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Neurodegenerative disorders have been extremely challenging to treat with
traditional drug-based approaches and curative therapies are lacking. Given continued
progress in stem cell technologies, cell replacement strategies have emerged as
concrete and potentially viable therapeutic options. In this review, we cover advances
in methods used to differentiate human pluripotent stem cells into several highly
specialized types of neurons, including cholinergic, dopaminergic, and motor neurons,
and the potential clinical applications of stem cell-derived neurons for common
neurodegenerative diseases, including Alzheimer’'s disease, Parkinson’s disease,
Huntington’s disease, ataxia, and amyotrophic lateral sclerosis. Additionally, we
summarize cellular differentiation techniques for generating glial cell populations,
including oligodendrocytes and microglia, and their conceivable translational roles in
supporting neural function. Clinical trials of specific cell replacement therapies in the
nervous system are already underway, and several attractive avenues in regenerative

medicine warrant further investigation.

INTRODUCTION

Age — it's the one mountain you can’t overcome, and as the average life expectancy
extends into the eighth decade, neurodegenerative diseases are becoming increasingly
prevalent. Despite their increasing incidence, preventative or disease-modifying strategies for
these emotionally and financially draining disorders are lacking. Due to the fundamental lack
of regeneration within the central nervous system (CNS), neurodegenerative diseases
relentlessly attacking discrete populations of neurons are excellent candidates for cell
replacement therapies. Here, we review the current prospects on the application of pluripotent
stem cell-derived cell types for the treatment of neurodegenerative disease.

Pluripotent stem cells provide a uniquely scalable source of functional somatic cells,
including cells of the CNS, that can potentially replace damaged or diseased tissues. Although
prospects for using stem cell derivatives seemed fanciful at the start of the millennium,

approximately two decades later several clinical trials using cellular products of pluripotent
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stem cells are underway or about to reach the clinic (Gage and Temple, 2013; Kimbrel and
Lanza, 2015; Steinbeck and Studer, 2015; Tao and Zhang, 2016; Trounson and DeWitt,
2016). This progress has been facilitated through the development of robust methods for
converting human pluripotent stem cells into the specific cell types that are lost in disease.
Most techniques are based on fundamental principles learned from developmental biology
and aim to recapitulate cell fate determination pathways in the culture dish, and these methods
have been thoroughly reviewed elsewhere (Tao and Zhang, 2016). More recently, exogenous
over-expression of transcription factors (TFs) has provided an alternative route to directed
differentiation methodologies for generating specific classes of neurons. When appropriate,
we will highlight both approaches that advance the field towards producing defined cellular
populations, which are the ideal candidate for cell replacement therapies.

In this review, we summarize recent progress toward generating specific cell types
from human pluripotent stem cells for regenerative medicine. The examples described herein
are not intended to be all-inclusive, and readers are encouraged to examine other reviews on
the clinical development of stem cell-based therapies (Gage and Temple, 2013; Kimbrel and
Lanza, 2015; Steinbeck and Studer, 2015; Tao and Zhang, 2016; Trounson and DeWitt,
2016). Rather, we focus on recent biotechnological advances in the derivation of human cells
and their application as cell therapies in the field of neurodegeneration (Table 1). These
selected studies illustrate the biological concepts, experimental approaches, and therapeutic
possibilities of in vitro stem cell-derived cells of the neural and glial lineages. We conclude our
review with a discussion of emerging technologies in the field, current limitations, and

remaining challenges for regenerative medicine in translational neurosciences.

Table 1. Common neurodegenerative diseases characterized by selective vulnerability.

Disease Prevalence = Main Key brain  Main Pathological Therapies Regenerative
symptoms regions vulnerable hallmarks (symptomatic medicine
affected neuronal (associated treatments) cell-based
subtypes protein) approaches
Alzheimer ~5M Cognitive Hippocampus,  Pyramidal Neurofibrillary  acetylcholinesterase  Cholinergic
Dementia (AD) impairments in  Basal neurons, tangles (tau); inhibitors, neurons,
memory, Forebrain, Cholinergic neuritic memantine GABAergic
language & Locus neurons plaques Inhibitory
behaviour coeruleus (beta-amyloid neurons
(pons), Cortex & tau)
Parkinson ~1M Tremor, Substantia Dopaminergic Lewy bodies Levodopa, COMT  Dopaminergic
Disease (PD) stiffness, slow  nigra neurons and Lewy inhibitors, dopamine  neurons
and Parkinson movements, (midbrain), neurites agonists, deep brain
Disease  with autonomic locus (alpha- stimulation
Dementia dysfunction, coeruleus synuclein)
(PDD) sleep problems, (pons), Cortex
cognitive (especially the
decline cingulate)
Huntington ~30K Uncontrolled Neostriatum, Spiny Intranuclear &  Tetrabenazine, Spiny
Disease (HD) movements especially neurons cytoplasmic neuroleptics (off-  neurons
(chorea), caudate neuronal label),
neuropsychiatric  (basal inclusions antidepressants
ganglia), (Htt)
cortex
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Spinocerebellar  ~150K  Difficulty ~ with  Cerebellum, Purkinje Intranuclear &  Limited, physical  Purkinje
Ataxias (SCAs) walking and  brainstem, neurons, cytoplasmic therapy neurons
speech, lack of  spinal cord pontine nuclei  neuronal
coordination (dorsal) neurons inclusions
(various, e.g.,
ataxins)
Amyotrophic ~20 K Progressive Spinal cord Upper and TDP-43 Riluzole, edaravone  Lower motor
Lateral weakness and  (ventral), lower motor  positive neurons
sclerosis (ALS) muscle atrophy brainstem neurons cytoplasmic
(motor nuclei), neuronal
& frontal inclusions
cortex
Basal Cortical .
Forebrain Glutamatergic (':::"Bitl)\ifgglc
Cholinergic Pyramidal "y
AD AD, AD,
FTD Epilepsy
B-amyloid B-amyloid B-amyloid
TAU TAU TAU
FUS
TDP-43
1-4 5-9 111-15
2 5-7,10 16-17
Dopaminergic | Medium Spiny | Hypothalamic | Hippocampal | Serotonergic Purkinje Motor
PD HD Narcolepsy QD' hiatri Psychiatric Ataxias ALS,
Y C s diseases SMA
diseases
a-synuclein Huntingtin Reduced B-amyloid poly-Q TDP-43
Parkin hypothalamic repeats SOD1
grey matter
18-22 26-29 30-33 34-36 37-39 41-45 47-55
23-25 26-27, 29 30 34 40 46 55-56

Figure 1 Basal forebrain cholinergic: diff. 1-4 Bissonnette et al., 2011; Liu et al., 2013a; Hu et al., 2016; Liu et al., 2013b;
transpl. 2 Liu et al., 2013a. Cortical Glutamatergic: diff. 5-9 Espuny-Camacho et al., 2013; Cao et al., 2017; Qi et al., 2017;
Zhang et al., 2013; Nehme et al., 2018; transpl. 5, 6, 7, 10 Espuny-Camacho et al., 2013; Qi et al., 2017; Zhang et al., 2013;
Espuny-Camacho et al., 2017. GABAergic inhibitory: diff. 11-15 Maroof et al., 2013; Nicholas et al., 2013; Chanda et al., 2014 ;
Sun et al., 2016 ; Yuan et al., 2018; transpl. 16-17 Anderson et al., 2018; Cunningham et al., 2014. Dopaminergic: diff. 18-22
Kriks et al., 2011; Kim et al., 2021; Cai et al., 2009; Caiazzo et al., 2011; Pfisterer et al., 2011; transpl. 23-25 Kikuchi et al., 2017;
Wakeman et al., 2017; Grealish et al., 2014. Medium Spiny: diff. 26-29 Aubry et al., 2008; Carri et al., 2012; Ma et al., 2022;
Victor et al., 2014; transpl. 26, 27, 29 Aubry et al., 2008; Carri et al., 2012; Victor et al., 2014. Hypothalamic: diff. 30-33 Merkle
et al., 2015; Kirwan et al., 2017 ; Wang et al., 2015 ; Rajamani et al., 2018; transpl. 30 Merkle et al. 2015. Hippocampal: diff. 34-
36 Yu et al., 2014; Sakaguchi et al., 2015 ; Hiragi et al., 2017; transpl. 34 Yu et al., 2014. Serotonergic: diff. 37-39 Lu et al,,
2016 ; Vadodaria et al., 2016 ; Xu et al., 2016; transpl. 40 Carlsson et al., 2009. Purkinje: diff. 41-45 Muguruma et al., 2015;
Wang et al., 2015; Watson et al., 2018; Silva et al., 2020; Ishida et al., 2016; transpl. 46 Higuera et al., 2017. Motor: diff. 47-55
Amoroso et al., 2013; Du et al., 2015; Maury et al. 2015; Klim et al., 2019; Son et al., 2011; Hester et al., 2011; Goto et al., 2017;
Limone et al., 2022; Lippman et al., 2015; transpl. 55-56 Yohn et al., 2008; Corti et al., 2012.
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PARKINSON’S DISEASE

Parkinson’s disease is characterized by the degeneration of several neuronal
subtypes, most notably the dopaminergic neurons of the substantia nigra pars compacta
(SNpc), located in the ventral midbrain. These neurons project to the dorsal striatum of the
basal ganglia and function in motor control, and their loss of these neurons contributes to the
movement symptoms observed in the initial stages of Parkinson’s disease. Fetal-derived
dopamine neurons have had promising clinical benefits for Parkinson’s disease patients
(Hallett et al., 2014). To avoid the ethical and logistical issues associated with fetal tissue
transplants, the application of pluripotent stem cells to generate dopaminergic neurons has
been a long-standing goal. Indeed, translational research to bring these specific neurons to
the clinic has far exceeded the other cell replacement strategies discussed here and recent
advances have extensively been discussed elsewhere (Barker et al., 2017; Kim et al., 2020).
In this section we will provide a summary of the most relevant discoveries that led to the first
transplantation studies with hiPSC-derived cells that established a road map for the field.

Dopaminergic neurons

From the initial basic science studies that furnished the directed differentiation
strategies of dopaminergic neurons to their large-scale production in GMP-facilities for
transplantation studies, the research program for midbrain dopamine neurons has made
excellent progress. Several groups developed methods to produce FOXA2/LMX1A-positive
midbrain neurons capable of releasing dopamine (Arenas et al., 2015). For example, the
Studer group has developed a highly efficient protocol for producing these neurons by
combining dual-SMAD inhibition with activation of SHH and FGF8 signaling. The critical step
in midbrain specification is the strong activation of WNT signaling achieved using a GSK3f
inhibitor (Kim et al., 2021; Kriks et al., 2011). Transcription factors, such as LMX1A, can also
be used to enhance directed differentiation approaches (Cai et al., 2009), or for the direct
reprogramming of fibroblasts into dopaminergic neurons (Caiazzo et al., 2011; Pfisterer et al.,
2011), and combined with cell sorting methods to further enrich for midbrain dopaminergic
neurons (Arenas et al., 2015). Preclinical studies demonstrate that human iPS cell-derived
dopaminergic neurons are safe and efficacious in both rodent and primate Parkinson’s
disease model (Kikuchi et al., 2017; Wakeman et al., 2017) with similar efficacy to fetal-derived
tissue (Grealish et al., 2014). A number of clinical trials with stem cell-based therapies are
currently being planned with their details summarized at a recent consortium meeting (Barker
et al., 2017). Although PD patients receiving the stem cell-derived dopaminergic neurons will
likely show improvements in movement symptoms, their additional symptoms, including
depression, fatigue, visual hallucinations, and sleep disturbances, might persist due to
continued degeneration of other neuronal types. This has led to some to propose serotonergic

neurons (Lu et al., 2016; Vadodaria et al., 2016; Xu et al., 2016) as an additive cellular therapy
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for PD (Politis and Loane, 2011). A delicate balance must be struck between dopaminergic
and serotonergic neurons, however, as fetal grafts with high levels of serotonergic neurons
have been associated with graft-induced dyskinesias in parkinsonian rats (Carlsson et al.,
2009).

DEMENTIA

Neurological conditions involving both memory loss and impaired judgement are
classified as dementia (Yue and Jing, 2015). Alzheimer’s disease is the most common type of
dementia in individuals older than 65 years old and the most prevalent neurodegenerative
disease (Table 1). The incidence of Alzheimer’s disease (AD) dramatically increases with age,
and with the aging US population, it is estimated that approximately 14 million individuals will
be affected by 2050. AD often first manifests clinically as impairments with short-term memory,
and later affects behavior and language. Current treatments are aimed at ameliorating these
symptoms without substantially affecting disease course. Cognitive decline is associated with
progressive degeneration of neurons in the limbic system (especially the hippocampus and
connected entorhinal cortex), the basal forebrain, and neocortical areas. Histologically, patient
brains are characterized by the accumulation of extracellular beta-amyloid depositions and
intracellular tau-positive neurofibrillary tangles as well as neuritic plaques that contain both tau
within dystrophic neurites and beta-amyloid. Neuropathological studies strongly suggest that
AD has well-defined and consistent spatiotemporal pattern of neurofibrillary degeneration, in
most cases, that begins in the entorhinal cortex and spreads to pyramidal neurons in the
hippocampus and then neocortical areas, with association areas affected sooner and more
severely. Currently, there is no effective therapy to block the progression of AD making it a
major looming public heath challenge.

Basal Forebrain Cholinergic Neurons

One of the earliest cell types perturbed by AD is the basal forebrain cholinergic neuron
(BFCN). These neurons, which arise from the median ganglionic eminence (MGE) during
development, are responsible for various aspects of cognition including learning, memory, and
attention. At the molecular level, BFCNs are primary cholinergic neurons and innervate the
cerebral cortex, hippocampus, and amygdala, and play critical roles in processing information
related to cognitive function (Martinez et al., 2021). Transplantation of fetal cholinergic tissue
from rats into the cortex of lesioned primates has been shown to restore memory deficits
suggesting a potentially therapeutic roles for these cells (Ridley et al., 1994).

Several methods to differentiate pluripotent stem cells into BFCNs have been
described (Bissonnette et al., 2011; Hu et al., 2016; Liu et al., 2013a; Liu et al., 2013b).

Typically, first forebrain neural progenitors are obtained and then treated with a SHH (sonic
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hedgehog) agonist and FGF8 to coax the cells into expressing the transcription factors Nkx2.1,
consistent with a ventral medial ganglionic eminence (MGE) neural progenitor identity.
Subsequent culture of these progenitor cells on glia or treatment with BMP9 then yields a
mixture of neurons containing BFCNs (Bissonnette et al., 2011; Hu et al., 2016; Liu et al.,
2013a; Liu et al., 2013b). Alternatively, overexpression of the transcription factors Lhx8 and
Gbx1 can convert the progenitors into BFCNs (Bissonnette et al., 2011). Cells produced using
these methods express markers consistent with a cholinergic identity and exhibit expected
electrophysiological profiles. In one study, MGE-progenitor cells transplanted into mouse
brains differentiated into neurons, including BFCNs, and formed synaptic connections (Liu et
al., 2013b). More importantly, injection of these precursor cells led to learning and memory
improvements in lesioned mice (Liu et al., 2013b). Whether these improvements were the
specific result of the BFCNs or other cell types remains to be determined but this study
provides an important proof-of-principle for the use of stem cell-based therapy to improve
cognition.

Cortical glutamatergic pyramidal neurons

Cerebral cortex development consists of three major processes: cell proliferation,
neuronal migration, and cortical organization into multiple well-defined layers. The cerebral
cortex contains two major classes of neurons; a majority population of excitatory glutamatergic
projections neurons that arise during development from the dorsal telencephalon, which is the
developmental precursor to the cerebral cortex, and a minor population of inhibitory
interneurons. Through successive waves of neurogenesis, these neurons generate the six
layers of the neocortex, which can be further functionally divided based on specific patterns
of axonal output and dendritic input. Due to their abundance and ability to project long
distances, cortical pyramidal neurons, named for their shape, are able to integrate and send
information across the entire nervous system (Bekkers, 2011).

The production of pyramidal neurons from pluripotent stem cells is considered to be a
default differentiation fate because it occurs in the absence of exogenous signaling factors
(Espuny-Camacho et al., 2013). Inhibiting certain signaling pathways, however, can enhance
the yield of cortical glutamatergic neurons by suppressing the emergence of inhibitory
interneurons (Cao et al., 2017). More recently, accelerated methods for generating cortical
neurons have been reported. One method relies on a cocktail of molecules to both pattern the
cells to dorsal forebrain lineage and then inhibit neural stem cell self-renewal to drive
neurogenesis, which preliminary data suggests can be timed to achieve the production of
neurons of different cortical layers (Qi et al., 2017). Forced expression of the transcription
factor Ngn2 in stem cells further accelerates the differentiation to yield very pure populations
of glutamatergic neurons (Zhang et al., 2013) that can be enhanced with the addition of

developmental cues (Nehme et al., 2018). Transcriptional studies suggest this method favors
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the production of upper layer neurons, therefore additional methods to achieve the full diversity
of cortical layers may still be necessary. After injecting into the postnatal mouse brain, human
cortical neurons generated using the methodologies described above displayed proper, long-
distance projection patterns and integrated functionally within the host’s circuitry (Espuny-
Camacho et al., 2013; Qi et al., 2017; Zhang et al., 2013). Whether they can ameliorate
disease phenotypes in animal models remains an unanswered question, but neurons
transplanted into a murine AD model display pathological hallmarks of the disease including
altered tau biochemistry (Espuny-Camacho et al., 2017).

GABAergic inhibitory neurons

In both the brain and spinal cord, gamma-aminobutyric acid (GABA)-releasing
interneurons are the major class of inhibitory neurons and play crucial roles in modulating
neural circuits. There are many distinct subtypes of interneurons that differ in their synaptic
connections, expression of neuropeptides, neurotransmitter machinery, and developmental
origin with some immature interneurons having the remarkable ability to migrate and disperse
long distances to integrate throughout the CNS (Southwell et al., 2014). This integrative
property makes interneurons a promising candidate for cell replacement therapies.

Several groups have developed directed differentiation approaches for producing
interneurons from human pluripotent stem cells (Liu et al., 2013a; Maroof et al., 2013; Nicholas
et al., 2013). These approaches typically inhibit both branches of SMAD signaling as well as
WNT signaling using small molecules to achieve robust forebrain induction into cells
resembling the MGE, as suggested by expression of the transcription factor Nkx2.1. Careful
timing of SHH activation then allows for induction of ventral cell fate in these progenitor cells
that develop into GABAergic interneurons as opposed to basal forebrain cholinergic neurons
(Liu et al., 2013a). In addition to directed differentiation approaches, transcription factor-
mediated inductions of interneurons from stem cells have also been described (Chanda et al.,
2014; Sun et al., 2016; Yuan et al., 2018). Minimally, transient expression of ASCL1 and DLX2
can convert stem cells into GABAergic interneurons. When injected into the mouse brain,
these cells, migrated, integrated, and matured into a variety of interneuronal subtypes,
including expression of the mature subtype markers parvalbumin or somatostatin. Further
studies, such as single-cell transcriptomic approaches, are needed to characterize the full
repertoire of subtypes of interneurons that can be obtained from pluripotent stem cells.
Impressive studies have gone on to show that transplanted interneurons were capable of
improving memory (Anderson et al., 2018) and in some cases suppressing seizures and
abnormal behaviors in an epileptic mouse model (Cunningham et al., 2014). Based on these
promising studies, one biotech company, Neurona Therapeutics, is pioneering the clinical

uses for interneuron-based cell therapies for epilepsy and neuropathic pain.
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Hippocampal neurons

Composed of granule and pyramidal neurons, the hippocampus plays a critical role in
learning and memory. It is also an area of the brain that deteriorates in Alzheimer’s disease,
additional forms of dementia, and other age-related cognitive declines of distinct etiologies.
Interestingly, in addition to the subventricular zone, the dentate gyrus of the hippocampus is
a unique site of adult neurogenesis (although the absolute rate of neurogenesis remains
controversial). Therefore, incorporation of immature stem cell-derived neurons into existing
neural circuity beyond embryonic development is a hopeful prospect.

To generate hippocampal neurons, stem cells are patterned to dorsal forebrain
progenitors by inhibiting both branches of the SMAD signaling (dual-SMAD inhibition) as well
as factors to promote WNT and SHH signaling. Subsequently, WNT3a is applied along with
BDNF to drive the neurogenesis of hippocampal granule neurons (Hiragi et al., 2017;
Sakaguchi et al., 2015; Yu et al., 2014). Initial findings indicate concurrent WNT and BMP
activation can drive the differentiation of the dorsal forebrain progenitors into pyramidal
neurons (Sakaguchi et al., 2015). Rodent transplantation studies with hippocampal neural
precursors revealed that the human neurons could integrate into the dentate gyrus (Yu et al.,
2014), but it remains to be determined if these xenografts can affect disease-related

phenotypes in animal models.

HUNTINGTON’S DISEASE

Huntington’s disease is caused by a CAG trinucleotide repeat expansion within the
coding region of the HTT gene, resulting in an extended polyglutamine (polyQ) tract within the
Huntingtin protein. The progressive loss of neurons and gross atrophy in the neostriatum
(caudate nucleus and putamen) disrupts neuronal circuits involving the basal ganglia and
leads to gradually worsening motor impairment and, as additional brain regions are affected,
significant cognitive and psychiatric symptoms.

Medium spiny neurons

Medium spiny neurons that reside in the striatum, contribute to the complex circuits
that control movement and are particularly vulnerable in Huntington’s disease. During
development, these inhibitory neurons arise from the lateral ganglionic eminence (LGE) and
are marked by the expression of DARPP32 (dopamine- and cAMP-regulated phosphoprotein
Mr~32 kDa) (Fjodorova et al., 2015). The relatively specific loss of DARPP32+ medium spiny
class of neurons in the neostriatum makes Huntington’s disease a strong candidate for cell
replacement therapies. Like for Parkinson’s disease, fetal transplants have paved the way for
stem cell-derived therapies for HD (Freeman et al., 2000).

Numerous groups have validated directed differentiation approaches for producing

medium spiny neurons from stem cells (Aubry et al., 2008; Carri et al., 2012; Ma et al., 2012).
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Like the methods for producing other inhibitory neurons from the neighboring MGE,
combinatorial SHH/WNT signaling modulation induces an anterior-ventral fate. Of note,
reduced activation of SHH signaling and the addition of Activin A can favor a LGE fate while
inhibiting a MGE fate (Fjodorova et al., 2015). A direct conversion method has also recently
been described for transforming fibroblasts into medium spiny neurons, specifically, with a
combination of 4 transcription factors (CTIP2, DLX1, DLX2, and MYT1L) and two microRNAs
(miR-9/9 and miR-124) (Victor et al., 2014). Whether these direct programming methods can
be applied to pluripotent stem cells remains to be determined but could be used to improve
the yield of medium spiny neurons from stem cells, which are at best ~50%. When
transplanted into a murine striatum, the neurons integrate into the host circuit and project to
the proper anatomical targets. In some cases, the transplanted cells neurons can rescue
motor deficits in quinolinic acid, an excitotoxin, striatal-lesioned mice, a model of HD (Carri et
al., 2012; Victor et al., 2014). In another study, however, the transplanted cells also resulted
in cellular overgrowth (Aubry et al.,, 2008). Based on these studies, refined purification
methods to yield more homogenous neuron populations followed by additional animal model

studies seem warranted.

ATAXIAS

Spinocerebellar ataxias (SCAs) are a clinically and genetically heterogenous group of
neurological disorders associated with impairments in motor coordination due to degeneration
of the cerebellum and connected neuronal pathways. Many SCAs are caused by CAG
nucleotide repeat expansions within certain genes leading to the production of polyglutamine
(polyQ)-containing proteins with putative toxic gain-of-function effects. For instance, an
autosomal dominantly-inherited, abnormally long (>33 CAG repeats) trinucleotide repeat
expansion within ATXN-2 results in SCA2 that can manifest with ataxia, loss of neurological
reflexes, and Parkinsonian symptoms. Ataxias can be associated with other inherited
disorders. For examples, an autosomal recessively-inherited GAA trinucleotide repeat
expansions in FXN, encoding frataxin, cause Friedrich’s ataxia, which is characterized by
progressive ataxia, impaired speech, loss of vibratory and proprioceptive sensation due to
degeneration of spinal cord neurons and nerve fiber tracts connecting to the cerebellum. There
are no effective treatments for these debilitating and often fatal diseases.

Purkinje cells

Purkinje cells are large inhibitory GABAergic neurons with extensive dendritic arbors
that reside within the hindbrain structure of the cerebellum. As the output neurons of the
cerebellar cortex, they project to neurons within deep cerebellar nuclei and play an important
role in motor coordination. Until recently, the differentiation of human PSCs into Purkinje

neurons remained elusive, perhaps due to their late emergence during development. An initial
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directed differentiation approach for this cell type required several steps and many factors.
First, exogenous factors were employed to stimulate endogenous Wnt1 and FGF8 signaling
and promote a midbrain/hindbrain identity, and inhibition of SHH signaling was used to pattern
cells towards a dorsal identity (Muguruma et al., 2015; Wang et al., 2015). Then, the
maturation process could be accomplished through several methods: plating precursors on
mouse cerebellar slice cultures (Watson et al., 2018), within self-organizing, polarized
cerebellar structures (Muguruma et al., 2015), or more recently in a defined basal medium
optimized for cell culture (Bardy et al., 2015; Silva et al., 2020). Studies indicate that the stem
cell-derived Purkinje cells are susceptible to genetic insults, such as the trinucleotide CAG
repeat in CACNA1A associated with SCA6 (Ishida et al., 2016), that trigger their selective
demise, and that they can also engraft into the mouse cerebellum (Wang et al., 2015).
Although more defined and robust methods are needed before cell replacement therapies
should be considered clinically, the initial findings have paved the way for producing this

neuronal type that is relevant to many neurological disorders.

MOTOR NEURON DISEASES

The specific loss of motor neurons underlies several devastating neurological diseases
including amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). Both
diseases involve the progressive loss of motor function, eventually progressing to fatal
paralysis. In nearly all (~97%) of cases of ALS, motor neurons in both the brain and spinal
exhibit pathological changes in the cellular localization of the RNA binding protein TDP-43,
which include loss of the normal nuclear localization and the formation of cytoplasmic
inclusions (Klim et al., 2021).

Spinal Motor Neurons

Motor neurons represent a diverse group of neuronal subtypes and provide the pivotal
link between mind and the animation of the body. Generally, there are two types of motor
neurons; upper motor neurons that reside in the frontal cortex and project to lower motor
neurons, found in the ventral brainstem and spinal cord, which in turn form synapses with the
musculature. Decades of developmental studies and genetic analyses have illuminated the
molecular underpinnings of lower motor neuron specification during embryo development
(Dasen and Jessell, 2009) with the morphological gradients well established (Davis-
Dusenbery et al., 2014).

Leveraging this knowledge, stem cell scientists developed methods to generate motor
neurons from mouse embryonic stem cells by applying retinoic acid (RA) to caudalize the cells
towards a spinal cord (the distal or tail end of the neural tube) identity and activating SHH to
ventralize them toward a motor, rather than sensory, identity (Wichterle et al., 2002). Several

research groups have advanced these earlier findings to reproducibly convert human
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pluripotent stem cells into vast quantities of motor neurons (Amoroso et al., 2013; Du et al.,
2015; Klim et al., 2019; Maury et al., 2015). These approaches typically rely on neural
induction through small molecule dual-SMAD signaling inhibition, in some cases activation of
WNT signaling, accelerated neurogenesis through inhibition of FGF or NOTCH signaling, all
coupled with MN patterning described above (RA and SHH). Ichida, Son, and colleagues have
used a large cadre of MN-related transcription factors (Isl1, Ascl1, Myt1l, Brn2, Ngn2, Lhx3,
and Neurod1) to directly convert fibroblasts into induced motor neurons(Son et al., 2011).
Alternatively, simpler protocols were achieved that used a subset these factors to transform
human stem cells into motor neurons (Goto et al., 2017; Hester et al., 2011). Recently, we
have also shown that transcription factor-based and small molecule approaches could be
combined to yield a highly pure population of cervical-like motor neurons from iPSCs with
100% efficiency through the inducible expression of Ngn2 (neurogenin-2) alone coupled with
RA and SHH treatments (Limone et al., 2022). Interestingly, carefully varying the timing of
retinoid application has been demonstrated to afford more caudal motor neuron fates
(Lippmann et al., 2015), but methodologies for producing upper motor neurons, also known
as cortical spinal motor neurons (CSMNSs), are still lacking. As degeneration of cortical and
spinal cord motor regions occur in ALS, a full array of motor neuron subtypes might be needed
as a cell replacement therapy.

So far, motor neuron transplant results have been encouraging. For example
pioneering transplant studies demonstrate that mES-derived motor neurons injected into tibial
nerve of adult mice can form functional NMJs and ameliorate muscle atrophy (Yohn et al.,
2008). Another notable study was able to transplant human iPS cell-derived motor neurons
into the ventral horns of an SMA mouse model (Corti et al., 2012). The transplanted motor
neurons could survive and engraft into the murine spinal cord and could even ameliorate
disease phenotypes and extend the life span relative to those receiving a fibroblast transplant
(Corti et al., 2012). These exciting initial studies highlight the need for large animal models for

testing motor neuron-based cell therapies.

GLIAL CELLS

Although glia are more abundant than neurons, nuances remain in our understanding
of how their exact cellular identities are established and how glial developmental pathways
can be recapitulated in vitro for cell replacement approaches. Three main types of glia exist in
the CNS: astrocytes, oligodendrocytes (OLs), and microglia. In brief, astrocytes are
responsible for forming and modulating the blood-brain barrier (BBB) and modifying the
chemical microenvironment governing synaptic function. Microglia are the resident immune
cells of the CNS that function in synaptic pruning during development, immune surveillance,

debris clearance and defense from pathogens. Oligodendrocytes are responsible for
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myelinating axons in the CNS, thereby maintaining strong electrical connectivity of brain
circuitry. Glia have been implicated in almost all neurodegenerative diseases, and their
dysfunction in this context are more extensively reviewed elsewhere (Zheng et al., 2018). Glial
transplantation for the treatment of neurodegenerative diseases has been explored much less
than for neurons, though might be advantageous for ameliorating glial dysfunction as well as
mitigating the loss of degenerating neurons by engaging in supportive roles. Like neurons,
glial cells can be generated by activating development cues or overexpression of cell type-
specific transcription factors. We will discuss a selection of strategies to generate glia and
their most promising applications to neurodegenerative diseases.

Astrocytes

Astrocytes are star-shaped glial cells that reside in both the brain and spinal cord to
maintain BBB integrity, regulate nutrient flow, and govern neuronal function. They arise
relatively early in neuronal development from radial glial progenitor cells usually after these
cells have generated neurons. Broadly, differentiation protocols recapitulate developmental
cues (Krencik et al., 2011; Shaltouki et al., 2013) by promoting neuronal stem cell (NSC)
identity via dual SMAD inhibition and then gliogenesis with morphogens (Krencik and Zhang,
2011). Promoting gliogenesis after NSC differentiation has traditionally been a slow rate-
limiting step in the generation of astrocytes, but recent transgenic and chemical strategies
have greatly accelerated this process. Expansion of NSCs with Activin A, Heregulin 1B
(Neuregulin1), and IGFI (Shaltouki et al., 2013; Tcw et al., 2017), flow cytometry-based
enrichment strategies (Barbar et al., 2020) or overexpression of TFs NFIA and SOX9 can
dramatically shorten differentiation protocols (Canals et al., 2018; Tchieu et al., 2019). hPSC-
derived astrocyte-like cells can be generated in as little as 30 days and show functional
properties similar to primary astrocytes in that they uptake glutamate, promote neurite
outgrowth, propagate calcium waves, and retain their identity in vivo (Krencik and Zhang,
2011; Li et al., 2018; Shaltouki et al., 2013). Many groups have recently developed methods
to increase maturity and function of these cells by differentiating them from 3D structures
coupled with cell sorting methods (Barbar et al., 2020).

Studies on ALS and PD animal models are laying the foundation for astrocyte
transplantation therapies. In ALS models, astrocytes exert toxic gain-of-function effects that
can act in a cell non-autonomous manner to contribute to motor neuron degeneration (Di
Giorgio et al., 2008; Di Giorgio et al., 2007; Hall et al., 2017; Meyer et al., 2014). For instance,
mice expressing human mutant SOD1 in astrocytes in addition to neurons had reduced to
survival compared to mice only expressing mutant SOD1 in neurons, in other words, a wild-
type astrocyte microenvironment may promote motor neuron survival (Batavelji¢ et al., 2012).
Focal transplantation of glial-restricted NPCs (Neuronal Progenitor Cells) into the cervical

spinal cord of SOD1 transgenic rats during disease progression extended survival and
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decreased motor neuron death, in part due to the partial rescue of GLT1 expression in
astrocytes (Clement et al., 2003). Clinical trials are ongoing to prove the efficacy of
transplanted PSC-derived astrocytes to boost neuronal survival and slow disease progression.
For instance, a phase 1/2a trial in a small cohort of ALS patients (NCT02943850) has shown
that a single injection of human NPCs engineered to produce glial cell line-derived
neurotrophic factor (GDNF) into the spinal cord is safe, and viable grafts differentiated into
astrocytes that may be neuroprotective through increased GDNF production (Baloh et al.,
2022).

Transplantation studies for PD also showed promising results. Co-transplantation of
primary fetal NPCs and rat astrocytes increased long-term engraftment of mature midbrain
dopaminergic neurons and increase anti-inflammatory markers in the brains of PD rats
(Lepore et al., 2008). Transplantation of primary astrocytes into the SNpc increase
synaptosomal dopamine uptake in the striatum, reduce ROS stress, and improved motor
deficits of pharmacologically-induced PD rats (Song et al., 2017). These observations suggest
hPSC-derived astrocytes may be used to slow disease progression and complement
dopaminergic neuron transplantation.

Oligodendrocytes

\/
" Similar to  astrocytes,
]
“v oligodendrocytes are derived in
Glial ‘ . development after neurogenesis.
Type Astrocyte Oligodendrocyte Microglia _ _
In both the forebrain and the spinal
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ALS Epilepsy A cells (OPCs) are generated from
Pathological | Loss of Impaired Disease Nkx2.1*, SHH-derived progenitors
Markers neurotrophic myelinating Associated L o
support funcitons Microglia and their differentiation is regulated
(DAM) . :
by TFs Olig1 and Olig2. OPCs
ey s | 1247 | o028 have an immense ability to migrate
Methods | . and populate the entire brain and
Transplant 9-11 12, 14, 29-30 .
Studies 18-19 spinal cord where most of them
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Svoboda et al. 2019 abilities, plasticity and pivotal role

in neuronal support render these cells ideal for transplantation studies and replacement

therapies.
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To generate OLs, hPSCs are first converted to a neural stem cell with small molecules
or a neural epithelial identity through SHH activation and are then pushed towards an
oligodendrocyte progenitors (OPCs) identity by the addition of PDGF-AA. These OPCs can
be matured into OLs by various cocktails of small molecules, often containing IGF-1 and T3
(Douvaras and Fossati, 2015; Douvaras et al., 2014; Wang et al., 2013). Several groups have
shown that complete maturation of OPCs into highly myelinating oligodendrocytes can be
achieved either by injecting these cells in vivo (Douvaras et al., 2014) or by differentiating
these cells in 3D structures (Marton et al., 2019). Protocols relying on overexpression of
several transcription factors, including OLIG2, NKX6.2, and SOX10, were developed to be
faster and similarly efficient (Ehrlich et al., 2017; Garcia-Ledn et al., 2018). Garcia-Leon et al.
found, however, that overexpression of SOX10 alone in NSCs was the most efficient at
generating OLs in as little as 20 days, and the generated OLs were capable of myelinating
cortical neurons both in vitro and in vivo (Garcia-Le6n et al., 2018).

Stem cell-derived OLs hold promise for both demyelinating diseases and spinal cord
injury. Multiple sclerosis (MS) is a chronic, autoimmune disease characterized by the loss of
myelin and associated oligodendrocytes, often in a remitting and relapsing clinical course that
results in gradual neurological decline. MS-iPSC-derived OPCs can myelinate the corpus
callosum of immunocompromised hypomyelinated (shiver) mice (Douvaras et al., 2014; Wang
et al., 2013), offering a potential regenerative route for re-myelination for cases of MS that are
resistant to immune-suppressant treatment. Strikingly, human iPSC-derived OPCs can
myelinate axons in a non-human primate marmoset model (Thiruvalluvan et al., 2016). Long
term transplantation studies in both shiver mice and demyelinating cuprizone treatment also
showed that these cells can not only migrate to distal regions of the CNS farther than
previously believed but can also improve behavior and motor function in murine models
(Windrem et al., 2020). These results highlight the feasibility of an iPSC-derived OL

transplantation therapy for MS and perhaps for other demyelinating diseases.

Microglia

Unlike other glial cells, microglia are immune cells not derived from the neuroectoderm
but originate from the embryonic yolk sac in early stages of development and then migrate to
the neural tube (Ginhoux et al., 2010; Kierdorf et al., 2013). Chemical differentiation strategies
generally generate early myeloid progenitors by isolation of delaminating cells from so-called
yolk-sac embryoid bodies (Haenseler et al., 2017; Muffat et al., 2016) or by promoting
hematopoiesis with hypoxic conditions and defined medias (Abud et al., 2017). Initial studies
used co-cultures of these immature myeloid cells with human neurons or murine brain extracts
to generate resident brain-like microglia (Takata et al., 2017). These protocols made scalability

challenging so others have devised ways to further push immature myeloid progenitors toward
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microglia-like cells (MGLs) with defined medias containing M-CSF to generate myeloid cells
coupled with CNS-enriched TGF-beta and CNS-specific, CSF1-receptor ligand IL34 to
promote a brain-like specification of these myeloid progenitors. Generated MGLs show
competence to phagocytose (Abud et al., 2017; Dolan et al., 2022; Douvaras et al., 2017;
Haenseler et al., 2017; Limone et al., 2021; Muffat et al., 2016; Pandya et al., 2017) respond
to IFN-y and LPS stimulation via secretion of pro-inflammatory cytokines (Abud et al., 2017;
Muffat et al., 2016), and migrate to sites of injury (Muffat et al., 2016). When co-cultured with
neurons, MGLs have also been observed to secrete anti-inflammatory and pro-remodeling
cytokines (Haenseler et al., 2017). Like for other glial cells, transcription factor-based protocols
may offer increased efficiency and decreased time for the generation of microglial-like cells.
One study has shown that overexpression of transcription factors CEBPA and PU.1 coupled
with CNS-patterning molecules described above can generate Microglia-like cells from human
iPSC (Chen et al., 2021) with a second one showing improved efficiency by overexpressing
PU.1 from primitive hematopoietic progenitors (Sonn et al., 2022). A recent study has defined
a set of six transcription factors for the generation of microglia-like cells at a scale sufficient
for genetic screening (Drager et al., 2022). Following the progress in the derivation of specific
neuronal populations, it is plausible that newer approaches might find that just a few
transcriptional factors could be sufficient, when coupled with small molecules, for the
generation of this cell type.

Long term engraftment studies have been rendered difficult by the lack of homology
between murine and human CSF1, which is pivotal for long term microglial survival. However,
initial studies have shown the feasibility of transplantation of hiPSC-derived iIMGLs in

humanized mouse models (Svoboda et al., 2019; Xu et al., 2020) .

TECHNOLOGICAL ADVANCES

Directed differentiation approaches have evolved considerably since the initial
derivation of neurons from human embryonic stem cells (Zhang et al., 2001). Although defined
culture conditions that primarily employ small molecules instead of poorly defined co-culture
systems are more robust, modern directed differentiation approaches still tend to yield highly
heterogeneous cultures containing the cell type of interest along with developmentally related
cells. Direct conversion strategies like the ones described above typically yield more
homogenous cell populations, but viral integration could disrupt normal gene expression and
thus might not be amenable to clinical applications. Alternatively, the use of cell surface
antibodies for sorting different neural populations has been pioneered to enrich for more
defined cell populations (Yuan et al., 2011), or dyes that are selectively taken up by specific
cells could theoretically also be used to mark specific cell types as has been demonstrated for

neural precursor cells (Yun et al., 2012). These advances have led to several of these
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differentiation protocols being used for modeling neurodegeneration in different cell types in
vitro (Giacomelli et al., 2022), opening the door to their adaptation to transplantation studies
in the future. Additionally, several groups have made significant progress in the development
of protocols for the generation of 3D structures containing various CNS cell types (known as
brain organoids) that can enhance cell type specification and maturation (Del Dosso et al.,
2020). Whether this technology can be translated into reproducible, manufacturable products
for transplantation studies remains unclear, though it does offer a myriad of intriguing
possibilities for the field.

It is unclear whether nascent, immature neurons or elaborate, mature neurons will
integrate more successfully into a degenerating brain to provide therapeutic benefit. Either
way, the ability to control the functional maturation of stem cell-derived neurons would benefit
many applications. For in vitro disease modelling studies, we have found that co-culture of
human neurons with murine glial cells effectively increased neuronal activity, but co-culture
with non-human cells is not an ideal strategy for cell replacement therapies. Instead, Gage
and colleagues have developed a defined neuronal medium, BrainPhys, which better mimics
the environment present in healthy human brains and enhances both spontaneous electrical
and synaptic activity of human neurons (Bardy et al., 2015). Whether increased activity
translates into increased survival after transplantation remains an unanswered but fascinating
question.

The process of reprogramming adult cells back to the pluripotent state erases many
aspects of aging that put vulnerable cells at risk in the first place(Mertens et al., 2018).
Although resetting the biological clock makes disease modeling more challenging, it might rid
the newly derived cells from the neurodegenerative stimuli of aging when transplanted. Still,
there might be aspects of maturation that are critical for neuronal integration or function. Unlike
stem cell-derived neurons, for example, neurons directly converted from adult fibroblasts
capture the faithful expression of all tau isoforms detected in adult brains at the proper ratios.
Direct conversion of adult cells to replace lost neurons might therefore be alternative
technology to consider (Capano et al., 2022) and has even been shown to reverse symptoms
of Parkinson’s disease in a rodent model by converting midbrain astrocytes to dopaminergic

neurons (Qian et al., 2020).

LIMITATIONS AND CHALLENGES

Induced pluripotent stem cell technology marshalled in the possibility of personalized
regenerative medicine using therapies based on an individual's own cells. To this end,
investigators in Japan started a clinical trial to treat age-related macular degeneration using
autologous transplants, however, the trial was eventually suspended after treating one patient

(Mandai et al., 2017). Several hurdles generate significant headwinds for this type of approach

83/180



84

including 1) the time and effort needed to generate iPS cells, 2) genomic instability of
pluripotent stem cells, and 3) the cost of personalized therapeutics. Most of these hurdles
have several potential solutions that we will describe here briefly.

Despite recent advances, the overall time to move from the collection of fibroblasts via
skin biopsy in the clinic, the reprogramming of fibroblasts into PSCs with completion of
appropriate quality controls, to the differentiation of individualized stem cells into a personal
population of a specific cell type, such as mature motor neurons, remains extensive, and
hence possibly beyond the therapeutic window for rapidly progressive neurodegenerative
diseases like ALS. To meet the demands of future clinical applications, state-of-the-art
technologies for the cryopreservation of differentiated cell types are being tested to provide a
ready to go off-the-shelf product (Holm et al., 2010; Nishiyama et al., 2016). Indeed, this
approach is being pioneered within the Parkinson’s disease cell replacement field, which has
demonstrated that cryopreserved iPSC-derived neurons can maintain high viability and the
molecular properties of a dopaminergic neuron. Moreover, these cryopreserved cells can be
directly transplanted into a rat model of PD to reverse functional deficits (Wakeman et al.,
2017).

For cell replacement therapies, even rare proliferating cells are especially worrisome
because they could ultimately lead to the growth of tumors. Moreover, genomic instability of
pluripotent stem cells has long been a concern for the field as aneuploid cells have readily
been observed (Draper et al., 2004). To identify more subtle genetic changes, groups have
performed whole-exome sequencing on many of the hES cell lines listed on the US National
Institutes of Health registry and reported the acquisition of dominant negative p53 mutations,
a mutation associated with many cancers, for several hES cell lines (Merkle et al., 2017), and
other genomic changes associated with cancer and tumorigenesis (Merkle et al., 2022).
Similar studies have also identified recurrent mutations that can occur during the
reprogramming process and subsequent propagation (Pera, 2011). Therefore, thoughtful
genetic characterization should be standard before stem cells or any of their derivatives are
used in the clinic. This analysis will not only be useful to rule out stem cell lines with potentially
dangerous mutations but could also be used after transplant to retrospectively identify the
distribution of the donor cells.

To overcome the laborious nature of converting somatic cells into pluripotent stem
cells, the New York Stem Cell Foundation has developed an automated platform for the high
throughput conversion of skin biopsies into iPS cells (Paull et al., 2015). This high throughput
platform can be used in conjunction with synthetic modified RNA to reprogram cells and avoid
viral transduction (Warren et al., 2010). Finally, xenofree culture conditions have been

developed and are now commercially available for deriving and propagating human pluripotent
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stem cells (Chen et al., 2011; Klim et al., 2010). Collectively, these innovations will help
expedite the large-scale generation of clinical grade iPS cells.

Finally, widely applicable and efficient cell banking methods are needed to meet the
demand of cell transplantation therapies. There are ongoing efforts in both Japan and the
United States to screen and bank cells for allogeneic transplantations. Estimates from Cellular
Dynamics International suggest that top 183 haplotypes could cover 95% of the US
population. To gain maximum population coverage and provide social justice (Ellison, 2016),
a universal stem cell donor could be part of the banking effort. This tactic proposes to use
genetic engineering to reduce immunogenicity by removing the MHC molecules from the
surface of the cells while also introducing well-established tolerance-inducing molecules (Han
et al., 2019; Riolobos et al., 2013). Ultimately, stem cell banking will facilitate regenerative
therapies by providing a common and less costly off-the-shelf cellular materials that can be

thoroughly characterized before regular and repeated clinical use.

CONCLUDING REMARKS

It's an incredibly exciting time for stem cell-based regenerative medicine with a number
of clinical trials started and more just on the horizon for neurodegenerative diseases, including
one for Parkinson’s disease (Kimbrel and Lanza, 2015). The International Society for Stem
Cell Research (ISSCR) has established an updated set of guidelines (Daley et al., 2016) for
the clinical translation of stem cell research to ensure safety and appropriate rigor while
avoiding the real and present dangers of unregulated stem cell therapies (Berkowitz et al.,
2016).

The demand for neurodegenerative disease therapeutics continues to grow as
populations around the globe age. Currently, no pharmacological strategies exist that can
significantly alter disease course for neurodegenerative diseases, thus cell replacement
therapies remain an attractive avenue of exploration. Although the prospect of using stem cell-
derived neurons to treat many of the diseases discussed above remains abstract, the
Parkinson’s disease clinical trials, grounded on years of fetal transplant studies and animal
models with high fidelity, will provide important guideposts as others venture into these
uncharted territories. In this review, we highlighted current methodologies for generating
therapeutically relevant neuronal and glial cell types. Although directed differentiation
strategies for some of these CNS cell types are in their nascent stage, they represent

important first steps towards heralding in a new era of cellular therapeutics.
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