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Chapter 3: 

Pluripotent Stem Cell Strategies for Rebuilding the Human 
Brain 

In this chapter we describe protocols to differentiate hPSCs into different brain cell 

types that could be used to further dissect the multicellular contribution to ALS. 
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Neurodegenerative disorders have been extremely challenging to treat with 
traditional drug-based approaches and curative therapies are lacking. Given continued 
progress in stem cell technologies, cell replacement strategies have emerged as 
concrete and potentially viable therapeutic options. In this review, we cover advances 
in methods used to differentiate human pluripotent stem cells into several highly 
specialized types of neurons, including cholinergic, dopaminergic, and motor neurons, 
and the potential clinical applications of stem cell-derived neurons for common 
neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, 
Huntington’s disease, ataxia, and amyotrophic lateral sclerosis. Additionally, we 
summarize cellular differentiation techniques for generating glial cell populations, 
including oligodendrocytes and microglia, and their conceivable translational roles in 
supporting neural function. Clinical trials of specific cell replacement therapies in the 
nervous system are already underway, and several attractive avenues in regenerative 
medicine warrant further investigation. 

INTRODUCTION 
Age – it’s the one mountain you can’t overcome, and as the average life expectancy 

extends into the eighth decade, neurodegenerative diseases are becoming increasingly 

prevalent. Despite their increasing incidence, preventative or disease-modifying strategies for 

these emotionally and financially draining disorders are lacking. Due to the fundamental lack 

of regeneration within the central nervous system (CNS), neurodegenerative diseases 

relentlessly attacking discrete populations of neurons are excellent candidates for cell 

replacement therapies. Here, we review the current prospects on the application of pluripotent 

stem cell-derived cell types for the treatment of neurodegenerative disease.  
Pluripotent stem cells provide a uniquely scalable source of functional somatic cells, 

including cells of the CNS, that can potentially replace damaged or diseased tissues. Although 

prospects for using stem cell derivatives seemed fanciful at the start of the millennium, 

approximately two decades later several clinical trials using cellular products of pluripotent 
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stem cells are underway or about to reach the clinic (Gage and Temple, 2013; Kimbrel and 

Lanza, 2015; Steinbeck and Studer, 2015; Tao and Zhang, 2016; Trounson and DeWitt, 

2016). This progress has been facilitated through the development of robust methods for 

converting human pluripotent stem cells into the specific cell types that are lost in disease. 

Most techniques are based on fundamental principles learned from developmental biology 

and aim to recapitulate cell fate determination pathways in the culture dish, and these methods 

have been thoroughly reviewed elsewhere (Tao and Zhang, 2016). More recently, exogenous 

over-expression of transcription factors (TFs) has provided an alternative route to directed 

differentiation methodologies for generating specific classes of neurons. When appropriate, 

we will highlight both approaches that advance the field towards producing defined cellular 

populations, which are the ideal candidate for cell replacement therapies.  

In this review, we summarize recent progress toward generating specific cell types 

from human pluripotent stem cells for regenerative medicine. The examples described herein 

are not intended to be all-inclusive, and readers are encouraged to examine other reviews on 

the clinical development of stem cell-based therapies (Gage and Temple, 2013; Kimbrel and 

Lanza, 2015; Steinbeck and Studer, 2015; Tao and Zhang, 2016; Trounson and DeWitt, 

2016). Rather, we focus on recent biotechnological advances in the derivation of human cells 

and their application as cell therapies in the field of neurodegeneration (Table 1). These 

selected studies illustrate the biological concepts, experimental approaches, and therapeutic 

possibilities of in vitro stem cell-derived cells of the neural and glial lineages. We conclude our 

review with a discussion of emerging technologies in the field, current limitations, and 

remaining challenges for regenerative medicine in translational neurosciences.        

Table 1. Common neurodegenerative diseases characterized by selective vulnerability. 

Disease Prevalence Main 
symptoms 

Key brain 
regions 
affected 

Main 
vulnerable 
neuronal 
subtypes 

Pathological 
hallmarks  
(associated 
protein) 

Therapies 
(symptomatic 
treatments) 

Regenerative 
medicine 
cell-based 
approaches 

Alzheimer 
Dementia (AD) 

~5M Cognitive 
impairments in 
memory, 
language & 
behaviour 

Hippocampus, 
Basal 
Forebrain, 
Locus 
coeruleus 
(pons), Cortex 

Pyramidal 
neurons, 
Cholinergic 
neurons 

Neurofibrillary 
tangles (tau); 
neuritic 
plaques 
(beta-amyloid 
& tau) 

acetylcholinesterase 
inhibitors, 
memantine 

Cholinergic 
neurons, 
GABAergic 
Inhibitory 
neurons 

Parkinson 
Disease (PD) 
and Parkinson 
Disease with 
Dementia 
(PDD) 

~1M Tremor, 
stiffness, slow 
movements, 
autonomic 
dysfunction, 
sleep problems, 
cognitive 
decline 

Substantia 
nigra 
(midbrain), 
locus 
coeruleus 
(pons), Cortex 
(especially the 
cingulate) 

Dopaminergic 
neurons 

Lewy bodies 
and Lewy 
neurites 
(alpha-
synuclein) 

Levodopa, COMT 
inhibitors, dopamine 
agonists, deep brain 
stimulation 

Dopaminergic 
neurons  

Huntington 
Disease (HD) 

~30K Uncontrolled 
movements 
(chorea), 
neuropsychiatric 

Neostriatum, 
especially 
caudate 
(basal 
ganglia), 
cortex 

Spiny 
neurons 

Intranuclear & 
cytoplasmic 
neuronal 
inclusions 
(Htt) 

Tetrabenazine, 
neuroleptics (off-
label), 
antidepressants  

Spiny 
neurons  
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Spinocerebellar 
Ataxias (SCAs) 

~150K Difficulty with 
walking and 
speech, lack of 
coordination 

Cerebellum, 
brainstem, 
spinal cord 
(dorsal) 

Purkinje 
neurons, 
pontine nuclei 
neurons 

Intranuclear & 
cytoplasmic 
neuronal 
inclusions 
(various, e.g., 
ataxins) 

Limited, physical 
therapy 

Purkinje 
neurons 

Amyotrophic 
Lateral 
sclerosis (ALS) 

~20 K Progressive 
weakness and 
muscle atrophy 

Spinal cord 
(ventral), 
brainstem 
(motor nuclei), 
& frontal 
cortex 

Upper and 
lower motor 
neurons 

TDP-43 
positive 
cytoplasmic 
neuronal 
inclusions 

Riluzole, edaravone Lower motor 
neurons 

Figure 1 Basal forebrain cholinergic: diff. 1-4 Bissonnette et al., 2011; Liu et al., 2013a; Hu et al., 2016; Liu et al., 2013b; 
transpl. 2 Liu et al., 2013a. Cortical Glutamatergic: diff. 5-9 Espuny-Camacho et al., 2013; Cao et al., 2017; Qi et al., 2017; 
Zhang et al., 2013; Nehme et al., 2018; transpl. 5, 6, 7, 10 Espuny-Camacho et al., 2013; Qi et al., 2017; Zhang et al., 2013; 
Espuny-Camacho et al., 2017. GABAergic inhibitory: diff. 11-15 Maroof et al., 2013; Nicholas et al., 2013; Chanda et al., 2014 ; 
Sun et al., 2016 ; Yuan et al., 2018; transpl. 16-17 Anderson et al., 2018; Cunningham et al., 2014. Dopaminergic: diff. 18-22 
Kriks et al., 2011; Kim et al., 2021; Cai et al., 2009; Caiazzo et al., 2011; Pfisterer et al., 2011; transpl. 23-25 Kikuchi et al., 2017; 
Wakeman et al., 2017; Grealish et al., 2014. Medium Spiny: diff. 26-29 Aubry et al., 2008; Carri et al., 2012; Ma et al., 2022; 
Victor et al., 2014; transpl. 26, 27, 29 Aubry et al., 2008; Carri et al., 2012; Victor et al., 2014. Hypothalamic: diff. 30-33 Merkle 
et al., 2015; Kirwan et al., 2017 ; Wang et al., 2015 ; Rajamani et al., 2018; transpl. 30 Merkle et al. 2015. Hippocampal: diff. 34-
36 Yu et al., 2014; Sakaguchi et al., 2015 ; Hiragi et al., 2017; transpl. 34 Yu et al., 2014. Serotonergic: diff. 37-39 Lu et al., 
2016 ; Vadodaria et al., 2016 ; Xu et al., 2016; transpl. 40 Carlsson et al., 2009. Purkinje: diff. 41-45 Muguruma et al., 2015; 
Wang et al., 2015; Watson et al., 2018; Silva et al., 2020; Ishida et al., 2016; transpl. 46 Higuera et al., 2017. Motor: diff. 47-55 
Amoroso et al., 2013; Du et al., 2015; Maury et al. 2015; Klim et al., 2019; Son et al., 2011; Hester et al., 2011; Goto et al., 2017; 
Limone et al., 2022; Lippman et al., 2015; transpl. 55-56 Yohn et al., 2008; Corti et al., 2012. 
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PA5.,1621’6 ',6(A6( 

3arNinson’s Gisease is characteri]eG Ey the GeJeneration oI severaO neuronaO

subtypes, most notably the dopaminergic neurons of the substantia nigra pars compacta 

(SNpc), located in the ventral midbrain. These neurons project to the dorsal striatum of the 

basal ganglia and function in motor control, and their loss of these neurons contributes to the 

movement symStoms oEserveG in the initiaO staJes oI 3arNinson’s Gisease� )etaO-derived 

GoSamine neurons have haG SromisinJ cOinicaO EeneIits Ior 3arNinson’s Gisease patients 

(Hallett et al., 2014). To avoid the ethical and logistical issues associated with fetal tissue 

transplants, the application of pluripotent stem cells to generate dopaminergic neurons has 

been a long-standing goal. Indeed, translational research to bring these specific neurons to 

the clinic has far exceeded the other cell replacement strategies discussed here and recent 

advances have extensively been discussed elsewhere (Barker et al., 2017; Kim et al., 2020). 

In this section we will provide a summary of the most relevant discoveries that led to the first 

transplantation studies with hiPSC-derived cells that established a road map for the field.  

Dopaminergic neurons 

From the initial basic science studies that furnished the directed differentiation 

strategies of dopaminergic neurons to their large-scale production in GMP-facilities for 

transplantation studies, the research program for midbrain dopamine neurons has made 

excellent progress. Several groups developed methods to produce FOXA2/LMX1A-positive 

midbrain neurons capable of releasing dopamine (Arenas et al., 2015). For example, the 

Studer group has developed a highly efficient protocol for producing these neurons by 

combining dual-SMAD inhibition with activation of SHH and FGF8 signaling. The critical step 

in miGErain sSeciIication is the stronJ activation oI :17 siJnaOinJ achieveG usinJ a *6.�ȕ 

inhibitor (Kim et al., 2021; Kriks et al., 2011). Transcription factors, such as LMX1A, can also 

be used to enhance directed differentiation approaches (Cai et al., 2009), or for the direct 

reprogramming of fibroblasts into dopaminergic neurons (Caiazzo et al., 2011; Pfisterer et al., 

2011), and combined with cell sorting methods to further enrich for midbrain dopaminergic 

neurons (Arenas et al., 2015). Preclinical studies demonstrate that human iPS cell-derived 

GoSaminerJic neurons are saIe anG eIIicacious in Eoth roGent anG Srimate 3arNinson’s 

disease model (Kikuchi et al., 2017; Wakeman et al., 2017) with similar efficacy to fetal-derived 

tissue (Grealish et al., 2014). A number of clinical trials with stem cell-based therapies are 

currently being planned with their details summarized at a recent consortium meeting (Barker 

et al., 2017). Although PD patients receiving the stem cell-derived dopaminergic neurons will 

likely show improvements in movement symptoms, their additional symptoms, including 

depression, fatigue, visual hallucinations, and sleep disturbances, might persist due to 

continued degeneration of other neuronal types. This has led to some to propose serotonergic 

neurons (Lu et al., 2016; Vadodaria et al., 2016; Xu et al., 2016) as an additive cellular therapy 
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for PD (Politis and Loane, 2011). A delicate balance must be struck between dopaminergic 

and serotonergic neurons, however, as fetal grafts with high levels of serotonergic neurons 

have been associated with graft-induced dyskinesias in parkinsonian rats (Carlsson et al., 

2009). 

DEMENTIA 

Neurological conditions involving both memory loss and impaired judgement are 

classified as dementia (Yue and Jing, 2015). $O]heimer’s Gisease is the most common type of 

dementia in individuals older than 65 years old and the most prevalent neurodegenerative 

disease (Table 1�� 7he inciGence oI $O]heimer’s Gisease (AD) dramatically increases with age, 

and with the aging US population, it is estimated that approximately 14 million individuals will 

be affected by 2050. AD often first manifests clinically as impairments with short-term memory, 

and later affects behavior and language. Current treatments are aimed at ameliorating these 

symptoms without substantially affecting disease course. Cognitive decline is associated with 

progressive degeneration of neurons in the limbic system (especially the hippocampus and 

connected entorhinal cortex), the basal forebrain, and neocortical areas. Histologically, patient 

brains are characterized by the accumulation of extracellular beta-amyloid depositions and 

intracellular tau-positive neurofibrillary tangles as well as neuritic plaques that contain both tau 

within dystrophic neurites and beta-amyloid. Neuropathological studies strongly suggest that 

AD has well-defined and consistent spatiotemporal pattern of neurofibrillary degeneration, in 

most cases, that begins in the entorhinal cortex and spreads to pyramidal neurons in the 

hippocampus and then neocortical areas, with association areas affected sooner and more 

severely. Currently, there is no effective therapy to block the progression of AD making it a 

major looming public heath challenge. 

Basal Forebrain Cholinergic Neurons 

One of the earliest cell types perturbed by AD is the basal forebrain cholinergic neuron 

(BFCN). These neurons, which arise from the median ganglionic eminence (MGE) during 

development, are responsible for various aspects of cognition including learning, memory, and 

attention. At the molecular level, BFCNs are primary cholinergic neurons and innervate the 

cerebral cortex, hippocampus, and amygdala, and play critical roles in processing information 

related to cognitive function (Martinez et al., 2021). Transplantation of fetal cholinergic tissue 

from rats into the cortex of lesioned primates has been shown to restore memory deficits 

suggesting a potentially therapeutic roles for these cells (Ridley et al., 1994). 

Several methods to differentiate pluripotent stem cells into BFCNs have been 

described (Bissonnette et al., 2011; Hu et al., 2016; Liu et al., 2013a; Liu et al., 2013b). 

Typically, first forebrain neural progenitors are obtained and then treated with a SHH (sonic 
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hedgehog) agonist and FGF8 to coax the cells into expressing the transcription factors Nkx2.1, 

consistent with a ventral medial ganglionic eminence (MGE) neural progenitor identity. 

Subsequent culture of these progenitor cells on glia or treatment with BMP9 then yields a 

mixture of neurons containing BFCNs (Bissonnette et al., 2011; Hu et al., 2016; Liu et al., 

2013a; Liu et al., 2013b). Alternatively, overexpression of the transcription factors Lhx8 and 

Gbx1 can convert the progenitors into BFCNs (Bissonnette et al., 2011). Cells produced using 

these methods express markers consistent with a cholinergic identity and exhibit expected 

electrophysiological profiles. In one study, MGE-progenitor cells transplanted into mouse 

brains differentiated into neurons, including BFCNs, and formed synaptic connections (Liu et 

al., 2013b). More importantly, injection of these precursor cells led to learning and memory 

improvements in lesioned mice (Liu et al., 2013b). Whether these improvements were the 

specific result of the BFCNs or other cell types remains to be determined but this study 

provides an important proof-of-principle for the use of stem cell-based therapy to improve 

cognition. 

Cortical glutamatergic pyramidal neurons 

Cerebral cortex development consists of three major processes: cell proliferation, 

neuronal migration, and cortical organization into multiple well-defined layers. The cerebral 

cortex contains two major classes of neurons; a majority population of excitatory glutamatergic 

projections neurons that arise during development from the dorsal telencephalon, which is the 

developmental precursor to the cerebral cortex, and a minor population of inhibitory 

interneurons. Through successive waves of neurogenesis, these neurons generate the six 

layers of the neocortex, which can be further functionally divided based on specific patterns 

of axonal output and dendritic input. Due to their abundance and ability to project long 

distances,  cortical pyramidal neurons,  named for their shape, are able to integrate and send 

information across the entire nervous system (Bekkers, 2011). 

The production of pyramidal neurons from pluripotent stem cells is considered to be a 

default differentiation fate because it occurs in the absence of exogenous signaling factors 

(Espuny-Camacho et al., 2013). Inhibiting certain signaling pathways, however, can enhance 

the yield of cortical glutamatergic neurons by suppressing the emergence of inhibitory 

interneurons (Cao et al., 2017). More recently, accelerated methods for generating cortical 

neurons have been reported. One method relies on a cocktail of molecules to both pattern the 

cells to dorsal forebrain lineage and then inhibit neural stem cell self-renewal to drive 

neurogenesis, which preliminary data suggests can be timed to achieve the production of 

neurons of different cortical layers (Qi et al., 2017). Forced expression of the transcription 

factor Ngn2 in stem cells further accelerates the differentiation to yield very pure populations 

of glutamatergic neurons (Zhang et al., 2013) that can be enhanced with the addition of 

developmental cues (Nehme et al., 2018). Transcriptional studies suggest this method favors 
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the production of upper layer neurons, therefore additional methods to achieve the full diversity 

of cortical layers may still be necessary. After injecting into the postnatal mouse brain, human 

cortical neurons generated using the methodologies described above displayed proper, long-

Gistance SroMection Satterns anG inteJrateG IunctionaOOy Zithin the host’s circuitry (Espuny-

Camacho et al., 2013; Qi et al., 2017; Zhang et al., 2013). Whether they can ameliorate 

disease phenotypes in animal models remains an unanswered question, but neurons 

transplanted into a murine AD model display pathological hallmarks of the disease including 

altered tau biochemistry (Espuny-Camacho et al., 2017). 

GABAergic inhibitory neurons 

In both the brain and spinal cord, gamma-aminobutyric acid (GABA)-releasing 

interneurons are the major class of inhibitory neurons and play crucial roles in modulating 

neural circuits. There are many distinct subtypes of interneurons that differ in their synaptic 

connections, expression of neuropeptides, neurotransmitter machinery, and developmental 

origin with some immature interneurons having the remarkable ability to migrate and disperse 

long distances to integrate throughout the CNS (Southwell et al., 2014). This integrative 

property makes interneurons a promising candidate for cell replacement therapies. 

Several groups have developed directed differentiation approaches for producing 

interneurons from human pluripotent stem cells (Liu et al., 2013a; Maroof et al., 2013; Nicholas 

et al., 2013). These approaches typically inhibit both branches of SMAD signaling as well as 

WNT signaling using small molecules to achieve robust forebrain induction into cells 

resembling the MGE, as suggested by expression of the transcription factor Nkx2.1. Careful 

timing of SHH activation then allows for induction of ventral cell fate in these progenitor cells 

that develop into GABAergic interneurons as opposed to basal forebrain cholinergic neurons 

(Liu et al., 2013a). In addition to directed differentiation approaches, transcription factor-

mediated inductions of interneurons from stem cells have also been described (Chanda et al., 

2014; Sun et al., 2016; Yuan et al., 2018). Minimally, transient expression of ASCL1 and DLX2 

can convert stem cells into GABAergic interneurons. When injected into the mouse brain, 

these cells, migrated, integrated, and matured into a variety of interneuronal subtypes, 

including expression of the mature subtype markers parvalbumin or somatostatin. Further 

studies, such as single-cell transcriptomic approaches, are needed to characterize the full 

repertoire of subtypes of interneurons that can be obtained from pluripotent stem cells. 

Impressive studies have gone on to show that transplanted interneurons were capable of 

improving memory (Anderson et al., 2018) and in some cases suppressing seizures and 

abnormal behaviors in an epileptic mouse model (Cunningham et al., 2014). Based on these 

promising studies, one biotech company, Neurona Therapeutics, is pioneering the clinical 

uses for interneuron-based cell therapies for epilepsy and neuropathic pain.  
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Hippocampal neurons 

Composed of granule and pyramidal neurons, the hippocampus plays a critical role in 

learning and memory. It is also an area of the brain that deteriorates in $O]heimer’s Gisease� 

additional forms of dementia, and other age-related cognitive declines of distinct etiologies. 

Interestingly, in addition to the subventricular zone, the dentate gyrus of the hippocampus is 

a unique site of adult neurogenesis (although the absolute rate of neurogenesis remains 

controversial). Therefore, incorporation of immature stem cell-derived neurons into existing 

neural circuity beyond embryonic development is a hopeful prospect.  

To generate hippocampal neurons, stem cells are patterned to dorsal forebrain 

progenitors by inhibiting both branches of the SMAD signaling (dual-SMAD inhibition) as well 

as factors to promote WNT and SHH signaling. Subsequently, WNT3a is applied along with 

BDNF to drive the neurogenesis of hippocampal granule neurons (Hiragi et al., 2017; 

Sakaguchi et al., 2015; Yu et al., 2014). Initial findings indicate concurrent WNT and BMP 

activation can drive the differentiation of the dorsal forebrain progenitors into pyramidal 

neurons (Sakaguchi et al., 2015). Rodent transplantation studies with hippocampal neural 

precursors revealed that the human neurons could integrate into the dentate gyrus (Yu et al., 

2014), but it remains to be determined if these xenografts can affect disease-related 

phenotypes in animal models.  

H817,1*721’6 ',6(A6( 
+untinJton’s Gisease is causeG Ey a &$* trinucOeotiGe reSeat e[Sansion Zithin the 

coding region of the HTT gene, resulting in an extended polyglutamine (polyQ) tract within the 

Huntingtin protein. The progressive loss of neurons and gross atrophy in the neostriatum 

(caudate nucleus and putamen) disrupts neuronal circuits involving the basal ganglia and 

leads to gradually worsening motor impairment and, as additional brain regions are affected, 

significant cognitive and psychiatric symptoms. 

Medium spiny neurons 

Medium spiny neurons that reside in the striatum, contribute to the complex circuits 

that control movement and are SarticuOarOy vuOneraEOe in +untinJton’s Gisease� During 

development, these inhibitory neurons arise from the lateral ganglionic eminence (LGE) and 

are marked by the expression of DARPP32 (dopamine- and cAMP-regulated phosphoprotein 

Mr∼32 kDa) (Fjodorova et al., 2015). The relatively specific loss of DARPP32+ medium spiny 

class of neurons in the neostriatum makes +untinJton’s Gisease a stronJ canGiGate Ior ceOO 

replacement therapies� /iNe Ior 3arNinson’s Gisease, fetal transplants have paved the way for 

stem cell-derived therapies for HD (Freeman et al., 2000). 

Numerous groups have validated directed differentiation approaches for producing 

medium spiny neurons from stem cells (Aubry et al., 2008; Carri et al., 2012; Ma et al., 2012). 

75

75/180



Like the methods for producing other inhibitory neurons from the neighboring MGE, 

combinatorial SHH/WNT signaling modulation induces an anterior-ventral fate. Of note, 

reduced activation of SHH signaling and the addition of Activin A can favor a LGE fate while 

inhibiting a MGE fate (Fjodorova et al., 2015). A direct conversion method has also recently 

been described for transforming fibroblasts into medium spiny neurons, specifically, with a 

combination of 4 transcription factors (CTIP2, DLX1, DLX2, and MYT1L) and two microRNAs 

(miR-9/9 and miR-124) (Victor et al., 2014). Whether these direct programming methods can 

be applied to pluripotent stem cells remains to be determined but could be used to improve 

the yield of medium spiny neurons from stem cells, which are at best ~50%. When 

transplanted into a murine striatum, the neurons integrate into the host circuit and project to 

the proper anatomical targets. In some cases, the transplanted cells neurons can rescue 

motor deficits in quinolinic acid, an excitotoxin, striatal-lesioned mice, a model of HD (Carri et 

al., 2012; Victor et al., 2014). In another study, however, the transplanted cells also resulted 

in cellular overgrowth (Aubry et al., 2008). Based on these studies, refined purification 

methods to yield more homogenous neuron populations followed by additional animal model 

studies seem warranted. 

ATAXIAS 
Spinocerebellar ataxias (SCAs) are a clinically and genetically heterogenous group of 

neurological disorders associated with impairments in motor coordination due to degeneration 

of the cerebellum and connected neuronal pathways. Many SCAs are caused by CAG 

nucleotide repeat expansions within certain genes leading to the production of polyglutamine 

(polyQ)-containing proteins with putative toxic gain-of-function effects. For instance, an 

autosomal dominantly-inherited, abnormally long (>33 CAG repeats) trinucleotide repeat 

expansion within ATXN-2 results in SCA2 that can manifest with ataxia, loss of neurological 

reflexes, and Parkinsonian symptoms. Ataxias can be associated with other inherited 

disorders. For examples, an autosomal recessively-inherited GAA trinucleotide repeat 

expansions in FXN� encoGinJ Irata[in� cause )rieGrich’s ata[ia� Zhich is characterized by 

progressive ataxia, impaired speech, loss of vibratory and proprioceptive sensation due to 

degeneration of spinal cord neurons and nerve fiber tracts connecting to the cerebellum. There 

are no effective treatments for these debilitating and often fatal diseases.  

Purkinje cells 
Purkinje cells are large inhibitory GABAergic neurons with extensive dendritic arbors 

that reside within the hindbrain structure of the cerebellum. As the output neurons of the 

cerebellar cortex, they project to neurons within deep cerebellar nuclei and play an important 

role in motor coordination. Until recently, the differentiation of human PSCs into Purkinje 

neurons remained elusive, perhaps due to their late emergence during development. An initial 
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directed differentiation approach for this cell type required several steps and many factors. 

First, exogenous factors were employed to stimulate endogenous Wnt1 and FGF8 signaling 

and promote a midbrain/hindbrain identity, and inhibition of SHH signaling was used to pattern 

cells towards a dorsal identity (Muguruma et al., 2015; Wang et al., 2015). Then, the 

maturation process could be accomplished through several methods: plating precursors on 

mouse cerebellar slice cultures (Watson et al., 2018), within self-organizing, polarized 

cerebellar structures (Muguruma et al., 2015), or more recently in a defined basal medium 

optimized for cell culture (Bardy et al., 2015; Silva et al., 2020). Studies indicate that the stem 

cell-derived Purkinje cells are susceptible to genetic insults, such as the trinucleotide CAG 

repeat in CACNA1A associated with SCA6 (Ishida et al., 2016), that trigger their selective 

demise, and that they can also engraft into the mouse cerebellum (Wang et al., 2015). 

Although more defined and robust methods are needed before cell replacement therapies 

should be considered clinically, the initial findings have paved the way for producing this 

neuronal type that is relevant to many neurological disorders.  

MOTOR NEURON DISEASES 
The specific loss of motor neurons underlies several devastating neurological diseases 

including amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). Both 

diseases involve the progressive loss of motor function, eventually progressing to fatal 

paralysis. In nearly all (~97%) of cases of ALS, motor neurons in both the brain and spinal 

exhibit pathological changes in the cellular localization of the RNA binding protein TDP-43, 

which include loss of the normal nuclear localization and the formation of cytoplasmic 

inclusions (Klim et al., 2021). 

Spinal Motor Neurons  

Motor neurons represent a diverse group of neuronal subtypes and provide the pivotal 

link between mind and the animation of the body. Generally, there are two types of motor 

neurons; upper motor neurons that reside in the frontal cortex and project to lower motor 

neurons, found in the ventral brainstem and spinal cord, which in turn form synapses with the 

musculature. Decades of developmental studies and genetic analyses have illuminated the 

molecular underpinnings of lower motor neuron specification during embryo development 

(Dasen and Jessell, 2009) with the morphological gradients well established (Davis-

Dusenbery et al., 2014). 

 Leveraging this knowledge, stem cell scientists developed methods to generate motor 

neurons from mouse embryonic stem cells by applying retinoic acid (RA) to caudalize the cells 

towards a spinal cord (the distal or tail end of the neural tube) identity and  activating SHH to 

ventralize them toward a motor,  rather than sensory, identity (Wichterle et al., 2002). Several 

research groups have advanced these earlier findings to reproducibly convert human 
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pluripotent stem cells into vast quantities of motor neurons (Amoroso et al., 2013; Du et al., 

2015; Klim et al., 2019; Maury et al., 2015). These approaches typically rely on neural 

induction through small molecule dual-SMAD signaling inhibition, in some cases activation of 

WNT signaling, accelerated neurogenesis through inhibition of FGF or NOTCH signaling, all 

coupled with MN patterning described above (RA and SHH). Ichida, Son, and colleagues have 

used a large cadre of MN-related transcription factors (Isl1, Ascl1, Myt1l, Brn2, Ngn2, Lhx3, 

and Neurod1) to directly convert fibroblasts into induced motor neurons(Son et al., 2011). 

Alternatively, simpler protocols were achieved that used a subset these factors to transform 

human stem cells into motor neurons (Goto et al., 2017; Hester et al., 2011). Recently, we 

have also shown that transcription factor-based and small molecule approaches could be 

combined to yield a highly pure population of cervical-like motor neurons from iPSCs with 

100% efficiency through the inducible expression of Ngn2 (neurogenin-2) alone coupled with 

RA and SHH treatments (Limone et al., 2022). Interestingly, carefully varying the timing of 

retinoid application has been demonstrated to afford more caudal motor neuron fates 

(Lippmann et al., 2015), but methodologies for producing upper motor neurons, also known 

as cortical spinal motor neurons (CSMNs), are still lacking. As degeneration of cortical and 

spinal cord motor regions occur in ALS, a full array of motor neuron subtypes might be needed 

as a cell replacement therapy. 

So far, motor neuron transplant results have been encouraging. For example 

pioneering transplant studies demonstrate that mES-derived motor neurons injected into tibial 

nerve of adult mice can form functional NMJs and ameliorate muscle atrophy (Yohn et al., 

2008). Another notable study was able to transplant human iPS cell-derived motor neurons 

into the ventral horns of an SMA mouse model (Corti et al., 2012). The transplanted motor 

neurons could survive and engraft into the murine spinal cord and could even ameliorate 

disease phenotypes and extend the life span relative to those receiving a fibroblast transplant 

(Corti et al., 2012). These exciting initial studies highlight the need for large animal models for 

testing motor neuron-based cell therapies. 

GLIAL CELLS 
Although glia are more abundant than neurons, nuances remain in our understanding 

of how their exact cellular identities are established and how glial developmental pathways 

can be recapitulated in vitro for cell replacement approaches. Three main types of glia exist in 

the CNS: astrocytes, oligodendrocytes (OLs), and microglia. In brief, astrocytes are 

responsible for forming and modulating the blood-brain barrier (BBB) and modifying the 

chemical microenvironment governing synaptic function. Microglia are the resident immune 

cells of the CNS that function in synaptic pruning during development, immune surveillance, 

debris clearance and defense from pathogens. Oligodendrocytes are responsible for 
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myelinating axons in the CNS, thereby maintaining strong electrical connectivity of brain 

circuitry. Glia have been implicated in almost all neurodegenerative diseases, and their 

dysfunction in this context are more extensively reviewed elsewhere (Zheng et al., 2018). Glial 

transplantation for the treatment of neurodegenerative diseases has been explored much less 

than for neurons, though might be advantageous for ameliorating glial dysfunction as well as 

mitigating the loss of degenerating neurons by engaging in supportive roles. Like neurons, 

glial cells can be generated by activating development cues or overexpression of cell type-

specific transcription factors. We will discuss a selection of strategies to generate glia and 

their most promising applications to neurodegenerative diseases.  

Astrocytes 

Astrocytes are star-shaped glial cells that reside in both the brain and spinal cord to 

maintain BBB integrity, regulate nutrient flow, and govern neuronal function. They arise 

relatively early in neuronal development from radial glial progenitor cells usually after these 

cells have generated neurons. Broadly, differentiation protocols recapitulate developmental 

cues (Krencik et al., 2011; Shaltouki et al., 2013) by promoting neuronal stem cell (NSC) 

identity via dual SMAD inhibition and then gliogenesis with morphogens (Krencik and Zhang, 

2011). Promoting gliogenesis after NSC differentiation has traditionally been a slow rate-

limiting step in the generation of astrocytes, but recent transgenic and chemical strategies 

have greatly accelerated this process. E[Sansion oI 16&s Zith $ctivin $� +ereJuOin �ȕ 

(Neuregulin1), and IGFI (Shaltouki et al., 2013; Tcw et al., 2017), flow cytometry-based 

enrichment strategies (Barbar et al., 2020) or overexpression of TFs NFIA and SOX9 can 

dramatically shorten differentiation protocols (Canals et al., 2018; Tchieu et al., 2019). hPSC-

derived astrocyte-like cells can be generated in as little as 30 days and show functional 

properties similar to primary astrocytes in that they uptake glutamate, promote neurite 

outgrowth, propagate calcium waves, and retain their identity in vivo (Krencik and Zhang, 

2011; Li et al., 2018; Shaltouki et al., 2013). Many groups have recently developed methods 

to increase maturity and function of these cells by differentiating them from 3D structures 

coupled with cell sorting methods (Barbar et al., 2020). 

Studies on ALS and PD animal models are laying the foundation for astrocyte 

transplantation therapies. In ALS models, astrocytes exert toxic gain-of-function effects that 

can act in a cell non-autonomous manner to contribute to motor neuron degeneration (Di 

Giorgio et al., 2008; Di Giorgio et al., 2007; Hall et al., 2017; Meyer et al., 2014). For instance, 

mice expressing human mutant SOD1 in astrocytes in addition to neurons had reduced to 

survival compared to mice only expressing mutant SOD1 in neurons, in other words, a wild-

type astrocyte microenvironment may promote motor neuron survival �%ataveOMiü et aO�� �����. 

Focal transplantation of glial-restricted NPCs (Neuronal Progenitor Cells) into the cervical 

spinal cord of SOD1 transgenic rats during disease progression extended survival and 
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decreased motor neuron death, in part due to the partial rescue of GLT1 expression in 

astrocytes (Clement et al., 2003). Clinical trials are ongoing to prove the efficacy of 

transplanted PSC-derived astrocytes to boost neuronal survival and slow disease progression. 

For instance, a phase 1/2a trial in a small cohort of ALS patients (NCT02943850) has shown 

that a single injection of human NPCs engineered to produce glial cell line-derived 

neurotrophic factor (GDNF) into the spinal cord is safe, and viable grafts differentiated into 

astrocytes that may be neuroprotective through increased GDNF production (Baloh et al., 

2022). 

Transplantation studies for PD also showed promising results. Co-transplantation of 

primary fetal NPCs and rat astrocytes increased long-term engraftment of mature midbrain 

dopaminergic neurons and increase anti-inflammatory markers in the brains of PD rats 

(Lepore et al., 2008). Transplantation of primary astrocytes into the SNpc increase 

synaptosomal dopamine uptake in the striatum, reduce ROS stress, and improved motor 

deficits of pharmacologically-induced PD rats (Song et al., 2017). These observations suggest 

hPSC-derived astrocytes may be used to slow disease progression and complement 

dopaminergic neuron transplantation.  

Oligodendrocytes 

Similar to astrocytes, 

oligodendrocytes are derived in 

development after neurogenesis. 

In both the forebrain and the spinal 

cord, oligodendroglial progenitor 

cells (OPCs) are generated from 

Nkx2.1+, SHH-derived progenitors 

and their differentiation is regulated 

by TFs Olig1 and Olig2. OPCs 

have an immense ability to migrate 

and populate the entire brain and 

spinal cord where most of them 

further differentiate into committed, 

myelinating oligodendrocytes 

(OLs) while a small subset of them 

are maintained in a progenitor 

state. Their great migratory 

abilities, plasticity and pivotal role 

in neuronal support render these cells ideal for transplantation studies and replacement 

therapies. 

Figure 2 Astrocyte: diff. 1-8 Krencik et al. 2011; Shaltouki et al. 2013; Krenick 
et al. 2011; TCW et al. 2017; Barbar et al. 2020; Tchieu et al. 2019; Canals et 
al. 2018; Li et al. 2018; transpl. 9-11 Baloh et al. 2022; Lepore et al. 2008; 
Song et al. 2017. Oligodendrocyte: diff. 12-17 Wang et al. 2013; Douvaras 
and Fossati 2015; Douvaras et al. 2014; Marton et al. 2019; Ehrlich et al. 
2017; García-Léon et al. 2018; transpl. 12, 14, 18-19 Wang et al. 2013; 
Douvaras et al. 2014; Thiruvalluvan et al. 2016; Windrem et al. 2020. 
Microglia: diff. 20-28 Muffat et al. 2016; Haenseler et al. 2017; Takata et al. 
2017; Abud et al. 2017; Douvaras et al. 2017; Pandya et al. 2017; Dolan et al. 
2022; Limone et al. 2021; Chen et al. 2021; transpl. 29-30 Xu et al. 2020; 
Svoboda et al. 2019 
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To generate OLs, hPSCs are first converted to a neural stem cell with small molecules 

or a neural epithelial identity through SHH activation and are then pushed towards an 

oligodendrocyte progenitors (OPCs) identity by the addition of PDGF-AA. These OPCs can 

be matured into OLs by various cocktails of small molecules, often containing IGF-1 and T3 

(Douvaras and Fossati, 2015; Douvaras et al., 2014; Wang et al., 2013). Several groups have 

shown that complete maturation of OPCs into highly myelinating oligodendrocytes can be 

achieved either by injecting these cells in vivo (Douvaras et al., 2014) or by differentiating 

these cells in 3D structures (Marton et al., 2019). Protocols relying on overexpression of 

several transcription factors, including OLIG2, NKX6.2, and SOX10, were developed to be 

faster and similarly efficient (Ehrlich et al., 2017; García-León et al., 2018). García-León et al. 

found, however,  that overexpression of SOX10 alone in NSCs was the most efficient at 

generating OLs in as little as 20 days, and the generated OLs were capable of myelinating 

cortical neurons both in vitro and in vivo (García-León et al., 2018).  

Stem cell-derived OLs hold promise for both demyelinating diseases and spinal cord 

injury. Multiple sclerosis (MS) is a chronic, autoimmune disease characterized by the loss of 

myelin and associated oligodendrocytes, often in a remitting and relapsing clinical course that 

results in gradual neurological decline. MS-iPSC-derived OPCs can myelinate the corpus 

callosum of immunocompromised hypomyelinated (shiver) mice (Douvaras et al., 2014; Wang 

et al., 2013), offering a potential regenerative route for re-myelination for cases of MS that are 

resistant to immune-suppressant treatment. Strikingly, human iPSC-derived OPCs can 

myelinate axons in a non-human primate marmoset model (Thiruvalluvan et al., 2016). Long 

term transplantation studies in both shiver mice and demyelinating cuprizone treatment also 

showed that these cells can not only migrate to distal regions of the CNS farther than 

previously believed but can also improve behavior and motor function in murine models 

(Windrem et al., 2020). These results highlight the feasibility of an iPSC-derived OL 

transplantation therapy for MS and perhaps for other demyelinating diseases. 

Microglia 

Unlike other glial cells, microglia are immune cells not derived from the neuroectoderm 

but originate from the embryonic yolk sac in early stages of development and then migrate to 

the neural tube (Ginhoux et al., 2010; Kierdorf et al., 2013). Chemical differentiation strategies 

generally generate early myeloid progenitors by isolation of delaminating cells from so-called 

yolk-sac embryoid bodies (Haenseler et al., 2017; Muffat et al., 2016) or by promoting 

hematopoiesis with hypoxic conditions and defined medias (Abud et al., 2017). Initial studies 

used co-cultures of these immature myeloid cells with human neurons or murine brain extracts 

to generate resident brain-like microglia (Takata et al., 2017). These protocols made scalability 

challenging so others have devised ways to further push immature myeloid progenitors toward 

81

81/180



microglia-like cells (MGLs) with defined medias containing M-CSF to generate myeloid cells 

coupled with CNS-enriched TGF-beta and CNS-specific, CSF1-receptor ligand IL34 to 

promote a brain-like specification of these myeloid progenitors. Generated MGLs show 

competence to phagocytose (Abud et al., 2017; Dolan et al., 2022; Douvaras et al., 2017; 

Haenseler et al., 2017; Limone et al., 2021; Muffat et al., 2016; Pandya et al., 2017) respond 

to IFN-Ȗ anG /36 stimuOation via secretion of pro-inflammatory cytokines (Abud et al., 2017; 

Muffat et al., 2016), and migrate to sites of injury (Muffat et al., 2016). When co-cultured with 

neurons, MGLs have also been observed to secrete anti-inflammatory and pro-remodeling 

cytokines (Haenseler et al., 2017). Like for other glial cells, transcription factor-based protocols 

may offer increased efficiency and decreased time for the generation of microglial-like cells. 

One  study has shown that overexpression of transcription factors CEBPA and PU.1 coupled 

with CNS-patterning molecules described above can generate Microglia-like cells from human 

iPSC (Chen et al., 2021) with a second one showing improved efficiency by overexpressing 

PU.1 from primitive hematopoietic progenitors (Sonn et al., 2022). A recent study has defined 

a set of six transcription factors for the generation of microglia-like cells at a scale sufficient 

for genetic screening (Drager et al., 2022). Following the progress in the derivation of specific 

neuronal populations, it is plausible that newer approaches might find that just a few 

transcriptional factors could be sufficient, when coupled with small molecules, for the 

generation of this cell type.  

Long term engraftment studies have been rendered difficult by the lack of homology 

between murine and human CSF1, which is pivotal for long term microglial survival. However, 

initial studies have shown the feasibility of transplantation of hiPSC-derived iMGLs in 

humanized mouse models (Svoboda et al., 2019; Xu et al., 2020) . 

TECHNOLOGICAL ADVANCES 
Directed differentiation approaches have evolved considerably since the initial 

derivation of neurons from human embryonic stem cells (Zhang et al., 2001). Although defined 

culture conditions that primarily employ small molecules instead of poorly defined co-culture 

systems are more robust, modern directed differentiation approaches still tend to yield highly 

heterogeneous cultures containing the cell type of interest along with developmentally related 

cells. Direct conversion strategies like the ones described above typically yield more 

homogenous cell populations, but viral integration could disrupt normal gene expression and 

thus might not be amenable to clinical applications. Alternatively, the use of cell surface 

antibodies for sorting different neural populations has been pioneered to enrich for more 

defined cell populations (Yuan et al., 2011), or dyes that are selectively taken up by specific 

cells could theoretically also be used to mark specific cell types as has been demonstrated for 

neural precursor cells (Yun et al., 2012). These advances have led to several of these 
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differentiation protocols being used for modeling neurodegeneration in different cell types in 

vitro (Giacomelli et al., 2022), opening the door to their adaptation to transplantation studies 

in the future. Additionally, several groups have made significant progress in the development 

of protocols for the generation of 3D structures containing various CNS cell types (known as 

brain organoids) that can enhance cell type specification and maturation (Del Dosso et al., 

2020). Whether this technology can be translated into reproducible, manufacturable products 

for transplantation studies remains unclear, though it does offer a myriad of intriguing 

possibilities for the field. 

It is unclear whether nascent, immature neurons or elaborate, mature neurons will 

integrate more successfully into a degenerating brain to provide therapeutic benefit. Either 

way, the ability to control the functional maturation of stem cell-derived neurons would benefit 

many applications. For in vitro disease modelling studies, we have found that co-culture of 

human neurons with murine glial cells effectively increased neuronal activity, but co-culture 

with non-human cells is not an ideal strategy for cell replacement therapies. Instead, Gage 

and colleagues have developed a defined neuronal medium, BrainPhys, which better mimics 

the environment present in healthy human brains and enhances both spontaneous electrical 

and synaptic activity of human neurons (Bardy et al., 2015). Whether increased activity 

translates into increased survival after transplantation remains an unanswered but fascinating 

question. 

The process of reprogramming adult cells back to the pluripotent state erases many 

aspects of aging that put vulnerable cells at risk in the first place(Mertens et al., 2018). 

Although resetting the biological clock makes disease modeling more challenging, it might rid 

the newly derived cells from the neurodegenerative stimuli of aging when transplanted. Still, 

there might be aspects of maturation that are critical for neuronal integration or function. Unlike 

stem cell-derived neurons, for example, neurons directly converted from adult fibroblasts 

capture the faithful expression of all tau isoforms detected in adult brains at the proper ratios. 

Direct conversion of adult cells to replace lost neurons might therefore be alternative 

technology to consider (Capano et al., 2022) and has even been shown to reverse symptoms 

oI 3arNinson’s Gisease in a roGent moGeO Ey convertinJ miGErain astrocytes to GoSaminerJic

neurons (Qian et al., 2020).

LIMITATIONS AND CHALLENGES 
Induced pluripotent stem cell technology marshalled in the possibility of personalized 

regenerative medicine using therapies based on an inGiviGuaO’s own cells. To this end, 

investigators in Japan started a clinical trial to treat age-related macular degeneration using 

autologous transplants, however, the trial was eventually suspended after treating one patient 

(Mandai et al., 2017). Several hurdles generate significant headwinds for this type of approach 
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including 1) the time and effort needed to generate iPS cells, 2) genomic instability of 

pluripotent stem cells, and 3) the cost of personalized therapeutics. Most of these hurdles 

have several potential solutions that we will describe here briefly.     

Despite recent advances, the overall time to move from the collection of fibroblasts via 

skin biopsy in the clinic, the reprogramming of fibroblasts into PSCs with completion of 

appropriate quality controls, to the differentiation of individualized stem cells into a personal 

population of a specific cell type, such as mature motor neurons, remains extensive, and 

hence possibly beyond the therapeutic window for rapidly progressive neurodegenerative 

diseases like ALS. To meet the demands of future clinical applications, state-of-the-art 

technologies for the cryopreservation of differentiated cell types are being tested to provide a 

ready to go off-the-shelf product (Holm et al., 2010; Nishiyama et al., 2016). Indeed, this 

aSSroach is EeinJ SioneereG Zithin the 3arNinson’s Gisease ceOO reSOacement IieOG� Zhich has 

demonstrated that cryopreserved iPSC-derived neurons can maintain high viability and the 

molecular properties of a dopaminergic neuron. Moreover, these cryopreserved cells can be 

directly transplanted into a rat model of PD to reverse functional deficits (Wakeman et al., 

2017). 

For cell replacement therapies, even rare proliferating cells are especially worrisome 

because they could ultimately lead to the growth of tumors. Moreover, genomic instability of 

pluripotent stem cells has long been a concern for the field as aneuploid cells have readily 

been observed (Draper et al., 2004). To identify more subtle genetic changes, groups have 

performed whole-exome sequencing on many of the hES cell lines listed on the US National 

Institutes of Health registry and reported the acquisition of dominant negative p53 mutations, 

a mutation associated with many cancers, for several hES cell lines (Merkle et al., 2017), and 

other genomic changes associated with cancer and tumorigenesis (Merkle et al., 2022). 

Similar studies have also identified recurrent mutations that can occur during the 

reprogramming process and subsequent propagation (Pera, 2011). Therefore, thoughtful 

genetic characterization should be standard before stem cells or any of their derivatives are 

used in the clinic. This analysis will not only be useful to rule out stem cell lines with potentially 

dangerous mutations but could also be used after transplant to retrospectively identify the 

distribution of the donor cells.    

To overcome the laborious nature of converting somatic cells into pluripotent stem 

cells, the New York Stem Cell Foundation has developed an automated platform for the high 

throughput conversion of skin biopsies into iPS cells (Paull et al., 2015). This high throughput 

platform can be used in conjunction with synthetic modified RNA to reprogram cells and avoid 

viral transduction (Warren et al., 2010). Finally, xenofree culture conditions have been 

developed and are now commercially available for deriving and propagating human pluripotent 
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stem cells (Chen et al., 2011; Klim et al., 2010). Collectively, these innovations will help 

expedite the large-scale generation of clinical grade iPS cells.  

Finally, widely applicable and efficient cell banking methods are needed to meet the 

demand of cell transplantation therapies. There are ongoing efforts in both Japan and the 

United States to screen and bank cells for allogeneic transplantations. Estimates from Cellular 

Dynamics International suggest that top 183 haplotypes could cover 95% of the US 

population. To gain maximum population coverage and provide social justice (Ellison, 2016), 

a universal stem cell donor could be part of the banking effort.  This tactic proposes to use 

genetic engineering to reduce immunogenicity by removing the MHC molecules from the 

surface of the cells while also introducing well-established tolerance-inducing molecules (Han 

et al., 2019; Riolobos et al., 2013). Ultimately, stem cell banking will facilitate regenerative 

therapies by providing a common and less costly off-the-shelf cellular materials that can be 

thoroughly characterized before regular and repeated clinical use. 

CONCLUDING REMARKS 
,t’s an increGiEOy e[citinJ time Ior stem ceOO-based regenerative medicine with a number 

of clinical trials started and more just on the horizon for neurodegenerative diseases, including 

one Ior 3arNinson’s Gisease (Kimbrel and Lanza, 2015). The International Society for Stem 

Cell Research (ISSCR) has established an updated set of guidelines (Daley et al., 2016) for 

the clinical translation of stem cell research to ensure safety and appropriate rigor while 

avoiding the real and present dangers of unregulated stem cell therapies (Berkowitz et al., 

2016). 

The demand for neurodegenerative disease therapeutics continues to grow as 

populations around the globe age. Currently, no pharmacological strategies exist that can 

significantly alter disease course for neurodegenerative diseases, thus cell replacement 

therapies remain an attractive avenue of exploration. Although the prospect of using stem cell-

derived neurons to treat many of the diseases discussed above remains abstract, the 

3arNinson’s Gisease clinical trials, grounded on years of fetal transplant studies and animal

models with high fidelity, will provide important guideposts as others venture into these

uncharted territories. In this review, we highlighted current methodologies for generating

therapeutically relevant neuronal and glial cell types. Although directed differentiation

strategies for some of these CNS cell types are in their nascent stage, they represent

important first steps towards heralding in a new era of cellular therapeutics.
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