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Chapter 2:

Single-nucleus sequencing reveals enriched expression of
genetic risk factors in Extratelencephalic Neurons sensitive to

degeneration in ALS

In this chapter we describe findings from RNA sequencing analysis and molecular
characterization of motor cortices from sporadic ALS patients and age matched controls in an
effort to expand our knowledge on disease pathogenesis at a single-nucleus levels and

different cell type resolution.

Control ALS
pre-/motor cortex pre-/motor cortex

Upper layer Y
excitatory neurons &

18

Higher expr. of synaptic genes

Oligodendrocytes

N

More More
myelinating neuronally
engaged

Lower Microglia -

layers } '

Reactive lysosomal
signature

Deeper layer

‘m,,/‘ 3 9 s {
= B ¢ Higher excitatory neurons ’/

| P | ALS-FTD risk
A\ Elevated levels of stress

Graphical abstract and working model. Our study highlights cell type specific changes in premotor/motor cortex of
sporadic ALS patients. Specifically, we identify upregulation of synaptic molecules in excitatory neurons of upper cortical
layers, interestingly correlating to hyperexcitability phenotypes seen in patients. Moreover, excitatory neurons of the
deeper layers of the cortex, that project to the spinal cord and are most affected by the disease, show higher levels of
cellular stresses than other neuronal types. Correspondently, oligodendrocytes transition from a highly myelinating state
to a more neuronally engaged state, probably to counteract stressed phenotypes seen in excitatory neurons. At the same
time, microglia show a reactive state with specific upregulation of endolysosomal pathways.

This work is under consideration at Nature Aging.
Earlier  versions of  this chapter can be found at bioRxiv
https://doi.org/10.1101/2021.07.12.452054
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Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disorder
characterised by a progressive loss of motor function. The eponymous spinal sclerosis
observed at autopsy is the result of the degeneration of extratelencephalic neurons,
Betz cells (ETNs, Cortico-Spinal Motor Neuron). It remains unclear why this neuronal
subtype is selectively affected. To understand the unique molecular properties that
sensitise these cells to ALS, we performed RNA sequencing of 79,169 single nuclei
from cortices of patients and controls. In unaffected individuals, we found that
expression of ALS risk genes was significantly enriched in THY7*-ETNs and not in other
cell types. In patients, these genetic risk factors, as well as genes involved in protein
homeostasis and stress responses, were significantly induced in a wide collection of
ETNs, but not in neurons with more superficial identities. Examination of
oligodendroglial and microglial nuclei revealed patient-specific changes that were at
least in part a response to alterations in neurons: downregulation of myelinating genes
in oligodendrocytes and upregulation of a reactive state connected to dysfunctional
endo-lysosomal pathways. Our findings suggest that the selective vulnerability of
extratelencephalic neurons is partly connected to their intrinsic molecular properties

sensitising them to genetic and mechanistic mechanisms of degeneration.

Amyotrophic Lateral Sclerosis (ALS) is a neuromuscular disease with survival typically
limited to 2-5 years from onset, the most common motor neuron disease in aging individuals
and the neurodegenerative disease with one of the earliest onsets in the mid-to-late 50s".
Although specific genetic causes have been identified, most cases are sporadic (~90%), have

no family history and unknown etiology?, rendering modelling of non-genetic forms of the
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disease difficult®. Variants in genes associated with ALS can contribute to a related disorder,
Frontotemporal Dementia (FTD), leading to the view of ALS and FTD as different clinical
manifestations of shared molecular causes. Bulk RNA-sequencing of ALS post-mortem brains
have identified differences*® and similarities between sporadic and familial® cases and
highlighted shared profiles independent of disease onset’?. While they have provided valuable
insight, these studies have had limited resolution on the cell-type specificity of the disease.
The most striking feature in ALS/FTD is the formation of protein aggregates of TAR
DNA-binding protein-43 (TDP-43) in over 95% of cases of ALS and ~50% of FTD cases,
mostly in neurons®, providing at least one shared mechanism. While the pattern of
degeneration is similar, it is still unknown how familial mutations and sporadic onset might

converge on the formation of these aggregates and how it specifically affects classes of

10,11 12,13

extratelencephalic Cortico-Spinal Motor Neurons, i.e. Betz and von Economo cells

Moreover, strong evidence demonstrated that cells other than neurons are key mediators of
disease progression and it remains unclear how these might contribute to the disease'*"".
Methods to study heterogeneity at a single-cell level have rapidly advanced and their
application to human post-mortem brain tissue is beginning to emerge, especially for
neurodegenerative diseases'®?’. However, a comprehensive view of the changes across cell
types in ALS has not been performed. In this study, we applied single-nuclei RNA sequencing
and in vitro human induced Pluripotent Stem Cells modelling to investigate specific changes
in cortical cell types in sporadic ALS. Our profiling identified the intrinsically higher expression
of ALS/FTD risk factors in specific classes of extratelencephalic excitatory neurons. In ALS
patients, these neurons selectively express higher levels of genes connected to unfolded
protein responses and RNA metabolism. We also found that, excitatory neurons vulnerability
is accompanied by a decrease in myelination-related transcripts in oligodendroglial cells and
un upregulation of reactive, pro-inflammatory state in microglial cells connected to
senescence. We provide a preliminary, insightful view of disruptions triggered in human motor
cortices in ALS and implicate aging-associated mechanisms like altered proteostasis,

inflammation and senescence to specific cell type in the disease.

Results

Profiling of ALS cortex by single-nucleus RNA-sequencing

To better understand factors that contribute to the specific degeneration of classes of
excitatory neurons, we used snRNAseq to profile motor/pre-motor cortex grey matter from
sporadic (SALS) patients and age-matched controls with no neurological disease using Drop-
seq technology?® (Fig. 1a, Extended Data Table 1, Extended Data Fig. 1a-c). After screening
for RNA quality, 79,169 barcoded droplets from 8 individuals were analysed (n=5 sALS, n=3

Control), with a mean of 1269 genes and 2026 unique molecular identifiers (UMIs) (Extended
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Data Fig. 1d). We used Seurat®, single-cell analysis package, to cluster and annotate groups
according to canonical markers of brain cell types®: excitatory and inhibitory neurons,
oligodendrocytes, oligodendrocyte progenitor cells (OPCs), microglia, astrocytes, and
endothelial cells (Extended Data Figure 1e,f). The observed cell type distribution
corresponded to previous studies®' and enabled robust categorization for downstream
analysis. Cellular distribution was homogeneous between sexes and individuals, except for a

modestly lower number of astrocytes in ALS samples (Extended Data Fig. 1g-i).
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Figure 1 Cellular susceptibility to ALS-FTD in the human cortex. a, Diagram of workflow for isolation of nuclei from cortices
of ALS patients and age-matched controls followed by single-nucleus RNA sequencing and assessment of expression of gene
modules associated with neurodegenerative diseases. b-d, t-SNE projections and Violin plots of z-scores for expression of genes
associated with the ALS-FTD (b), AD (c) and MS (d) in the different cell types identified (bars denote median for each side of the
violin — symbols: average score per individual). e-g, t-SNE projections and Violin plots of z-scores for expression of genes
associated with the ALS-FTD (e), AD (f) and MS (g) in the different subtypes of excitatory neurons (bars denote median for each
side of the violin — symbols: average score per individual).

Elevated expression of ALS/FTD risk genes in a specific class of excitatory
neurons

To potentially identify cell types underlying ALS pathophysiology, we examined the
expression of known familial genes for ALS/FTD and variants identified as risk factors from
genome-wide association studies (GWAS). These genes were expressed to a highly variable
degree between cell types many of them were ubiquitously expressed as already known in
the field? (Extended Data Fig. 2a). We then computed a “module score” for this set of genes®
this metric generates a standardised z-score for the expression of each gene and sums it up
as a total score for the gene set, here a positive score suggests higher expression of this gene
set compared to the average expression of the module across the dataset. We also computed
parallel module scores for lists compiled from latest GWAS for neurological disorders that
affect the cortex but not specifically Betz cells: AD**** and MS* (Fig. 1a, Extended Data Table
2). No clear preferential expression for ALS/FTD gene list was identified (Fig. 1b), as it might
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have been anticipated by the scattered and ubiquitous pattern of expression. On the other
hand, AD and MS modules showed enrichment for their respective lists in microglia, as
expected based on the strong immune signatures of that characterise these diseases and the

3337 and shown by other reports® (Fig.

involvement of immune cells in neurodegeneration
1c,d). These results confirm knowledge in the field, underlying the strength of this analysis,
and confirm our results in an unbiased, single-cell resolution.

Considering the selective loss of excitatory neurons in ALS, we further analysed these
cells. We found 32,810 nuclei from excitatory neurons with unbiased clustering identifying
seven subgroups (Exc0-6) that expressed known markers of different cortical layers, equally
distributed in our cohort (Extended Data Fig. 2b-f). Analysis of the ALS/FTD module in these
cells showed a positive score in THY1-expressing subgroup Exc1 (Normalised Enrichment
Score=1.834) (Fig. 1e, Extended Data Fig. 2g,h) and no significant enrichment for AD and MS
modules (Fig. 1f,g). We decided to further dissect the identity of these cells and investigate if
they could be ETNs (group containing Betz cells).

We identified three subgroups expressing markers of subcerebral projection neurons:
Exc1, Exc5 and Exc6 (Fig 2a). Exc5 and Exc6 expressed canonical markers FEZF2, BCL11B
and CRYM?®®; Exc1 expressed THY1, enriched in human layer V'® and used as a reporter for
CSMNs*, and high levels of neurofilament chains, markers of ET neurons in vivo*® (Fig. 2b).
Recent reports dissected the transcriptomic identity of layer V extratelencephalic neurons in
the human Motor Cortex*'. We detected expression of their markers in these groups with Exc1
expressing SERPINE2 and POU3F1, specific of ETNs*', and NEFH and STMN2, broad
markers of MN**2 (Fig 2c). Because of the anatomical location of our samples and the
presence of ETNs across motor-related areas*’, we plotted markers specific to layer V
neurons of regions adjacent to the Motor Cortex like von Economo cells*, affected in FTD*,
and other Long-Range Subcerebral Projecting Neurons (LR-SCPNs)* and confirmed that all
three groups expressed these markers (Fig. 2d,e). To further characterised the spatial
expression of these markers we leveraged a publicly available single-cell, spatial dataset of
the human dorsal cortex*’. We confirmed that markers of layer V neurons, such as THY7,
STMNZ2 and SNCG, are expressed in Exc1 (Fig. 2f) and that these markers are also expressed
in layer V (L5) of the spatial dataset (Fig. 2g,h and Extended Data Fig. 3a,b). This evidence
suggests that Exc1, Exc5 and Exc6 express markers of extratelencephalic neurons of cortical
areas affected by ALS/FTD.

To further confirm that THY1""-neurons expressed higher levels of ALS/FTD genes,
we ran module score analysis in two datasets that identified THY1"" cortical neurons'®#8, In
these studies, THY1-neurons expressed ETNs markers, layer V, von Economo and LR-
SCPNs markers (Extended Data Fig. 3c-i) and, expressed higher levels of the ALS/FTD

module score (Extended Data Fig. 3I-m). Analysis of the spatial transcriptomic dataset*’,

37/180



38

confirmed that the top 10 ALS/FTD-associated genes most high expressed in Exc1 (Extended

Data Fig. 2g) are highly expressed in deeper layers of the cortex, specifically in layer V (Fig.

13,49

2i,j and Extended Data Fig. 3n). Studies in human'“° and mouse®® showed that deep layer

neurons have a higher propensity to form TDP-43 aggregates, hallmark of ALS/FTD. Here we

provide a possible link to their specific vulnerability.
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Figure 2 ALS-FTD susceptible neurons are L5-ET Neurons. a, t-SNE projection of presumptive layer V neurons. b, Dotplot
representing expression of Layer V markers ¢, Dotplot for markers of LVb Extratelencephalic neurons of human Motor Cortex. d,
Dotplot representing expression of von Economo markers. e, Dotplot representing expression LR-SCPN markers. f,
Representative Violin for markers of layer V Extratelencephalic neurons of human Motor Cortex. g, Visual depiction of layers
identification by Maynard et al. 2021 (publically available). h, Spotplot depicting expression of layer Vb Motor Cortex marker,
STMNZ2, identified as enriched in THY1-Exc1, with corresponding boxplot quantification. i-j, Boxplots and corresponding spotplots
for the expression of top 5 ALS/FTD associated genes expressed in Exc1.

Cellular burden on excitatory neurons is higher in deeper layers

We next examined how the enriched expression of ALS/FTD genes relates to changes
that occur in excitatory neurons in response to ALS. We conducted differential gene
expression (DGE) analysis between neurons from patients and controls, across all excitatory

cells and within each subgroup (Fig. 3a). We then selected genes significantly upregulated in
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patients globally (DGEall) and within each subgroup (DGEO0-6), calculated module-scores for
each set and investigated whether certain neuronal subtypes might have similar responses to
ALS (Extended Data Table 3). This analysis showed a correlation between scores in groups
expressing deep layer markers and the global changes identified in patients (Fig. 3b),
suggesting that pathology in lower cortical layers are driving the observed alterations. For
instance, groups expressing ETNs markers (Exc1, Exc5, Exc6) shared many upregulated
genes with each other and with the global signature (Fig. 3c), whereas genes upregulated in
upper layers of the cortex, a region relatively spared of pathology, shared less similarities (Fig.
3d). Intriguingly, this class of genes is, like genetic risk factors, constitutively expressed at
higher levels in Exc1-ETNs (Fig. 3b), advocating for a proposed interplay between genetics
and molecular pathways that sensitises ETNs to ALS®'.
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Figure 3 ALS excitatory neurons present increased expression of stress-related pathways. a, Schematic of Differential
Gene Expression Analysis. b, Dotplot representing scores for genes upregulated in each subgroup of Exc neurons (DGEO0-6) and
globally upregulated in all Exc (DGEall). ¢, Comparison of genes globally upregulated in ALS (DGEall) with genes upregulated in
classes of L5-ETNs (genes expressed by >10% of cells, >2-FC, adjusted p-value<0.05). d, Violin plots of z-scores for genes
globally upregulated in all excitatory cells (DGEall) in all excitatory neurons (geometric boxplots represent median and
interquantile ranges — symbols: average score per individual). e, Violin plots of z-scores for genes upregulated in classes of L5-
ETNs (DGE1, DGES5, DGES) in the three groups (geometric boxplots represent median and interquantile ranges — symbols:
average score per individual). f, Gene Ontology analysis for genes upregulated in L5-ETNs classes (DGE1,5,6), highlighted terms
are shared between the three (CC=Cellular Components). g-h, Western Blot quantification of ubiquitin accumulation and 20S
proteasome subunit from Motor Cortices of ALS patients and age-matched controls.

Subsequent Gene Ontology (GO) analysis showed that DEGs in CUX2-cells were
associated with synaptic biology (Extended Data Figure 4a,b), which could be due to changes
in synaptic activity of degenerating neurons in deeper cortical layers. In contrast, DEGs
identified in classes of ETNs were connected to cellular stresses previously associated with
ALS™2, even from studies with thousands of patients® (Fig. 3e). Interactome analysis
confirmed the coordinated alterations in the expression of genes that function in translational
machinery, mitochondria, protein folding, and degradation pathways connected to the
proteasome and proteostasis and many were shared with transcriptional changes identified in
patients’ excitatory cells as a whole (Extended Data Fig.4c,d-5). Interestingly, these pathways
were specifically upregulated in neurons of deeper cortical layers rather than upper layer
(Extended Data Fig. 4e,f). Comparison with other studies underlined similarities of these
pathways with genes upregulated in excitatory neurons from MS patients'® but not neurons
from AD patients?® (Extended Data Fig. 4g,h), suggesting that similar processes might be at
the base of neurodegeneration but these changes are not universal.

Presently, in vitro modelling of sporadic ALS requires high numbers of lines and high-

throughput methods and needs further standardization®-%°

, we therefore decide to implement
a system that would allow to probe disruptions of proteostasis in human neurons and test if
any of these changes parallel any of the disruptions seen in ALS patients and interpret what
proportion of the complex transcriptomic signature may be associated with proteostatic stress
specifically in neuronal cells. In order to do so, we implemented transient proteasome inhibition
as a model to induce TDP-43 nuclear loss as seen in patients’ Betz cells*®, phase separation®®,
stress granules®” and other ALS-related dysfunction in human neurons®*°® (Extended Data Fig.
6a). To recapitulate proteostatic stress we applied a proteasome inhibitor to human Pluripotent
Stem Cells (hPSC)-derived neurons®®®® and induced nuclear loss of TDP-43 (Extended Data
Fig. 6b,c). Bulk RNA-sequencing analysis showed widespread changes after treatment, with
a significant overlap of upregulated genes between stressed hPSC-neurons and sALS-
neurons, specifically proteasome subunits and heat-shock response-associated chaperonins
and GO analysis of shared genes confirmed the upregulation of proteasomal and chaperone
complexes (Extended Data Fig. 6d-g). Moreover, genes upregulated in both conditions show

a significant overlap with transcripts misregulated after downregulation of TDP-43 in neurons®®
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(Extended Data Fig. 6h). This confirms that some changes identified in SALS neurons are
connected to neuronally intrinsic proteostatic alternations and at least in part connected to
alterations in TDP-43.

To confirm hindered proteostasis in ALS cortex, we selected a second cohort of SALS
patients and controls. We extracted protein, confirmed increased insoluble TDP-43 in patients
(Extended Data Fig. 6i-j) and showed that, despite the presence of core proteosomal subunits,
pathology is accompanied by the accumulation of highly ubiquitinated proteins, hallmark of
impaired proteostasis (Fig. 3f,g). These findings suggest that proteasome inhibition
orchestrate alterations like those observed in ETNs from ALS patients, underscoring the

connection between neuronal stress and loss of proteostatic homeostasis.

Oligodendroglial cells respond to neuronal stress with a neuronally-engaged
state

To reach deep into the cord ETNs are dependent on robust axonal integrity®® and
because others detected changes in myelination in ALS motor cortex'® and in FTD frontal
cortex?’, we analysed nuclei from myelinating cells. 19,151 nuclei from oligodendroglia were
clustered in five groups: one of OPCs — Oliglia3, and four of oligodendrocytes — Oliglia0,1,2,4
(Fig. 4a-c, Extended Data Fig. 7a-b). We noted a significant depletion of ALS-nuclei in Oliglia0
whereas Oliglia1l and Oliglia4 were enriched in patients (Fig. 4d). GO analysis for genes
enriched in each group revealed that Control-enriched Oliglia0 was characterised by terms
connected to oligodendrocyte development and myelination and expressed higher levels of
myelinating genes, e.g. CNP, OPALIN, MAG (Fig. 4e, Extended Data Fig. 7c-e). Conversely,
ALS-enriched Oliglia1 showed terms for neurite morphogenesis, synaptic organization and
higher expression of postsynaptic genes DLG1, DLG2, GRIDZ2 (Fig. 4f, Extended Data Fig. 7f-
h). Intriguingly, expression of neuronal RNAs has been specifically found in classes of
oligodendrocytes in primate motor cortex*'.

Global differential gene expression analysis supports a shift from a myelinating to a
neuronally-engaged state with upregulation of genes involved in synapse modulation and
decrease of master-regulators of myelination, as confirmed by GO analysis (Fig. 4g-i,
Extended Data Fig. 7j,k). Loss of myelination is exemplified by the expression of G-protein
coupled receptors (GPRCs) that mark developmental milestones: GPR56, expressed in
OPCs®', and GPR37, expressed in myelinating cells®?, were lowly expressed in ALS-enriched
subgroups and globally downregulated (Extended Data Fig. 7i). Impaired myelination is
consistent with previous studies identifying demyelination in SALS patients™®.

To further explore these changes, we compared them with published reports that
identified shifts in oligodendrocytes (Extended Data Table 4)'°. Comparison of Jékel et al."

with our study revealed that Control-enriched Oliglia0 most closely resembled highly

41/180



42

myelinating, OPALIN* cells from Jakel (Extended Data Fig. 8a,b), while ALS-enriched Oliglia1
and Oliglia4 aligned to not-actively myelinating Jakel1 (Extended Data Fig. 8c,d), with many
shared genes (Extended Data Fig. 8e-h). To confirm this shift, we ran validations on protein
extracts from patients and controls and showed that oligodendrocyte-specific, myelin-
associated proteins CNP and MBP are downregulated in motor cortices from patients (Fig. 4j-
k). The data so far shows how activation of stress pathways in deep layer neurons is
accompanied by a shift in oligodendrocytes from active myelination to oligo-to-neuron contact
(Extended Data Fig. 8i).
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Microglial activation is characterised by an ALS-specific endo-lysosomal
response

Mouse models®®, patient samples® and function of ALS-related genes in myeloid cells®*
% have demonstrated the importance of microglia as modifiers of disease so we interrogated
changes in this cell type. In the 1,452 nuclei from microglia (Fig. 5a, Extended Data Fig. 9a),
we identified 159 genes upregulated in patients and, remarkably, many were associated with
endocytosis and exocytosis, previously implicated in ALS®%%® (Fig. 5b). Several of these genes
were also associated with microglial activation (CTSD) and neurodegenerative disorders
(APOE) (Fig. 5c,d). Interestingly, genes associated with AL/FTD were upregulated: TREM2,
OPTN, SQSTM1/p62, GRN (Fig. 5e). GO analysis for upregulated genes confirmed a pro-
inflammatory state highlighting activation of endo-lysosomal pathways, secretion and immune
cell degranulation previously associated with myeloid cells in ALS®*®® (Fig. 5f,g). Further
subclustering identified three groups: homeostatic Micro0, “Disease Associated Microglia™-like
Micro1, and cycling Micro2 (Extended Data Fig. 9b,c). Notably, genes that characterised
Micro1 were also upregulated in sALS (Extended Data Fig. 9d,e), in conjunction with a
downregulation of homeostatic genes and upregulation of reactive pathways (Extended Data
Fig. 9f-i).

To identify modulators of this signature, we used the Connectivity Map (CMap)
pipeline®’, which contains gene expression data of 9 human cell lines treated with thousands
of perturbations allowing association between a given transcriptomic signature and a specific
alteration. This analysis revealed that genes dysregulated in microglia positively correlated
with regulators of cell cycle and senescence, KLF6 and CDKN1A/p21, suggesting an
exhaustion of microglial proliferation. On the other hand, we found a negative correlation with
a type I-interferon-associated responses (IFNB1), which is targeted in treatments for
neurological diseases to reduce inflammation®” (Extended Data Fig. 10a). Given the stress
signature identified in neurons, we wondered whether these transcriptomic changes might be
driven by neuronal apoptosis. We differentiated microglia-like cells (iMGLs)® and neurons
(piNs)*® from hPSCs, triggered neuronal apoptosis and then introduced apoptotic neurons to
iMGLs in vitro (Extended Data Fig. 10b-c). Quantitative assessment of selected transcripts by
RT-gPCR confirmed that dead neurons lead to significant downregulation of homeostatic
genes (Extended Data Fig. 10d), upregulation of genes involved in the endo-lysosomal
trafficking (specifically CTSD, ITGAX, LGALS3, SQSTM1/p62) and downregulation of markers
of actively cycling cells (Extended Data Fig. 10e-f), suggesting that changes identified in
microglia from patients are, at least in part, a response to neuronal apoptosis.

We next asked if these changes were a general response to neuronal disease or
restricted to ALS. By comparing our results with published snRNA-seq studies in AD?*° and
MS®®, we identified dysregulation of lipid metabolism (APOE, APOC1, SPP1) as a common
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feature in microglia, and genes associated with DAMs were shared between ALS and MS
(CTSD, GPNMB, CPM, LPL) and ALS and AD (e.g. TREM2) (Fig. 5h). Genes specifically
upregulated in ALS were related to vesicle trafficking, myeloid cell degranulation and the
lysosome (e.g., SQSTM1/p62, LGALS3, GRN, ASAH1, LRRK?2). This evidence suggests the
induction of a shared microglial reactive state in neurodegenerative diseases, yet in ALS

neuronal death activates changes connected to dysfunctional endo-lysosomal pathways.
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Figure 5 Disease-Associated Microglia signature in ALS. a, t-SNE projection of microglia (ALS n=759 nuclei, Control n=693
nuclei). b,c, Volcano plot of genes upregulated in microglia from ALS. Genes identified in GO terms for endocytosis and
exocytosis (b), genes associated to neurodegenerative diseases in (c). d, Violin plots of representative genes upregulated in ALS
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44/180



45

Discussion

A key question in the study of neurodegeneration is why certain cell types are more
susceptible in different diseases™. In this study, we identified the enrichment for ALS/FTD
associated genes in a class of ETNs which provides a connection between this neuronal type
and its propensity to accumulate TDP-43 aggregates'"'**° leading to their gradual loss in
ALS/FTD'™. This enrichment is not recapitulated for risk factors connected to AD and MS,
related to immune processes and are more enriched in microglia®®. One study suggested that
ALS-associated variants connected to autophagy and protein clearing are most highly
expressed in glutamatergic neurons®' and these findings were later corroborated adding the
importance of neuronal morphology and ribonucleotide metabolism®?, here we provide a more
detailed dissection of which subtypes of cells that might be.

Additionally, we identified a broadly shared transcriptomic signature of cellular stress
pathways in classes of deep layer excitatory neurons. These alterations in RNA translation,
proteostasis and mitochondrial function have previously been involved in models of ALS'?,
Our study not only recapitulates these changes, it also highlights their cell-type specificity and
links them to the identification of rare mutations in regulators of these pathways in familial
forms of ALS”!. These molecular mechanisms are confirmed to be connected to proteasomal
function by our neuronal human in vitro model, underlying the importance of protein
homeostasis in neurons and its connection to ALS. The nuclear nature and the low-coverage
of this kind of sequencing but also the small sample size in our study does not allow a
confident, further dissection of the specifically neuronal changes in RNA biology identified in

in vitro models and patient samples®®’2

. It remains intriguing to speculate how RNA
metabolism and proteostasis might be mis-regulated in extratelencephalic neurons and
specifically Betz cells, mouse models where these pathways are specifically altered in CSMNs
might help shed a light on their interplay in this specific neuronal type.

We suggest two mechanisms by which ETNs are rendered more susceptible to ALS:
the intrinsically higher expression of risk factors which is coupled with processes of
neurodegeneration happening broadly in classes of ETNs that might exacerbate and
contribute to vulnerability of these cells in a combinatorial effect. Recent shnRNA-sequencing
studies have unravelled susceptibility of specific neuronal subtypes in other diseases: mid-

D?73: upper layer

layer RORB™ neurons accumulate tau aggregates and are depleted in A
CUX2-neurons are more affected by meningeal inflammation in MS'®; ventral dopaminergic
neurons in Parkinson’s Disease®® and ET neurons affected in ALS/FTD as described by our

475 Impairment of

study and spinal cord motor neurons as suggested in recent reports
proteostatic mechanisms seems to be a common theme in degenerating neurons regardless
of the disease, however, only in ALS these changes are specifically connected to upregulation

of transcripts connected to RNA metabolism, trend that appears to go in opposite direction in
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AD™. Further investigation into the transcriptomic signatures and integrative analyses of these
studies might mark the beginning of a new era in the understanding of selective neuronal
vulnerability to degeneration in different diseases.

Emerging studies have shown that glial cells are important modifiers in ALS/FTD. For
instance, defects in oligodendrocyte maturation and myelination are present in SOD7-G93A
mice and removing toxic SOD1 from this lineage improves survival'. In our study, we show
that changes in processes involved in oligodendrocyte differentiation and myelination may
contribute to neuronal degeneration and/or be a coordinated response to the disease and
appear to contrast those described in MS'™. Moreover, we revealed perturbations in key
myelin-regulators, such as OPALIN, CNP, and MAG, across multiple oligodendrocyte clusters
but in these cells only, as opposed to AD where myelination-related changes were present
across multiple cell types?>?*?°_ Given the similarities in the stress signature identified in
neurons in this study with changes in MS lesions but not in AD patients, it is puzzling how
changes in myelination might be a consequence or the cause of neuronal degeneration.

Intriguingly, recent work has shown the expression of neuronal transcripts in
oligodendrocytes of human motor cortex*' and regional distribution of different types of
oligodendrocyte in the nervous system might explain differential responses to disease’. The
upregulation of synaptic transcripts in oligodendrocytes of ALS patients might represent
phagocytic activity of this cell type in neurodegenerative contexts’” or the need for synaptic
proteins in the formation of myelin sheath”. These speculations are interesting if coupled with
the upregulation of synaptic machinery in upper layer CUX2-neurons and the documented
loss of postsynaptic molecules in ET neurons in ALS". Moreover, a recent snRNAseq study
of FTD cortices identified changes in myelinating cells in response to neuronal loss and
specifically underlined the importance of cell-to-cell communication in neurodegeneration?’.
Finally, recent GWAS studies trying to associate specific cell types to ALS risk factors have
pointed at excitatory neurons but also myelinating cells and inhibitory neurons as more
sensitive to genetic risks for the disease®. These observations suggest a coordinated
response of neurons in the Cortico-Spinal motor circuit in an attempt to compensate for loss
of neuronal inputs to the cord. Further investigations could focus on shifting oligodendroglial
states in disease models and determine changes in disease progression in the scope to
complement efforts aimed to controlling neuronal activity®°.

Finally, we found distinct transcriptional perturbations in ALS-associated microglia,
particularly in endo-lysosomal pathways. We and others have implicated ALS/FTD-associated

gene C9orf72 in endosomal trafficking and secretion in myeloid cells®°®

and the upregulation
of lysosomal constituents, e.g. CTSD, was identified in this study and by others in patients®’.
Coupled with the upregulation of ALS/FTD-associated genes SQSTM1/p62, OPTN, TREM?2

and GRN, this suggests a mechanistic convergence on vesicle trafficking and pro-
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inflammatory pathways that may initiate and/or exacerbate the homeostatic-to-DAM transition
in ALS/FTD. We also delineated interferon-response-related changes, as identified by others
in C90rf72-ALS®?, providing a parallel between sporadic and familial ALS. Overall, differentially
expressed transcripts had partial overlap with those in microglia surrounding amyloid plaques
in AD?2' and microglia associated with demyelinating lesions in MS®®, suggesting that drugs
specifically modulating myeloid cells in other neurodegenerative diseases may provide a basis
for new therapeutic approaches for ALS/FTD and warrants further study. Recent reports have
shown how Disease Associated Microglia and their activity might actually be beneficial in
disease contexts®, studies specifically manipulating microglial states might elucidate the
“friend or foe” role of these cells in ALS.

In summary, we show that classes of ETNs require the expression of a collection of
genetic risk factors for ALS/FTD with pivotal roles in proteostasis, either because of their
peripheral metabolic needs or aging. This intrinsically higher expression of disease-associated
genes might be at the bottom of a “first over the line” mechanism leading to disruption of
homeostasis in groups of deep-layer excitatory neurons. These alterations trigger a cascade
of responses: superficial neurons upregulate synaptic genes to supplement for lost inputs to
the cord; oligodendroglia shift from a myelinating to a neuronally-engaged state; microglia
activate a pro-inflammatory signature in response to neuronal apoptosis. Our study offers a
view in which neurocentric disease vulnerability sparks responses in other neuronal subtypes
and glial cells, but it also shows that clear enrichment of ALS/FTD-related genes in ETNs is
not necessarily the main genetic driver and it is coupled with processes engaging disease
related genes in different cells, i.e. microglia. This view is a first insight into the disruptions of
cortical biology in ALS and provides a connection between age-related changes in cellular
components and mechanisms associated with ALS®*. Future investigations should consider
multicellular disruptions in ALS/FTD, where the survival of the neuron is unmistakably pivotal,
but targeting other cells to reduce inflammation, promote myelination, and bolster neuronal

circuitry may re-establish a neuroprotective environment.

Limitations of this study

One limitation of this study is the small size of the cohort. ALS is a very heterogenous
disease’, and a smaller cohort size cannot fully recapitulate the diversity identified in patients.
However, only recently biobanks have been able collect enough samples to generate reports
with dozens and dozens of individuals’®, we hope that the increase in samples availability and
affordability of single-cell technology will allow a more comprehensive view of transcriptomic
changes in ALS at single-cell level. Moreover, a bigger cohort size would allow a more

stringent analysis of differentially expressed genes by “pseudo-bulking” single-nuclei dataset
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at the individual level within a cell type before nominating DEGs. We also recognise that our
study would benefit from additional validation at RNA and/or protein level, we hope that in the
future this kind of studies would accompany bioinformatics analyses with more validations.
These validations would also elucidate some of the findings in this study. For example, are
oligodendrocytes in ALS patients really expressing higher levels of neuronal genes or is this
an artifact coming from contaminations®? As mentioned in the text, oligodendrocytes in the
motor cortex have been shown to express synaptic transcripts*', immunofluorescent staining
would further prove this point at the single cell level. Nonetheless, we believe that this study
provides original and novel insights the involvement of different cell types in ALS and a

different view in the motor cortex of ALS patients.
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Methods

Human donor tissue. Frozen post-mortem human cortical samples from cases of sporadic ALS
patients and age-matched controls were obtained from the Target ALS Neuropathology Core that drew
upon the repositories of five institutions. Specimens from the medial, lateral, or unspecified motor cortex
were grouped together. Additional post-mortem human samples of the posterior frontal cortex
consistent with the motor cortex from ALS patients and controls were obtained at MGH using a Partners
IRB approved protocol and stored at -80°C.

Isolation of nuclei. RNA quality of brain samples was assessed by running bulk nuclear RNA on an
Agilent TapeStation for RIN scores. Extraction of nuclei from frozen samples was performed as
previously described®®. Briefly, tissue was dissected and minced with a razor blade on ice and then
placed in 4 ml ice-cold extraction buffer (Wash buffer (82 mM Na2S04, 30 mM K2S0O4, 5 mM MgCI2,
10 mM glucose, and 10 mM HEPES, pH adjusted to 7.4 with NaOH) containing 1% Triton X-100 and

51/180



52

5% Kollidon VA64). Tissue was homogenized with repeated pipetting, followed by passing the
homogenized suspension twice through a 26 2 gauge needle on a 3 ml syringe (pre-chilled), once
through a 20 mm mesh filter, and once through a 5 mm filter using vacuum. The nuclei were then
diluted in 50 ml ice-cold wash buffer, split across four 50 ml tubes, and centrifuged at 500xg for 10
minutes at 4°C. The supernatant was discarded, the nuclei pellet was resuspended in 1 ml cold wash
buffer.

10X loading and library preparation. Nuclei were DAPI-stained with Hoechst, loaded onto a
hemocytometer, and counted using brightfield and fluorescence microscopy. The solution was diluted
to ~176 nuclei/ul before proceeding with Drop-seq as described in ref.1528. cDNA amplification was
performed using around 6000 beads per reaction with 16 PCR cycles. The integrity of both the cDNA
and tagmented libraries were assessed for quality control on the Agilent Bioanalyzer as in
ref®’. Libraries were sequenced on a Nova-seq S2, with a 60 bp genomic read. Reads were aligned to
the human genome assembly (hg19). Digital Gene Expression files were generated with the Zamboni
Drop-seq analysis pipeline, designed by the McCarroll group?6:88.

Filtering of expression matrices and clustering of single nuclei. A single matrix for all samples was
built by filtering any barcode with less than 400 genes and resulting in a matrix of 27,600 genes across
119,510 barcodes. This combined UMI matrix was used for downstream analysis using Seurat
(v3.0.2)%°. A Seurat object was created from this matrix by setting up a first filter of min.cells=20 per
genes. After that, barcodes were further filtered by number of genes detected nFeature_ RNA>600 and
nFeature_ RNA<6000. Distribution of genes and UMIs were used as parameters for filtering barcodes.
The matrix was then processed via the Seurat pipeline: log-normalized by a factor of 10,000, followed
by regressing out UMI counts (nCount_RNA), scaled for gene expression.

After quality filtering, 79,830 barcodes and 27,600 genes were used to compute SNN graphs and -SNE
projections using the first 10 statistically significant Principal Components. As previously described®®*,
SNN-graphed t-SNE projection was used to determine minimum number of clusters obtain at
resolution=0.2 (FindClusters). Broad cellular identities were assigned to groups on the basis of
differentially expressed genes as calculated by Wilcoxon rank sum test in FindAlIMarkers(min.pct=0.25,
logfc.threshold=0.25). One subcluster with specifically high ratio of UMIs/genes was filtered out
resulting in 79,169 barcodes grouped in 7 major cell types of the CNS: excitatory neurons,
oligodendrocytes, inhibitory neurons, astrocytes, endothelial cells, microglia, oligodendrocyte
progenitor cells (OPCs). Markers for specific cell types were identified in previously published human
scRNAseq studies®*3',

Analysis of cellular subtypes were conducted by subsetting each group. Isolated barcodes were re-
normalised and scaled and relevant PCs were used for re-clustering as a separate analysis. This newly
scaled matrix was used for Differential Gene Expression analysis with the MAST algorithm®' in Seurat
R package as previously reported'2232526 with parameters FindAllMarkers(min.pct=0.10,
logfc.threshold=0.25) and subclustering for identification of subgroups. Gene scores for different cellular
subclusters were computed in each re-normalised, re-scaled sub-matrix using the AddModuleScore
function in Seurat v3.0.2.

Gene Ontology, Interactome and Gene Set Enrichment Analyses. For GO terms analysis, we
selected statistically significant up-regulated or down-regulated genes identified in each subcluster as
described before (adj p-values<0.05, LFC=2). These lists were fed in the gProfiler pipeline®? with
settings: use only annotated genes, g:SCS threshold of 0.05, GO cellular components and GO
biological processes (26" of May 2020 — 9" of December 2021), only statistically significant pathways
are highlighted. For oligodendrocytes cells (Extended Data Fig.8) statistically significant up-regulated
genes identified in each subcluster as described before (adj p-values<0.05, LFC=2) were used for
synaptic specific Gene Ontology analysis using SynGO* (12" of June 2020). Interactome map was
built using STRING®* protein-protein interaction networks, all statistically significant upregulated genes
were used, 810 were identified as interacting partners using “experiments” as interaction sources and
a medium confidence threshold (0.400), only interacting partners are shown in Extended Data Figure
6. Gene Set Enrichment Analysis was performed using GSEA software designed by UC San Diego and
the Broad Institute (v4.0.3)%. Briefly, gene expression matrices were generated in which for each
subcluster each individual was a metacell, lists for disease-associated risk genes were compiled using
available datasets (PubMed — ALS/FTD — Supplementary Table 2) or recently published GWAS for
AD3%*3 and MS®®,

Generation of Microglia-like Cells. Microglial-like cells were differentiated as described®® with minor
modifications®”®. Briefly, hPSCs were cultured in E8 medium (Stemcell technologies) on Matrigel
(Corning), dissociated with Accutase (Stemcell technologies), centrifuged at 300xg for 5 minutes,
resuspended in E8 medium with 10uM Y-27632 ROCK Inhibitor, 2M cells are transferred to a low-
attachment T25 flask in 4ml of medium and left in suspension for 24 hours. The first 10 days of
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differentiation are carried out in iHPC medium: IMDM (50%, Stemcell technologies), F12 (50%, Stemcell
technologies), ITSG-X 2% v/v (ThermoFisher), L-ascorbic acid 2-Phosphate (64 ug/ml, Sigma),
monothioglycerol (400 mM, Sigma), PVA (10 mg/ml; Sigma), Glutamax (1X, Stemcell technologies),
chemically-defined lipid concentrate (1X, Stemcell technologies), non-essential amino acids (NEAA,
Stemcell technologies). After 24h (day0), cells are collected and differentiation is started in iHPC
medium supplemented with FGF2 (Peprotech, 50 ng/ml), BMP4 (Peprotech, 50 ng/ml), Activin-A
(Peprotech, 12.5 ng/ml), Y-27632 ROCK Inhibitor (1 uM) and LiCl (2mM) and transferred in hypoxic
incubator (20% Oz, 5% CO2, 37°C). On day 2, medium is changed to iHPC medium plus FGF2
(Peprotech, 50 ng/ml) and VEGF (Peprotech, 50 ng/ml) and returned to hypoxic conditions. On day4,
cells are resuspended in iHPC medium supplemented with FGF2 (Peprotech, 50 ng/ml), VEGF
(Peprotech, 50 ng/ml), TPO (Peprotech, 50 ng/ml), SCF (Peprotech, 10 ng/ml), IL-6 (Peprotech, 50
ng/ml), and IL-3 (Peprotech, 10 ng/ml) and placed into a normoxic incubator (20% O2, 5% CO., 37°C).
Expansion of haematopoietic progenitors is continued by supplementing the flasks with 1ml of iHPC
medium with small molecules every two days. On day10, cells are collected and filtered through a 40mm
filter. The single cell suspension is counted and plated at 500,00 cells/well of a 6 well plate coated with
Matrigel (Corning) in Microglia differentiation medium: DMEM/F12 (Stemcell technologies), ITS-G
2%v/v (Thermo Fisher Scientific), B27 (2%v/v, Stemcell technologies), N2 (0.5%v/v, Stemcell
technologies), monothioglycerol (200 mM, Sigma), Glutamax (1X, Stemcell technologies), NEAA (1X,
Stemcell technologies), supplemented with M-CSF (25 ng/ml, Peprotech), IL-34 (100 ng/ml, Peprotech),
and TGFb-1 (50 ng/ml, Peprotech). Induced Microglia-like cells (iMGLs) are kept in this medium for 20
days with change three times a week. On day 30, cells are collected and plated on poly-D-lysine/laminin
coated dishes in Microglia differentiation medium supplemented with CD200 (100 ng/ml, Novoprotein)
and CX3CL1 (100 ng/ml, PeproTech), M-CSF (25 ng/ml, PeproTech), IL-34 (100 ng/ml, PeproTech),
and TGFb-1 (50 ng/ml, PeproTech) until day 40.

Feeding of apoptotic neurons to Microglia-like Cells. For feeding assays, neurons were generated
from human iPSCs using an NGN2 overexpression system as described previously®®%°". Day30
hiPSC-neurons “piNs” were treated with 2uM H20: for 24 hours to induce apoptosis. Apoptotic neurons
were gently collected from the plate and the medium containing the apoptotic bodies was transferred
into wells containing day40 iMGLs. After 24 hours, iIMGLs subjected to apoptotic neurons and controls
were collected for RNA extraction.

RNA extraction and RT-qPCR analysis. RNA was extracted with the miRNeasy Mini Kit (Qiagen,
217004). cDNA was produced with iScript kit (BioRad) using 50 ng of RNA. RT-gPCR reactions were
performed in triplicates using 20 ng of cDNA with SYBR Green (BioRad) and were run on a CFX96
Touch™ PCR Machine for 39 cycles at: 95°C for 15s, 60°C for 30s, 55°C for 30s.

Generation of hiPSC-derived neurons for bulk RNA sequencing. Human embryonic stem cells were
cultured in mTESR (Stemcell technologies) on matrigel (Corning). Neurons were generated from HUES-
3-Hb9:GFP based on the motor neuron differentiation protocol previously described®%. Upon
completion of the differentiation protocol, cells were sorted via flow-cytometry based on GFP signal
intensity to yield GFP-positive neurons that were plated on PDL/laminin-coated plates (Sigma, Life
technologies). Neurons were maintained in Neurobasal medium (Life Technologies) supplemented with
N2 (Stemcell technologies), B27 (Life technologies), glutamax (Life technologies), non-essential amino
acids (Life technologies), and neurotrophic factors (BDNF, GDNF, CNTF), and were grown for 28 days
before the application of the proteasome inhibitors MG132 for 48 hrs.

RNA was extracted using RNeasy Plus kit (Qiagen), libraries were prepared using the lllumina TruSeq
RNA kit v2 according to the manufacturer’s directions, and sequenced at the Broad Institute core with
samples randomly assigned between two flow chambers. The total population RNA-seq FASTQ data
was aligned against ENSEMBL human reference genome (build GRCh37/hg19) using STAR (v.2.4.0).
Cufflinks (v.2.2.1) was used to derive normalized gene expression in fragments per kilo base per million
(FPKM). The read counts were obtained from the aligned BAM-files in R using Rsubread. Differential
gene expression was analyzed from the read counts in DESeqg2 using a Wald’s test for the treatment
dosage and controlling for the sequencing flow cell.

Western blot analysis. As previously described tissue was minced, lysed in RIPA buffer with protease
inhibitors (Roche) and sonicated®. After centrifugation, the supernatant was collected as soluble
fraction and the insoluble pellet was resuspended in 8M urea buffer (Bio-Rad, 1632103). After protein
quantification by BCA assay (ThermoFisher), ten micrograms of proteins were preheated in Laemmli’'s
buffer (BioRad), loaded in 4-20% mini-PROTEAN® TGX™precast protein gels (BioRad) and gels were
transferred to a PDVF membrane. Membranes were blocked in Odyssey Blocking Buffer (Li-Cor) and
incubated overnight at 4°C with primary antibodies. After washing with TBS-T, membranes were
incubated with IRDye® secondary antibodies (Li-Cor) for one hour and imaged with Odyssey® CLx
imaging system (Li-Cor). List of primary antibodies can be found in Appendix.
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Proteasome activity assay. Neurons were sorted in 96-wells plates and, after two weeks of
maturation, treated for 24 hours. Cells were washed with 1xPBS, exposed to ProteasomeGlo®
(Promega, G8660) and incubated for 30 minutes at RT. Fluorescence was measured using a
Cytation™3 reader (BioTek).
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Dotplot representing percentage of cells expressing additional cell type specific markers. h. ~SNE distribution of whole cohort
with annotated cell types split by diagnosis (ALS patients n=5, age-matched Controls n=3, n = 79,169 total nuclei). i. Fraction
of each cell types identified in whole cohort split by diagnosis.
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Extended Data Fig. 2 | Expression of ALS-FTD associated genes in different cellular subtypes and excitatory
neurons subtypes. a. Dotplot representing expression of gene associated with the ALS-FTD spectrum in each cell type
identified in the whole cortex split by diagnosis. b. -SNE projection of excitatory neurons clusters (ALS n=15,227 nuclei,
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neurons by clusters and by diagnosis. g. Get Set Enrichment Analysis for the ALS-FTD associated genes in Exc1 cortical
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Extended Data Fig. 3 | L5-ETNs/CSMNs-like neurons express higher levels of ALS-FTD related genes. a,b,
Spotplot and corresponding boxplot from Maynard et al. for the expression of layer Vb Motor Cortex marker, SNCG and
THY1, identified as enriched in Exc1. c,d. Dotplot and representative Violin plots for markers of L5 ExtraTelencephalic

neurons of human Motor Cortex in Schirmer et al.

e,f. Dotplot and representative Violin plots for markers of L5

ExtraTelencephalic neurons of human Motor Cortex in Velmeshev et al. g-i. Dotplot representing expression of Layer V
markers (d), von Economo markers (e), LR-SCPN markers (f) in Schirmer et al. and Velmeshev et al. I. Violin plots and
corresponding Gene Set Enrichment Analysis of z-scores for expression of ALS-FTD-associated genes in THY1-neurons
identified by Schimer et al. (bars denote median). m. Violin plots and corresponding Gene Set Enrichment Analysis of
z-scores for expression of ALS-FTD-associated genes in THY1-neurons identified by Velmeshev et al. (bars denote
median). n. Boxplot from Maynard et al. for the expression of top 10 ALS/FTD associated genes identified in Exc1.
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Extended Data Fig. 4 | Classes of L5-ETNs express higher levels of stress pathways. a. Gene Ontology analysis for
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statistically significant GO terms upregulated in lower layers in each subgroup (left) and globally (right). c. Gene
Ontology analysis of terms for genes upregulated in CUX2-ExcO group (DGEO), highlighted terms involved in synaptic
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Extended Data Fig. 7 | Oligodendrocytes polarize between myelinating and neuro-engaged states. a. {-SNE projection and
Violin plot of markers of Oligodendrocyte Progenitor Cells (OPCs). b. -SNE projection and Violin plots of markers of mature
oligodendrocytes. c-d. t-SNE projection and Violin plots of markers of actively myelinating oligodendrocytes. e. Violin plots
representing z-score for selected GO terms by cluster. f-g. --SNE projection and Violin plots of markers of neuro-engaged
oligodendrocytes. h. Violin plots representing z-score for selected GO terms by cluster. i. Dotplot representing genes characteristic
of maturation and development of OPCs in myelinating oligodendrocytes in each subcluster split by diagnosis. j. GO analysis
for genes downregulated in ALS oligodendrocytes, highlighted terms involved in myelination (CC=Cellular Component). k. GO
analysis for genes upregulated in ALS oligodendrocytes, highlighted terms involved in neuro-supportive functions (CC=Cellular
Component).
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Extended Data Fig. 9 | Shared features between ALS-driven changes and reactive subcluster of microglia. a. &-SNE projection
of subclusters identified within microglia (Micro0 = Homeo = homeostatic, Microl = DAMs = Disease-associated microglia,
Micro2 = Cycling cells)). b. Distribution of microglia within clusters by diagnosis. c. Distribution of microglia within subclusters by
individual. d. Dotplot representing genes identified as characteristic of Homeostatic microglia and DAMs by subcluster. e.
Dotplot representing genes identified as characteristic of Homeostatic microglia and DAMs by diagnosis. f. Volcano plot of
statistically significant differentially expressed genes between Control and ALS microglia (top ten upregulated and top ten
downregulated genes highlighted). g. Violin plots of representative DEGs downregulated in ALS patients of genes associated with
homeostatic microglia. h. Gene Ontology analysis of terms associated with genes characteristic of DAMs microglia, highlighted
terms playing important role in microglial biology and/or pathogenesis of the disease. i. --SNE projections representing z-score for
selected, statistically significant GO terms.
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Extended Data Fig. 10 | Apoptotic neurons upregulate lysosomal genes in microglia. a. Schematic of workflow and
results from the Connectivity Map project for the genes upregulated in ALS microglia. Heatmap shows what cellular signature is
most closely related to the query. b. Diagram of microglia and neuronal differentiation from Pluripotent Stem Cells, induction of
apoptosis neurons and feeding to iMGLs. c. Brightfield images of untreated day 40 iMGLs and day 40 iMGLs fed apoptotic
neurons for 24 hours. d. RT-gPCR quantification of selectedALS-FTD-associated and lysosomal genes 24h after feeding iMGLs with
apoptotic neurons. e. RT-qPCR quantification of homeostatic and DAMs genes after feeding. e. RT-gPCR quantification of cell cycle-
associated genes after feeding.
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