, and we wish to determine the charge noise associated with that
injection process.

The scattering matrix decomposes into transmission blocks t, t′ and
reflection blocks r, r′, each of dimension M ×M ,

S(E,E′) =
(
r(E,E′) t(E,E′)
t′(E,E′) r′(E,E′)

)
. (7.10)

The projector

D =
(

1 0
0 0

)
(7.11)

selects the matrices t and r in the expressions (7.7) and (7.9) for the mean
and variance of the charge transferred into the right contact,

〈Q〉 = TrP−
(
t†σzP+t+ r†σzP+r

)
, (7.12)

VarQ = TrP−
(
t†P+t+ r†P+r

)
− 2 Re TrP−r†σzP+tP−t†σzr

− TrP−
(
r†σzP+rP−r†σzr + t†P+σztP−t†σzt

)
. (7.13)
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We consider the structure of the matrices t and r in more detail.
The M ×M transmission matrix t(E,E′) describes propagation from

the left contact into the right contact via the right-moving Majorana mode.
It can be decomposed as

tnm(E,E′) = un(E)vm(E′)τ(E,E′), (7.14)

in terms of the inelastic transmission amplitude τ(E,E′) of the Majorana
mode. The n = 1, 2, . . .M spinors un(E) and vn(E), normalized to unity,

M∑
n=1
|un(E)|2 = 1 =

M∑
n=1
|vn(E)|2, (7.15)

describe the elastic coupling between the Majorana mode and the electron-
hole modes at the interface with the right contact (un) and the left contact
(vn).

TheM×M reflection matrix r(E,E′) for reflection of an electron-hole
mode incident from the right contact can be decomposed as

rnm(E,E′) = dnm(E)δ(E − E′) + un(E)wm(E′)ρ(E,E′). (7.16)

The first term dnm describes direct elastic reflection at the interface be-
tween the superconductor and the right contact. The second term de-
scribes inelastic reflection at the Josephson junction, decomposed as the
product of the transmission amplitude wm from the right contact into the
left-moving Majorana mode, the reflection amplitude ρ from the Joseph-
son junction, and the transmission amplitude un from the right-moving
Majorana mode into the right contact. Both un and wm are normalized
to unity. Note that un appears also in the decomposition (7.14) of tnm.

We make the key assumption that the elastic scattering at the super-
conductor - contact interface is only weakly energy dependent near the
Fermi level, E = 0, so that we may approximate un(E) ≈ un(0).

To justify this approximation, we note, on the one hand, that the
characteristic energy dependence of the elastic scattering amplitudes is
on the scale of Eelastic ' ~vF/ξ0, where vF is the Fermi velocity and
the superconducting coherence length ξ0 sets the effective width of the
interface. On the other hand, the characteristic energy dependence of the
inelastic scattering by the Josephson junction is on the scale Einelastic =
~(W/ξ0)φ̇, where W is the junction width and φ̇ the rate of change of
the superconducting phase [255]. It is consistent to neglect the energy
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dependence of un(E) while retaining the energy dependence of τ(E,E′)
and ρ(E,E′) if Einelastic � Eelastic, hence if the junction is sufficiently
narrow:

Einelastic � Eelastic ⇒W � vF/φ̇. (7.17)
As we show in App. 7.7, this single assumption combined with particle-

hole symmetry implies that the following matrix products vanish:

P−t†σzP+tP− = 0, P−r†σzP+rP− = 0, P−r†σzP+tP− = 0. (7.18)

What underlies these three identities is that the inelastic contributions
to the transmission and reflection matrices are rank-one matrices in the
mode index.

It follows upon combination of Eqs. (7.12) and (7.18), and noting that
TrP−(· · · ) = TrP−(· · · )P−, that there is no charge transfer into the right
contact on average,

〈Q〉 = 0. (7.19)
For the charge noise (7.13), Eq. (7.18) implies that the second and third
trace vanish, only the first trace remains:

VarQ = e2 TrP−
(
t†P+t+ r†P+r

)
P−

= e2
∫ ∞

0

dE

2π

∫ 0

−∞

dE′

2π
(
|τ(E,E′)|2 + |ρ(E,E′)|2

)
. (7.20)

Eq. (7.20) states that the charge variance (divided by e2) equals the av-
erage number of quasiparticles injected into the right contact by the time
dependent phase difference across the Josephson junction. This relation-
ship is analogous to the known relationship between electrical shot noise
and thermal conductance in a setting without time-dependent driving [54,
260, 262].

7.4 Evaluation of the charge noise
We evaluate Eq. (7.20) for the case that the phase difference φ across
the junction is advanced at a constant rate φ̇ = 2π/T , via a linearly
increasing flux bias Φ(t) = (h/2e)t/T . We work in the adiabatic regime
that the propagation time τW = W/vF along the Josephson junction is
small compared to the inelastic scattering time,

τW � ~/Einelastic ⇒W � (ξ0/W )vF/φ̇. (7.21)
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The adiabaticity condition is stronger than the earlier assumption (7.17)
for W > ξ0.

The adiabatic scattering matrix depends only on the energy difference,

S(E,E′) =
∫ ∞
−∞

dt ei(E−E
′)tS(t), (7.22)

it is the Fourier transform of the “frozen” scattering matrix S(t) — eval-
uated for fixed value φ(t) of the superconducting phase difference. The
transmission and reflection amplitudes τ(E,E′) = τ(E−E′) and ρ(E,E′) =
ρ(E −E′) are likewise the Fourier transform of the “frozen” counterparts
τ(t) and ρ(t).

The adiabatic scattering matrix of a Josephson junction between coun-
terpropagating edge modes is given by [246]

S(t) =
(

1/ cosh β(t) tanh β(t)
tanh β(t) −1/ cosh β(t)

)
, β(t) = W

ξ0
cos(πt/T ). (7.23)

The corresponding transmission and reflection amplitudes

τ(t) = tanh β(t), ρ(t) = 1/ cosh β(t) (7.24)

are plotted in Fig. 7.2. The transmission amplitude is periodic with period
2T , twice the period of the superconducting phase φ(t) because a 2π
increment of φ is a π increment of the fermionic phase.

We write the charge noise formula (7.20) in the time domain, with a
detection window (0, 2NT ) that is a multiple of the periodicity 2T ,

VarQ = − e2

4π2

∫ 2NT

0
dt

∫ 2NT

0
dt′

τ(t)τ(t′) + ρ(t)ρ(t′)
(t− t′ + iε)2 . (7.25)

The singularity at t = t′ is regularized by the infinitesimal ε > 0. The
charge noise per vortex is

VarQvortex = 1
2 lim
N→∞

1
N

VarQ, (7.26)

the factor of 1/2 is there because two vortices are injected into each edge
in a time 2T .
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Figure 7.2. Plot of the transmission and reflection amplitudes (7.24), calculated
for a linearly increasing phase difference φ(t) = 2πt/T across the Josephson junc-
tion. The junction fully reflects the counterpropagating Majorana edge modes
when φ = π modulo 2π.

In view of the periodicity τ(t+ 2T ) = τ(t), ρ(t+ 2T ) = ρ(t) we have

VarQvortex = − lim
N→∞

e2

8Nπ2

N∑
n=0

N∑
m=0

2T∫
0

dt

2T∫
0

dt′
τ(t)τ(t′) + ρ(t)ρ(t′)

(t− t′ + 2T (n−m) + iε)2

= − e2

32T 2

2T∫
0

dt

2T∫
0

dt′
τ(t)τ(t′) + ρ(t)ρ(t′)

sin2[1
2(π/T )(t− t′ + iε)]

= − e2

32π2

2π∫
0

dt

2π∫
0

dt′
sinh

(
W
ξ0

cos t
)

sinh
(
W
ξ0

cos t′
)

+ 1

sin2[1
2(t− t′ + iε)

]
cosh

(
W
ξ0

cos t
)

cosh
(
W
ξ0

cos t′
) .
(7.27)

Because of the identity∫ 2π

0
dt

∫ 2π

0
dt′

1
sin2[1

2(t− t′ + iε)
] = 0, (7.28)

we may rewrite the integral (7.27) as

VarQvortex = − e2

32π2

2π∫
0

2π∫
0

dt dt′
[
1− cosh

(
W
ξ0

(cos t− cos t′)
)]

sin2[1
2(t− t′)

]
cosh

(
W
ξ0

cos t
)

cosh
(
W
ξ0

cos t′
) .

(7.29)
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Figure 7.3. Plot of the charge noise per vortex as a function of the ratio W/ξ0
(logarithmic scale). The solid curve is computed from Eq. (7.29), the dashed
curves are the asymptotes (7.30).

The infinitesimal ε may now be set to zero, the integral remains finite.
The W -dependence of VarQvortex is plotted in Fig. 7.3. The asymp-

totics for small and for large W/ξ0 are1

VarQvortex = e2

8 (W/ξ0)2 for W/ξ0 � 1,

VarQvortex = e2

π2 ln(2πW/ξ0) for W/ξ0 � 1.
(7.30)

The large-W asymptotics can be written equivalently as Eq. (7.1), with
a logarithmic dependence on the ratio of the separation L = 2πvF/φ̇
between subsequent edge vortices and the width λ = (vF/φ̇)(ξ0/W ) of the
phase boundary which represents the core of the edge vortex.2

7.5 Discussion
The experimental observable in a shot noise measurement is the noise
power P , being the correlator of the time dependent current fluctuations
δI(t):

P =
∫ ∞
−∞

dt 〈δI(0)δI(t)〉 = lim
t→∞

1
t

(
〈Q(t)2〉 − 〈Q(t)〉2

)
. (7.31)

1For the small-W asymptotics, expansion of the integrand in Eq. (7.29) to second
order in W/ξ0 gives (W/ξ0)2[cos(t + t′) − 1], which is then readily integrated. For the
large-W asymptotics, see App. 7.8.

2The time λ/vF = ~/Einelastic is the width of the peaks in ρ(t) in Fig. 7.2.
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Figure 7.4. Variation on the geometry of Fig. 7.1b, with two Josephson junc-
tions instead of a single junction, and a voltage bias instead of a flux bias. The
shot noise power increases as V lnV with the applied voltage.

Here Q(t) is the transferred charge in a time t.
For the flux-biased vortex injector of Fig. 7.1b the result (7.1) implies

that

Pvortex = 1
T

VarQvortex = e2

h

2eΦ̇
π2 ln(L/λ), for L� λ. (7.32)

We contrast this with the shot noise power of the fermion injector of Fig.
7.1a, given by [260]

Pfermion = e2

h

eV

2 . (7.33)

A flux rate of change Φ̇ is equivalent to a voltage bias V , so the replace-
ment Φ̇ ↔ V in the two formulas is expected. The key difference is the
appearance of a logarithmic dependence of the vortex shot noise on the
separation of subsequent vortices. There is no such dependence on the
Majorana fermion separation. This nonlocality suggests that an unpaired
edge vortex has a divergent charge noise, which indeed it does (see App.
7.9).

To observe the anomalous dependence of Pvortex on the edge vortex
separation, one would need to be able to vary the ratio L/λ. In the
geometry of Fig. 7.1b one has L/λ = 2πW/ξ0, so this ratio is fixed by
the parameters of the Josephson junction. Since it might be problematic
to engineer a junction with adjustable width, we show in Fig. 7.4 an
alternative double-junction geometry where the ratio L/λ can be varied
at a fixed geometry by a voltage bias.

A 2π increment of φ injects two vortices on each edge, one for each
Josephson junction. The separation L of the edge vortices now equals
the spacing between the two Josephson junctions, so this length is fixed
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by the geometry. However, the vortex core size λ = (vF/φ̇)(ξ0/W ) =
(hvF/2eV )(ξ0/W ) can be adjusted by varying the voltage bias V , allowing
for a measurement of the anomalous L/λ dependence of the shot noise
power in a fixed geometry. The resulting logarithmic voltage dependence
of the shot noise power,3

Pvortex = e2

h

4eV
π2 ln(V/Vc), Vc = ~vFξ0

2eLW , (7.34)

holds over wide voltage range Vc � V � (W/ξ0)Vc for W � ξ0. This
V lnV increase of Pvortex contrasts with the purely linear voltage depen-
dence of Pfermion and serves as a distinguishing signature between these
two types of excitations of a Majorana edge mode, a signature that is
accessible by a purely electrical transport measurement.

7.6 Appendix: Consistency of Eq. (7.9) with the
Klich formula for the cumulant generating
function

In the main text we derived the formula (7.9) for the variance of the trans-
mitted charge directly from the contractions (7.6). We showed that the
anomalous contraction of two creation operators has the effect of eliminat-
ing one of the projectors onto positive energies. As a check, we show here
how the same result follows from the Klich formula [261] in the theory of
full counting statistics.

We note the sequence of equalities

VarQ = TrP−S†DP+S − TrP−S†σzDP+SP−S†σzDS
= TrP−S†σzDP+SP+S

†σzDS
= TrP−S†σzDP−SP+S

†σzDS. (7.35)

For the second equality we substituted SP−S† = 1 − SP+S
† and used

(σzD)2 = D. The third equality follows from particle-hole symmetry.4

3The calculation of the charge variance for the geometry of Fig. 7.4 is worked out in
App. 7.10.

4The particle-hole symmetry relation (7.3) of the scattering matrix implies that
traces of the form (7.35) are invariant upon the replacements: TrM 7→ TrM†, σz 7→
−σz, P± 7→ P∓.
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Hence, by adding the second and third equality we arrive at

VarQ = 1
2 TrP−S†σzDSP+S

†σzDS. (7.36)

Each factor σzD now appears without an energy projector. Similarly, the
expression (7.7) for the average charge can be rewritten identically as5

〈Q〉 = 1
2 TrP−S†σzDS, (7.37)

without the energy projector multiplying σzD.
Eqs. (7.36) and (7.37) agree with the Klich formula for the cumulant

generating function6 [258]

ln〈eiξQ〉 = 1
2 ln Det

[
1− P− + P−S†eiξσzDS

]
= 1

2 iξTrP−S†σzDS − 1
4ξ

2 TrP−S†σzDSP+S
†σzDS +O(ξ3). (7.38)

7.7 Appendix: Proof of Eq. (7.18)
To show that the three matrix products (7.18) all vanish, we substitute
the decompositions (7.14) and (7.16) of the transmission and reflection
matrices. Because the reflection matrix in Eq. (7.18) is sandwiched be-
tween projectors P+ and P−, the elastic contribution dnm in Eq. (7.16)
drops out. The inelastic contributions to each matrix product contain the
same factor
M∑
n=1

u†n(E)σzun(E) =
M∑
n=1

uT
n (−E)(σx·σz)un(E) = −i

M∑
n=1

uT
n (−E)σyun(E),

(7.39)
where in the second equality we used particle-hole symmetry.

We now make the assumption, valid forW � vF/φ̇, that we can neglect
the energy dependence of the elastic coupling amplitude un(E) ≈ un(0)
between the right-moving Majorana mode and the right contact. Then
Eq. (7.39) reduces to zero because σy is an antisymmetric matrix, hence
uTnσyun = 0.

5Eq. (7.37) follows from Eq. (7.7) in view of equalities TrP−S†σzDP+S =
−TrP+S

†σzDP+S = TrP+S
†σzDP−S. The first equality holds because

TrS†σzDP+S = 0, the second equality follows from particle-hole symmetry.
6In Eq. (3.12) of Ref. [258] the generating function contains a σy instead of a σz

Pauli matrix, because there the Majorana basis instead of the electron-hole basis is
chosen for the Nambu spinors.
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7.8 Appendix: Computation of the logarithmic
asymptote of the charge noise

To derive the logarithmic large-W asymptotics of Eq. 7.30, we note that
for W � ξ0 the scattering amplitude profile (7.23) is well described by
the approximation [255]

τ(t) =
{
− tanh[1

2(t− T/2)/t0] for 0 < t < T,

tanh[1
2(t− 3T/2)/t0] for T < t < 2T,

, (7.40a)

ρ(t) =
{

1/ cosh[1
2(t− T/2)/t0] for 0 < t < T,

1/ cosh[1
2(t− 3T/2)/t0] for T < t < 2T,

, (7.40b)

t0 = (ξ0/W )(T/2π), (7.40c)

repeated periodically with period 2T . On the scale of Fig. 7.2, with
W/ξ0 = 5, the approximation is nearly indistinguishable from the full
result.

The Fourier coefficients

τ(ωn) =
∫ 2T

0
dt eiωntτ(t), ρ(ωn) =

∫ 2T

0
dt eiωntρ(t), ωn = πn/T, (7.41)

in the large-W/ξ0 regime can be calculated from the integrals∫ ∞
−∞

dt eiωt tanh(1
2 t/t0) = 2πit0

sinh(πωt0) ,∫ ∞
−∞

dt eiωt
1

cosh(1
2 t/t0)

= 2πt0
cosh(πωt0) ,

(7.42)

with the result

τ(ωn) =
(
eiωn

T
2 − eiωn

3T
2
) 2πit0

sinh(πωnt0) ⇒ |τ(ωn)|2 = δn,odd
(4πt0)2

sinh2(πωnt0)
,

ρ(ωn) =
(
eiωn

T
2 + eiωn

3T
2
) 2πt0

cosh(πωnt0) ⇒ |ρ(ωn)|2 = δn,even
(4πt0)2

cosh2(πωnt0)
.

(7.43)

The charge noise per vortex then follows by writing Eq. (7.20) as a
Fourier series,

VarQvortex = e2

4π2
π

2T

∞∑
n=0

ωn
(
|τ(ωn)|2 + |ρ(ωn)|2

)
. (7.44)
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For T/t0 = 2πW/ξ0 � 1 the sum may be approximated by an integral
and produces the logarithmic growth

VarQvortex →
e2

π2 ln(T/t0), for T � t0. (7.45)

7.9 Appendix: Divergent charge noise for an un-
paired edge vortex

If a single vortex is injected into each edge, the scattering amplitudes
(7.40) in the time interval (0, T ) hold for all times,

τ(t) = − tanh(1
2 t/t0)⇒ τ(E,E′) = − 2πit0

sinh[π(E − E′)t0] ,

ρ(t) = 1/ cosh(1
2 t/t0)⇒ ρ(E,E′) = 2πt0

cosh[π(E − E′)t0] .
(7.46)

Substitution into Eq. (7.20) gives an expression for the charge noise,

VarQ = e2t20

∫ ∞
0

dE E

( 1
sinh2 πEt0

+ 1
cosh2 πEt0

)
, (7.47)

with a logarithmic divergence at E = 0.
For a finite answer we may introduce a finite detection time tdet, cut-

ting off the integral for E . 1/tdet, which gives

VarQ = e2

π2 ln(tdet/t0), for tdet � t0. (7.48)

In the case of a periodic sequence of edge vortices considered in the main
text, the spacing T between subsequent vortices takes over from tdet to
provide a finite charge variance.

7.10 Appendix: Charge noise in a double - Joseph-
son junction geometry

In Fig. 7.4 we have modified the geometry of Fig. 7.1b to include a second
Josephson junction next to the first. A flux bias, or equivalently a voltage
bias as in the figure, will then inject two edge vortices on each edge.
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The scattering matrix of the pair of Josephson junctions is composed
from the scattering matrices SJ1 , SJ2 of the individual junctions, for which
we take the adiabatic approximation,

SJn(E,E′) =
∫ ∞
−∞

dt ei(E−E
′)tSJn(t),

SJn(t) =
(

sinαn(t) cosαn(t)
cosαn(t) − sinαn(t)

)
, αn(t) = arccos tanh β(t).

(7.49)

Adiabaticity requires that the time W/vF to move from one edge to the
opposite edge along a junction is short compared to the vortex injection
time t0 = (ξ0/W )φ̇−1. The time L/vF to move from one junction to the
next may be large compared to t0.

The phase fields α1(t) and α2(t) of the two Josephson junctions both
switch from 0 to π on a time scale t0 around t = 0.7 If λ = vFt0 � L the
two edge vortices injected by these switching events do not overlap. We
consider that regime in what follows and for ease of notation set vF ≡ 1.

The transmission amplitude τ(E,E′) from left to right and the re-
flection amplitude ρ(E,E′) from the right are given in the time domain
by

τ(t, t′) = δ(t− t′ − L) cosα2(t′ + L) cosα1(t′),
ρ(t, t′) = δ(t− t′) sinα2(t)+
+ δ(t− t′ − 2L) cosα2(t′ + 2L) sinα1(t′ + L) cosα2(t′). (7.50)

The assumption L� λ prevents the appearance of terms delayed by more
than 2L, or equivalently, there are no multiple reflections at the junctions.

Using again that L � λ we note that cosα2(t′ + 2L) cosα2(t′) ≈ −1
whenever sinα1(t′ + L) is nonzero, hence we may simplify the expression
for ρ into

ρ(t, t′) = δ(t− t′) sinα2(t)− δ(t− t′ − 2L) sinα1(t′ + L). (7.51)

At the same level of approximation, we have

τ(t, t′) = δ(t− t′ − L)[cosα2(t′ + L)− cosα1(t′) + 1]. (7.52)
7For counterpropagating edge modes the phase α is an even function of the phase

difference φ across the Josephson junction [246]. For co-propagating edge modes, in
contrast, α is an odd function of φ and in that case α1 and α2 would have opposite sign
[255].
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Transformation to the energy domain gives

τ(E,E′) = eiE
′L
[
c2(E − E′)− ei(E−E′)Lc1(E − E′) + 2πδ(E − E′)

]
,

ρ(E,E′) = s2(E − E′)− ei(E+E′)Ls1(E − E′),
(7.53)

with the definitions

cn(E) =
∫ ∞
−∞

dt eiEt cosαn(t), sn(E) =
∫ ∞
−∞

dt eiEt sinαn(t). (7.54)

The dominant contribution to the charge noise in Eq. (7.20) comes
from the transmission amplitude, because of the 1/E singularity of c1(E)
and c2(E) according to Eq. (7.46). For the single-vortex noise we needed
a finite detection time to cut off the singularity, here the spacing L of the
vortices is an effective cut-off in the case c1 = c2 of two identical tunnel
junctions. Then we find

VarQ ≈ e2λ2
∫ ∞

0
dE E

|1− eiEL|2

sinh2 πEλ
→ 2e2

π2 ln(L/λ), for L� λ. (7.55)

This is twice the result (7.1) because it refers to two vortices.
A constant applied voltage V cause the superconducting phase to in-

crease linearly in time, φ̇ = 2eV/~, hence λ = vF(ξ0/W )(~/2eV ). If
V � ~vF/eL the injected edge vortices from subsequent periods do not
overlap. The resulting shot noise power P = (φ̇/2π) VarQ takes the form

P = e2

h

4eV
π2 ln

(2eV LW
~vFξ0

)
, for ~vF

L

ξ0
W
� eV � ~vF

L
. (7.56)
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Chapter 8

Voltage staircase

8.1 Introduction

A single-mode weak link between superconductors supports a two-level
system with a spacing that is adjustable via the superconducting phase
difference [263, 264]. Because Andreev reflection is at the origin of the
phase sensitivity, the levels are called Andreev levels. Although their
existence was implicit in early studies of the Josephson effect [265], the
characteristic dependence ∝

√
1− τ sin2(φ/2) of the level spacing on the

phase φ, with τ the transmission probability, was only identified [266] with
the advent of nanostructures. The present interest in quantum informa-
tion processing is driving theoretical [267, 268] and experimental [269–272]
studies of Andreev levels as qubits.

To assess the coherence of the qubit one would use ac microwave
radiation of the two-level system and perform a time-resolved detection of
the Rabi oscillations of the wave function [273]. In this work we will show
how a dc current Idc and measurement of the time-averaged voltage V̄
can be used to detect Rabi oscillations of an Andreev qubit: The staircase
dependence of V̄ on Idc counts the number of Rabi oscillations per 2π
increment of φ.

Our study is motivated by Choi, Calzona, and Trauzettel’s report [55]
of such a remarkable effect (dubbed “dc Shapiro steps”) in a Majorana
qubit — which is the building block of a topological quantum computer.
As we will see, neither the unique topological properties of a Majorana
qubit (its non-Abelian braiding and fusion rules) nor its specific symme-
try class (class D, with broken time-reversal and spin-rotation symmetry)
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Figure 8.1. Current-biased, resistively-shunted Josephson junction, formed out
of two superconductors (phases φL and φR) separated by an insulator containing
a quantum dot (tunnel rates ΓL and ΓR from the left and from the right). The
superconducting phases become time dependent when a voltage difference V
develops in response to a dc current Idc.

are needed, a similar phenomenology can be found in a non-topological
Andreev qubit with preserved symmetries (class CI).

The outline of this paper is as follows. In the next section 8.2 we
present the model of the weak link that we will consider: a quantum
dot connecting two superconductors with a tunnel rate Γ small compared
to the superconducting gap ∆0. Such a Josephson junction has been
extensively studied [274–276] in the regime where Coulomb charging and
the Kondo effect govern the charge transfer [277–279]. We will assume the
charging energy is small and treat the quasiparticles as noninteracting.

The dynamics of a current-biased, resistively shunted quantum-dot
Josephson junction is studied in Secs. 8.3 and 8.4. The voltage staircase
is shown in Fig. 8.3 and the one-to-one relationship with the number of
Rabi oscillations is in Fig. 8.6. In the concluding section 7.5 we will explain
why the substitution of the quantum dot by a quantum point contact will
remove the voltage staircase.

8.2 Andreev level Hamiltonian

We consider the Josephson junction shown in Fig. 8.1, consisting of a
quantum dot in the normal state (N) coupled via a tunnel barrier to
superconductors (S) at the left and right, with pair potentials ∆0e

iφL and
∆0e

iφR . We focus on the weakly coupled regime, when the tunnel rates
ΓL and ΓR through the barrier are small compared to ∆0.

We assume that the fully isolated quantum dot has a single electronic
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energy level E0 within an energy range Γ = ΓL+ΓR from the Fermi energy
µ. The normal-state conductance GN is then given by the Breit-Wigner
formula

GN = 2e2

h
τBW, τBW = ΓLΓR

(E0 − µ)2 + 1
4Γ2 . (8.1)

Coupling of electrons and holes by Andreev reflection from the supercon-
ductor produces a pair of Andreev levels at energies ±EA(φ), dependent
on the phase difference φ = φL − φR between the left and right supercon-
ductors.

A simplifying assumption of our analysis is that the Coulomb charging
energy U is small compared to Γ and can be neglected. If U is larger than Γ
but still smaller than ∆0, the main effect of the charging energy is a shift of
the energy level of the dot, E0 7→ E0 + U/2. Provided E0 > 0 the ground
state remains a spin-singlet [280], and we do not expect a qualitative
change in our results. If U becomes larger than ∆0 the supercurrent is
reduced by a factor Γ/∆0 because tunneling of a Cooper pair into the
quantum dot is suppressed [277–279].

To describe the non-equilibrium dynamics of the junction we seek the
effective low-energy Hamiltonian of time-dependent Andreev levels. This
requires information not only on the eigenvalues but also on the eigen-
functions. In subsections 8.2.1 and 8.2.2 we summarize results from Refs.
[280–283] for the time-independent situation, which we need as input for
the dynamical study starting from subsection 8.2.3.

8.2.1 Andreev levels

For arbitrary ratio of Γ and ∆0 the energies of the Andreev levels are
equal to the two real solutions ±EA of the equation [281, 282]

Ω(E, φ) + ΓE2
√

∆2
0 − E2 = 0, (8.2)

with
Ω(E, φ) = (∆2

0 − E2)
[
E2 − (E0 − µ)2 − 1

4Γ2]
+ ∆2

0ΓLΓR sin2(φ/2). (8.3)
In the weak-coupling regime Γ � ∆0, assuming also |E0 − µ| � ∆0, this
reduces to

EA = ∆eff

√
1− τBW sin2(φ/2),

∆eff =
√

(E0 − µ)2 + 1
4Γ2,

(8.4)
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Figure 8.2. Andreev levels ±EA(φ) according to the full expression (8.2) (solid
curve) and in the weak-coupling approximation (8.4) (dashed curve, parameters
E0 = 0.045, µ = 0, ΓL = ΓR = 0.115, all in units of ∆0).

no longer dependent on ∆0. The two Andreev levels have an avoided
crossing at φ = π, separated by an energy

δE =
√

4(E0 − µ)2 + (ΓL − ΓR)2, (8.5)

see Fig. 8.2.
The equilibrium supercurrent, at temperatures kBT � Γ, is given by

Ieq(φ) = −2e
~
dEA
dφ

= eΓLΓR sinφ
2~EA(φ) , (8.6)

with critical current (maximal supercurrent)

Ic = e

~

(√
(E0 − µ)2 + 1

4Γ2 −
√

(E0 − µ)2 + 1
4Γ2 − ΓLΓR

)
. (8.7)

There is no contribution from the continuous spectrum in the weak-coupling
regime [281].

8.2.2 Effective Hamiltonian: time-independent phase

For time-independent phases the effective low-energy Hamiltonian in the
weak-coupling regime Γ � ∆0 follows from second-order perturbation
theory [280, 283],

H = − 1
2
(
eiφLΓL + eiφRΓR

)
a†↑a
†
↓ + H.c. + (E0 − µ)(a†↑a↑ + a†↓a↓). (8.8)



8.2 Andreev level Hamiltonian 177

Here a↑ and a↓ are the fermionic annihilation operators of a spin-up or
spin-down electron in the quantum dot.

The corresponding Bogoliubov-De Gennes (BdG) Hamiltonian H is a
4× 4 matrix contracted with the spinors Ψ = (a↑,−a†↓, a↓,−a

†
↑) and Ψ†,

H = 1
2Ψ† · H ·Ψ + E0 − µ. (8.9)

It is block-diagonal, so we only need to consider one 2× 2 block, given by

H =
(

E0 − µ 1
2e
iφLΓL + 1

2e
iφRΓR

1
2e
−iφLΓL + 1

2e
−iφRΓR µ− E0

)
. (8.10)

One readily checks that the eigenvalues ±EA of H are given by Eq. (8.4).

8.2.3 Effective Hamiltonian: time-dependent phase

When the left and right superconductors are at different voltages ±V/2,
the superconducting phase becomes time dependent. We choose a gauge
such that φL(t) = φ(t)/2, φR(t) = −φ(t)/2, evolving in time according to
the Josephson relation

φ̇ ≡ dφ/dt = (2e/~)V. (8.11)
The voltage bias imposes an electrical potential on the quantum dot, which
shifts µ by an amount 1

2γeV with γ = (ΓL − ΓR)/Γ. The time dependent
BdG Hamiltonian then becomes

H(t) =
(

E0 − µ− 1
4~γφ̇(t) 1

2e
iφ(t)/2ΓL + 1

2e
−iφ(t)/2ΓR

1
2e
−iφ(t)/2ΓL + 1

2e
iφ(t)/2ΓR µ− E0 + 1

4~γφ̇(t)

)
=
[
E0 − µ− 1

4~γφ̇(t)
]
σz + 1

2Γ
[
σx cos 1

2φ(t)− γσy sin 1
2φ(t)

]
. (8.12)

The Pauli matrices act on the electron-hole degree of freedom. The cor-
responding current operator is given by

I(t) = 2e
~
∂

∂φ
H(t) = −eΓ2~

[
σx sin 1

2φ(t) + γσy cos 1
2φ(t)

]
. (8.13)

Notice that the Hamiltonian (8.12) depends both on φ(t) and on φ̇(t),
unless ΓL = ΓR. It is possible to remove the φ̇-dependence by a time-
dependent unitary transformation 1, but since this does not simplify our
subsequent calculations we will keep the form (8.12).

1The time-dependent unitary transformation Ψ 7→ U†Ψ, H 7→ U†HU − i~U†dU/dt
with U(t) = eiσzγφ(t)/4 removes the φ̇-term from the Hamiltonian (8.12). The γ-
parameter then appears in the superconducting phases, φL = 1

2 (1 − γ)φ, φR =
− 1

2 (1 + γ)φ.



178
Chapter 8. Voltage staircase in a current-biased quantum-dot Josephson

junction

8.3 Voltage staircase
As shown in Fig. 8.1, a time-independent current bias Idc is driven par-
tially through the Josephson junction, as a supercurrent IS(t), and par-
tially through a parallel resistor R as a normal current IN(t) = V (t)/R.
Substitution of the Josephson relation (8.11) gives the differential equation

dφ(t)/dt = (2eR/~)[Idc − IS(t)]. (8.14)

Here we neglect the junction capacitance (overdamped regime of a resis-
tively shunted Josephson junction) [284]. We work in the low-temperature
regime, kBT � ∆0, so that we may ignore thermal fluctuations of the
phase due to the voltage noise over the external resistance [285].

The supercurrent is obtained from the expectation value

IS(t) = 〈Ψ(t)|I(t)|Ψ(t)〉, (8.15)

where the current operator is given by Eq. (8.13) and the wave function
evolves according to the Schrödinger equation

i~
d

dt
|Ψ(t)〉 = H(t)|Ψ(t)〉. (8.16)

As initial condition we take φ(0) = 0 and |Ψ(0)〉 the eigenstate of the
Andreev level at −EA for φ = 0. The dc current Idc is increased slowly
from zero to some maximal value and then slowly decreased back to zero.
The I–V characteristic is obtained by averaging V (t) over a moving time
window in which Idc is approximately constant.

2

Results of this numerical integration are shown in Fig. 8.3. We observe
a staircase dependence of V̄ on Idc. The nonzero voltage appears at
the critical current (8.7) for the up-sweep and disappears at a slightly
lower current for the down sweep. (A similar difference between switching
current and retrapping current was found for the Majorana qubit [286].)
The voltage steps at Idc > Ic also show hysteresis: the voltage jump up
happens at larger dc current than the voltage jump down. (This hysteresis
also appears in the Majorana qubit, see App. 8.6.)

2The parameters E0,ΓL,ΓR used in Fig. 8.3 are listed in each panel; additional
parameters: µ = 0 in both panels, R = 0.20 and 0.25 ~/e2 in panels a) and b), re-
spectively. The voltage V̄ is averaged over a time window δt such that δt × dIdc/dt =
6.3 · 10−4 e∆0/~. To check that we are sweeping slowly enough, we reduced dIdc/dt by
a factor of two and found little difference.
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Figure 8.3. Current-voltage characteristic of the quantum-dot Josephson junc-
tion, for two different parameter sets2. The blue curve is for increasing dc
current, the red curve for decreasing current. The Andreev levels in Fig. 8.2
correspond to the parameters in panel a). The critical current (8.7) is indicated
by the black arrow.

8.4 Andreev qubit dynamics

The voltage staircase of Fig. 8.3 is a signature of Rabi oscillations of
the Andreev qubit formed by the two Andreev levels in the Josephson
junction, in much the same way that the voltage steps of Ref. [55] were
driven by Rabi oscillations of a Majorana qubit. Let us investigate the
Andreev qubit dynamics.

8.4.1 Adiabatic evolution

In the adiabatic regime of a slow driving, ~φ̇ � δE, transitions between
the Andreev levels can be neglected and the phase evolves in time as an
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Figure 8.4. Washboard potential (8.18) that governs the time dependence of
the superconducting phase in the adiabatic limit. The curve is plotted for the
junction parameters of Figs. 8.2 and 8.3a, at a value of Idc slightly above the
critical current Ic.

overdamped classical particle,

φ̇+ dUA/dφ = 0, (8.17)

moving in the “washboard potential” [284]

UA(φ) = −(2eR/~)
[
φIdc + (2e/~)EA(φ)

]
, (8.18)

plotted in Fig. 8.4.
The time dependence of the phase resulting from integration of Eq.

(8.17) is shown in panel a) of Fig. 8.5. Panel b) tracks the adiabatic
dynamics of the Andreev qubit, by plotting the Bloch sphere coordinates
R = (X,Y, Z), with Rα(t) = 〈Ψ(t)|σα|Ψ(t)〉. The qubit dynamics is
4π-periodic in φ, because the Hamiltonian (8.12) is 4π-periodic: When
φ is increased by 2π one has H 7→ σzHσz, so on the Bloch sphere the
qubit is rotated by π around the z-axis (X 7→ −X, Y 7→ −Y ). The
full spectrum is a 2π-periodic function of φ, in particular the Josephson
current (8.6) is 2π-periodic — this nontopological Josephson junction does
not exhibit the 4π-periodic Josephson effect that is the hallmark of a
topological superconductor.

8.4.2 Pulsed Rabi oscillations

Panels c) and d) of Fig. 8.5 show the full non-adiabatic dynamics, obtained
by integration of Eq. (8.16) for the same parameter set as in panels a) and
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Figure 8.5. Time dependence of the superconducting phase (top row) and of
the Bloch sphere coordinates of the Andreev qubit (bottom row), in the adiabatic
limit (left column) and in the non-adiabatic regime in which transitions between
the Andreev levels produce Rabi oscillations of the qubit (right column). The
junction parameters are those of Fig. 8.3a, at Idc = 0.08 e∆0/~. The wave
function was initialized as an eigenstate of the lowest Andreev level −EA(0) at
t = 0.

b). Transitions between the Andreev levels produce pronounced Rabi
oscillations of the qubit, also visible as small oscillations in φ(t).

Because the supercurrent carried by the two Andreev levels ±EA has
the opposite sign, the inter-level transitions reduce IS, thereby increasing
IN = Idc − IS and hence V̄ . This is evident from Fig. 8.5c, which shows
that the first 2π increment of φ, without interlevel transitions, takes a time
δt ≈ 1000 ~/∆0, while the second 2π increment, with Rabi oscillations,
only takes a time δt = 700. The average voltage V̄ ' 2π/δt is therefore
increased by a factor 10/7 because of the interlevel transitions.

The Rabi oscillations are pulsed: they appear abruptly when φ crosses
(2n − 1)π and increases rapidly to 2nπ, which is the steepest part of the
washboard potential (see Fig. 8.4).

To estimate the Rabi frequency we substitute

Ψ(t) =
(
u(t)eiφ(t)/4, v(t)e−iφ(t)/4)
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in the Schrödinger equation (8.16) and make the rotating wave approxi-
mation, discarding rapidly oscillating terms ∝ eiφ(t):

i~u̇(t) = [E0 − µ+ 1
2eV (t)]u(t) + 1

4Γv(t),
i~v̇(t) = −[E0 − µ+ 1

2eV (t)]v(t) + 1
4Γu(t).

(8.19)

(We have set ΓL = ΓR for simplicity.) If we further neglect the slow time
dependence of the voltage, we obtain oscillations ∝ sin2 ωRt of the Bloch
vector components X,Y, Z with Rabi frequency

~ωR =
√

(E0 − µ+ 1
2eV )2 + (Γ/4)2. (8.20)

The oscillations in Fig. 8.5d near t = 1000×~/∆0 have a period of 35 ~/∆0,
while TR = π/ωR = 40 ~/∆0 if we set V = RIdc, in reasonable agreement.

8.4.3 Voltage steps count Rabi oscillations

The key discovery of Ref. [55] is that steps in the time-averaged voltage
track the change in the number of Rabi oscillations of the Majorana qubit
per 2π increment of the superconducting phase. Fig. 8.6 shows the same
correspondence for the Andreev qubit.

If we estimate the duration δt of a 2π phase increment by the product
of the number N of Rabi oscillations and the Rabi period TR, we obtain
the estimate (2e/~)V̄ = 2π/δt ' 2ωR/N . A stepwise decrease of N with
increasing Idc would then produce a stepwise increase of V̄ . This argument
is suggestive, but does not explain the sharpness of the steps. We have no
quantitative analytical derivation for why the steps are as sharp as they
appear in the numerics.

8.5 Discussion

Two lessons learned from this study are: 1) Rabi oscillations of an Andreev
qubit can be counted “one-by-one” without either requiring time-resolved
detection or ac driving; 2) The voltage staircase phenomenology of Ref.
[55] does not need a topological Majorana qubit — it exists in a conven-
tional Andreev qubit.

We worked in the weak-coupling regime Γ� ∆0 because it simplifies
the calculations, but also for a physics reason: The voltage staircase is sup-
pressed when Γ becomes larger than ∆0, due to a well-known decoherence
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Figure 8.6. Top panel: portion of the I–V characteristic from Fig. 8.3a, with
red dotted lines into the the bottom panels to show how the voltage steps line up
with the change in the number N of Rabi oscillations of the qubit in a 2π phase
increment δφ.

mechanism [285, 287]: Equilibration of the Andreev levels ±EA(φ) with
the continuous spectrum at |E| > ∆0 when φ crosses an integer multiple
of 2π. Let us discuss this in a bit more detail.

For Γ� ∆0 the Andreev levels are given by

EA = ∆0

√
1− τBW sin2(φ/2), (8.21)

according to Eq. (8.2), with τBW the Breit-Wigner transmission proba-
bility (8.1). The difference with the weak-coupling result (8.4) is that
the reduced gap ∆eff has been replaced by the true gap ∆0. This means
the Andreev level merges with the superconducting continuum whenever
φ = 0 modulo 2π. As the phase evolves in time in response to the current
bias, each 2π phase increment will restart from an equilibrium distribu-
tion.

Now if we examine Fig. 8.5, panels c) and d), we see that the Rabi
oscillations are pulsed by the rapid increase of the phase in the (π, 2π)
interval, and only fully develop in the (2π, 3π) interval. Equilibration at



184
Chapter 8. Voltage staircase in a current-biased quantum-dot Josephson

junction

φ = 2π will restart the cycle from t = 0, suppressing the Rabi oscillations
and hence the voltage staircase.

For the same reason a superconducting quantum point contact will
not show the voltage staircase: its Andreev levels also reconnect with the
superconducting continuum at φ = 0 modulo 2π.

This argument points to one difference in the Majorana versus Andreev
phenomenology of the voltage staircase: A topological Josephson junction
needs to be magnetic in order to prevent the equilibration of the Majorana
modes with the continuum at φ = 0 modulo 2π [246]. In a non-topological
quantum-dot Josephson junction this can achieved without breaking time-
reversal symmetry.

As a topic for further research, it would be worthwhile to see if the
voltage staircase can be used to count the number of Rabi oscillations
over multiple 2π phase increments, since that would provide additional
information on the coherence time of the qubit. This could involve the
constructive interference of Landau-Zener transitions at φ = π, 3π, . . .
[288].

8.6 Appendix: Hysteresis of the voltage stair-
case for the Majorana qubit

The voltage staircase of the Andreev qubit is hysteretic, the steps appear
at higher current for the up-sweep than for the down-sweep. No hysteresis
was reported in Ref. [55], here we show that it is present for the Majorana
qubit as well.

Instead of Eqs. (8.12) and (8.13) one has for the Majorana qubit the
time dependent Hamiltonian

H(t) = Exσx + Ezσz cos 1
2φ(t), (8.22)

and current operator

I(t) = 2e
~
∂

∂φ
H(t) = −eEz

~
σz sin 1

2φ(t). (8.23)

The Pauli matrices act on the fermion parity of two pairs of Majorana
zero-modes, such that σx flips the even–even parity state into the odd–odd
parity state, while σz changes the sign of the odd–odd parity state. While
the physical origin of the Majorana coupling terms is different from the
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Figure 8.7. Hysteretic voltage staircase of the Majorana Josephson junction, for
the parameters of Ref. [55], Fig. 3. The blue curve is for increasing dc current,
the red curve for decreasing current. (The voltage V̄ is averaged over a time
window δt such that δt× dIdc/dt = 10−3 eEz/~.)

Andreev qubit, mathematically the Hamiltonian (8.22) is equivalent to
Eq. (8.12) in the symmetric case ΓL = ΓR. (Switch σx ↔ σz by a unitary
transformation and replace Ex 7→ E0 − µ and Ez 7→ Γ/2.)

In Fig. 8.7 we show the hysteretic voltage staircase, for the same pa-
rameters Ez = 5µeV, Ex/Ez = 0.67, R = 0.827 ~/e2 as in Ref. [55].
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[48] E. Schrödinger. Über die kräftefreie bewegung in der relativistischen
quantenmechanik. Sitzungsber. Preuss. Akad. Wiss., Phys. Math.
Kl. 24, 418 (1930).

[49] E. Illes, J. P. Carbotte, and E. J. Nicol. Hall quantization and
optical conductivity evolution with variable Berry phase in the α−
T3 model. Phys. Rev. B 92, 245410 (2015).

[50] G. Vignale. Orbital paramagnetism of electrons in a two-
dimensional lattice. Phys. Rev. Lett. 67, 358 (1991).

[51] J. Vallejo-Bustamante, N. J. Wu, C. Fermon, M. Pannetier-
Lecoeur, T. Wakamura, K. Watanabe, T. Taniguchi, T. Pellegrin,
A. Bernard, S. Daddinounou, V. Bouchiat, S. Guéron, M. Ferrier,
G. Montambaux, and H. Bouchiat. Detection of graphene’s diver-
gent orbital diamagnetism at the dirac point. Science 374, 1399
(2021).

[52] Y. Liu, G. Wang, Q. Huang, L. Guo, and X. Chen. Structural and
electronic properties of T graphene: a two-dimensional carbon al-
lotrope with tetrarings. Phys. Rev. Lett. 108, 225505 (2012).

[53] P. V. Gaikwad and A. Kshirsagar. Octagonal family of monolayers,
bulk and nanotubes. arXiv:2003.00158.

http://dx.doi.org/10.1103/physrevb.87.165102
http://dx.doi.org/10.1088/2053-1583/aad2f2
http://dx.doi.org/10.1088/2053-1583/aad2f2
http://dx.doi.org/10.1103/physrevx.11.041063
http://dx.doi.org/10.1103/physrevx.11.041063
http://dx.doi.org/10.1103/physrevb.107.l041111
http://dx.doi.org/10.1103/physrevb.107.l041111
http://dx.doi.org/10.1103/PhysRevB.74.172305
http://dx.doi.org/10.1103/PhysRevB.74.172305
https://zbmath.org/?q=an%3A56.0754.06
https://zbmath.org/?q=an%3A56.0754.06
http://dx.doi.org/10.1103/physrevb.92.245410
http://dx.doi.org/10.1103/physrevlett.67.358
http://dx.doi.org/10.1126/science.abf9396
http://dx.doi.org/10.1126/science.abf9396
http://dx.doi.org/10.1103/PhysRevLett.108.225505
http://arxiv.org/abs/2003.00158


192 BIBLIOGRAPHY

[54] A. R. Akhmerov, J. P. Dahlhaus, F. Hassler, M. Wimmer, and
C. W. J. Beenakker. Quantized conductance at the Majorana phase
transition in a disordered superconducting wire. Phys. Rev. Lett.
106, 057001 (2011).

[55] S.-J. Choi, A. Calzona, and B. Trauzettel. Majorana-induced dc
shapiro steps in topological josephson junctions. Phys. Rev. B 102,
140501 (2020).

[56] Y. Yafet. Ruderman-kittel-kasuya-yosida range function of a one-
dimensional free-electron gas. Phys. Rev. B 36, 3948 (1987).

[57] B. Fischer and M. W. Klein. Magnetic and nonmagnetic impurities
in two-dimensional metals. Phys. Rev. B 11, 2025 (1975).

[58] L. Brey, H. A. Fertig, and S. D. Sarma. Diluted graphene antifer-
romagnet. Phys. Rev. Lett. 99, 116802 (2007).

[59] S. Saremi. RKKY in half-filled bipartite lattices: graphene as an
example. Phys. Rev. B 76, 184430 (2007).

[60] E. Kogan. RKKY interaction in gapped or doped graphene.
Graphene 02, 8 (2013).

[61] M. Sherafati and S. Satpathy. Analytical expression for the RKKY
interaction in doped graphene. Phys. Rev. B 84, 125416 (2011).

[62] O. Roslyak, G. Gumbs, and D. Huang. Gap-modulated doping ef-
fects on indirect exchange interaction between magnetic impurities
in graphene. J. Appl. Phys. 113, 123702 (2013).

[63] J. Cao, H. A. Fertig, and S. Zhang. RKKY interactions in graphene
Landau levels. Phys. Rev. B 99, 205430 (2019).

[64] E. Kogan. RKKY interaction in graphene at finite temperature. C
J. of Carb. Res. 5, 14 (2019).

[65] E. Kogan. RKKY interaction in graphene. Phys. Rev. B 84, 115119
(2011).

[66] A. M. Black-Schaffer. RKKY coupling in graphene. Phys. Rev. B
81, 205416 (2010).

[67] M. Sherafati and S. Satpathy. RKKY interaction in graphene from
the lattice Green’s function. Phys. Rev. B 83, 165425 (2011).

[68] N. Klier, S. Shallcross, S. Sharma, and O. Pankratov. Ruderman-
kittel-kasuya-yosida interaction at finite temperature: graphene and
bilayer graphene. Phys. Rev. B 92, 205414 (2015).

http://dx.doi.org/10.1103/physrevlett.106.057001
http://dx.doi.org/10.1103/physrevlett.106.057001
http://dx.doi.org/10.1103/PhysRevB.102.140501
http://dx.doi.org/10.1103/PhysRevB.102.140501
http://dx.doi.org/10.1103/physrevb.36.3948
http://dx.doi.org/10.1103/physrevb.11.2025
http://dx.doi.org/10.1103/physrevlett.99.116802
http://dx.doi.org/10.1103/physrevb.76.184430
http://dx.doi.org/10.4236/graphene.2013.21002
http://dx.doi.org/10.1103/physrevb.84.125416
http://dx.doi.org/10.1063/1.4795624
http://dx.doi.org/10.1103/physrevb.99.205430
http://dx.doi.org/10.3390/c5020014
http://dx.doi.org/10.3390/c5020014
http://dx.doi.org/10.1103/physrevb.84.115119
http://dx.doi.org/10.1103/physrevb.84.115119
http://dx.doi.org/10.1103/physrevb.81.205416
http://dx.doi.org/10.1103/physrevb.81.205416
http://dx.doi.org/10.1103/physrevb.83.165425
http://dx.doi.org/10.1103/physrevb.92.205414


BIBLIOGRAPHY 193

[69] P. D. Gorman, J. M. Duffy, M. S. Ferreira, and S. R. Power. RKKY
interaction between adsorbed magnetic impurities in graphene: sym-
metry and strain effects. Phys. Rev. B 88, 085405 (2013).

[70] F. Parhizgar, M. Sherafati, R. Asgari, and S. Satpathy. Ruderman-
Kittel-Kasuya-Yosida interaction in biased bilayer graphene. Phys.
Rev. B 87, 165429 (2013).

[71] N. Klier, S. Shallcross, and O. Pankratov. Asymptotic discontinu-
ities in the RKKY interaction in the graphene Bernal bilayer. Phys.
Rev. B 90, 245118 (2014).

[72] M. Zare. RKKY interaction in biased single-layer silicene. Phys.
Rev. B 100, 085434 (2019).

[73] G. C. Paul, S. F. Islam, and A. Saha. Fingerprints of tilted Dirac
cones on the RKKY exchange interaction in 8-Pmmn borophene.
Phys. Rev. B 99, 155418 (2019).

[74] V. Kaladzhyan, A. A. Zyuzin, and P. Simon. RKKY interaction on
the surface of three-dimensional Dirac semimetals. Phys. Rev. B
99, 165302 (2019).

[75] D. Green, L. Santos, and C. Chamon. Isolated flat bands and spin-1
conical bands in two-dimensional lattices. Phys. Rev. B 82, 075104
(2010).

[76] J. D. Malcolm and E. J. Nicol. Magneto-optics of massless Kane
fermions: role of the flat band and unusual Berry phase. Phys. Rev.
B 92, 035118 (2015).

[77] Z. Lan, N. Goldman, and P. Öhberg. Coexistence of spin-1/2 and
spin-1 Dirac-Weyl fermions in the edgecentered honeycomb lattice.
Phys. Rev. B 85, 155451 (2012).

[78] L. Wang and D.-X. Yao. Coexistence of spin-1 fermion and Dirac
fermion on the triangular kagome lattice. Phys. Rev. B 98, 161403
(2018).

[79] P. Tang, Q. Zhou, and S.-C. Zhang. Multiple types of topological
fermions in transition metal silicides. Phys. Rev. Lett. 119, 206402
(2017).

[80] J. Vidal, R. Mosseri, and B. Douçot. Aharonov-Bohm cages in two-
dimensional structures. Phys. Rev. Lett. 81, 5888 (1998).

http://dx.doi.org/10.1103/physrevb.88.085405
http://dx.doi.org/10.1103/physrevb.87.165429
http://dx.doi.org/10.1103/physrevb.87.165429
http://dx.doi.org/10.1103/physrevb.90.245118
http://dx.doi.org/10.1103/physrevb.90.245118
http://dx.doi.org/10.1103/physrevb.100.085434
http://dx.doi.org/10.1103/physrevb.100.085434
http://dx.doi.org/10.1103/physrevb.99.155418
http://dx.doi.org/10.1103/physrevb.99.165302
http://dx.doi.org/10.1103/physrevb.99.165302
http://dx.doi.org/10.1103/physrevb.82.075104
http://dx.doi.org/10.1103/physrevb.82.075104
http://dx.doi.org/10.1103/physrevb.92.035118
http://dx.doi.org/10.1103/physrevb.92.035118
http://dx.doi.org/10.1103/physrevb.85.155451
http://dx.doi.org/10.1103/physrevb.98.161403
http://dx.doi.org/10.1103/physrevb.98.161403
http://dx.doi.org/10.1103/physrevlett.119.206402
http://dx.doi.org/10.1103/physrevlett.119.206402
http://dx.doi.org/10.1103/physrevlett.81.5888


194 BIBLIOGRAPHY

[81] J. D. Malcolm and E. J. Nicol. Magneto-optics of general
pseudospin-s two-dimensional Dirac-Weyl fermions. Phys. Rev. B
90, 035405 (2014).

[82] E. Illes and E. J. Nicol. Magnetic properties of the α-T3 model:
magneto-optical conductivity and the Hofstadter butterfly. Phys.
Rev. B 94, 125435 (2016).

[83] Á. D. Kovács, G. Dávid, B. Dóra, and J. Cserti. Frequency-
dependent magneto-optical conductivity in the generalized α-T3
model. Phys. Rev. B 95, 035414 (2017).

[84] T. Biswas and T. K. Ghosh. Magnetotransport properties of the
α-T3 model. J. Phys.: Condens. Matter 28, 495302 (2016).

[85] Y. Xu and L.-M. Duan. Unconventional quantum hall effects in
two-dimensional massive spin-1 fermion systems. Phys. Rev. B 96,
155301 (2017).

[86] M. W. Alam, B. Souayeh, and S. F. Islam. Enhancement of ther-
moelectric performance of a nanoribbon made of α- T3 lattice. J.
Phys.: Condens. Matter 31, 485303 (2019).

[87] T. Biswas and T. K. Ghosh. Dynamics of a quasiparticle in the α-t3
model: role of pseudospin polarization and transverse magnetic field
on zitterbewegung. J. Phys.: Condens. Matter 30, 075301 (2018).

[88] S. F. Islam and P. Dutta. Valley-polarized magnetoconductivity and
particle-hole symmetry breaking in a periodically modulated α− T3
lattice. Phys. Rev. B 96, 045418 (2017).

[89] D. O. Oriekhov, E. V. Gorbar, and V. P. Gusynin. Electronic states
of pseudospin-1 fermions in dice lattice ribbon. Low Temp. Phys.
44, 1313 (2018).

[90] O. V. Bugaiko and D. O. Oriekhov. Electronic states of pseudospin-
1 fermions in α − T3 lattice ribbons in a magnetic field. J. Phys.:
Condens. Matter 31, 325501 (2019).

[91] V. A. Khodel. Theory of Fermi liquid with flat bands. Journal of
Low Temperature Physics 191, 14–34 (2017).

[92] D. Leykam, A. Andreanov, and S. Flach. Artificial flat band sys-
tems: from lattice models to experiments. Adv. Phys.: X 3, 1473052
(2018).

http://dx.doi.org/10.1103/physrevb.90.035405
http://dx.doi.org/10.1103/physrevb.90.035405
http://dx.doi.org/10.1103/physrevb.94.125435
http://dx.doi.org/10.1103/physrevb.94.125435
http://dx.doi.org/10.1103/physrevb.95.035414
http://dx.doi.org/10.1088/0953-8984/28/49/495302
http://dx.doi.org/10.1103/physrevb.96.155301
http://dx.doi.org/10.1103/physrevb.96.155301
http://dx.doi.org/10.1088/1361-648x/ab3bf6
http://dx.doi.org/10.1088/1361-648x/ab3bf6
http://dx.doi.org/10.1088/1361-648x/aaa60b
http://dx.doi.org/10.1103/physrevb.96.045418
http://dx.doi.org/10.1063/1.5078627
http://dx.doi.org/10.1063/1.5078627
http://dx.doi.org/10.1088/1361-648x/ab1de8
http://dx.doi.org/10.1088/1361-648x/ab1de8
http://dx.doi.org/10.1007/s10909-017-1834-7
http://dx.doi.org/10.1007/s10909-017-1834-7
http://dx.doi.org/10.1080/23746149.2018.1473052
http://dx.doi.org/10.1080/23746149.2018.1473052


BIBLIOGRAPHY 195

[93] P. Delplace, J. B. Marston, and A. Venaille. Topological origin of
equatorial waves. Science 358, 1075–1077 (2017).

[94] H. Zheng and M. Z. Hasan. Quasiparticle interference on type-i
and type-II Weyl semimetal surfaces: a review. Adv. Phys.: X 3,
1466661 (2018).

[95] A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev. Vol. ii:
Integrals and Series. Special Functions. (Nauka, Moskow, 1983).

[96] A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev. Vol. iii:
Integrals and Series. Special Functions. (Nauka, Moskow, 1983).

[97] E. T. Whittaker and A. Watson. Course of modern analysis,4th ed.
(Cambridge University Press, Cambridge, 1927).

[98] H. Bateman and A. Erdelyi. Higher transcendental functions, vol.
1. (MC Graw-Hill Book, New York, 1953).

[99] Y. N. Demkov and G. F. Drukarev. Particle of low binding energy
in a magnetic field. Sov. Phys. JETP 22, 182 (1965).

[100] T. T. Heikkilä and G. E. Volovik. Dimensional crossover in topo-
logical matter: evolution of the multiple Dirac point in the layered
system to the flat band on the surface. JETP Lett. 93, 59–65 (2011).

[101] T. T. Heikkilä, N. B. Kopnin, and G. E. Volovik. Flat bands in
topological media. JETP Lett. 94, 233–239 (2011).

[102] F. C. de Lima and G. J. Ferreira. High-degeneracy points protected
by site-permutation symmetries. Phys. Rev. B 101, 041107(R)
(2020).

[103] F. C. de Lima and A. Fazzio. Emergent quasiparticles in Euclidean
tilings. Nanoscale 13, 5270–5274 (2021).

[104] B. Dey and T. K. Ghosh. Photoinduced valley and electron-hole
symmetry breaking in α − T3 lattice: the role of a variable Berry
phase. Phys. Rev. B 98, 075422 (2018).

[105] A. Iurov, G. Gumbs, D. Huang, C. for High Technology Materi-
als, and U. of New Mexico. Peculiar electronic states, symmetries
and Berry phases in irradiated α− T3 materials. Phys. Rev. B 99,
205135 (2019).

[106] S. D. Sarma, S. Adam, E. H. Hwang, and E. Rossi. Electronic
transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–
470 (2011).

http://dx.doi.org/10.1126/science.aan8819
http://dx.doi.org/10.1080/23746149.2018.1466661
http://dx.doi.org/10.1080/23746149.2018.1466661
http://dx.doi.org/10.1134/s002136401102007x
http://dx.doi.org/10.1134/s0021364011150045
http://dx.doi.org/10.1103/physrevb.101.041107
http://dx.doi.org/10.1103/physrevb.101.041107
http://dx.doi.org/10.1039/d0nr08908g
http://dx.doi.org/10.1103/PhysRevB.98.075422
http://dx.doi.org/10.1103/PhysRevB.99.205135
http://dx.doi.org/10.1103/PhysRevB.99.205135
http://dx.doi.org/10.1103/revmodphys.83.407
http://dx.doi.org/10.1103/revmodphys.83.407


196 BIBLIOGRAPHY

[107] T. Cea and F. Guinea. Band structure and insulating states driven
by coulomb interaction in twisted bilayer graphene. Phys. Rev. B
102, 045107 (2020).

[108] M. I. Katsnelson. Graphene: Carbon in Two Dimensions. (Cam-
bridge University Press, Cambridge, 2012).

[109] G. Baym and L. P. Kadanoff. Conservation laws and correlation
functions. Phys. Rev. 124, 287 (1961).

[110] G. Baym. Self-consistent approximations in many-body systems.
Phys. Rev. 127, 1391 (1962).

[111] J. M. Cornwall, R. Jackiw, and E. Tomboulis. Effective action for
composite operators. Phys. Rev. D 10, 2428 (1974).

[112] E. V. Gorbar, V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy.
Dynamics in the quantum Hall effect and the phase diagram of
graphene. Phys. Rev. B 78, 085437 (2008).

[113] J. L. Garcia-Pomar, A. Cortijo, and M. Nieto-Vesperinas. Fully
valley-polarized electron beams in graphene. Phys. Rev. Lett. 100,
236801 (2008).

[114] D. S. L. Abergel and T. Chakraborty. Generation of valley po-
larized current in bilayer graphene. Appl. Phys. Lett. 95, 062107
(2009).

[115] M. O. Goerbig. Electronic properties of graphene in a strong mag-
netic field. Rev. Mod. Phys. 83, 1193 (2011).

[116] C. T. Kelley. Iterative methods for linear and nonlinear equations.
(Society for Industrial and Applied Mathematics, Philadelphia,
1995).

[117] V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy. Dynamical
flavor symmetry breaking by a magnetic field in 2+1 dimensions.
Phys. Rev. D 52, 4718–4735 (1995).

[118] I. F. Herbut. Interactions and phase transitions on graphene’s hon-
eycomb lattice. Phys. Rev. Lett. 97, 146401 (2006).

[119] V. A. Khodel and V. R. Shaginyan. Superfluidity in system with
fermion condensate. JETP Lett. 51, 553 (1990).

[120] G. E. Volovik. A new class of normal Fermi liquids. JETP Lett.
53, 222 (1991).

http://dx.doi.org/10.1103/physrevb.102.045107
http://dx.doi.org/10.1103/physrevb.102.045107
http://dx.doi.org/10.1103/physrev.124.287
http://dx.doi.org/10.1103/physrev.127.1391
http://dx.doi.org/10.1103/physrevd.10.2428
http://dx.doi.org/10.1103/physrevb.78.085437
http://dx.doi.org/10.1103/physrevlett.100.236801
http://dx.doi.org/10.1103/physrevlett.100.236801
http://dx.doi.org/10.1063/1.3205117
http://dx.doi.org/10.1063/1.3205117
http://dx.doi.org/10.1103/revmodphys.83.1193
http://dx.doi.org/10.1103/physrevd.52.4718
http://dx.doi.org/10.1103/physrevlett.97.146401


BIBLIOGRAPHY 197

[121] G. E. Volovik. The Fermi condensate near the saddle point and in
the vortex core. JETP Lett. 59, 830 (1994).

[122] G. E. Volovik. Flat band and Planckian metal. JETP Lett. 110,
352–353 (2019).

[123] D. N. Basov and T. Timusk. Electrodynamics of high-Tc supercon-
ductors. Rev. Mod. Phys. 77, 721–779 (2005).

[124] J. P. Carbotte, T. Timusk, and J. Hwang. Bosons in high-
temperature superconductors: an experimental survey. Rep. Prog.
Phys. 74, 066501 (2011).

[125] T. Ando. Dynamical conductivity and zero-mode anomaly in hon-
eycomb lattices. Journal of the Physical Society of Japan 71, 1318–
1324 (2002).

[126] V. P. Gusynin and S. G. Sharapov. Transport of Dirac quasiparti-
cles in graphene: Hall and optical conductivities. Phys. Rev. B 73,
245411 (2006).

[127] V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte. Unusual mi-
crowave response of Dirac quasiparticles in graphene. Phys. Rev.
Lett. 96, 256802 (2006).

[128] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J.
Booth, T. Stauber, N. M. R. Peres, and A. K. Geim. Fine structure
constant defines visual transparency of graphene. Science 320, 1308
(2008).

[129] Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim,
H. L. Stormer, and D. N. Basov. Dirac charge dynamics in graphene
by infrared spectroscopy. Nature Phys. 4, 532–535 (2008).

[130] T. Stauber, N. M. R. Peres, and A. K. Geim. Optical conductivity
of graphene in the visible region of the spectrum. Phys. Rev. B 78,
085432 (2008).

[131] A. A. Schafgans, K. W. Post, A. A. Taskin, Y. Ando, X.-L. Qi, B. C.
Chapler, and D. N. Basov. Landau level spectroscopy of surface
states in the topological insulator Bi0.91Sb0.09 via magneto-optics.
Phys. Rev. B 85, 195440 (2012).

[132] R. Y. Chen, S. J. Zhang, J. A. Schneeloch, C. Zhang, Q. Li,
G. D. Gu, and N. L. Wang. Optical spectroscopy study of the
three-dimensional Dirac semimetal ZrTe5. Phys. Rev. B 92, 075107
(2015).

http://dx.doi.org/10.1134/s002136401917003x
http://dx.doi.org/10.1134/s002136401917003x
http://dx.doi.org/10.1103/revmodphys.77.721
http://dx.doi.org/10.1088/0034-4885/74/6/066501
http://dx.doi.org/10.1088/0034-4885/74/6/066501
http://dx.doi.org/10.1143/JPSJ.71.1318
http://dx.doi.org/10.1143/JPSJ.71.1318
http://dx.doi.org/10.1103/PhysRevB.73.245411
http://dx.doi.org/10.1103/PhysRevB.73.245411
http://dx.doi.org/10.1103/PhysRevLett.96.256802
http://dx.doi.org/10.1103/PhysRevLett.96.256802
http://dx.doi.org/10.1126/science.1156965
http://dx.doi.org/10.1126/science.1156965
http://dx.doi.org/10.1038/nphys989
http://dx.doi.org/10.1103/PhysRevB.78.085432
http://dx.doi.org/10.1103/PhysRevB.78.085432
http://dx.doi.org/10.1103/physrevb.85.195440
http://dx.doi.org/10.1103/physrevb.92.075107
http://dx.doi.org/10.1103/physrevb.92.075107


198 BIBLIOGRAPHY

[133] B. Xu, Y. M. Dai, L. X. Zhao, K. Wang, R. Yang, W. Zhang,
J. Y. Liu, H. Xiao, G. F. Chen, A. J. Taylor, D. A. Yarotski, R. P.
Prasankumar, and X. G. Qiu. Optical spectroscopy of the Weyl
semimetal TaAs. Phys. Rev. B 93, 121110(R) (2016).

[134] D. Neubauer, J. P. Carbotte, A. A. Nateprov, A. Löhle, M. Dres-
sel, and A. V. Pronin. Interband optical conductivity of the [001]-
oriented Dirac semimetal Cd3As2. Phys. Rev. B 93, 121202(R)
(2016).

[135] M. I. Katsnelson. Zitterbewegung, chirality, and minimal conduc-
tivity in graphene. Euro. Phys. J. B 51, 157–160 (2006).

[136] J. Schwinger. On gauge invariance and vacuum polarization. Phys-
ical Review 82, 664–679 (1951).

[137] V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte. Sum rules for
the optical and Hall conductivity in graphene. Phys. Rev. B 75,
165407 (2007).

[138] S. Yuan, H. De Raedt, and M. I. Katsnelson. Modeling electronic
structure and transport properties of graphene with resonant scat-
tering centers. Phys. Rev. B 82, 115448 (2010).

[139] Y. Hasegawa, R. Konno, H. Nakano, and M. Kohmoto. Zero modes
of tight-binding electrons on the honeycomb lattice. Phys. Rev. B
74, 033413 (2006).

[140] G. Montambaux, F. Piéchon, J.-N. Fuchs, and M. O. Goerbig. A
universal Hamiltonian for motion and merging of Dirac points in
a two-dimensional crystal. Euro. Phys. J. B 72, 509–520 (2009).

[141] G. Montambaux, F. Piéchon, J.-N. Fuchs, and M. O. Goerbig.
Merging of Dirac points in a two-dimensional crystal. Phys. Rev.
B 80, 153412 (2009).

[142] L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger.
Creating, moving and merging Dirac points with a Fermi gas in a
tunable honeycomb lattice. Nature 483, 302–305 (2012).

[143] M. Bellec, U. Kuhl, G. Montambaux, and F. Mortessagne. Topo-
logical transition of Dirac points in a microwave experiment. Phys.
Rev. Lett. 110, 033902 (2013).

[144] P. Adroguer, D. Carpentier, G. Montambaux, and E. Orignac. Dif-
fusion of Dirac fermions across a topological merging transition in
two dimensions. Phys. Rev. B 93, 125113 (2016).

http://dx.doi.org/10.1103/physrevb.93.121110
http://dx.doi.org/10.1103/physrevb.93.121202
http://dx.doi.org/10.1103/physrevb.93.121202
http://dx.doi.org/10.1140/epjb/e2006-00203-1
http://dx.doi.org/10.1103/physrev.82.664
http://dx.doi.org/10.1103/physrev.82.664
http://dx.doi.org/10.1103/PhysRevB.75.165407
http://dx.doi.org/10.1103/PhysRevB.75.165407
http://dx.doi.org/10.1103/PhysRevB.82.115448
http://dx.doi.org/10.1103/physrevb.74.033413
http://dx.doi.org/10.1103/physrevb.74.033413
http://dx.doi.org/10.1140/epjb/e2009-00383-0
http://dx.doi.org/10.1103/physrevb.80.153412
http://dx.doi.org/10.1103/physrevb.80.153412
http://dx.doi.org/10.1038/nature10871
http://dx.doi.org/10.1103/physrevlett.110.033902
http://dx.doi.org/10.1103/physrevlett.110.033902
http://dx.doi.org/10.1103/physrevb.93.125113


BIBLIOGRAPHY 199

[145] K. Ziegler and A. Sinner. Lattice symmetries, spectral topology
and opto-electronic properties of graphene-like materials. Europhys.
Lett. 119, 27001 (2017).

[146] A. Mawrie and B. Muralidharan. Direction-dependent giant optical
conductivity in two-dimensional semi-Dirac materials. Phys. Rev.
B 99, 075415 (2019).

[147] J. P. Carbotte and E. J. Nicol. Signatures of merging Dirac points
in optics and transport. Phys. Rev. B 100, 035441 (2019).

[148] J. Jang, S. Ahn, and H. Min. Optical conductivity of black phospho-
rus with a tunable electronic structure. 2D Mat. 6, 025029 (2019).

[149] X. Zhou, W. Chen, and X. Zhu. Anisotropic magneto-optical ab-
sorption and linear dichroism in two-dimensional semi-Dirac elec-
tron systems. Phys. Rev. B 104, 235403 (2021).

[150] Y.-R. Chen, Y. Xu, J. Wang, J.-F. Liu, and Z. Ma. Enhanced
magneto-optical response due to the flat band in nanoribbons made
from the α− T3 lattice. Phys. Rev. B 99, 045420 (2019).

[151] B. Dey, P. Kapri, O. Pal, and T. K. Ghosh. Unconventional phases
in Haldane model of dice lattice. Phys. Rev. B 101, 235406 (2020).

[152] C.-D. Han and Y.-C. Lai. Optical response of two-dimensional
Dirac materials with a flat band. Phys. Rev. B 105, 155405 (2022).

[153] V. Apaja, M. Hyrkäs, and M. Manninen. Flat bands, Dirac
cones, and atom dynamics in an optical lattice. Phys. Rev. A 82,
041402(R) (2010).

[154] N. Goldman, D. F. Urban, and D. Bercioux. Topological phases for
fermionic cold atoms on the Lieb lattice. Phys. Rev. A 83, 063601
(2011).

[155] H. Tasaki. From Nagaoka's ferromagnetism to flat-band ferromag-
netism and beyond: an introduction to ferromagnetism in the Hub-
bard model. Progress of Theoretical Physics 99, 489–548 (1998).

[156] N. B. Kopnin, T. T. Heikkilä, and G. E. Volovik. High-temperature
surface superconductivity in topological flat-band systems. Phys.
Rev. B 83, 220503(R) (2011).

[157] A. Julku, S. Peotta, T. I. Vanhala, D.-H. Kim, and P. Törmä.
Geometric origin of superfluidity in the Lieb-lattice flat band. Phys.
Rev. Lett. 117, 045303 (2016).

http://dx.doi.org/10.1209/0295-5075/119/27001
http://dx.doi.org/10.1209/0295-5075/119/27001
http://dx.doi.org/10.1103/physrevb.99.075415
http://dx.doi.org/10.1103/physrevb.99.075415
http://dx.doi.org/10.1103/physrevb.100.035441
http://dx.doi.org/10.1088/2053-1583/ab075b
http://dx.doi.org/10.1103/physrevb.104.235403
http://dx.doi.org/10.1103/PhysRevB.99.045420
http://dx.doi.org/10.1103/PhysRevB.101.235406
http://dx.doi.org/10.1103/PhysRevB.105.155405
http://dx.doi.org/10.1103/physreva.82.041402
http://dx.doi.org/10.1103/physreva.82.041402
http://dx.doi.org/10.1103/physreva.83.063601
http://dx.doi.org/10.1103/physreva.83.063601
http://dx.doi.org/10.1143/ptp.99.489
http://dx.doi.org/10.1103/physrevb.83.220503
http://dx.doi.org/10.1103/physrevb.83.220503
http://dx.doi.org/10.1103/physrevlett.117.045303
http://dx.doi.org/10.1103/physrevlett.117.045303


200 BIBLIOGRAPHY

[158] R. A. Vicencio, C. Cantillano, L. Morales-Inostroza, B. Real, C.
Mejía-Cortés, S. Weimann, A. Szameit, and M. I. Molina. Obser-
vation of localized states in Lieb photonic lattices. Phys. Rev. Lett.
114, 245503 (2015).

[159] R. Drost, T. Ojanen, A. Harju, and P. Liljeroth. Topological states
in engineered atomic lattices. Nature Phys. 13, 668 (2017).

[160] D. Mayou. Generalized Drude formula for the optical conductivity
of quasicrystals. Phys. Rev. Lett. 85, 1290 (2000).

[161] M. Ezawa. Highly anisotropic physics in phosphorene. J. Phys.:
Conf. Series 603, 012006 (2015).

[162] P. K. Pyatkovskiy and T. Chakraborty. Dynamical polarization and
plasmons in a two-dimensional system with merging Dirac points.
Phys. Rev. B 93, 085145 (2016).

[163] H. Feshbach and F. Villars. Elementary relativistic wave mechanics
of spin 0 and spin 1/2 particles. Rev. Mod. Phys. 30, 24 (1958).

[164] J. Schliemann, D. Loss, and R. M. Westervelt. Zitterbewegung of
electronic wave packets in III-V zinc-blende semiconductor quan-
tum wells. Phys. Rev. Lett. 94, 206801 (2005).

[165] L. J. LeBlanc, M. C. Beeler, K Jiménez-García, A. R. Perry, S
Sugawa, R. A. Williams, and I. B. Spielman. Direct observation
of zitterbewegung in a bose–einstein condensate. New Journal of
Physics 15, 073011 (2013).

[166] E. V. Gorbar, V. P. Gusynin, and D. O. Oriekhov. Gap generation
and flat band catalysis in dice model with local interaction. Phys.
Rev. B 103, 155155 (2021).

[167] B. Dey and T. K. Ghosh. Floquet topological phase transition in
the α−T3 lattice. Phys. Rev. B 99, 205429 (2019).

[168] A. Iurov, L. Zhemchuzhna, D. Dahal, G. Gumbs, and D. Huang.
Quantum-statistical theory for laser-tuned transport and optical
conductivities of dressed electrons in α − T3 materials. Phys. Rev.
B 101, 035129 (2020).

[169] B. Dóra, J. Kailasvuori, and R. Moessner. Lattice generalization
of the Dirac equation to general spin and the role of the flat band.
Phys. Rev. B 84, 195422 (2011).

http://dx.doi.org/10.1103/physrevlett.114.245503
http://dx.doi.org/10.1103/physrevlett.114.245503
http://dx.doi.org/10.1038/nphys4080
http://dx.doi.org/10.1103/PhysRevLett.85.1290
http://dx.doi.org/10.1088/1742-6596/603/1/012006
http://dx.doi.org/10.1088/1742-6596/603/1/012006
http://dx.doi.org/10.1103/physrevb.93.085145
http://dx.doi.org/10.1103/RevModPhys.30.24
http://dx.doi.org/10.1103/PhysRevLett.94.206801
http://dx.doi.org/10.1088/1367-2630/15/7/073011
http://dx.doi.org/10.1088/1367-2630/15/7/073011
http://dx.doi.org/10.1103/physrevb.103.155155
http://dx.doi.org/10.1103/physrevb.103.155155
http://dx.doi.org/10.1103/PhysRevB.99.205429
http://dx.doi.org/10.1103/PhysRevB.101.035129
http://dx.doi.org/10.1103/PhysRevB.101.035129
http://dx.doi.org/10.1103/PhysRevB.84.195422


BIBLIOGRAPHY 201

[170] Z. Li and J. P. Carbotte. Longitudinal and spin-valley Hall optical
conductivity in single layer MoS2. Phys. Rev. B 86, 205425 (2012).

[171] C. J. Tabert and E. J. Nicol. AC/DC spin and valley Hall effects
in silicene and germanene. Phys. Rev. B 87, 235426 (2013).

[172] N. A. Sinitsyn, J. E. Hill, H. Min, J. Sinova, and A. H. MacDonald.
Charge and spin Hall conductivity in metallic graphene. Phys. Rev.
Lett. 97, 106804 (2006).

[173] T. M. Radchenko, A. A. Shylau, and I. V. Zozoulenko. Influ-
ence of correlated impurities on conductivity of graphene sheets:
Time-dependent real-space Kubo approach. Phys. Rev. B 86, 035418
(2012).

[174] I. S. Gradstein and I. M. Ryzhik. Table of Integrals, Series, and
Products. (Academic Press, New York, 1965).

[175] A. K. Geim and K. S. Novoselov. The rise of graphene. Nat. Mater.
6, 183 (2007).

[176] D Hsieh, D Qian, L Wray, Y Xia, Y. S. Hor, R. J. Cava, and M. Z.
Hasan. A topological Dirac insulator in a quantum spin Hall phase.
Nature 452, 970 (2008).

[177] M. Z. Hasan and C. L. Kane. Colloquium : topological insulators.
Rev. Mod. Phys. 82, 3045 (2010).

[178] B. A. Bernevig and T. L. Hughes. Topological Insulators and Topo-
logical Superconductors. (Princeton University Press, 2013).

[179] H.-J. Kim, K.-S. Kim, J.-F. Wang, M. Sasaki, N. Satoh, A. Ohnishi,
M. Kitaura, M. Yang, and L. Li. Dirac versus Weyl fermions in
topological insulators: Adler-Bell-Jackiw anomaly in transport phe-
nomena. Phys. Rev. Lett. 111, 246603 (2013).

[180] X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang,
M. Xue, H. Weng, Z. Fang, X. Dai, and G. Chen. Observation of
the chiral-anomaly-induced negative magnetoresistance in 3D Weyl
semimetal TaAs. Phys. Rev. X 5, 031023 (2015).

[181] Y. Li, Z. Wang, P. Li, X. Yang, Z. Shen, F. Sheng, X. Li, Y. Lu, Y.
Zheng, and Z.-A. Xu. Negative magnetoresistance in weyl semimet-
als NbAs and NbP: intrinsic chiral anomaly and extrinsic effects.
Front. Phys. 12, 127205 (2017).

http://dx.doi.org/10.1103/PhysRevB.86.205425
http://dx.doi.org/10.1103/PhysRevB.87.235426
http://dx.doi.org/10.1103/PhysRevLett.97.106804
http://dx.doi.org/10.1103/PhysRevLett.97.106804
http://dx.doi.org/10.1103/PhysRevB.86.035418
http://dx.doi.org/10.1103/PhysRevB.86.035418
http://dx.doi.org/10.1038/nmat1849
http://dx.doi.org/10.1038/nmat1849
http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/PhysRevLett.111.246603
http://dx.doi.org/10.1103/PhysRevX.5.031023
http://dx.doi.org/10.1007/s11467-016-0636-8


202 BIBLIOGRAPHY

[182] N. P. Armitage, E. J. Mele, and A. Vishwanath. Weyl and
Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90,
015001 (2018).

[183] E. V. Gorbar, V. A. Miransky, I. A. Shovkovy, and P. O. Sukha-
chov. Electronic Properties of Dirac and Weyl Semimetals. (World
Scientific, Singapore, Jan. 2021).

[184] K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I.
Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim. Un-
conventional quantum Hall effect and Berry’s phase of 2π in bilayer
graphene. Nat. Phys. 2, 177–180 (2006).

[185] E. McCann and M. Koshino. The electronic properties of bilayer
graphene. Rep. Prog. Phys. 76, 056503 (2013).

[186] E. McCann and V. I. Fal’ko. Landau-Level Degeneracy and Quan-
tum Hall Effect in a Graphite Bilayer. Phys. Rev. Lett. 96, 086805
(2006).

[187] D. S. L. Abergel and V. I. Fal’ko. Optical and magneto-optical far-
infrared properties of bilayer graphene. Phys. Rev. B 75, 155430
(2007).

[188] J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto.
Graphene Bilayer with a Twist: Electronic Structure. Phys. Rev.
Lett. 99, 256802 (2007).

[189] E. Suárez Morell, J. D. Correa, P. Vargas, M. Pacheco, and Z.
Barticevic. Flat bands in slightly twisted bilayer graphene: Tight-
binding calculations. Phys. Rev. B 82, 121407 (2010) arXiv:1012.
4320.

[190] R. Bistritzer and A. H. MacDonald. Moire bands in twisted double-
layer graphene. Proc. Natl. Acad. Sci. U. S. A. 108, 12233–12237
(2010).

[191] M. Yankowitz, S. Chen, H. Polshyn, K. Watanabe, T. Taniguchi,
D. Graf, A. F. Young, and C. R. Dean. Tuning superconductivity
in twisted bilayer graphene. Science 363, 1059 (2018).

[192] X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das, C.
Urgell, K. Watanabe, T. Taniguchi, G. Zhang, A. Bachtold, A. H.
MacDonald, and D. K. Efetov. Superconductors, Orbital Magnets,
and Correlated States in Magic Angle Bilayer Graphene. Nature
574, 653657 (2019).

http://dx.doi.org/10.1103/RevModPhys.90.015001
http://dx.doi.org/10.1103/RevModPhys.90.015001
http://dx.doi.org/10.1038/nphys245
http://dx.doi.org/10.1088/0034-4885/76/5/056503
http://dx.doi.org/10.1103/PhysRevLett.96.086805
http://dx.doi.org/10.1103/PhysRevLett.96.086805
http://dx.doi.org/10.1103/PhysRevB.75.155430
http://dx.doi.org/10.1103/PhysRevB.75.155430
http://dx.doi.org/10.1103/PhysRevLett.99.256802
http://dx.doi.org/10.1103/PhysRevLett.99.256802
http://dx.doi.org/10.1103/PhysRevB.82.121407
http://arxiv.org/abs/1012.4320
http://arxiv.org/abs/1012.4320
http://dx.doi.org/10.1073/pnas.1108174108
http://dx.doi.org/10.1073/pnas.1108174108
http://dx.doi.org/10.1126/science.aav1910
http://dx.doi.org/10.1038/s41586-019-1695-0
http://dx.doi.org/10.1038/s41586-019-1695-0


BIBLIOGRAPHY 203

[193] E. Y. Andrei and A. H. MacDonald. Graphene Bilayers with a
Twist. Nat. Mater. 19, 1265 (2020).

[194] M. Oh, K. P. Nuckolls, D. Wong, R. L. Lee, X. Liu, K. Watan-
abe, T. Taniguchi, and A. Yazdani. Evidence for unconventional
superconductivity in twisted bilayer graphene. Nature 600, 240–245
(2021) arXiv:2109.13944.

[195] I. Syozi. Statistics of Kagome Lattice. Prog. Theor. Phys. 6, 306–
308 (1951).

[196] F Piéchon, J.-N. Fuchs, A Raoux, and G Montambaux. Tunable
orbital susceptibility in α-T3 tight-binding models. J. Phys.: Conf.
Series 603, 012001 (2015).

[197] J. W. McClure. Diamagnetism of Graphite. Phys. Rev. 104, 666–
671 (1956).

[198] A. Iurov, G. Gumbs, and D. Huang. Many-body effects and opti-
cal properties of single and double layer α − T3 lattices. J. Phys.
Condens. Matter 32, 415303 (2020) arXiv:2004.05681.

[199] P. O. Sukhachov, D. O. Oriekhov, and E. V. Gorbar. Optical con-
ductivity of bilayer dice lattices. (2023) arXiv:2303.08258.

[200] E. Mostaani, N. D. Drummond, and V. I. Fal’ko. Quantum Monte
Carlo Calculation of the Binding Energy of Bilayer Graphene.
Phys. Rev. Lett. 115, 115501 (2015).

[201] H. Terrones, M. Terrones, E. Hernández, N. Grobert, J.-C. Char-
lier, and P. M. Ajayan. New metallic allotropes of planar and tubu-
lar carbon. Phys. Rev. Lett. 84, 1716–1719 (2000).

[202] A. N. Enyashin and A. L. Ivanovskii. Graphene allotropes. Physica
Status Solidi (b) 248, 1879–1883 (2011).

[203] Q. Gu, D. Xing, and J. Sun. Superconducting single-layer T-
graphene and novel synthesis routes. Chin. Phys. Lett. 36, 097401,
097401 (2019).

[204] X.-L. Sheng, H.-J. Cui, F. Ye, Q.-B. Yan, Q.-R. Zheng, and G.
Su. Octagraphene as a versatile carbon atomic sheet for novel nan-
otubes, unconventional fullerenes, and hydrogen storage. J. Appl.
Phys. 112, 074315 (2012).

http://dx.doi.org/10.1038/s41563-020-00840-0
http://dx.doi.org/10.1038/s41586-021-04121-x
http://dx.doi.org/10.1038/s41586-021-04121-x
http://arxiv.org/abs/2109.13944
http://dx.doi.org/10.1143/ptp/6.3.306
http://dx.doi.org/10.1143/ptp/6.3.306
http://dx.doi.org/10.1088/1742-6596/603/1/012001
http://dx.doi.org/10.1088/1742-6596/603/1/012001
http://dx.doi.org/10.1103/PhysRev.104.666
http://dx.doi.org/10.1103/PhysRev.104.666
http://dx.doi.org/10.1088/1361-648X/ab9bcb
http://dx.doi.org/10.1088/1361-648X/ab9bcb
http://arxiv.org/abs/2004.05681
http://arxiv.org/abs/2303.08258
http://dx.doi.org/10.1103/PhysRevLett.115.115501
http://dx.doi.org/10.1103/PhysRevLett.84.1716
http://dx.doi.org/10.1002/pssb.201046583
http://dx.doi.org/10.1002/pssb.201046583
http://dx.doi.org/10.1088/0256-307X/36/9/097401
http://dx.doi.org/10.1088/0256-307X/36/9/097401
http://dx.doi.org/10.1063/1.4757410
http://dx.doi.org/10.1063/1.4757410


204 BIBLIOGRAPHY

[205] A. Bao, H.-S. Tao, H.-D. Liu, X. Zhang, and W.-M. Liu. Quantum
magnetic phase transition in square-octagon lattice. Sci. Rep. 4,
6918 (2014).

[206] Y. Yamashita, M. Tomura, Y. Yanagi, and K. Ueda. SU(3) Dirac
electrons in the 1

5 -depleted square-lattice Hubbard model at 1
4 filling.

Phys. Rev. B 88, 195104 (2013).
[207] W. Li, M. Guo, G. Zhang, and Y.-W. Zhang. Gapless MoS2 al-

lotrope possessing both massless Dirac and heavy fermions. Phys.
Rev. B 89, 205402 (2014).

[208] N. Pomata and T.-C. Wei. Demonstrating the affleck-kennedy-lieb-
tasaki spectral gap on 2d degree-3 lattices. Phys. Rev. Lett. 124,
177203 (2020).

[209] Y. Sun, C. Felser, and B. Yan.Graphene-like Dirac states and quan-
tum spin Hall insulators in square-octagonal MX2 (M = Mo, W;
X = S, Se, Te) isomers. Phys. Rev. B 92, 165421 (2015).

[210] K. Umemoto, R. M. Wentzcovitch, S. Saito, and T. Miyake. Body-
Centered Tetragonal C4: A Viable sp3 Carbon Allotrope. Phys. Rev.
Lett. 104, 125504 (2010).

[211] R. Majidi. Electronic properties of T graphene-like C–BN sheets:
A density functional theory study. Phys. E: Low-dim. Sys. and
Nanostr. 74, 371–376 (2015).

[212] R. Majidi. Density functional theory study on structural and
mechanical properties of graphene, T-graphene, and R-graphyne.
Theor. Chem. Acc. 136, 109 (2017).

[213] W.-J. Yin, Y.-E. Xie, L.-M. Liu, R.-Z. Wang, X.-L. Wei, L. Lau,
J.-X. Zhong, and Y.-P. Chen. R-graphyne: a new two-dimensional
carbon allotrope with versatile Dirac-like point in nanoribbons. J.
Mat. Chem. A 1, 5341 (2013).

[214] A. I. Podlivaev and L. A. Openov. Kinetic stability of octagraphene.
Phys. Sol. State 55, 2592 (2013).

[215] H. Isobe and L. Fu. Supermetal. Physical Review Research 1,
033206 (2019).

[216] A. Shtyk, G. Goldstein, and C. Chamon. Electrons at the mon-
key saddle: A multicritical Lifshitz point. Phys. Rev. B 95, 035137
(2017).

http://dx.doi.org/10.1038/srep06918
http://dx.doi.org/10.1038/srep06918
http://dx.doi.org/10.1103/PhysRevB.88.195104
http://dx.doi.org/10.1103/PhysRevB.89.205402
http://dx.doi.org/10.1103/PhysRevB.89.205402
http://dx.doi.org/10.1103/PhysRevLett.124.177203
http://dx.doi.org/10.1103/PhysRevLett.124.177203
http://dx.doi.org/10.1103/physrevb.92.165421
http://dx.doi.org/10.1103/PhysRevLett.104.125504
http://dx.doi.org/10.1103/PhysRevLett.104.125504
http://dx.doi.org/10.1016/j.physe.2015.07.029
http://dx.doi.org/10.1016/j.physe.2015.07.029
http://dx.doi.org/10.1007/s00214-017-2148-1
http://dx.doi.org/10.1039/c3ta00097d
http://dx.doi.org/10.1039/c3ta00097d
http://dx.doi.org/10.1134/s1063783413120299
http://dx.doi.org/10.1103/physrevresearch.1.033206
http://dx.doi.org/10.1103/physrevresearch.1.033206
http://dx.doi.org/10.1103/physrevb.95.035137
http://dx.doi.org/10.1103/physrevb.95.035137


BIBLIOGRAPHY 205

[217] D. V. Efremov, A. Shtyk, A. W. Rost, C. Chamon, A. P. Mackenzie,
and J. J. Betouras. Multicritical Fermi Surface Topological Tran-
sitions. Phys. Rev. Lett. 123, 207202 (2019).

[218] A. Ramires, P. Coleman, A. H. Nevidomskyy, and A. M. Tsvelik.
β-YbAlB4: a critical nodal metal. Phys. Rev. Lett. 109, 176404
(2012).

[219] Y.-P. Lin and R. M. Nandkishore. Parquet renormalization group
analysis of weak-coupling instabilities with multiple high-order van
hove points inside the brillouin zone. Phys. Rev. B 102, 245122
(2020).

[220] Y. Sherkunov and J. J. Betouras. Electronic phases in twisted bi-
layer graphene at magic angles as a result of van hove singularities
and interactions. Phys. Rev. B 98, 205151 (2018).

[221] D. V. Chichinadze, L. Classen, and A. V. Chubukov. Valley mag-
netism, nematicity, and density wave orders in twisted bilayer
graphene. Phys. Rev. B 102, 125120 (2020).

[222] H. Isobe, N. F. Q. Yuan, and L. Fu. Unconventional superconduc-
tivity and density waves in twisted bilayer graphene. Phys. Rev. X
8, 041041 (2018).

[223] Y. Wang, J. Kang, and R. M. Fernandes. Topological and nematic
superconductivity mediated by ferro-su(4) fluctuations in twisted bi-
layer graphene. Phys. Rev. B 103, 024506 (2021).

[224] J. González and T. Stauber. Kohn-Luttinger superconductivity in
twisted bilayer graphene. Phys. Rev. Lett. 122, 026801 (2019).

[225] N. W. Ashcroft and N. D. Mermin. Solid state physics. (Saunders
College Publishing, Fort Worth, 1976).

[226] G. Gómez-Santos and T. Stauber. Measurable lattice effects on the
charge and magnetic response in graphene. Phys. Rev. Lett. 106,
045504 (2011).

[227] A. Raoux, F. Piéchon, J.-N. Fuchs, and G. Montambaux. Or-
bital magnetism in coupled-bands models. Phys. Rev. B 91, 085120
(2015).

[228] J. Li, T. Datta, and D.-X. Yao. Einstein-de haas effect of topological
magnons. Phys. Rev. Res. 3, 023248 (2021).

http://dx.doi.org/10.1103/physrevlett.123.207202
http://dx.doi.org/10.1103/physrevlett.109.176404
http://dx.doi.org/10.1103/physrevlett.109.176404
http://dx.doi.org/10.1103/PhysRevB.102.245122
http://dx.doi.org/10.1103/PhysRevB.102.245122
http://dx.doi.org/10.1103/PhysRevB.98.205151
http://dx.doi.org/10.1103/PhysRevB.102.125120
http://dx.doi.org/10.1103/PhysRevX.8.041041
http://dx.doi.org/10.1103/PhysRevX.8.041041
http://dx.doi.org/10.1103/PhysRevB.103.024506
http://dx.doi.org/10.1103/PhysRevLett.122.026801
http://dx.doi.org/10.1103/PhysRevLett.106.045504
http://dx.doi.org/10.1103/PhysRevLett.106.045504
http://dx.doi.org/10.1103/PhysRevB.91.085120
http://dx.doi.org/10.1103/PhysRevB.91.085120
http://dx.doi.org/10.1103/PhysRevResearch.3.023248


206 BIBLIOGRAPHY

[229] T. Louvet, P. Delplace, A. A. Fedorenko, and D. Carpentier. On
the origin of minimal conductivity at a band crossing. Phys. Rev.
B 92, 155116 (2015).

[230] P.-O. Löwdin. A note on the quantum-mechanical perturbation the-
ory. The Journal of Chemical Physics 19, 1396–1401 (1951).

[231] L.-K. Lim, J.-N. Fuchs, F. Piéchon, and G. Montambaux. Dirac
points emerging from flat bands in Lieb-kagome lattices. Phys. Rev.
B 101, 045131 (2020).

[232] F. Piéchon, A. Raoux, J.-N. Fuchs, and G. Montambaux. Geomet-
ric orbital susceptibility: quantum metric without Berry curvature.
Phys. Rev. B 94, 134423 (2016).

[233] H. Fukuyama. Theory of orbital magnetism of Bloch electrons:
coulomb interactions. Prog. Theor. Phys. 45, 704–729 (1971).

[234] L. Landau. Diamagnetismus der metalle. Zeitschrift für Physik 64,
629–637 (1930).

[235] R. Peierls. Zur theorie des diamagnetismus von leitungselektronen.
Zeitschrift für Physik 80, 763–791 (1933).

[236] P. Rosenzweig, H. Karakachian, D. Marchenko, K. Küster, and U.
Starke. Overdoping graphene beyond the van hove singularity. Phys.
Rev. Lett. 125, 176403 (2020).

[237] U. Choudhry, S. Yue, and B. Liao. Origins of significant reduction
of lattice thermal conductivity in graphene allotropes. Phys. Rev. B
100, 165401 (2019).

[238] D. Guerci, P. Simon, and C. Mora. Moiré lattice effects on the
orbital magnetic response of twisted bilayer graphene and Condon
instability. Phys. Rev. B 103, 224436 (2021).

[239] C. Kallin and J. Berlinsky. Chiral superconductors. Rep. Prog.
Phys. 79, 054502 (2016).

[240] T. Senthil and M. P. A. Fisher. Quasiparticle localization in su-
perconductors with spin-orbit scattering. Phys. Rev. B 61, 9690
(2000).

[241] N. Read and D. Green. Paired states of fermions in two dimen-
sions with breaking of parity and time-reversal symmetries and the
fractional quantum hall effect. Phys. Rev. B 61, 10267 (2000).

http://dx.doi.org/10.1103/PhysRevB.92.155116
http://dx.doi.org/10.1103/PhysRevB.92.155116
http://dx.doi.org/10.1063/1.1748067
http://dx.doi.org/10.1103/PhysRevB.101.045131
http://dx.doi.org/10.1103/PhysRevB.101.045131
http://dx.doi.org/10.1103/PhysRevB.94.134423
http://dx.doi.org/10.1143/ptp.45.704
http://dx.doi.org/10.1007/bf01397213
http://dx.doi.org/10.1007/bf01397213
http://dx.doi.org/10.1007/bf01342591
http://dx.doi.org/10.1103/PhysRevLett.125.176403
http://dx.doi.org/10.1103/PhysRevLett.125.176403
http://dx.doi.org/10.1103/physrevb.100.165401
http://dx.doi.org/10.1103/physrevb.100.165401
http://dx.doi.org/10.1103/physrevb.103.224436
http://dx.doi.org/10.1088/0034-4885/79/5/054502
http://dx.doi.org/10.1088/0034-4885/79/5/054502
http://dx.doi.org/10.1103/physrevb.61.9690
http://dx.doi.org/10.1103/physrevb.61.9690
http://dx.doi.org/10.1103/physrevb.61.10267


BIBLIOGRAPHY 207

[242] M. Banerjee, M. Heiblum, V. Umansky, D. E. Feldman, Y. Oreg,
and A. Stern. Observation of half-integer thermal hall conductance.
Nature 559, 205–210 (2018).

[243] X.-L. Qi and S.-C. Zhang. Topological insulators and superconduc-
tors. Rev. Mod. Phys. 83, 1057 (2011).

[244] D. A. Ivanov. Non-abelian statistics of half-quantum vortices in p-
wave superconductors. Phys. Rev. Lett. 86, 268 (2001).

[245] P. Fendley, M. P. A. Fisher, and C. Nayak. Edge states and tun-
neling of non-abelian quasiparticles in the p + ip superconductors.
Phys. Rev. B 75, 045317 (2007).

[246] L. Fu and C. L. Kane. Probing neutral majorana fermion edge
modes with charge transport. Phys. Rev. Lett. 102, 216403 (2009).

[247] A. R. Akhmerov, J. Nilsson, and C. W. J. Beenakker. Electrically
detected interferometry of majorana fermions in a topological insu-
lator. Phys. Rev. Lett. 102, 216404 (2009).

[248] G. Strübi, W. Belzig, M.-S. Choi, and C. Bruder. Interferometric
and noise signatures of majorana fermion edge states in transport
experiments. Phys. Rev. Lett. 107, 136403 (2011).

[249] J. Li, G. Fleury, and M. Büttiker. Scattering theory of chiral ma-
jorana fermion interferometry. Phys. Rev. B 85, 125440 (2012).

[250] M. Alos-Palop, R. P. Tiwari, and M. Blaauboer. Adiabatic quantum
pumping of chiral majorana fermions. Phys. Rev. B 89, 045307
(2014).

[251] D. S. Shapiro, A. Shnirman, and A. D. Mirlin. Current-phase rela-
tion and h/e-periodic critical current of a chiral josephson contact
between one-dimensional majorana modes. Phys. Rev. B 93, 155411
(2016).

[252] L. Chirolli, J. P. Baltanás, and D. Frustaglia. Chiral majorana in-
terference as a source of quantum entanglement. Phys. Rev. B 97,
155416 (2018).

[253] B. Lian, X.-Q. Sun, A. Vaezi, X.-L. Qi, and S.-C. Zhang. Topologi-
cal quantum computation based on chiral majorana fermions. Pro-
ceedings of the National Academy of Sciences 115, 10938–10942
(2018).

http://dx.doi.org/10.1038/s41586-018-0184-1
http://dx.doi.org/10.1103/revmodphys.83.1057
http://dx.doi.org/10.1103/physrevlett.86.268
http://dx.doi.org/10.1103/physrevb.75.045317
http://dx.doi.org/10.1103/physrevlett.102.216403
http://dx.doi.org/10.1103/physrevlett.102.216404
http://dx.doi.org/10.1103/physrevlett.107.136403
http://dx.doi.org/10.1103/physrevb.85.125440
http://dx.doi.org/10.1103/physrevb.89.045307
http://dx.doi.org/10.1103/physrevb.89.045307
http://dx.doi.org/10.1103/physrevb.93.155411
http://dx.doi.org/10.1103/physrevb.93.155411
http://dx.doi.org/10.1103/physrevb.97.155416
http://dx.doi.org/10.1103/physrevb.97.155416
http://dx.doi.org/10.1073/pnas.1810003115
http://dx.doi.org/10.1073/pnas.1810003115
http://dx.doi.org/10.1073/pnas.1810003115


208 BIBLIOGRAPHY

[254] Y.-H. Li, J. Liu, H. Liu, H. Jiang, Q.-F. Sun, and X. C. Xie. Noise
signatures for determining chiral majorana fermion modes. Phys.
Rev. B 98, 045141 (2018).

[255] C. Beenakker, P. Baireuther, Y. Herasymenko, I. Adagideli, L.
Wang, and A. Akhmerov. Deterministic creation and braiding of
chiral edge vortices. Phys. Rev. Lett. 122, 146803 (2019).

[256] C. Beenakker, A. Grabsch, and Y. Herasymenko. Electrical detec-
tion of the majorana fusion rule for chiral edge vortices in a topo-
logical superconductor. SciPost Physics 6, 022 (2019).

[257] I. Adagideli, F. Hassler, A. Grabsch, M. Pacholski, and C.
Beenakker. Time-resolved electrical detection of chiral edge vortex
braiding. SciPost Physics 8, 013 (2020).

[258] F. Hassler, A. Grabsch, M. J. Pacholski, D. O. Oriekhov, O. Ovdat,
I. Adagideli, and C. W. J. Beenakker. Half-integer charge injection
by a josephson junction without excess noise. Phys. Rev. B 102,
045431 (2020).

[259] C. Beenakker. Annihilation of colliding bogoliubov quasiparticles re-
veals their majorana nature. Phys. Rev. Lett. 112, 070604 (2014).

[260] N. V. Gnezdilov, B. van Heck, M. Diez, J. A. Hutasoit, and C. W. J.
Beenakker. Topologically protected charge transfer along the edge of
a chiral p-wave superconductor. Phys. Rev. B 92, 121406 (2015).

[261] I. Klich. A note on the full counting statistics of paired fermions.
J. Stat. Mech.: Theory and Experiment 2014, P11006 (2014).

[262] N. V. Gnezdilov, M. Diez, M. J. Pacholski, and C. W. J. Beenakker.
Wiedemann-franz-type relation between shot noise and thermal con-
duction of majorana surface states in a three-dimensional topolog-
ical superconductor. Phys. Rev. B 94, 115415 (2016).

[263] A. Furusaki and M. Tsukada. Current-carrying states in josephson
junctions. Phys. Rev. B 43, 10164 (1991).

[264] C. W. J. Beenakker and H. van Houten. Josephson current through
a superconducting quantum point contact shorter than the coher-
ence length. Phys. Rev. Lett. 66, 3056 (1991).

[265] I. O. Kulik and A. N. Omel´yanchuk. Properties of superconducting
microbridges in the pure limit. Sov. J. Low Temp. Phys. 3, 459
(1977).

http://dx.doi.org/10.1103/physrevb.98.045141
http://dx.doi.org/10.1103/physrevb.98.045141
http://dx.doi.org/10.1103/physrevlett.122.146803
http://dx.doi.org/10.21468/scipostphys.6.2.022
http://dx.doi.org/10.21468/scipostphys.8.1.013
http://dx.doi.org/10.1103/physrevb.102.045431
http://dx.doi.org/10.1103/physrevb.102.045431
http://dx.doi.org/10.1103/physrevlett.112.070604
http://dx.doi.org/10.1103/physrevb.92.121406
http://dx.doi.org/10.1088/1742-5468/2014/11/p11006
http://dx.doi.org/10.1103/physrevb.94.115415
http://dx.doi.org/10.1103/physrevb.43.10164
http://dx.doi.org/10.1103/PhysRevLett.66.3056


BIBLIOGRAPHY 209

[266] C. W. J. Beenakker. Universal limit of critical-current fluctua-
tions in mesoscopic josephson junctions. Phys. Rev. Lett. 67, 3836
(1991).

[267] A. Zazunov, V. S. Shumeiko, E. N. Bratus’, J. Lantz, and G.
Wendin. Andreev level qubit. Phys. Rev. Lett. 90, 087003 (2003).

[268] N. M. Chtchelkatchev and Y. V. Nazarov. Andreev quantum dots
for spin manipulation. Phys. Rev. Lett. 90, 226806 (2003).

[269] L. Bretheau, Ç. Girit, H. Pothier, D. Esteve, and C. Urbina. Ex-
citing andreev pairs in a superconducting atomic contact. Nature
499, 312–315 (2013).

[270] C. Janvier, L. Tosi, L. Bretheau, Ç. Girit, M. Stern, P. Bertet,
P. Joyez, D. Vion, D. Esteve, M. F. Goffman, H. Pothier, and C.
Urbina. Coherent manipulation of andreev states in superconduct-
ing atomic contacts. Science 349, 1199 (2015).

[271] M. Hays, G. de Lange, K. Serniak, D. van Woerkom, D. Bouman,
P. Krogstrup, J. Nygård, A. Geresdi, and M. Devoret. Direct
microwave measurement of andreev-bound-state dynamics in a
semiconductor-nanowire josephson junction. Phys. Rev. Lett. 121,
047001 (2018).

[272] M. Hays, V. Fatemi, D. Bouman, J. Cerrillo, S. Diamond, K.
Serniak, T. Connolly, P. Krogstrup, J. Nygård, A. L. Yeyati, A.
Geresdi, and M. H. Devoret. Coherent manipulation of an andreev
spin qubit. Science 373, 430 (2021).

[273] F. S. Bergeret, P. Virtanen, A. Ozaeta, T. T. Heikkilä, and J. C.
Cuevas. Supercurrent and andreev bound state dynamics in super-
conducting quantum point contacts under microwave irradiation.
Phys. Rev. B 84, 054504 (2011).

[274] A. Martín-Rodero and A. L. Yeyati. Josephson and andreev trans-
port through quantum dots. Adv. Phys. 60, 899 (2011).

[275] V Meden. The anderson-josephson quantum dot - a theory perspec-
tive. J. Phys.: Condens. Matter 31, 163001 (2019).

[276] A. L. Yeyati, A. Martín-Rodero, and E. Vecino. Nonequilibrium
dynamics of andreev states in the kondo regime. Phys. Rev. Lett.
91, 266802 (2003).

http://dx.doi.org/10.1103/physrevlett.67.3836
http://dx.doi.org/10.1103/physrevlett.67.3836
http://dx.doi.org/10.1103/physrevlett.90.087003
http://dx.doi.org/10.1103/physrevlett.90.226806
http://dx.doi.org/10.1038/nature12315
http://dx.doi.org/10.1038/nature12315
http://dx.doi.org/10.1126/science.aab2179
http://dx.doi.org/10.1103/physrevlett.121.047001
http://dx.doi.org/10.1103/physrevlett.121.047001
http://dx.doi.org/10.1126/science.abf0345
http://dx.doi.org/10.1103/PhysRevB.84.054504
http://dx.doi.org/10.1080/00018732.2011.624266
http://dx.doi.org/10.1088/1361-648x/aafd6a
http://dx.doi.org/10.1103/physrevlett.91.266802
http://dx.doi.org/10.1103/physrevlett.91.266802


210 BIBLIOGRAPHY

[277] L. I. Glazman and K. A. Matveev. Resonant Josephson current
through Kondo impurities in a tunnel barrier. JETP Lett. 49, 659
(1989).

[278] B. I. Spivak and S. A. Kivelson. Negative local superfluid densities:
the difference between dirty superconductors and dirty bose liquids.
Phys. Rev. B 43, 3740–3743 (1991).

[279] T. Novotný, A. Rossini, and K. Flensberg. Josephson current
through a molecular transistor in a dissipative environment. Phys.
Rev. B 72, 224502 (2005).

[280] T. Meng, S. Florens, and P. Simon. Self-consistent description of
andreev bound states in josephson quantum dot devices. Phys. Rev.
B 79, 224521 (2009).

[281] C. W. J. Beenakker and H. van Houten, Resonant josephson cur-
rent through a quantum dot, in Springer series in electronics and
photonics (Springer Berlin Heidelberg, 1992), pp. 175–179.

[282] I. A. Devyatov and M. Y. Kupriyanov. Resonant josephson tunnel-
ing through s-i-s junctions of arbitrary size. Journal of Experimen-
tal and Theoretical Physics 85, 189–194 (1997).

[283] P. Recher, Y. V. Nazarov, and L. P. Kouwenhoven. Josephson light-
emitting diode. Phys. Rev. Lett. 104, 156802 (2010).

[284] M. Tinkham. Introduction to superconductivity. (Dover, 2004).
[285] D. V. Averin, A. Bardas, and H. T. Imam. Resistively shunted

superconducting quantum point contacts. Phys. Rev. B 58, 11165
(1998).

[286] J.-J. Feng, Z. Huang, Z. Wang, and Q. Niu. Hysteresis from nonlin-
ear dynamics of majorana modes in topological josephson junctions.
Phys. Rev. B 98, 134515 (2018).

[287] D. Averin and A. Bardas. Adiabatic dynamics of superconducting
quantum point contacts. Phys. Rev. B 53, R1705 (1996).

[288] S. Shevchenko, S. Ashhab, and F. Nori. Landau-Zener-Stückelberg
interferometry. Physics Reports 492, 1–30 (2010).

http://dx.doi.org/10.1103/physrevb.43.3740
http://dx.doi.org/10.1103/physrevb.72.224502
http://dx.doi.org/10.1103/physrevb.72.224502
http://dx.doi.org/10.1103/physrevb.79.224521
http://dx.doi.org/10.1103/physrevb.79.224521
http://dx.doi.org/10.1007/978-3-642-77274-0_20
http://dx.doi.org/10.1007/978-3-642-77274-0_20
http://dx.doi.org/10.1134/1.558305
http://dx.doi.org/10.1134/1.558305
http://dx.doi.org/10.1103/physrevlett.104.156802
http://dx.doi.org/10.1103/physrevb.58.11165
http://dx.doi.org/10.1103/physrevb.58.11165
http://dx.doi.org/10.1103/physrevb.98.134515
http://dx.doi.org/10.1103/PhysRevB.53.R1705
http://dx.doi.org/10.1016/j.physrep.2010.03.002


Summary

The flat bands in a spectrum are defined as regions of momentum space in
which the quasiparticle dispersion is nearly constant. The states compos-
ing a flat band can be viewed as quasiparticles with very large effective
mass, thus being localized in real space. The two-dimensional crystals
hosting flat bands were studied theoretically two decades before the first
atomically-thin material – graphene – appeared. The field of studying and
building new flat band materials is still growing.

Nowadays, with the appearance of experimental realizations of flat
band materials, the interest in their physical properties has grown enor-
mously. The present thesis is dedicated to studying the quantum transport
phenomena and correlated effects that appear in flat band materials. Its
main contribution lies in the description of spin-spin exchange interac-
tions, excitonic gap generations, magnetic and optical properties in such
materials.

The Chapters 2, 3 and 4 contain calculation for a single-layer 2D flat
band crystals. In Chapter 2 we derive spin-spin exchange interaction
between two impurities placed on a dice lattice. The results show that
interaction is enhanced only for a specific geometric position of impuri-
ties, which is related to the structure of flat band wave functions. In this
Chapter we derived analytic expressions for the chemical potential and
temperature dependence of the interaction strength, which generalize re-
sults known in the graphene literature. In Chapter 3 we analyze the role
of electron-hole interactions in the dynamical formation of the excitonic
gap. It is found that the flat band plays the role of a catalyst and enhances
only specific order parameters, which leaves the flat band undeformed. In
Chapter 4 we extend an application of the zitterbewegung approach to a
number of flat band materials, which allows us to derive exact analytic
results and understand the role of different optical interband transitions
in the transport properties of these materials.
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Chapter 5 extends the study to bilayer crystals composed out of two
flat band single layer crystals. It contains the derivation of effective models
describing three-band-crossing points, the analysis of deformations of flat
bands as an effect of interlayer hopping, and the calculation of spectral
functions of such systems.

Chapter 6 contains a calculation of the orbital susceptibility for a
model of a possible graphene allotrope called T-graphene. The dia-to-
paramagnetic transition is predicted as a result of the interplay between
Dirac cones and nearly-flat bands, producing Van Hove singularities.

The last two Chapters, 7 and 8, are focused on the transport properties
of superconductors hosting Majorana zero modes or Andreev bound states.
The results in Chapter 7 show how one might distinguish Majorana zero
modes from Majorana fermions by measuring the shot noise. Chapter
8 describes how Andreev bound states placed nearly at zero energy can
create the same effect which is expected for a qubit built from Majorana
modes: a staircase in the voltage-current characteristic of a Josephson
junction containing a quantum dot.



Samenvatting

De vlakke banden in een spectrum worden gedefinieerd als gebieden van
de impulsruimte waarin de quasideeltjesdispersie bijna constant is. De
toestanden die een vlakke band vormen kunnen gezien worden als quasi-
deeltjes met een zeer grote effectieve massa en zijn dus ruimtelijk gelokali-
seerd. Twee decennia voordat het eerste atomair dunne materiaal - grafeen
- verscheen, werden tweedimensionale kristallen met vlakke banden theo-
retisch bestudeerd. Het bestuderen en bouwen van nieuwe materialen met
vlakke banden is nog steeds een actief onderwerp.

Tegenwoordig, met het verschijnen van experimentele realisaties van
vlakke bandmaterialen, is de interesse in hun fysische eigenschappen enorm
gegroeid. Dit proefschrift is gewijd aan de studie van quantumtransport-
verschijnselen en gecorreleerde effecten die optreden in vlakbandmateria-
len. De belangrijkste bijdrage ligt in de beschrijving van magnetische en
optische eigenschappen in dergelijke materialen.

De hoofdstukken 2, 3 en 4 bevatten berekeningen voor éénlaagse 2D
vlakbandkristallen. In hoofdstuk 2 leiden we de spin-spin interactie af tus-
sen twee onzuiverheden op een dobbelsteenrooster. De resultaten tonen
aan dat de interactie alleen wordt versterkt voor een specifieke geometri-
sche positie van onzuiverheden, die gerelateerd is aan de structuur van de
golffuncties van de vlakke band. In dit hoofdstuk hebben we analytische
uitdrukkingen afgeleid voor de chemische potentiaal en de temperatuur-
afhankelijkheid van de interactiesterkte, die resultaten veralgemenen die
bekend zijn in de grafeenliteratuur.

In hoofdstuk 3 analyseren we de rol van elektron-gat interacties in de
dynamische vorming van de excitonische “gap”. Het blijkt dat de vlakke
band de rol van katalysator speelt en alleen specifieke ordeparameters
versterkt, waardoor de vlakke band onvervormd blijft.

In hoofdstuk 4 breiden we een toepassing van de zitterbewegung-
benadering uit naar een aantal materialen met een vlakke band, waar-
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door we exacte analytische resultaten kunnen afleiden en de rol van ver-
schillende optische interbandovergangen in de transporteigenschappen van
deze materialen kunnen begrijpen.

Hoofdstuk 5 breidt de studie uit naar tweelaagskristallen die zijn op-
gebouwd uit twee vlakband enkellaags kristallen. Het bevat de analyse
van vervormingen van vlakke banden als effect van interlaags hoppen, en
de berekening van spectrale functies van dergelijke systemen.

Hoofdstuk 6 bevat een berekening van de orbitale susceptibiliteit voor
een model van een mogelijk grafeenallotroop, T-grafeen genaamd. De dia-
naar-paramagnetische overgang wordt voorspeld als gevolg van de wissel-
werking tussen Dirac-kegels en bijna-vlakke banden, waardoor Van Hove-
singulariteiten ontstaan.

De laatste twee hoofdstukken, 7 en 8, richten zich op de transporteigen-
schappen van supergeleiders met Majorana nulpunten of Andreev gebon-
den toestanden. De resultaten in hoofdstuk 7 laten zien hoe je Majorana
nulmodes kunt onderscheiden van Majorana fermionen door de hagelruis
te meten. Hoofdstuk 8 beschrijft hoe Andreev-gebonden toestanden die
bijna op nulenergie zijn geplaatst hetzelfde effect kunnen veroorzaken dat
verwacht wordt voor een qubit opgebouwd uit Majorana-modes: een lad-
dervormige spanning-stroomkarakteristiek van een Josephson-junctie die
een quantumdot bevat.
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