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Chapter 1: Introduction

1. Amyotrophic Lateral Sclerosis

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disorder that affects
cortical and spinal motor neurons and is characterised by loss of motor function and muscle
control leading to death’. First described by the founder of modern neurology Jean-Martin
Charcot and his team of neuroscientists at La Salpétriére hospital in Paris in 18692¢, ALS is
the most common motor neuron disease with adult onset and the most frequent
neurodegenerative disorder with insurgence at midlife, in the mid-to-late 50s’. The scarring of
descending corticospinal tracts (sclerosis) is the result of Cortico-Spinal Motor Neuron
(CSMNs/Betz cells/upper MN) degeneration and the gradual loss of the connection between
the cortex and lower, spinal motor neurons (MNSs). Loss of control of inputs in the motor circuit
results in defects in regulation of electrical activity in MNs and disruption of synaptic contact
with the muscle that results in muscular atrophy (amyotrophy)®. To date, it remains unclear

why these neuronal subtypes are selectively affected by the disease.

Fig. 16. — Coupe trans-  Fig. 17. — Coupe  Fig. 18. — Coupe
versale de la moelle épinidre transversale passant par transversals passant par
passant par la partie moyen= e miliew ds la végion le miliew dw renflement
ne du venflement cervical.  dorsalo. lombasre.

Fig.19. Coupe transversale du bulbe
passant par la partic soyenne de lo-
lice. — A, A, pyramides antérieuras
sclérosées,

Figure 1 First description of ALS from Joffroy’s thesis®. Top: positioning of medullar pyramids of the corticospinal
tracts. Bottom: cross sections of the medulla supposedly drawn by Charcot himself depicting sclerotic areas (AA) through
medulla oblongata (bulbe), cervical, thoracic and lumbar spine (moelle cervicale, dorsale et lombaire). Adapted from
Duyckaerts et al., Charcot’s originals often used in his famous legons du mardi at La Salpétriére culminated in “Anatomie
pathologique de la moelle épiniere”, property of “Musée de [I'Assistance Publique-Hbpitaux de Paris” at the
Neuropathology Department of Hépital Pitié-La Salpétriere.
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ALS is an unforgivably fast, progressive disease with survival typically limited to 2-5
years from diagnosis. Complicating this scenario, diagnosis is extremely hard requiring an
extensive clinical examination by a skilled neurologist in conjunction with electromyography
and several tests to exclude other diseases of motor neurons that might resemble ALS®.
Current treatment strategies mostly focus on palliative care, symptoms management and
respiratory support. The only two approved medications, Riluzole and Edaravone, which act
by modulating synaptic firing of the motor system and reduce oxidative species, only prolong
life by a few months''" and many of the promising drug candidates found experimentally
failed to pass preclinical stages'. The current state of clinical knowledge on the disease
implies that the only efficient way to counteract symptoms is early diagnosis and timely
intervention to manage rather than prevent degeneration, prompting the field to identify new,

more rapid and efficient ways to diagnose and treat ALS"3.

2. ALS genetic causes

Although genetic studies have immensely advanced our knowledge of ALS, only ~10%
of cases are inherited and classified as familial (fALS), whereas 90-95% of diagnoses are
sporadic in origin (SALS), occurring without family history and often no known genetic cause®.
Several studies demonstrated that roughly half of fALS cases are connected to a handful of
genes'*'S: SOD1, TARDBP (TDP-43), FUS and C9ORF72 being the most common ones and
rare variants in other genes implicated as well'®, mostly autosomal, inherited as dominant
traits and frequently with high penetrance.

The first gene to be discovered in families affected by the disease is SOD1. Cu/Zn
superoxide dismutase 1 (SOD1), first identified in 1993, is now recognised to be connected to
~20% of familial ALS cases'’. SOD1 is a ubiquitously expressed and involved in reducing
oxidative stress species. Mutations in this gene create aberrant, mutant protein aggregates in
MN and cause disease through toxicity rather than loss of function of the wild-type protein®1°.
Since then, many other genes have been identified as cause of fALS'8'6, three of them are
worth discussing in more details since they explain most of the heritability. The most common
inherited cause of ALS in European populations is an hexanucleotide repeat expansion in
intronic region of C9ORF72%°21, This gene normally harbours a short set of repeats but in
affected individuals the expansion can encompass hundreds to thousands. C9ORF72 has
been implicated in vesicle trafficking, autophagy, immune function and RNA metabolism and
its connection to ALS entails both a loss of function of normal C9ORF72 gene product and the
production of aberrant RNAs and peptides from the expansion itself that create both RNA foci
and protein aggregates. Mutations in TARDBP/TDP-43%22% and FUS?**?% each account for
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roughly 5% of familial cases. Interestingly, both proteins are ubiquitously expressed and have
a pivotal role in RNA biology, shuttling between the nucleus and the cytoplasm controlling
RNA stability, splicing and transport'*26, Other genes have been associated with rare forms
of fALS including for example: VCP, OPTN, TBK1, SQSTM1/p62, UBQLN2, DCTN1, PFN1,
MATR3, CHCHD10, TUBA4A"'81416.27 These genes are involved in mechanisms listed above
like vesicle trafficking, autophagy, immune functions, RNA metabolism but also protein
homeostasis, axonal transport and cytoskeletal dynamics.

The seemingly loose connection between all these pathways and the often-ubiquitous
expression of these genes renders the understanding of molecular mechanisms underlying
ALS very challenging. Additionally, even though sporadic cases are defined as being present
without familial history, 3-5% of them can still be explained by genetic mutations also found in
fALS. Complicating this scenario, some of these variants have intermediate penetrance?® with
rare genetic variation being disproportionally frequent in sALS, with many loci that act as
modifiers of the disease containing genes involved in even disparate molecular and cellular
functions, such as MOBP, NEK1, SARM1, UNC13A, SCFD1, KIF5A and others®*3'. The
intermediate penetrance of certain mutations, the cumulative knowledge on disease modifiers
and the partial heritability (established at 60% in twins studies®) result in many cases being
more familial clusters rather than classical mendelian inheritance® and has brought about the

notion that ALS could be an oligogenic disease®'3*.
3. ALS pathological manifestations

Besides the uncertainties in H I
underlying mechanisms produced by this i
complex genetic landscape, the core
pathological finding in ALS remains motor '
neuron death. This degeneration is always \ )
accompanied by loss of corticospinal tracts & |
resulting in lateral scarring of the spinal P $o4
cord and spastic control of muscles. As the Figure 2. Identification of TDP-43 inclusions in sporadic

ALS. Immunostaining with anti-TDP-43 labelling round
disease progresses, a common feature nuclear aggregates (H) and nuclear loss with skein-like

aggregates () in spinal cord motor neurons (original images
identified in most cases, regardless of their from Neumann et al, 2006, Science®).
familial or sporadic nature, is the accumulation of cytoplasmic protein aggregates, mostly in
neurons®. These common, skein-like accumulations can be composed of different proteins
and are highly ubiquitinated®. It was only in 2006 that a major change in the understanding of
ALS pathobiology occurred when Virginia Lee and colleagues identified that the major

component of these aggregates was TAR DNA/RNA-binding protein 43 (TDP-43)%.
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Other pathological features are specific to certain genes, e.g. intranuclear RNA foci?®
in C9orf72-patients with ubiquitinated aggregates rich in SQSTM1/p62%, in addition to TDP-
43 aggregates. Also, mutant proteins of SOD1 and FUS result in aggregation of these proteins
even though somewhat pathologically distinct since they do not present TDP-43 accumulation.

Accumulation of TDP-43 was identified even before ALS-causative mutations in the
TARDBP gene? and it has now been confirmed and replicated by many studies that have
found neuronal TDP-43 protein aggregates in most patients'®. These aggregates are often
associated with nuclear loss of the protein and studies have proven that this RNA-binding
protein is found to be insoluble in over 97% of cases, providing at least one convergent

mechanism for molecular disruption in ALS?.
4. The Motor Neuron Disease spectrum: ALS, ALS/FTD, FTD

Studies that identified TDP-43 accumulation in ALS have also identified these
aggregates in brains of patients affected by FrontoTemporal Dementia (FTD)*. FTD, also
known as frontotemporal lobar degeneration (FTLD), is the second most common form of
dementia after Alzheimer’s disease (AD) and is characterised by loss of cortical neurons in
fronto-temporal cortical regions resulting in decreased cognitive function®®. Only around 50%
of FTD cases present TDP-43 pathology, whereas the rest is characterised by aggregates of
either FUS or tau®. Similarities in pathological features include loss of cortical neurons' which
might start in different regions, more frontal in FTD and specifically motor in ALS, but that then
spreads to other motor-related areas of the cortex and the brainsteam“°.

K. GensitasiiibianiEn It is estimated that 15% of FTD

0 2 50 7 190 patients present symptoms of motor

% of known mutations leading to ALS or FTD
100 25 50 75

|

SOD1)K UBQLN2 ‘ vCP of dementia, not counting for the fact that
FUS TDP-43 C90ORF72 CHMP2B  TAU PGRN

o

neuron disease and that around 20% of

ALS patients develop symptoms typical

as many as 50% of ALS patients might

B Pathological inclusions in ALS and FTD

o exhibit some degree of cognitive
impairment*®. The overlap in symptoms

(I/;L/i) T(Bsp;? and pathology is partially explained by

& overlapping genetics. One of the most

common mutations identified in FTD is

sopt” “Fus ups” . , . .
(%) (<1%) (1%) the same intronic repeat expansion in

Figure 3. Overlap of pathology and genetics in the ALS and FTD . i . 2021
(from Ling et al.”). (4) Major causative genes of ALS (red) and FTD C90ORF72 identified n ALS :

(blue) positioned along the spectrum of manifestations of the two types
of degeneration. (B) Break-down of cases presenting inclusions of
different proteins in ALS and FTD.

Moreover, a few rare mutations in other

genes have been known to cause
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symptoms of both ALS and FTD: TARDBP/TDP-43, FUS, UBQLN2, VCP, CHMPZ2B,
SQSTM1, OPTN'4° However, some of the genes involved seem to only cause symptoms for
one of the two diseases, for example SOD1 is only found in ALS cases and MAPT in FTD'449,
The overlap in symptoms and diagnoses and the shared variants in several genes associated
with the two diseases support the notion that ALS and FTD represent different manifestations
of shared molecular causes and that most patients sit on a motor-neuron-disease-dementia
continuum forming a spectrum of ALS-ALS/FTD-FTD*".

5. Molecular mechanisms and cell types underlying ALS pathogenesis

The complex genetics and the involvement of several molecular pathways is partially
the result of incomplete knowledge on the molecular causes of ALS, where degeneration is
highly heterogeneous and caused by different genetic and environmental factors*? triggering
pathophysiology in the complex, multicellular milieu of the aging human brain and spinal cord.
Nonetheless, many groups have demonstrated how several molecular pathways are disrupted
and what cell types might be more susceptible or implicated in these disruptions.
Corroborating these findings in human tissue, recent studies have shown that even though
neuronal death remains the primary pathological feature, pathogenesis is contributed by other
non-neuronal cells, especially astrocytes, microglia and myelinating glia®. In this section, we
will summarise the knowledge accumulated around different molecular pathways involved in
the disease in specific cell types, with a particular focus on studies corroborating findings in
primary patient samples, connections to the genetics of familial disease and mentioning pivotal
studies in murine models that demonstrated how different cell types other than neurons might
play a role in disease initiation, progression and prevention.

The current view on disease mechanisms implicates three main categories of cellular
pathways: protein homeostasis (proteostasis), RNA metabolism and cytoskeletal dynamics.
However, the ubiquitous expression of ALS/FTD implicated genes, their role in different
pathways and the tight interplay of some of these pathways make the mechanisms disrupted
by the disease not exclusive and with broader implications. The complex interplay of
mechanisms and genetics may result in a plethora of molecular and cellular abnormalities:
protein and RNA granules may disrupt both proteostasis through formation of aggregates and
RNA metabolism by sequestering RNA-binding proteins, this in turn may result in and/or be
aggravated by stress of the endoplasmic reticulum (connected to both regulation of translation
and protein folding and production), mitochondrial dysfunctions (highly reliant on quick protein
production and local control of RNA metabolism), and altered nuclear-to-cytoplasmic
trafficking of both RNA and proteins®. Moreover, disruptions of similar mechanisms in different

cell types might result in very different phenotypes. For example, disruption in vesicle
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trafficking associated with several ALS-FTD causative genes, such as C9orf72 and TBK1,
might result in altered neuronal excitability and synaptic function in neurons, whereas in glial
cells it has been shown to lead to microglial activation and impaired immune functions'.
Furthermore, sequential order of dysfunction but also the interplay of these dysfunction in
cellular processes might be both beneficial or detrimental to motor neuron viability. This multi-
layered model implies an arabesque of genetics and cellular biology resulting in multicellular
disruptions in ALS/FTD, where the neurocentric degeneration is accompanied by many other
alterations and re-establishing a neuroprotective environment might be as essential as

supporting neuronal survival to re-cement the integrity of the neuronal motor circuitry.

5.1 Corticospinal and spinal motor neurons

Motor neuron susceptibility was recognised as a key neuropathological characteristic
connected to ALS symptoms since its description by Charcot, with loss of cells in the ventral
horn of the spine and sclerosis of descending tracks in lateral columns*°44, At the beginning
of the 1900s, loss of giant, corticospinal Betz cells in cortices of patients was also recognised*®
and connected to loss of muscle tone®, involving the whole motor circuit in disease pathology.
Accumulation of ubiquitinated proteins was then found in spinal motor neurons®+48, ubiquitin-
positive aggregates that were mostly composed of TDP-43 inclusions®4” in both ALS and
FTD. The primarily neuronal pathology drove researchers to focus on pathways that might be
disrupted in neurons.

Because of the central role of TDP-43 in RNA biology and metabolism?648, many
groups have focused on RNA dysfunctions in neurons. Not only TDP-432?2 but other ALS/FTD-
related genes are RNA-binding proteins and play pivotal roles in RNA metabolism, such as
FUS?*, HNRNPA1%, MATR3%, ATXN2%', TAF15% but also the RNA-related molecular
processes connected to C90rf72?°5, Many of these proteins are found to form cytoplasmic
stress granules, transient low-complexity aggregates composed of RNA and proteins that
arise after phase separation and live as membraneless organelles in cells®*%. These granules
can sequester mRNAs'® preventing normal translation and act as a self-replicating
cytoplasmic sinks'. When pathological, granule formation can also lead to excessive
aggregation of RNA-binding proteins and their depletion from the nucleus accompanied by
impaired nucleocytoplasmic transport®>¢ and loss-of-function of these proteins®’. For TDP-43
specifically, this may result in alterations in its splicing activity®®, dysregulation of alternative
splicing events with emergence of aberrant splicing (e.g. cryptic exons)®®? as well as
impaired transport of neuronal MRNAs along axons® and failed autoregulation®®, some of
these disrupted mechanisms overlap with FUS-dependent aggregation®’. Other disrupted

mechanisms are connected to the hexanucleotide repeat expansion in C9orf72 that can be
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transcribed in both sense and antisense fashion to produce short RNA transcripts that form
RNA foci in neurons?°® resulting in the sequestering of RNA-binding proteins®.

A second obvious sequitur stemming from the identification of highly ubiquitinated
aggregates is the role of proteostasis. Initial studies have shown that SOD1 mutations result
in stress of the endoplasmic reticulum (ER) and accumulation of misfolded proteins in
neurons®. The ubiquitin-proteasome system, the unfolded protein response (UPR),
autophagy and other pathways involved in protein folding and degradation are a large
component of degenerative mechanisms in ALS, especially if we take into account the number
of genes connected to fALS/fFTD that are involved in these pathways: UBQLN2%,
SQSTM1/p62%8, OPTN®®, VCP™®, CHMP2B™, VAPB'?, TBK1?8, FIG4™, GRN™, C9orf722°53,
Moreover, Dipeptide Repeats (DRPs) derived from C9orf72 hexanucleotide RNA foci can form
neuronal aggregates that sequester proteasome subunits compromising neuronal
proteostasis’®. Other organelles associated with dysfunctions of the disease are mitochondria,
mostly through the antioxidant role of SOD1 protein, the oxidative stress found in spinal cord
of patients’® and mutations in CHCHD10, a mitochondrial gene associated with rare familial
cases of ALS"’.

As the largest, asymmetric cells in the human body, with axons that can reach more
than one metre in length, motor neurons are extremely reliant on axonal transport. Four fALS
genes have been connected to defects in cytoskeletal dynamics and axonal transport
(TUBA4A™, DCTN17®, PFN1%° and KIF5A®%) and two have been connected sporadic-
associated variants (NEFH®? and PRPH?®?). Axonal defects also include poor RNA transport
by TDP-43 mentioned above®® but also the involvement of several ALS genes in vesicular
transport (OPTN®®, VAPB®, CHMP2B'", VCP°) and specifically synaptic vesicles, UNC13A%5.
Interestingly, the most consistent diagnostic tool for ALS in both sporadic and familial cases
is electrophysiological studies that identified hyperexcitability in the motor circuit of
patients®® . Moreover, one of the few and most promising biomarkers identified for diagnosis
is neurofilament® and one of the two drugs approved for treatment of ALS, Riluzole, acts by
modulating neuronal firing'®, pointing at axonal biology and synaptic activity as an extremely

important aspect of the disease.

15/180



I B) RNA foci
(C9orf72)

%
v : 0 - *‘l‘f
Motor cortex | Q 1. S %

A)

v Ubiquitinated

] Betz aggregates

S cell Alfered RNA metabolism (TDP43, SOD1, FUS
— (TDP43, FUS, ATXN2) p62)

A 0 Alterations in proteostasis and RNA metabolism

C90rf72/*‘ PROTEASOME

K e

Spinal cord

Degenerating OPTN, sz/ e

corticospinal s N )

tracts TBK1 @ . Cytoskeletal defects
Hyperexcitability

J\ " 13 s OPTN S
S Lo~ UNCI3A =@ #J i TR

#  PRPH
KIF5A | — TUBA4A

[

B E:

> MN Denervated NMJ

/ Nﬁ\(\ - PFN1

[ 3
[
3
Fx

Figure 4 Mechanisms disrupted in neurons by ALS. A) Areas of the nervous system affected by ALS. Upper motor
neurons (Betz cells) in the motor cortex start to be affected with consequent degeneration of corticospinal tracts resulting
in lower motor neurons being affected and losing muscle control through Neuromuscular Junction (NMJ). B) Cellular
mechanisms implicated in the disease. Summarised schematics of some of the molecular mechanisms discussed in
the text. Some of the genes connected to familial forms of the disease are highlighted in their role in biological functions.
Partially reconstructed with the help of Irune Guerra San Juan and adapted from Taylor et al. 20167,

5.2 Astrocytes

Astrocytes are glial cells responsible for modifying the chemical microenvironment of
neurons participating in synaptic function and forming and modulating the blood-brain barrier.
Reactive astrocytes have been described by many studies in both cortices and spinal cords
of ALS patients%, leading to speculation that they might be contributors to ALS/FTD.
Interestingly, one of the first studies dissecting the molecular mechanisms underlying
astrocytes in ALS identified that in patients these cells reduce the expression of astrocyte-
specific glutamate transporter GLT-1 (EEAT2/SCL1A2)°'. This mechanism is connected to the
hyperexcitability phenotypes seen in patients’ motor neurons and thought to be at the base of
failure to remove excessive glutamate at synapse, resulting in neurons overfiring and
glutamate excito-toxicity®2.

In vivo and in vitro studies have confirmed the view that astrocytes play a role in
disease initiation and progression. Astrogliosis and reactive astrocytes have bene identified in

several mouse models of SOD1, TDP43 and C9orf72*3, and selective deletion of mutant
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SOD1%8%R from astrocytic lineage delayed disease onset and slowed down progression in
animal models®. Moreover, knock-out of reactive astrocytes factors in SOD1 mouse models
can also result in delayed disease progression, underscoring the important role of astrocytes
in neuronal support®. In vitro studies that co-cultured astrocytes with motor neurons have
shown that astrocytes isolated from both familial and sporadic patients®*¢ and from mouse
models®”*® decrease human motor neuron survival through soluble factors and change the
electrophysiological properties of the neuronal networks, underscoring the notion that

astrocytes might play an active role in inducing and/or promoting neuronal loss in ALS.

5.3 Oligodendrocytes

Oligodendrocytes and Oligodendrocytes Progenitor Cells (OPCs, a.k.a. NG2 glia) are
responsible for myelinating axons of the Central Nervous System (CNS) and help maintain
strong electrical connectivity in brain and spinal cord circuitries®®. Oligodendrocytes pathology
has been identified in several studies in ALS patients'® and the relevance of this cell type in
the disease is underscored by findings of TDP-43 inclusions in these cells as well'°",

Neurosupportive function of oligodendrocytes in ALS appears to be mediated by
MCT1, a lactate transporter hypothesised to be to metabolically support neurons, shown to be
downregulated in both mouse models and human primary tissue'%?. Moreover, loss of
myelinating cells was observed in SOD1°%* mouse models and, similarly to astrocytes, Cre-
mediated removal of mutant SOD1%3"R in NG2 glial precursors delayed onset of symptoms
and increased survival'®. The involvement of oligodendrocytes in the disease is corroborated
by loss of myelin and myelinating components in both spinal cords and motor cortices of
sporadic ALS patients'®, but also by the identification of MOBP, oligodendrocytes-specific
and basic component of the myelination machinery, as a disease-associated locus and
modifier of disease for both ALS?® and FTD'% risks.

5.4 Microglia

Microglia are the resident immune cells of the CNS and have many functions including
developmental roles, immune surveillance, debris clearance and defence from pathogens. It
is now recognised that spinal cord from ALS patients present high microglial density with
abnormal morphology'%®1%  associated with reactive microglial cells, and microglial activation
being identified in motor cortices as well'"".

Mouse models have provided numerous insights into microglial involvement in the
disease. Microglial activation is believed to be occur even prior to symptoms occurrence in
SOD1 mouse models'®. Moreover, one of the earliest studies focusing on cell type specific
contributions to disease proved that Cre-mediated depletion of SOD1%*"R in myeloid cells

could mediate disease progression, confirming an active role of microglia in ALS
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pathogenesis'®. Many studies have since focused on the role of these cells in SOD1 models
showing that an initial neuroprotective effect transitioned into loss of neurotrophic support and
gain of a toxic state**. These reports have recently been confirmed by single-cell RNA-
sequencing studies (scRNA-seq) that identified reactive microglia in SOD1%%* mouse
model''® and described it as Disease-Associated Microglia (DAM)"%"1_ As with astrocytes, in
vitro co-cultured studies with human motor neurons have shown that mutant SOD1 microglia
are reactive and sufficient to decrease neuronal survival''2,

Intriguingly, many ALS/FTD related genes have been implicated in regulation of
immune function and specifically in microglial biology. FTD-related genes GRN and TREM2
play a major role in immune cells and are connected to control of activation states in
microglia'"". Specifically, TREM2 has been shown to be one of the main regulators of reactive
states in microglia® and GRN deficient mice develop reactive microglia that associate with
TDP43 aggregates'. Not only, recent studies have shown that TREM2, GRN, TBK1 and
C9orf72 are highly expressed in microglia'®. Mouse models of C90rf72 have proven that loss
of function in this gene results in several immune phenotypes'4, many of which are connected
to neuroinflammation'®, as shown also in patients''®, and these changes are a result of
aberrant lysosomal trafficking'”. Given the role of GRN in lysosomal biology'"® and of TBK1
in autophagy and vesicle trafficking specifically in microglia'®, it is interesting to speculate
how these pathways might be differently regulated by ALS/FTD-related genes in immune cells
and neurons. Moreover, the recent knowledge that interferon signalling, regulated by TBK1'"°,
is dysregulated in familial and sporadic ALS patients through COORF72 dysfunction'?° centres
microglia as one of the main players in all kinds of ALS/FTD and not only C9-ALS/FTD.

5.5 Other cells and factors

Many studies have shown that other cell types can be involved and impacted by
disease pathogenesis. Several cells of the peripheral immune system have been identified in
post-mortem samples in brains of ALS patients'® % where they normally would not reside.
These infiltrations of NK cells, peripheral myeloid cells, CD4*and CD8" T cells have also been
seen in mouse models'® and suggest that peripheral immunity might play a role in ALS
disease progression''®. Furthermore, evidence has shown that even cells residing in the
periphery, like macrophages along motor neurons axons and at the neuromuscular junction
(NMJ), can be affected by ALS and modulate disease progression'™'. Moreover, other groups
have also suggested that blood-brain-barrier and endothelial cells are dysfunctional in mouse
ALS models'®'22_ This might explain, not only the infiltration of peripheral cells mentioned
above, but also the increasing relevance recently demonstrated for environmental factors and

microbiota as disease modifiers'’®.
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Figure 5 Pathophysiological interactions of glial cells and neurons in Amyotrophic Lateral Sclerosis. Neuronal
dysfunctions described have been shown to be associated with activation states of glial cells. Phenotypes associated with
ALS in glial cells entail loss of supportive roles for neurons: loss of neurotrophic support in microglia and astrocytes (top
left), loss of proper differentiation abilities of OPCs/NG2 cells (right), loss of myelination properties and metabolic support
in oligodendrocytes (right). But also, the acquisition of toxic functions: acquisition of activation states in astrocytes and
microglia that release neurotoxic factors (middle), reactive crosstalk between astrocytes and microglia (middle), impaired
lysosomal trafficking in microglia resulting in pro-inflammatory response (bottom left). Partially adapted from Taylor et al.
2016 and Vahsen et al. 202142,

6. Understanding ALS: transcriptomic analyses of post-mortem tissue

Although we have accumulated immense knowledge around mechanisms of
neurodegeneration in ALS, it remains unclear why and how certain subtypes of motor neurons
might be more susceptible to the disease. Moreover, the heterogeneity in aetiology still casts
many doubts on how sporadic cases might occur and also the complexity of genetics, partly
highly penetrable partly driven by several disease modifiers, adds questions on what pathways
and molecular mechanisms are more relevant or first to be disrupted in the disease. In

addition, many of the pathways identified are disrupted in very unique, specific cell type whose
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nuances in diversity and functions are even now not fully understood, especially if we take into
account that many of these pathways are ubiquitously present in brain cells and might be
either disruptive or beneficial in different cell types. Fundamentally, the field is lacking a way
to connect the dots in between primary disease seen in patients, known genetic causes and
insights from laboratory research that would allow the potential selection of a few molecular
culprits that could be targeted for disease-modifying therapies, biomarkers discovery and,
eventually, a cure.

In order to supersede the lack of knowledge on what is happening in the CNS of
patients, a few groups have undertaken sequencing studies on primary samples to try to start
drawing a line in between the dots that are scattered in the field. Most of the initial studies
relied on bulk-RNA sequencing of either cortices or spinal cords from ALS-patients and
controls. A few studies analysed cortices from ALS patients and age-matched controls?3-12°,
They all identified proteostatic stress and UPR as upregulated in cortices of patients, in
connection to oxidative stress and mitochondrial dysfunction and the dysregulation of RNA
control'?® and alternative splicing’?® connected to TDP-43, thus unbiasedly confirming some
of the pathways discerned from genetics and mouse models. Interestingly, Prudencio et al.
found changes in synaptic biology and inflammation to be particularly prominent in ALS
patients'?® and Tam et al. corroborated upregulation of inflammation and reactive glial biology
in a subset of patients'?, underscoring both the heterogeneity of ALS and the involvement of
different cell types in neurodegenerative manifestation. A few more groups undertook similar
approaches on samples from spinal cords of ALS patients'?¢-'28 confirming the role of splicing
defects and inflammation in disease pathogenesis. In particular, D’Erchia and colleagues
confirmed alterations in synaptic molecules in spinal cords from ALS patients and highlighted
the point that different cell types might be contributing to the changes in transcriptomic
signatures identified mostly motor neurons, oligodendrocytes and microglia®, once again
confirming the multicellular component of ALS.

These studies contributed immensely to the field by confirming many of the known
disrupted pathways in an unbiased way using primary samples. However, they also
accentuated the need to look at cell type specific changes that were not possible to discern
using bulk RNA-sequencing technology. As of today, only one study has reported single
nucleus RNA-sequencing analysis of cortices from FTD patients and strongly underlined that
different, very rare cell types might be contributors of the disease'?°. On top of that, the strong
signature identified in TDP-43-dependent RNA regulation underscored that even though
mouse studies have elucidated many insights into neurodegeneration, human specific models
need to be implemented in order to fully understand specific alterations created by TDP-43
dysfunction in the context of human pathology. Not to mention that control of the corticospinal

motor circuit, the main player in ALS, is evolutionarily quite divergent in human and mice,
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where in the murine CNS corticospinal motor neurons descend tracts through the spinal cord
and contact spinal interneurons that then relay inputs to spinal motor neurons, whereas
primates show direct monosynaptic connections between the motor neurons of the cortex and
of the spinal cord™. These differences are also connected to notable divergence in
neuromuscular junction morphology in the two species, rendering the whole motor system
architecture quite different between the two species'®'. Even though mouse models of fALS
have generated important contributions to the understanding of the disease, we need to
remember that 90% of cases are sporadic in origin and that findings in these models might

not fully translate into human biology 2.

7. Modelling ALS: human Pluripotent Stem Cells as in vitro models

One solution to bridge the gap between Mus and Homo is coupling scalable human in
vitro models with the prominent advent of disease modelling through pluripotent stem cell
(PSC) technologies'33. At almost 25 years since their isolation'®*, human pluripotent stem cells
have proven to be one of the most versatile tools in the hands of molecular and cellular
biologists allowing the construction of physiologically relevant models of human cell types that
would otherwise be inaccessible, such as tissue of the nervous system'®. Specifically, the
discovery of induced PSC (iPSCs) proved pivotal for the development of models that could be
obtained directly from patients through reprogramming of somatic cells, maintaining their
genetic make-up and offer insights into disease specific mechanisms'*.

hiPSC are directed towards a neuronal fate first by removing conditions that support
maintenance of pluripotency and “stemness”'*°. Secondly, neuralization process is usually
aided by inhibition of TGFb and BMPs pathways, so-called “dual-Smad inhibition”'3¢, which is
often coupled with developmental cues that support diversification into specific subtypes of
progenitor cells and then of diverse neuronal and glial subtypes'®>'37. Other methods couple
hiPSC-technology with genetic manipulations that allow the overexpression of transcription
factors that can generate specific cell types'” 38 Generating the plethora of diverse cell types
of the brain is extremely important in understanding the disruptions that are triggered in
different cell types in ALS (described in previous chapters).

Several studies have implemented these methods to model ALS in vitro using human
cells and discovered quintessential disease-related phenotypes especially for familial ALS
cases'?. Because hiPSCs more easily and spontaneously differentiate into neurons%, most
studies have focused on ALS-related disruptions in cells harbouring specific mutations and
comparing them to non-diseased counterparts. Notably, many groups have confirmed
generation of RNA foci and dipeptide repeats in neurons generated from C9orf72 hiPSCs'3%

41 and reported their reduced firing capacity, impaired vesicle trafficking and synaptic
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function®-139141.142 " Others have shown reduced survival and axonal branching in SOD1-
neurons™3 and similar dysregulations in axonal and neurofilament dynamics in TDP-43
mutated cells®® and coupled hiPSC technologies with CRISPR/cas9 genetic manipulations to
further dissect TDP-43-related RNA dynamics in neurons®,

Even though these studies have shed lights on molecular phenotypes disrupted by
specific mutations they fail to explain how these mechanisms might convergent in similar
mechanisms and how these might be affected in sporadic cases. That is why subsequent
reports have focused on running parallel comparisons between cells derived from hiPSC
harbouring different mutations uncovering shared hyperexcitability phenotypes between
SOD1, TDP-43 and C9orf72 mutants'* and shared mitochondrial and oxidative stress
dynamics'?'%_And even compared neurons derived from one of the biggest collections of
ALS-hiPSCs biobank from both familial and sporadic cases and identified multiple cellular
phenotypes demonstrating great variability across genotypes and in vitro phenotypes'“. More
recently, our group and others have started to couple hiPSCs with novel genetic manipulation
technologies like CRIPSR-cas9 to understand basic function of ALS-related genes and further
underlined the involvement of cytoskeletal®®%° and synaptic biology®'2.

However, as per mouse models, modelling of sporadic ALS is only at its beginnings
and still is not standardised to levels that might allow reproducible findings to translate into the
clinic. Moreover, most of the studies in the field have focused on the modelling of neuronal
cells'%" but, as described in previous chapters of this work, the interplay of several brain cell
types has a maijor role in ALS pathogenesis. Only a few studies have started dissecting the
multicellular interplay in ALS and mostly focused on astrocytes. Only two peer-reviewed
studies have as of today reported that astrocytes with TDP-43#¢ and C90rf72'*° manipulations
show alterations in various aspects of neuronal support altering electrophysiological properties
of MNs in co-cultures.

A lot more needs to be done to build human in vitro systems where complex ALS
alterations can be studied. First of all, dissecting changes in cell types other than neurons. But
also, how these different cell types interactions might change in a disease context. Not to
mention the fact that ALS manifests in mid-to-late life and that hiPSC-modelling is based on
phenotypes grown in vitro for weeks and other manipulations might be necessary to trigger
phenotypes seen in patients™’. Therefore, the complexity of multi-cellular interactions must
be achieved in vitro, in a reproducible manner and in scalable systems that might allow
differentiation of hiPSCs from big cohort of patients and controls in order to understand the

complexity of human pathogenesis in sporadic ALS.
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Scope of this thesis

Tackling ALS: a multidisciplinary approach

Despite the gargantuan strives into developing more over-growing knowledge on the
disease, we still cannot match the ongoing efforts that are put into developing a cure.
Fundamental obstacles remain in the field of ALS in order to mechanistically understand
disease causation and progression in the aim to finally nominate pathways for successful drug
targeting and discovery.

With this piece of work, we would like to provide some answers to some of these main
barriers. In chapter 3, we widen our understanding of which molecular pathways are disrupted
in disease-relevant primary tissues at a single cell level through the analysis of single-nuclei
RNA sequencing dataset of ALS patients and age-matched, unaffected individuals. Our study
shed a light on the intrinsically higher expression of ALS/FTD genetic causes in upper MNs
that is accompanied by selective vulnerability of several subsets of cortical motor neurons. In
this work, we use hiPSC-derived in vitro system to model some of the molecular changes
identifie din primary samples. These changes are found in concomitance with alterations in
myelinating cells and microglia that widen our knowledge of cell-to-cell interactions in ALS.

In chapter 4, we would like to then offer a wider view on how to expand and build better
models of human brain cells in a dish with the hope it will encompass protocols useful for
modelling complex cell-to-cell interactions in ALS.

In chapter 5, we go on to provide a new, human in vitro systems for the study of motor
neuron biology that is highly reproducible and scalable for high-throughput studies using
human induced Pluripotent Stem Cells. This new method, that allows the assessment of
multiple cell lines in the same dish, could provide insights into heterogeneity seen in patients
in a human specific context and amplify our knowledge mechanisms disrupted in sporadic
disease. This study is followed by chapter 6, where we used some of the models built in
chapter 5 and to further dissect molecular mechanisms disrupted in disease.

Finally, in our conclusion, we will undertake a discussion onto the future of the field and
hopefully the opening to a more holistic approach to the understanding of ALS, where multi-
disciplinary techniques and the use of different models might expand our perspectives on the

disease.
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Chapter 2:

Single-nucleus sequencing reveals enriched expression of
genetic risk factors in Extratelencephalic Neurons sensitive to

degeneration in ALS

In this chapter we describe findings from RNA sequencing analysis and molecular
characterization of motor cortices from sporadic ALS patients and age matched controls in an
effort to expand our knowledge on disease pathogenesis at a single-nucleus levels and

different cell type resolution.
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Graphical abstract and working model. Our study highlights cell type specific changes in premotor/motor cortex of
sporadic ALS patients. Specifically, we identify upregulation of synaptic molecules in excitatory neurons of upper cortical
layers, interestingly correlating to hyperexcitability phenotypes seen in patients. Moreover, excitatory neurons of the
deeper layers of the cortex, that project to the spinal cord and are most affected by the disease, show higher levels of
cellular stresses than other neuronal types. Correspondently, oligodendrocytes transition from a highly myelinating state
to a more neuronally engaged state, probably to counteract stressed phenotypes seen in excitatory neurons. At the same
time, microglia show a reactive state with specific upregulation of endolysosomal pathways.

This work is under consideration at Nature Aging.
Earlier  versions of  this chapter can be found at bioRxiv
https://doi.org/10.1101/2021.07.12.452054
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Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disorder
characterised by a progressive loss of motor function. The eponymous spinal sclerosis
observed at autopsy is the result of the degeneration of extratelencephalic neurons,
Betz cells (ETNs, Cortico-Spinal Motor Neuron). It remains unclear why this neuronal
subtype is selectively affected. To understand the unique molecular properties that
sensitise these cells to ALS, we performed RNA sequencing of 79,169 single nuclei
from cortices of patients and controls. In unaffected individuals, we found that
expression of ALS risk genes was significantly enriched in THY7*-ETNs and not in other
cell types. In patients, these genetic risk factors, as well as genes involved in protein
homeostasis and stress responses, were significantly induced in a wide collection of
ETNs, but not in neurons with more superficial identities. Examination of
oligodendroglial and microglial nuclei revealed patient-specific changes that were at
least in part a response to alterations in neurons: downregulation of myelinating genes
in oligodendrocytes and upregulation of a reactive state connected to dysfunctional
endo-lysosomal pathways. Our findings suggest that the selective vulnerability of
extratelencephalic neurons is partly connected to their intrinsic molecular properties

sensitising them to genetic and mechanistic mechanisms of degeneration.

Amyotrophic Lateral Sclerosis (ALS) is a neuromuscular disease with survival typically
limited to 2-5 years from onset, the most common motor neuron disease in aging individuals
and the neurodegenerative disease with one of the earliest onsets in the mid-to-late 50s".
Although specific genetic causes have been identified, most cases are sporadic (~90%), have

no family history and unknown etiology?, rendering modelling of non-genetic forms of the
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disease difficult®. Variants in genes associated with ALS can contribute to a related disorder,
Frontotemporal Dementia (FTD), leading to the view of ALS and FTD as different clinical
manifestations of shared molecular causes. Bulk RNA-sequencing of ALS post-mortem brains
have identified differences*® and similarities between sporadic and familial® cases and
highlighted shared profiles independent of disease onset’?. While they have provided valuable
insight, these studies have had limited resolution on the cell-type specificity of the disease.
The most striking feature in ALS/FTD is the formation of protein aggregates of TAR
DNA-binding protein-43 (TDP-43) in over 95% of cases of ALS and ~50% of FTD cases,
mostly in neurons®, providing at least one shared mechanism. While the pattern of
degeneration is similar, it is still unknown how familial mutations and sporadic onset might

converge on the formation of these aggregates and how it specifically affects classes of

10,11 12,13

extratelencephalic Cortico-Spinal Motor Neurons, i.e. Betz and von Economo cells

Moreover, strong evidence demonstrated that cells other than neurons are key mediators of
disease progression and it remains unclear how these might contribute to the disease'*"".
Methods to study heterogeneity at a single-cell level have rapidly advanced and their
application to human post-mortem brain tissue is beginning to emerge, especially for
neurodegenerative diseases'®?’. However, a comprehensive view of the changes across cell
types in ALS has not been performed. In this study, we applied single-nuclei RNA sequencing
and in vitro human induced Pluripotent Stem Cells modelling to investigate specific changes
in cortical cell types in sporadic ALS. Our profiling identified the intrinsically higher expression
of ALS/FTD risk factors in specific classes of extratelencephalic excitatory neurons. In ALS
patients, these neurons selectively express higher levels of genes connected to unfolded
protein responses and RNA metabolism. We also found that, excitatory neurons vulnerability
is accompanied by a decrease in myelination-related transcripts in oligodendroglial cells and
un upregulation of reactive, pro-inflammatory state in microglial cells connected to
senescence. We provide a preliminary, insightful view of disruptions triggered in human motor
cortices in ALS and implicate aging-associated mechanisms like altered proteostasis,

inflammation and senescence to specific cell type in the disease.

Results

Profiling of ALS cortex by single-nucleus RNA-sequencing

To better understand factors that contribute to the specific degeneration of classes of
excitatory neurons, we used snRNAseq to profile motor/pre-motor cortex grey matter from
sporadic (SALS) patients and age-matched controls with no neurological disease using Drop-
seq technology?® (Fig. 1a, Extended Data Table 1, Extended Data Fig. 1a-c). After screening
for RNA quality, 79,169 barcoded droplets from 8 individuals were analysed (n=5 sALS, n=3

Control), with a mean of 1269 genes and 2026 unique molecular identifiers (UMIs) (Extended

35/180



36

Data Fig. 1d). We used Seurat®, single-cell analysis package, to cluster and annotate groups
according to canonical markers of brain cell types®: excitatory and inhibitory neurons,
oligodendrocytes, oligodendrocyte progenitor cells (OPCs), microglia, astrocytes, and
endothelial cells (Extended Data Figure 1e,f). The observed cell type distribution
corresponded to previous studies®' and enabled robust categorization for downstream
analysis. Cellular distribution was homogeneous between sexes and individuals, except for a

modestly lower number of astrocytes in ALS samples (Extended Data Fig. 1g-i).

sporadic age-matched Drop seq Broad cell-type7gn1né>gar:ionl : Expression z-score for each list of genetic
ALS patients Controls = § QC and o ) ’ ucle ALS risk-factors risk factors per cell in SALS and Control
Nudlei filtering o B R 2 Exc ——— |
4 . "
Primotor/motor isolation Oligo AD risk-factors 4 a -
cortex n=3 Controls ’
> # l\i\ Astro )
4 4 'W /w\\\ I\EA?gr?) M, Identify cell types possibly more affected
Library preparation n=5 SALS by ALS genetic risk factors
b ALS-FTD risk factors expression score in the cortex € AD risk factors expression score in the cortex d MS risk factors expression score in the cortex
0.4
03
g 0 2
§ U 1
N g é¢)¢¢94§) é % 0.0 éé{%é‘> é
g 0.
B WALS HCY <<,“’ O\\ %\* .!n -'ALSI Q/J' O\\B V($ <\ W'" ™ mALS HCvl Q/J' O\\ \
€ ALS-FTD risk factors expression score in the cortex f AD risk factors expression score in the cortex @ MS risk factors expression score in the cortex
#
04 . 02
o 02 o 01
H H
. % o0 1 % oo
e T ls &

B mALS MCH L& EE O mALS ECy B mALS MC

Figure 1 Cellular susceptibility to ALS-FTD in the human cortex. a, Diagram of workflow for isolation of nuclei from cortices
of ALS patients and age-matched controls followed by single-nucleus RNA sequencing and assessment of expression of gene
modules associated with neurodegenerative diseases. b-d, t-SNE projections and Violin plots of z-scores for expression of genes
associated with the ALS-FTD (b), AD (c) and MS (d) in the different cell types identified (bars denote median for each side of the
violin — symbols: average score per individual). e-g, t-SNE projections and Violin plots of z-scores for expression of genes
associated with the ALS-FTD (e), AD (f) and MS (g) in the different subtypes of excitatory neurons (bars denote median for each
side of the violin — symbols: average score per individual).

Elevated expression of ALS/FTD risk genes in a specific class of excitatory
neurons

To potentially identify cell types underlying ALS pathophysiology, we examined the
expression of known familial genes for ALS/FTD and variants identified as risk factors from
genome-wide association studies (GWAS). These genes were expressed to a highly variable
degree between cell types many of them were ubiquitously expressed as already known in
the field? (Extended Data Fig. 2a). We then computed a “module score” for this set of genes®
this metric generates a standardised z-score for the expression of each gene and sums it up
as a total score for the gene set, here a positive score suggests higher expression of this gene
set compared to the average expression of the module across the dataset. We also computed
parallel module scores for lists compiled from latest GWAS for neurological disorders that
affect the cortex but not specifically Betz cells: AD**** and MS* (Fig. 1a, Extended Data Table
2). No clear preferential expression for ALS/FTD gene list was identified (Fig. 1b), as it might
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have been anticipated by the scattered and ubiquitous pattern of expression. On the other
hand, AD and MS modules showed enrichment for their respective lists in microglia, as
expected based on the strong immune signatures of that characterise these diseases and the

3337 and shown by other reports® (Fig.

involvement of immune cells in neurodegeneration
1c,d). These results confirm knowledge in the field, underlying the strength of this analysis,
and confirm our results in an unbiased, single-cell resolution.

Considering the selective loss of excitatory neurons in ALS, we further analysed these
cells. We found 32,810 nuclei from excitatory neurons with unbiased clustering identifying
seven subgroups (Exc0-6) that expressed known markers of different cortical layers, equally
distributed in our cohort (Extended Data Fig. 2b-f). Analysis of the ALS/FTD module in these
cells showed a positive score in THY1-expressing subgroup Exc1 (Normalised Enrichment
Score=1.834) (Fig. 1e, Extended Data Fig. 2g,h) and no significant enrichment for AD and MS
modules (Fig. 1f,g). We decided to further dissect the identity of these cells and investigate if
they could be ETNs (group containing Betz cells).

We identified three subgroups expressing markers of subcerebral projection neurons:
Exc1, Exc5 and Exc6 (Fig 2a). Exc5 and Exc6 expressed canonical markers FEZF2, BCL11B
and CRYM?®®; Exc1 expressed THY1, enriched in human layer V'® and used as a reporter for
CSMNs*, and high levels of neurofilament chains, markers of ET neurons in vivo*® (Fig. 2b).
Recent reports dissected the transcriptomic identity of layer V extratelencephalic neurons in
the human Motor Cortex*'. We detected expression of their markers in these groups with Exc1
expressing SERPINE2 and POU3F1, specific of ETNs*', and NEFH and STMN2, broad
markers of MN**2 (Fig 2c). Because of the anatomical location of our samples and the
presence of ETNs across motor-related areas*’, we plotted markers specific to layer V
neurons of regions adjacent to the Motor Cortex like von Economo cells*, affected in FTD*,
and other Long-Range Subcerebral Projecting Neurons (LR-SCPNs)* and confirmed that all
three groups expressed these markers (Fig. 2d,e). To further characterised the spatial
expression of these markers we leveraged a publicly available single-cell, spatial dataset of
the human dorsal cortex*’. We confirmed that markers of layer V neurons, such as THY7,
STMNZ2 and SNCG, are expressed in Exc1 (Fig. 2f) and that these markers are also expressed
in layer V (L5) of the spatial dataset (Fig. 2g,h and Extended Data Fig. 3a,b). This evidence
suggests that Exc1, Exc5 and Exc6 express markers of extratelencephalic neurons of cortical
areas affected by ALS/FTD.

To further confirm that THY1""-neurons expressed higher levels of ALS/FTD genes,
we ran module score analysis in two datasets that identified THY1"" cortical neurons'®#8, In
these studies, THY1-neurons expressed ETNs markers, layer V, von Economo and LR-
SCPNs markers (Extended Data Fig. 3c-i) and, expressed higher levels of the ALS/FTD

module score (Extended Data Fig. 3I-m). Analysis of the spatial transcriptomic dataset*’,
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confirmed that the top 10 ALS/FTD-associated genes most high expressed in Exc1 (Extended

Data Fig. 2g) are highly expressed in deeper layers of the cortex, specifically in layer V (Fig.

13,49

2i,j and Extended Data Fig. 3n). Studies in human'“° and mouse®® showed that deep layer

neurons have a higher propensity to form TDP-43 aggregates, hallmark of ALS/FTD. Here we

provide a possible link to their specific vulnerability.
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Figure 2 ALS-FTD susceptible neurons are L5-ET Neurons. a, t-SNE projection of presumptive layer V neurons. b, Dotplot
representing expression of Layer V markers ¢, Dotplot for markers of LVb Extratelencephalic neurons of human Motor Cortex. d,
Dotplot representing expression of von Economo markers. e, Dotplot representing expression LR-SCPN markers. f,
Representative Violin for markers of layer V Extratelencephalic neurons of human Motor Cortex. g, Visual depiction of layers
identification by Maynard et al. 2021 (publically available). h, Spotplot depicting expression of layer Vb Motor Cortex marker,
STMNZ2, identified as enriched in THY1-Exc1, with corresponding boxplot quantification. i-j, Boxplots and corresponding spotplots
for the expression of top 5 ALS/FTD associated genes expressed in Exc1.

Cellular burden on excitatory neurons is higher in deeper layers

We next examined how the enriched expression of ALS/FTD genes relates to changes
that occur in excitatory neurons in response to ALS. We conducted differential gene
expression (DGE) analysis between neurons from patients and controls, across all excitatory

cells and within each subgroup (Fig. 3a). We then selected genes significantly upregulated in
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patients globally (DGEall) and within each subgroup (DGEO0-6), calculated module-scores for
each set and investigated whether certain neuronal subtypes might have similar responses to
ALS (Extended Data Table 3). This analysis showed a correlation between scores in groups
expressing deep layer markers and the global changes identified in patients (Fig. 3b),
suggesting that pathology in lower cortical layers are driving the observed alterations. For
instance, groups expressing ETNs markers (Exc1, Exc5, Exc6) shared many upregulated
genes with each other and with the global signature (Fig. 3c), whereas genes upregulated in
upper layers of the cortex, a region relatively spared of pathology, shared less similarities (Fig.
3d). Intriguingly, this class of genes is, like genetic risk factors, constitutively expressed at
higher levels in Exc1-ETNs (Fig. 3b), advocating for a proposed interplay between genetics
and molecular pathways that sensitises ETNs to ALS®'.
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Figure 3 ALS excitatory neurons present increased expression of stress-related pathways. a, Schematic of Differential
Gene Expression Analysis. b, Dotplot representing scores for genes upregulated in each subgroup of Exc neurons (DGEO0-6) and
globally upregulated in all Exc (DGEall). ¢, Comparison of genes globally upregulated in ALS (DGEall) with genes upregulated in
classes of L5-ETNs (genes expressed by >10% of cells, >2-FC, adjusted p-value<0.05). d, Violin plots of z-scores for genes
globally upregulated in all excitatory cells (DGEall) in all excitatory neurons (geometric boxplots represent median and
interquantile ranges — symbols: average score per individual). e, Violin plots of z-scores for genes upregulated in classes of L5-
ETNs (DGE1, DGES5, DGES) in the three groups (geometric boxplots represent median and interquantile ranges — symbols:
average score per individual). f, Gene Ontology analysis for genes upregulated in L5-ETNs classes (DGE1,5,6), highlighted terms
are shared between the three (CC=Cellular Components). g-h, Western Blot quantification of ubiquitin accumulation and 20S
proteasome subunit from Motor Cortices of ALS patients and age-matched controls.

Subsequent Gene Ontology (GO) analysis showed that DEGs in CUX2-cells were
associated with synaptic biology (Extended Data Figure 4a,b), which could be due to changes
in synaptic activity of degenerating neurons in deeper cortical layers. In contrast, DEGs
identified in classes of ETNs were connected to cellular stresses previously associated with
ALS™2, even from studies with thousands of patients® (Fig. 3e). Interactome analysis
confirmed the coordinated alterations in the expression of genes that function in translational
machinery, mitochondria, protein folding, and degradation pathways connected to the
proteasome and proteostasis and many were shared with transcriptional changes identified in
patients’ excitatory cells as a whole (Extended Data Fig.4c,d-5). Interestingly, these pathways
were specifically upregulated in neurons of deeper cortical layers rather than upper layer
(Extended Data Fig. 4e,f). Comparison with other studies underlined similarities of these
pathways with genes upregulated in excitatory neurons from MS patients'® but not neurons
from AD patients?® (Extended Data Fig. 4g,h), suggesting that similar processes might be at
the base of neurodegeneration but these changes are not universal.

Presently, in vitro modelling of sporadic ALS requires high numbers of lines and high-

throughput methods and needs further standardization®-%°

, we therefore decide to implement
a system that would allow to probe disruptions of proteostasis in human neurons and test if
any of these changes parallel any of the disruptions seen in ALS patients and interpret what
proportion of the complex transcriptomic signature may be associated with proteostatic stress
specifically in neuronal cells. In order to do so, we implemented transient proteasome inhibition
as a model to induce TDP-43 nuclear loss as seen in patients’ Betz cells*®, phase separation®®,
stress granules®” and other ALS-related dysfunction in human neurons®*°® (Extended Data Fig.
6a). To recapitulate proteostatic stress we applied a proteasome inhibitor to human Pluripotent
Stem Cells (hPSC)-derived neurons®®®® and induced nuclear loss of TDP-43 (Extended Data
Fig. 6b,c). Bulk RNA-sequencing analysis showed widespread changes after treatment, with
a significant overlap of upregulated genes between stressed hPSC-neurons and sALS-
neurons, specifically proteasome subunits and heat-shock response-associated chaperonins
and GO analysis of shared genes confirmed the upregulation of proteasomal and chaperone
complexes (Extended Data Fig. 6d-g). Moreover, genes upregulated in both conditions show

a significant overlap with transcripts misregulated after downregulation of TDP-43 in neurons®®
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(Extended Data Fig. 6h). This confirms that some changes identified in SALS neurons are
connected to neuronally intrinsic proteostatic alternations and at least in part connected to
alterations in TDP-43.

To confirm hindered proteostasis in ALS cortex, we selected a second cohort of SALS
patients and controls. We extracted protein, confirmed increased insoluble TDP-43 in patients
(Extended Data Fig. 6i-j) and showed that, despite the presence of core proteosomal subunits,
pathology is accompanied by the accumulation of highly ubiquitinated proteins, hallmark of
impaired proteostasis (Fig. 3f,g). These findings suggest that proteasome inhibition
orchestrate alterations like those observed in ETNs from ALS patients, underscoring the

connection between neuronal stress and loss of proteostatic homeostasis.

Oligodendroglial cells respond to neuronal stress with a neuronally-engaged
state

To reach deep into the cord ETNs are dependent on robust axonal integrity®® and
because others detected changes in myelination in ALS motor cortex'® and in FTD frontal
cortex?’, we analysed nuclei from myelinating cells. 19,151 nuclei from oligodendroglia were
clustered in five groups: one of OPCs — Oliglia3, and four of oligodendrocytes — Oliglia0,1,2,4
(Fig. 4a-c, Extended Data Fig. 7a-b). We noted a significant depletion of ALS-nuclei in Oliglia0
whereas Oliglia1l and Oliglia4 were enriched in patients (Fig. 4d). GO analysis for genes
enriched in each group revealed that Control-enriched Oliglia0 was characterised by terms
connected to oligodendrocyte development and myelination and expressed higher levels of
myelinating genes, e.g. CNP, OPALIN, MAG (Fig. 4e, Extended Data Fig. 7c-e). Conversely,
ALS-enriched Oliglia1 showed terms for neurite morphogenesis, synaptic organization and
higher expression of postsynaptic genes DLG1, DLG2, GRIDZ2 (Fig. 4f, Extended Data Fig. 7f-
h). Intriguingly, expression of neuronal RNAs has been specifically found in classes of
oligodendrocytes in primate motor cortex*'.

Global differential gene expression analysis supports a shift from a myelinating to a
neuronally-engaged state with upregulation of genes involved in synapse modulation and
decrease of master-regulators of myelination, as confirmed by GO analysis (Fig. 4g-i,
Extended Data Fig. 7j,k). Loss of myelination is exemplified by the expression of G-protein
coupled receptors (GPRCs) that mark developmental milestones: GPR56, expressed in
OPCs®', and GPR37, expressed in myelinating cells®?, were lowly expressed in ALS-enriched
subgroups and globally downregulated (Extended Data Fig. 7i). Impaired myelination is
consistent with previous studies identifying demyelination in SALS patients™®.

To further explore these changes, we compared them with published reports that
identified shifts in oligodendrocytes (Extended Data Table 4)'°. Comparison of Jékel et al."

with our study revealed that Control-enriched Oliglia0 most closely resembled highly
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myelinating, OPALIN* cells from Jakel (Extended Data Fig. 8a,b), while ALS-enriched Oliglia1
and Oliglia4 aligned to not-actively myelinating Jakel1 (Extended Data Fig. 8c,d), with many
shared genes (Extended Data Fig. 8e-h). To confirm this shift, we ran validations on protein
extracts from patients and controls and showed that oligodendrocyte-specific, myelin-
associated proteins CNP and MBP are downregulated in motor cortices from patients (Fig. 4j-
k). The data so far shows how activation of stress pathways in deep layer neurons is
accompanied by a shift in oligodendrocytes from active myelination to oligo-to-neuron contact
(Extended Data Fig. 8i).
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Figure 4 In ALS, oligodendroglial cells decrease their myelinating machinery in favour of a neuro-engaged state. a, t-
SNE projection of OPCs and oligodendrocytes markers. b, t-SNE projection of oligodendroglia (ALS n=8,372 nuclei, Control
n=11,168 nuclei). ¢, t-SNE projection of subclusters within oligodendroglia. d, Distribution of subclusters by diagnosis. e, Gene
Ontology analysis for genes characteristic of Control-enriched oliglia0, highlighted terms involved in myelination (CC=Cellular
Components). f, Gene Ontology analysis for genes characteristic of ALS-enriched oliglia1, highlighted terms involved in neuro-
engaged functions. g, Violin plots of representative genes for neuro-supportive functions (left) and myelination (right) (geometric
boxplots for median and interquantile ranges — symbols: log2(AverageExpression) per individual) (fraction of cell expressing). h,
Volcano plot of differentially expressed genes in oligodendroglia. Highlighted genes identified in GO terms related to myelination
(orange) and neuro-engaged functions (green). i, Violin plots representing z-score for selected GO terms and related t-SNE
projection (median and interquantile ranges — symbols: average score per individual). j-k, Western Blot quantification of CNPase
and MBP from Motor Cortices of ALS patients and age-matched controls. I. Diagram illustrates shift of oligodendrocytes states.
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Microglial activation is characterised by an ALS-specific endo-lysosomal
response

Mouse models®®, patient samples® and function of ALS-related genes in myeloid cells®*
% have demonstrated the importance of microglia as modifiers of disease so we interrogated
changes in this cell type. In the 1,452 nuclei from microglia (Fig. 5a, Extended Data Fig. 9a),
we identified 159 genes upregulated in patients and, remarkably, many were associated with
endocytosis and exocytosis, previously implicated in ALS®%%® (Fig. 5b). Several of these genes
were also associated with microglial activation (CTSD) and neurodegenerative disorders
(APOE) (Fig. 5c,d). Interestingly, genes associated with AL/FTD were upregulated: TREM2,
OPTN, SQSTM1/p62, GRN (Fig. 5e). GO analysis for upregulated genes confirmed a pro-
inflammatory state highlighting activation of endo-lysosomal pathways, secretion and immune
cell degranulation previously associated with myeloid cells in ALS®*®® (Fig. 5f,g). Further
subclustering identified three groups: homeostatic Micro0, “Disease Associated Microglia™-like
Micro1, and cycling Micro2 (Extended Data Fig. 9b,c). Notably, genes that characterised
Micro1 were also upregulated in sALS (Extended Data Fig. 9d,e), in conjunction with a
downregulation of homeostatic genes and upregulation of reactive pathways (Extended Data
Fig. 9f-i).

To identify modulators of this signature, we used the Connectivity Map (CMap)
pipeline®’, which contains gene expression data of 9 human cell lines treated with thousands
of perturbations allowing association between a given transcriptomic signature and a specific
alteration. This analysis revealed that genes dysregulated in microglia positively correlated
with regulators of cell cycle and senescence, KLF6 and CDKN1A/p21, suggesting an
exhaustion of microglial proliferation. On the other hand, we found a negative correlation with
a type I-interferon-associated responses (IFNB1), which is targeted in treatments for
neurological diseases to reduce inflammation®” (Extended Data Fig. 10a). Given the stress
signature identified in neurons, we wondered whether these transcriptomic changes might be
driven by neuronal apoptosis. We differentiated microglia-like cells (iMGLs)® and neurons
(piNs)*® from hPSCs, triggered neuronal apoptosis and then introduced apoptotic neurons to
iMGLs in vitro (Extended Data Fig. 10b-c). Quantitative assessment of selected transcripts by
RT-gPCR confirmed that dead neurons lead to significant downregulation of homeostatic
genes (Extended Data Fig. 10d), upregulation of genes involved in the endo-lysosomal
trafficking (specifically CTSD, ITGAX, LGALS3, SQSTM1/p62) and downregulation of markers
of actively cycling cells (Extended Data Fig. 10e-f), suggesting that changes identified in
microglia from patients are, at least in part, a response to neuronal apoptosis.

We next asked if these changes were a general response to neuronal disease or
restricted to ALS. By comparing our results with published snRNA-seq studies in AD?*° and
MS®®, we identified dysregulation of lipid metabolism (APOE, APOC1, SPP1) as a common
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feature in microglia, and genes associated with DAMs were shared between ALS and MS
(CTSD, GPNMB, CPM, LPL) and ALS and AD (e.g. TREM2) (Fig. 5h). Genes specifically
upregulated in ALS were related to vesicle trafficking, myeloid cell degranulation and the
lysosome (e.g., SQSTM1/p62, LGALS3, GRN, ASAH1, LRRK?2). This evidence suggests the
induction of a shared microglial reactive state in neurodegenerative diseases, yet in ALS

neuronal death activates changes connected to dysfunctional endo-lysosomal pathways.
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Figure 5 Disease-Associated Microglia signature in ALS. a, t-SNE projection of microglia (ALS n=759 nuclei, Control n=693
nuclei). b,c, Volcano plot of genes upregulated in microglia from ALS. Genes identified in GO terms for endocytosis and
exocytosis (b), genes associated to neurodegenerative diseases in (c). d, Violin plots of representative genes upregulated in ALS
patients associated with reactive microglia (geometric boxplots represent median and interquantile ranges — symbols:
log2(AverageExpression) per individual) (fraction of cell expressing). e, Dotplot representing expression of genes associated with
ALS/FTD pathogenesis. f, Violin plots of representative ALS/FTD gene upregulated in ALS (geometric boxplots represent median
and interquantile ranges — symbols: log2(AverageExpression) per individual) (fraction of cell expressing). g, Gene Ontology
analysis for genes upregulated in ALS microglia, highlighted terms involved in myeloid cells biology and/or pathogenesis of ALS.
h, Violin plots representing z-score for selected, statistically significant GO terms from f (geometric boxplots represent median
and interquantile ranges — symbols: average score per individual). i, Comparison of genes upregulated in microglia from ALS

with genes upregulated in microglia in other neurodegenerative diseases.
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Discussion

A key question in the study of neurodegeneration is why certain cell types are more
susceptible in different diseases™. In this study, we identified the enrichment for ALS/FTD
associated genes in a class of ETNs which provides a connection between this neuronal type
and its propensity to accumulate TDP-43 aggregates'"'**° leading to their gradual loss in
ALS/FTD'™. This enrichment is not recapitulated for risk factors connected to AD and MS,
related to immune processes and are more enriched in microglia®®. One study suggested that
ALS-associated variants connected to autophagy and protein clearing are most highly
expressed in glutamatergic neurons®' and these findings were later corroborated adding the
importance of neuronal morphology and ribonucleotide metabolism®?, here we provide a more
detailed dissection of which subtypes of cells that might be.

Additionally, we identified a broadly shared transcriptomic signature of cellular stress
pathways in classes of deep layer excitatory neurons. These alterations in RNA translation,
proteostasis and mitochondrial function have previously been involved in models of ALS'?,
Our study not only recapitulates these changes, it also highlights their cell-type specificity and
links them to the identification of rare mutations in regulators of these pathways in familial
forms of ALS”!. These molecular mechanisms are confirmed to be connected to proteasomal
function by our neuronal human in vitro model, underlying the importance of protein
homeostasis in neurons and its connection to ALS. The nuclear nature and the low-coverage
of this kind of sequencing but also the small sample size in our study does not allow a
confident, further dissection of the specifically neuronal changes in RNA biology identified in

in vitro models and patient samples®®’2

. It remains intriguing to speculate how RNA
metabolism and proteostasis might be mis-regulated in extratelencephalic neurons and
specifically Betz cells, mouse models where these pathways are specifically altered in CSMNs
might help shed a light on their interplay in this specific neuronal type.

We suggest two mechanisms by which ETNs are rendered more susceptible to ALS:
the intrinsically higher expression of risk factors which is coupled with processes of
neurodegeneration happening broadly in classes of ETNs that might exacerbate and
contribute to vulnerability of these cells in a combinatorial effect. Recent shnRNA-sequencing
studies have unravelled susceptibility of specific neuronal subtypes in other diseases: mid-

D?73: upper layer

layer RORB™ neurons accumulate tau aggregates and are depleted in A
CUX2-neurons are more affected by meningeal inflammation in MS'®; ventral dopaminergic
neurons in Parkinson’s Disease®® and ET neurons affected in ALS/FTD as described by our

475 Impairment of

study and spinal cord motor neurons as suggested in recent reports
proteostatic mechanisms seems to be a common theme in degenerating neurons regardless
of the disease, however, only in ALS these changes are specifically connected to upregulation

of transcripts connected to RNA metabolism, trend that appears to go in opposite direction in
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AD™. Further investigation into the transcriptomic signatures and integrative analyses of these
studies might mark the beginning of a new era in the understanding of selective neuronal
vulnerability to degeneration in different diseases.

Emerging studies have shown that glial cells are important modifiers in ALS/FTD. For
instance, defects in oligodendrocyte maturation and myelination are present in SOD7-G93A
mice and removing toxic SOD1 from this lineage improves survival'. In our study, we show
that changes in processes involved in oligodendrocyte differentiation and myelination may
contribute to neuronal degeneration and/or be a coordinated response to the disease and
appear to contrast those described in MS'™. Moreover, we revealed perturbations in key
myelin-regulators, such as OPALIN, CNP, and MAG, across multiple oligodendrocyte clusters
but in these cells only, as opposed to AD where myelination-related changes were present
across multiple cell types?>?*?°_ Given the similarities in the stress signature identified in
neurons in this study with changes in MS lesions but not in AD patients, it is puzzling how
changes in myelination might be a consequence or the cause of neuronal degeneration.

Intriguingly, recent work has shown the expression of neuronal transcripts in
oligodendrocytes of human motor cortex*' and regional distribution of different types of
oligodendrocyte in the nervous system might explain differential responses to disease’. The
upregulation of synaptic transcripts in oligodendrocytes of ALS patients might represent
phagocytic activity of this cell type in neurodegenerative contexts’” or the need for synaptic
proteins in the formation of myelin sheath”. These speculations are interesting if coupled with
the upregulation of synaptic machinery in upper layer CUX2-neurons and the documented
loss of postsynaptic molecules in ET neurons in ALS". Moreover, a recent snRNAseq study
of FTD cortices identified changes in myelinating cells in response to neuronal loss and
specifically underlined the importance of cell-to-cell communication in neurodegeneration?’.
Finally, recent GWAS studies trying to associate specific cell types to ALS risk factors have
pointed at excitatory neurons but also myelinating cells and inhibitory neurons as more
sensitive to genetic risks for the disease®. These observations suggest a coordinated
response of neurons in the Cortico-Spinal motor circuit in an attempt to compensate for loss
of neuronal inputs to the cord. Further investigations could focus on shifting oligodendroglial
states in disease models and determine changes in disease progression in the scope to
complement efforts aimed to controlling neuronal activity®°.

Finally, we found distinct transcriptional perturbations in ALS-associated microglia,
particularly in endo-lysosomal pathways. We and others have implicated ALS/FTD-associated

gene C9orf72 in endosomal trafficking and secretion in myeloid cells®°®

and the upregulation
of lysosomal constituents, e.g. CTSD, was identified in this study and by others in patients®’.
Coupled with the upregulation of ALS/FTD-associated genes SQSTM1/p62, OPTN, TREM?2

and GRN, this suggests a mechanistic convergence on vesicle trafficking and pro-
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inflammatory pathways that may initiate and/or exacerbate the homeostatic-to-DAM transition
in ALS/FTD. We also delineated interferon-response-related changes, as identified by others
in C90rf72-ALS®?, providing a parallel between sporadic and familial ALS. Overall, differentially
expressed transcripts had partial overlap with those in microglia surrounding amyloid plaques
in AD?2' and microglia associated with demyelinating lesions in MS®®, suggesting that drugs
specifically modulating myeloid cells in other neurodegenerative diseases may provide a basis
for new therapeutic approaches for ALS/FTD and warrants further study. Recent reports have
shown how Disease Associated Microglia and their activity might actually be beneficial in
disease contexts®, studies specifically manipulating microglial states might elucidate the
“friend or foe” role of these cells in ALS.

In summary, we show that classes of ETNs require the expression of a collection of
genetic risk factors for ALS/FTD with pivotal roles in proteostasis, either because of their
peripheral metabolic needs or aging. This intrinsically higher expression of disease-associated
genes might be at the bottom of a “first over the line” mechanism leading to disruption of
homeostasis in groups of deep-layer excitatory neurons. These alterations trigger a cascade
of responses: superficial neurons upregulate synaptic genes to supplement for lost inputs to
the cord; oligodendroglia shift from a myelinating to a neuronally-engaged state; microglia
activate a pro-inflammatory signature in response to neuronal apoptosis. Our study offers a
view in which neurocentric disease vulnerability sparks responses in other neuronal subtypes
and glial cells, but it also shows that clear enrichment of ALS/FTD-related genes in ETNs is
not necessarily the main genetic driver and it is coupled with processes engaging disease
related genes in different cells, i.e. microglia. This view is a first insight into the disruptions of
cortical biology in ALS and provides a connection between age-related changes in cellular
components and mechanisms associated with ALS®*. Future investigations should consider
multicellular disruptions in ALS/FTD, where the survival of the neuron is unmistakably pivotal,
but targeting other cells to reduce inflammation, promote myelination, and bolster neuronal

circuitry may re-establish a neuroprotective environment.

Limitations of this study

One limitation of this study is the small size of the cohort. ALS is a very heterogenous
disease’, and a smaller cohort size cannot fully recapitulate the diversity identified in patients.
However, only recently biobanks have been able collect enough samples to generate reports
with dozens and dozens of individuals’®, we hope that the increase in samples availability and
affordability of single-cell technology will allow a more comprehensive view of transcriptomic
changes in ALS at single-cell level. Moreover, a bigger cohort size would allow a more

stringent analysis of differentially expressed genes by “pseudo-bulking” single-nuclei dataset
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at the individual level within a cell type before nominating DEGs. We also recognise that our
study would benefit from additional validation at RNA and/or protein level, we hope that in the
future this kind of studies would accompany bioinformatics analyses with more validations.
These validations would also elucidate some of the findings in this study. For example, are
oligodendrocytes in ALS patients really expressing higher levels of neuronal genes or is this
an artifact coming from contaminations®? As mentioned in the text, oligodendrocytes in the
motor cortex have been shown to express synaptic transcripts*', immunofluorescent staining
would further prove this point at the single cell level. Nonetheless, we believe that this study
provides original and novel insights the involvement of different cell types in ALS and a

different view in the motor cortex of ALS patients.
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Methods

Human donor tissue. Frozen post-mortem human cortical samples from cases of sporadic ALS
patients and age-matched controls were obtained from the Target ALS Neuropathology Core that drew
upon the repositories of five institutions. Specimens from the medial, lateral, or unspecified motor cortex
were grouped together. Additional post-mortem human samples of the posterior frontal cortex
consistent with the motor cortex from ALS patients and controls were obtained at MGH using a Partners
IRB approved protocol and stored at -80°C.

Isolation of nuclei. RNA quality of brain samples was assessed by running bulk nuclear RNA on an
Agilent TapeStation for RIN scores. Extraction of nuclei from frozen samples was performed as
previously described®®. Briefly, tissue was dissected and minced with a razor blade on ice and then
placed in 4 ml ice-cold extraction buffer (Wash buffer (82 mM Na2S04, 30 mM K2S0O4, 5 mM MgCI2,
10 mM glucose, and 10 mM HEPES, pH adjusted to 7.4 with NaOH) containing 1% Triton X-100 and
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5% Kollidon VA64). Tissue was homogenized with repeated pipetting, followed by passing the
homogenized suspension twice through a 26 2 gauge needle on a 3 ml syringe (pre-chilled), once
through a 20 mm mesh filter, and once through a 5 mm filter using vacuum. The nuclei were then
diluted in 50 ml ice-cold wash buffer, split across four 50 ml tubes, and centrifuged at 500xg for 10
minutes at 4°C. The supernatant was discarded, the nuclei pellet was resuspended in 1 ml cold wash
buffer.

10X loading and library preparation. Nuclei were DAPI-stained with Hoechst, loaded onto a
hemocytometer, and counted using brightfield and fluorescence microscopy. The solution was diluted
to ~176 nuclei/ul before proceeding with Drop-seq as described in ref.1528. cDNA amplification was
performed using around 6000 beads per reaction with 16 PCR cycles. The integrity of both the cDNA
and tagmented libraries were assessed for quality control on the Agilent Bioanalyzer as in
ref®’. Libraries were sequenced on a Nova-seq S2, with a 60 bp genomic read. Reads were aligned to
the human genome assembly (hg19). Digital Gene Expression files were generated with the Zamboni
Drop-seq analysis pipeline, designed by the McCarroll group?6:88.

Filtering of expression matrices and clustering of single nuclei. A single matrix for all samples was
built by filtering any barcode with less than 400 genes and resulting in a matrix of 27,600 genes across
119,510 barcodes. This combined UMI matrix was used for downstream analysis using Seurat
(v3.0.2)%°. A Seurat object was created from this matrix by setting up a first filter of min.cells=20 per
genes. After that, barcodes were further filtered by number of genes detected nFeature_ RNA>600 and
nFeature_ RNA<6000. Distribution of genes and UMIs were used as parameters for filtering barcodes.
The matrix was then processed via the Seurat pipeline: log-normalized by a factor of 10,000, followed
by regressing out UMI counts (nCount_RNA), scaled for gene expression.

After quality filtering, 79,830 barcodes and 27,600 genes were used to compute SNN graphs and -SNE
projections using the first 10 statistically significant Principal Components. As previously described®®*,
SNN-graphed t-SNE projection was used to determine minimum number of clusters obtain at
resolution=0.2 (FindClusters). Broad cellular identities were assigned to groups on the basis of
differentially expressed genes as calculated by Wilcoxon rank sum test in FindAlIMarkers(min.pct=0.25,
logfc.threshold=0.25). One subcluster with specifically high ratio of UMIs/genes was filtered out
resulting in 79,169 barcodes grouped in 7 major cell types of the CNS: excitatory neurons,
oligodendrocytes, inhibitory neurons, astrocytes, endothelial cells, microglia, oligodendrocyte
progenitor cells (OPCs). Markers for specific cell types were identified in previously published human
scRNAseq studies®*3',

Analysis of cellular subtypes were conducted by subsetting each group. Isolated barcodes were re-
normalised and scaled and relevant PCs were used for re-clustering as a separate analysis. This newly
scaled matrix was used for Differential Gene Expression analysis with the MAST algorithm®' in Seurat
R package as previously reported'2232526 with parameters FindAllMarkers(min.pct=0.10,
logfc.threshold=0.25) and subclustering for identification of subgroups. Gene scores for different cellular
subclusters were computed in each re-normalised, re-scaled sub-matrix using the AddModuleScore
function in Seurat v3.0.2.

Gene Ontology, Interactome and Gene Set Enrichment Analyses. For GO terms analysis, we
selected statistically significant up-regulated or down-regulated genes identified in each subcluster as
described before (adj p-values<0.05, LFC=2). These lists were fed in the gProfiler pipeline®? with
settings: use only annotated genes, g:SCS threshold of 0.05, GO cellular components and GO
biological processes (26" of May 2020 — 9" of December 2021), only statistically significant pathways
are highlighted. For oligodendrocytes cells (Extended Data Fig.8) statistically significant up-regulated
genes identified in each subcluster as described before (adj p-values<0.05, LFC=2) were used for
synaptic specific Gene Ontology analysis using SynGO* (12" of June 2020). Interactome map was
built using STRING®* protein-protein interaction networks, all statistically significant upregulated genes
were used, 810 were identified as interacting partners using “experiments” as interaction sources and
a medium confidence threshold (0.400), only interacting partners are shown in Extended Data Figure
6. Gene Set Enrichment Analysis was performed using GSEA software designed by UC San Diego and
the Broad Institute (v4.0.3)%. Briefly, gene expression matrices were generated in which for each
subcluster each individual was a metacell, lists for disease-associated risk genes were compiled using
available datasets (PubMed — ALS/FTD — Supplementary Table 2) or recently published GWAS for
AD3%*3 and MS®®,

Generation of Microglia-like Cells. Microglial-like cells were differentiated as described®® with minor
modifications®”®. Briefly, hPSCs were cultured in E8 medium (Stemcell technologies) on Matrigel
(Corning), dissociated with Accutase (Stemcell technologies), centrifuged at 300xg for 5 minutes,
resuspended in E8 medium with 10uM Y-27632 ROCK Inhibitor, 2M cells are transferred to a low-
attachment T25 flask in 4ml of medium and left in suspension for 24 hours. The first 10 days of
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differentiation are carried out in iHPC medium: IMDM (50%, Stemcell technologies), F12 (50%, Stemcell
technologies), ITSG-X 2% v/v (ThermoFisher), L-ascorbic acid 2-Phosphate (64 ug/ml, Sigma),
monothioglycerol (400 mM, Sigma), PVA (10 mg/ml; Sigma), Glutamax (1X, Stemcell technologies),
chemically-defined lipid concentrate (1X, Stemcell technologies), non-essential amino acids (NEAA,
Stemcell technologies). After 24h (day0), cells are collected and differentiation is started in iHPC
medium supplemented with FGF2 (Peprotech, 50 ng/ml), BMP4 (Peprotech, 50 ng/ml), Activin-A
(Peprotech, 12.5 ng/ml), Y-27632 ROCK Inhibitor (1 uM) and LiCl (2mM) and transferred in hypoxic
incubator (20% Oz, 5% CO2, 37°C). On day 2, medium is changed to iHPC medium plus FGF2
(Peprotech, 50 ng/ml) and VEGF (Peprotech, 50 ng/ml) and returned to hypoxic conditions. On day4,
cells are resuspended in iHPC medium supplemented with FGF2 (Peprotech, 50 ng/ml), VEGF
(Peprotech, 50 ng/ml), TPO (Peprotech, 50 ng/ml), SCF (Peprotech, 10 ng/ml), IL-6 (Peprotech, 50
ng/ml), and IL-3 (Peprotech, 10 ng/ml) and placed into a normoxic incubator (20% O2, 5% CO., 37°C).
Expansion of haematopoietic progenitors is continued by supplementing the flasks with 1ml of iHPC
medium with small molecules every two days. On day10, cells are collected and filtered through a 40mm
filter. The single cell suspension is counted and plated at 500,00 cells/well of a 6 well plate coated with
Matrigel (Corning) in Microglia differentiation medium: DMEM/F12 (Stemcell technologies), ITS-G
2%v/v (Thermo Fisher Scientific), B27 (2%v/v, Stemcell technologies), N2 (0.5%v/v, Stemcell
technologies), monothioglycerol (200 mM, Sigma), Glutamax (1X, Stemcell technologies), NEAA (1X,
Stemcell technologies), supplemented with M-CSF (25 ng/ml, Peprotech), IL-34 (100 ng/ml, Peprotech),
and TGFb-1 (50 ng/ml, Peprotech). Induced Microglia-like cells (iMGLs) are kept in this medium for 20
days with change three times a week. On day 30, cells are collected and plated on poly-D-lysine/laminin
coated dishes in Microglia differentiation medium supplemented with CD200 (100 ng/ml, Novoprotein)
and CX3CL1 (100 ng/ml, PeproTech), M-CSF (25 ng/ml, PeproTech), IL-34 (100 ng/ml, PeproTech),
and TGFb-1 (50 ng/ml, PeproTech) until day 40.

Feeding of apoptotic neurons to Microglia-like Cells. For feeding assays, neurons were generated
from human iPSCs using an NGN2 overexpression system as described previously®®%°". Day30
hiPSC-neurons “piNs” were treated with 2uM H20: for 24 hours to induce apoptosis. Apoptotic neurons
were gently collected from the plate and the medium containing the apoptotic bodies was transferred
into wells containing day40 iMGLs. After 24 hours, iIMGLs subjected to apoptotic neurons and controls
were collected for RNA extraction.

RNA extraction and RT-qPCR analysis. RNA was extracted with the miRNeasy Mini Kit (Qiagen,
217004). cDNA was produced with iScript kit (BioRad) using 50 ng of RNA. RT-gPCR reactions were
performed in triplicates using 20 ng of cDNA with SYBR Green (BioRad) and were run on a CFX96
Touch™ PCR Machine for 39 cycles at: 95°C for 15s, 60°C for 30s, 55°C for 30s.

Generation of hiPSC-derived neurons for bulk RNA sequencing. Human embryonic stem cells were
cultured in mTESR (Stemcell technologies) on matrigel (Corning). Neurons were generated from HUES-
3-Hb9:GFP based on the motor neuron differentiation protocol previously described®%. Upon
completion of the differentiation protocol, cells were sorted via flow-cytometry based on GFP signal
intensity to yield GFP-positive neurons that were plated on PDL/laminin-coated plates (Sigma, Life
technologies). Neurons were maintained in Neurobasal medium (Life Technologies) supplemented with
N2 (Stemcell technologies), B27 (Life technologies), glutamax (Life technologies), non-essential amino
acids (Life technologies), and neurotrophic factors (BDNF, GDNF, CNTF), and were grown for 28 days
before the application of the proteasome inhibitors MG132 for 48 hrs.

RNA was extracted using RNeasy Plus kit (Qiagen), libraries were prepared using the lllumina TruSeq
RNA kit v2 according to the manufacturer’s directions, and sequenced at the Broad Institute core with
samples randomly assigned between two flow chambers. The total population RNA-seq FASTQ data
was aligned against ENSEMBL human reference genome (build GRCh37/hg19) using STAR (v.2.4.0).
Cufflinks (v.2.2.1) was used to derive normalized gene expression in fragments per kilo base per million
(FPKM). The read counts were obtained from the aligned BAM-files in R using Rsubread. Differential
gene expression was analyzed from the read counts in DESeqg2 using a Wald’s test for the treatment
dosage and controlling for the sequencing flow cell.

Western blot analysis. As previously described tissue was minced, lysed in RIPA buffer with protease
inhibitors (Roche) and sonicated®. After centrifugation, the supernatant was collected as soluble
fraction and the insoluble pellet was resuspended in 8M urea buffer (Bio-Rad, 1632103). After protein
quantification by BCA assay (ThermoFisher), ten micrograms of proteins were preheated in Laemmli’'s
buffer (BioRad), loaded in 4-20% mini-PROTEAN® TGX™precast protein gels (BioRad) and gels were
transferred to a PDVF membrane. Membranes were blocked in Odyssey Blocking Buffer (Li-Cor) and
incubated overnight at 4°C with primary antibodies. After washing with TBS-T, membranes were
incubated with IRDye® secondary antibodies (Li-Cor) for one hour and imaged with Odyssey® CLx
imaging system (Li-Cor). List of primary antibodies can be found in Appendix.
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Proteasome activity assay. Neurons were sorted in 96-wells plates and, after two weeks of
maturation, treated for 24 hours. Cells were washed with 1xPBS, exposed to ProteasomeGlo®
(Promega, G8660) and incubated for 30 minutes at RT. Fluorescence was measured using a
Cytation™3 reader (BioTek).
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Extended Data Fig. 9 | Shared features between ALS-driven changes and reactive subcluster of microglia. a. &-SNE projection
of subclusters identified within microglia (Micro0 = Homeo = homeostatic, Microl = DAMs = Disease-associated microglia,
Micro2 = Cycling cells)). b. Distribution of microglia within clusters by diagnosis. c. Distribution of microglia within subclusters by
individual. d. Dotplot representing genes identified as characteristic of Homeostatic microglia and DAMs by subcluster. e.
Dotplot representing genes identified as characteristic of Homeostatic microglia and DAMs by diagnosis. f. Volcano plot of
statistically significant differentially expressed genes between Control and ALS microglia (top ten upregulated and top ten
downregulated genes highlighted). g. Violin plots of representative DEGs downregulated in ALS patients of genes associated with
homeostatic microglia. h. Gene Ontology analysis of terms associated with genes characteristic of DAMs microglia, highlighted
terms playing important role in microglial biology and/or pathogenesis of the disease. i. --SNE projections representing z-score for
selected, statistically significant GO terms.

64/180



65

o
a Son o3
CMap 2L 5a % % ';;_:J 3 S g Positively connected gene
2160 Genetic | 1000 Gene Tscore 82 SaS>< T T T Putative pro-inflammatory
Pertubations Expression Profiling 99.4 KFL6
. 98.6 - MDX3
ALS vs. Control Query O’\ E Algorithm 97.4 MAGEB6
(nuc-seq) ’ g 95.3 CDKN1A
Genes differentially expressed —
between ALS and Control microglia 9 Reference Cell Lines Negatively connected gene
T score putative anti-inflammatory
971 1l O IFNB1* *Potential off-the-shelf
Deliverable Therapy
b c iMGLs + AN
iMGLs -
(Abud et al.) "
-
hPSCs
piNS Apoptotic

(Nehme et al.) neurons (AN)

N =z
¥ 7,
e _ )
H,0, : &
hPSCs treatment =
+ tetO-NGN2-puro i
+tTA B
d e f
Homeostatic microglia and DAMs Lysosome and ALS/FTD Cell cycle
2.0 " 4 209 O ctd
c e . cr ¢
2 s K ** [ AN
3 ’—I [ AN 3 ’—| 1 AN ]
g 157 g 3 . . g 15 |_|
i 3 ’—‘ 3
3 2 2
£
E 10 fay oo NN g 2 ’_| |_| 5 104245 5
§ g’ 4 |
2 5 @ 2
o o
3 0s- 3 - @ﬁ? @ @ é ..... @ ...... % ...... 3 05
2 & B B =
0.0 T T T 0 T T T T T T 0.0-
P2RY12 CX3CR1 IRF8 APOE TREM2 GRN ASAH1 ITGAX LGALS3 SQSTM1 CTSD CDKN1A MKi67

Extended Data Fig. 10 | Apoptotic neurons upregulate lysosomal genes in microglia. a. Schematic of workflow and
results from the Connectivity Map project for the genes upregulated in ALS microglia. Heatmap shows what cellular signature is
most closely related to the query. b. Diagram of microglia and neuronal differentiation from Pluripotent Stem Cells, induction of
apoptosis neurons and feeding to iMGLs. c. Brightfield images of untreated day 40 iMGLs and day 40 iMGLs fed apoptotic
neurons for 24 hours. d. RT-gPCR quantification of selectedALS-FTD-associated and lysosomal genes 24h after feeding iMGLs with
apoptotic neurons. e. RT-qPCR quantification of homeostatic and DAMs genes after feeding. e. RT-gPCR quantification of cell cycle-
associated genes after feeding.
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Chapter 3:

Pluripotent Stem Cell Strategies for Rebuilding the Human

Brain

In this chapter we describe protocols to differentiate hPSCs into different brain cell

types that could be used to further dissect the multicellular contribution to ALS.

This work is published in Frontiers in Aging Neuroscience, 2022
10.3389/fnagi.2022.1017299
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Neurodegenerative disorders have been extremely challenging to treat with
traditional drug-based approaches and curative therapies are lacking. Given continued
progress in stem cell technologies, cell replacement strategies have emerged as
concrete and potentially viable therapeutic options. In this review, we cover advances
in methods used to differentiate human pluripotent stem cells into several highly
specialized types of neurons, including cholinergic, dopaminergic, and motor neurons,
and the potential clinical applications of stem cell-derived neurons for common
neurodegenerative diseases, including Alzheimer’'s disease, Parkinson’s disease,
Huntington’s disease, ataxia, and amyotrophic lateral sclerosis. Additionally, we
summarize cellular differentiation techniques for generating glial cell populations,
including oligodendrocytes and microglia, and their conceivable translational roles in
supporting neural function. Clinical trials of specific cell replacement therapies in the
nervous system are already underway, and several attractive avenues in regenerative

medicine warrant further investigation.

INTRODUCTION

Age — it's the one mountain you can’t overcome, and as the average life expectancy
extends into the eighth decade, neurodegenerative diseases are becoming increasingly
prevalent. Despite their increasing incidence, preventative or disease-modifying strategies for
these emotionally and financially draining disorders are lacking. Due to the fundamental lack
of regeneration within the central nervous system (CNS), neurodegenerative diseases
relentlessly attacking discrete populations of neurons are excellent candidates for cell
replacement therapies. Here, we review the current prospects on the application of pluripotent
stem cell-derived cell types for the treatment of neurodegenerative disease.

Pluripotent stem cells provide a uniquely scalable source of functional somatic cells,
including cells of the CNS, that can potentially replace damaged or diseased tissues. Although
prospects for using stem cell derivatives seemed fanciful at the start of the millennium,

approximately two decades later several clinical trials using cellular products of pluripotent

68/180


mailto:Daniel.Mordes@ucsf.edu

69

stem cells are underway or about to reach the clinic (Gage and Temple, 2013; Kimbrel and
Lanza, 2015; Steinbeck and Studer, 2015; Tao and Zhang, 2016; Trounson and DeWitt,
2016). This progress has been facilitated through the development of robust methods for
converting human pluripotent stem cells into the specific cell types that are lost in disease.
Most techniques are based on fundamental principles learned from developmental biology
and aim to recapitulate cell fate determination pathways in the culture dish, and these methods
have been thoroughly reviewed elsewhere (Tao and Zhang, 2016). More recently, exogenous
over-expression of transcription factors (TFs) has provided an alternative route to directed
differentiation methodologies for generating specific classes of neurons. When appropriate,
we will highlight both approaches that advance the field towards producing defined cellular
populations, which are the ideal candidate for cell replacement therapies.

In this review, we summarize recent progress toward generating specific cell types
from human pluripotent stem cells for regenerative medicine. The examples described herein
are not intended to be all-inclusive, and readers are encouraged to examine other reviews on
the clinical development of stem cell-based therapies (Gage and Temple, 2013; Kimbrel and
Lanza, 2015; Steinbeck and Studer, 2015; Tao and Zhang, 2016; Trounson and DeWitt,
2016). Rather, we focus on recent biotechnological advances in the derivation of human cells
and their application as cell therapies in the field of neurodegeneration (Table 1). These
selected studies illustrate the biological concepts, experimental approaches, and therapeutic
possibilities of in vitro stem cell-derived cells of the neural and glial lineages. We conclude our
review with a discussion of emerging technologies in the field, current limitations, and

remaining challenges for regenerative medicine in translational neurosciences.

Table 1. Common neurodegenerative diseases characterized by selective vulnerability.

Disease Prevalence = Main Key brain  Main Pathological Therapies Regenerative
symptoms regions vulnerable hallmarks (symptomatic medicine
affected neuronal (associated treatments) cell-based
subtypes protein) approaches
Alzheimer ~5M Cognitive Hippocampus,  Pyramidal Neurofibrillary  acetylcholinesterase  Cholinergic
Dementia (AD) impairments in  Basal neurons, tangles (tau); inhibitors, neurons,
memory, Forebrain, Cholinergic neuritic memantine GABAergic
language & Locus neurons plaques Inhibitory
behaviour coeruleus (beta-amyloid neurons
(pons), Cortex & tau)
Parkinson ~1M Tremor, Substantia Dopaminergic Lewy bodies Levodopa, COMT  Dopaminergic
Disease (PD) stiffness, slow  nigra neurons and Lewy inhibitors, dopamine  neurons
and Parkinson movements, (midbrain), neurites agonists, deep brain
Disease  with autonomic locus (alpha- stimulation
Dementia dysfunction, coeruleus synuclein)
(PDD) sleep problems, (pons), Cortex
cognitive (especially the
decline cingulate)
Huntington ~30K Uncontrolled Neostriatum, Spiny Intranuclear &  Tetrabenazine, Spiny
Disease (HD) movements especially neurons cytoplasmic neuroleptics (off-  neurons
(chorea), caudate neuronal label),
neuropsychiatric  (basal inclusions antidepressants
ganglia), (Htt)
cortex
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Spinocerebellar  ~150K  Difficulty ~ with  Cerebellum, Purkinje Intranuclear &  Limited, physical  Purkinje
Ataxias (SCAs) walking and  brainstem, neurons, cytoplasmic therapy neurons
speech, lack of  spinal cord pontine nuclei  neuronal
coordination (dorsal) neurons inclusions
(various, e.g.,
ataxins)
Amyotrophic ~20 K Progressive Spinal cord Upper and TDP-43 Riluzole, edaravone  Lower motor
Lateral weakness and  (ventral), lower motor  positive neurons
sclerosis (ALS) muscle atrophy brainstem neurons cytoplasmic
(motor nuclei), neuronal
& frontal inclusions
cortex
Basal Cortical .
Forebrain Glutamatergic (':::"Bitl)\ifgglc
Cholinergic Pyramidal "y
AD AD, AD,
FTD Epilepsy
B-amyloid B-amyloid B-amyloid
TAU TAU TAU
FUS
TDP-43
1-4 5-9 111-15
2 5-7,10 16-17
Dopaminergic | Medium Spiny | Hypothalamic | Hippocampal | Serotonergic Purkinje Motor
PD HD Narcolepsy QD' hiatri Psychiatric Ataxias ALS,
Y C s diseases SMA
diseases
a-synuclein Huntingtin Reduced B-amyloid poly-Q TDP-43
Parkin hypothalamic repeats SOD1
grey matter
18-22 26-29 30-33 34-36 37-39 41-45 47-55
23-25 26-27, 29 30 34 40 46 55-56

Figure 1 Basal forebrain cholinergic: diff. 1-4 Bissonnette et al., 2011; Liu et al., 2013a; Hu et al., 2016; Liu et al., 2013b;
transpl. 2 Liu et al., 2013a. Cortical Glutamatergic: diff. 5-9 Espuny-Camacho et al., 2013; Cao et al., 2017; Qi et al., 2017;
Zhang et al., 2013; Nehme et al., 2018; transpl. 5, 6, 7, 10 Espuny-Camacho et al., 2013; Qi et al., 2017; Zhang et al., 2013;
Espuny-Camacho et al., 2017. GABAergic inhibitory: diff. 11-15 Maroof et al., 2013; Nicholas et al., 2013; Chanda et al., 2014 ;
Sun et al., 2016 ; Yuan et al., 2018; transpl. 16-17 Anderson et al., 2018; Cunningham et al., 2014. Dopaminergic: diff. 18-22
Kriks et al., 2011; Kim et al., 2021; Cai et al., 2009; Caiazzo et al., 2011; Pfisterer et al., 2011; transpl. 23-25 Kikuchi et al., 2017;
Wakeman et al., 2017; Grealish et al., 2014. Medium Spiny: diff. 26-29 Aubry et al., 2008; Carri et al., 2012; Ma et al., 2022;
Victor et al., 2014; transpl. 26, 27, 29 Aubry et al., 2008; Carri et al., 2012; Victor et al., 2014. Hypothalamic: diff. 30-33 Merkle
et al., 2015; Kirwan et al., 2017 ; Wang et al., 2015 ; Rajamani et al., 2018; transpl. 30 Merkle et al. 2015. Hippocampal: diff. 34-
36 Yu et al., 2014; Sakaguchi et al., 2015 ; Hiragi et al., 2017; transpl. 34 Yu et al., 2014. Serotonergic: diff. 37-39 Lu et al,,
2016 ; Vadodaria et al., 2016 ; Xu et al., 2016; transpl. 40 Carlsson et al., 2009. Purkinje: diff. 41-45 Muguruma et al., 2015;
Wang et al., 2015; Watson et al., 2018; Silva et al., 2020; Ishida et al., 2016; transpl. 46 Higuera et al., 2017. Motor: diff. 47-55
Amoroso et al., 2013; Du et al., 2015; Maury et al. 2015; Klim et al., 2019; Son et al., 2011; Hester et al., 2011; Goto et al., 2017;
Limone et al., 2022; Lippman et al., 2015; transpl. 55-56 Yohn et al., 2008; Corti et al., 2012.
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PARKINSON’S DISEASE

Parkinson’s disease is characterized by the degeneration of several neuronal
subtypes, most notably the dopaminergic neurons of the substantia nigra pars compacta
(SNpc), located in the ventral midbrain. These neurons project to the dorsal striatum of the
basal ganglia and function in motor control, and their loss of these neurons contributes to the
movement symptoms observed in the initial stages of Parkinson’s disease. Fetal-derived
dopamine neurons have had promising clinical benefits for Parkinson’s disease patients
(Hallett et al., 2014). To avoid the ethical and logistical issues associated with fetal tissue
transplants, the application of pluripotent stem cells to generate dopaminergic neurons has
been a long-standing goal. Indeed, translational research to bring these specific neurons to
the clinic has far exceeded the other cell replacement strategies discussed here and recent
advances have extensively been discussed elsewhere (Barker et al., 2017; Kim et al., 2020).
In this section we will provide a summary of the most relevant discoveries that led to the first
transplantation studies with hiPSC-derived cells that established a road map for the field.

Dopaminergic neurons

From the initial basic science studies that furnished the directed differentiation
strategies of dopaminergic neurons to their large-scale production in GMP-facilities for
transplantation studies, the research program for midbrain dopamine neurons has made
excellent progress. Several groups developed methods to produce FOXA2/LMX1A-positive
midbrain neurons capable of releasing dopamine (Arenas et al., 2015). For example, the
Studer group has developed a highly efficient protocol for producing these neurons by
combining dual-SMAD inhibition with activation of SHH and FGF8 signaling. The critical step
in midbrain specification is the strong activation of WNT signaling achieved using a GSK3f
inhibitor (Kim et al., 2021; Kriks et al., 2011). Transcription factors, such as LMX1A, can also
be used to enhance directed differentiation approaches (Cai et al., 2009), or for the direct
reprogramming of fibroblasts into dopaminergic neurons (Caiazzo et al., 2011; Pfisterer et al.,
2011), and combined with cell sorting methods to further enrich for midbrain dopaminergic
neurons (Arenas et al., 2015). Preclinical studies demonstrate that human iPS cell-derived
dopaminergic neurons are safe and efficacious in both rodent and primate Parkinson’s
disease model (Kikuchi et al., 2017; Wakeman et al., 2017) with similar efficacy to fetal-derived
tissue (Grealish et al., 2014). A number of clinical trials with stem cell-based therapies are
currently being planned with their details summarized at a recent consortium meeting (Barker
et al., 2017). Although PD patients receiving the stem cell-derived dopaminergic neurons will
likely show improvements in movement symptoms, their additional symptoms, including
depression, fatigue, visual hallucinations, and sleep disturbances, might persist due to
continued degeneration of other neuronal types. This has led to some to propose serotonergic

neurons (Lu et al., 2016; Vadodaria et al., 2016; Xu et al., 2016) as an additive cellular therapy
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for PD (Politis and Loane, 2011). A delicate balance must be struck between dopaminergic
and serotonergic neurons, however, as fetal grafts with high levels of serotonergic neurons
have been associated with graft-induced dyskinesias in parkinsonian rats (Carlsson et al.,
2009).

DEMENTIA

Neurological conditions involving both memory loss and impaired judgement are
classified as dementia (Yue and Jing, 2015). Alzheimer’s disease is the most common type of
dementia in individuals older than 65 years old and the most prevalent neurodegenerative
disease (Table 1). The incidence of Alzheimer’s disease (AD) dramatically increases with age,
and with the aging US population, it is estimated that approximately 14 million individuals will
be affected by 2050. AD often first manifests clinically as impairments with short-term memory,
and later affects behavior and language. Current treatments are aimed at ameliorating these
symptoms without substantially affecting disease course. Cognitive decline is associated with
progressive degeneration of neurons in the limbic system (especially the hippocampus and
connected entorhinal cortex), the basal forebrain, and neocortical areas. Histologically, patient
brains are characterized by the accumulation of extracellular beta-amyloid depositions and
intracellular tau-positive neurofibrillary tangles as well as neuritic plaques that contain both tau
within dystrophic neurites and beta-amyloid. Neuropathological studies strongly suggest that
AD has well-defined and consistent spatiotemporal pattern of neurofibrillary degeneration, in
most cases, that begins in the entorhinal cortex and spreads to pyramidal neurons in the
hippocampus and then neocortical areas, with association areas affected sooner and more
severely. Currently, there is no effective therapy to block the progression of AD making it a
major looming public heath challenge.

Basal Forebrain Cholinergic Neurons

One of the earliest cell types perturbed by AD is the basal forebrain cholinergic neuron
(BFCN). These neurons, which arise from the median ganglionic eminence (MGE) during
development, are responsible for various aspects of cognition including learning, memory, and
attention. At the molecular level, BFCNs are primary cholinergic neurons and innervate the
cerebral cortex, hippocampus, and amygdala, and play critical roles in processing information
related to cognitive function (Martinez et al., 2021). Transplantation of fetal cholinergic tissue
from rats into the cortex of lesioned primates has been shown to restore memory deficits
suggesting a potentially therapeutic roles for these cells (Ridley et al., 1994).

Several methods to differentiate pluripotent stem cells into BFCNs have been
described (Bissonnette et al., 2011; Hu et al., 2016; Liu et al., 2013a; Liu et al., 2013b).

Typically, first forebrain neural progenitors are obtained and then treated with a SHH (sonic
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hedgehog) agonist and FGF8 to coax the cells into expressing the transcription factors Nkx2.1,
consistent with a ventral medial ganglionic eminence (MGE) neural progenitor identity.
Subsequent culture of these progenitor cells on glia or treatment with BMP9 then yields a
mixture of neurons containing BFCNs (Bissonnette et al., 2011; Hu et al., 2016; Liu et al.,
2013a; Liu et al., 2013b). Alternatively, overexpression of the transcription factors Lhx8 and
Gbx1 can convert the progenitors into BFCNs (Bissonnette et al., 2011). Cells produced using
these methods express markers consistent with a cholinergic identity and exhibit expected
electrophysiological profiles. In one study, MGE-progenitor cells transplanted into mouse
brains differentiated into neurons, including BFCNs, and formed synaptic connections (Liu et
al., 2013b). More importantly, injection of these precursor cells led to learning and memory
improvements in lesioned mice (Liu et al., 2013b). Whether these improvements were the
specific result of the BFCNs or other cell types remains to be determined but this study
provides an important proof-of-principle for the use of stem cell-based therapy to improve
cognition.

Cortical glutamatergic pyramidal neurons

Cerebral cortex development consists of three major processes: cell proliferation,
neuronal migration, and cortical organization into multiple well-defined layers. The cerebral
cortex contains two major classes of neurons; a majority population of excitatory glutamatergic
projections neurons that arise during development from the dorsal telencephalon, which is the
developmental precursor to the cerebral cortex, and a minor population of inhibitory
interneurons. Through successive waves of neurogenesis, these neurons generate the six
layers of the neocortex, which can be further functionally divided based on specific patterns
of axonal output and dendritic input. Due to their abundance and ability to project long
distances, cortical pyramidal neurons, named for their shape, are able to integrate and send
information across the entire nervous system (Bekkers, 2011).

The production of pyramidal neurons from pluripotent stem cells is considered to be a
default differentiation fate because it occurs in the absence of exogenous signaling factors
(Espuny-Camacho et al., 2013). Inhibiting certain signaling pathways, however, can enhance
the yield of cortical glutamatergic neurons by suppressing the emergence of inhibitory
interneurons (Cao et al., 2017). More recently, accelerated methods for generating cortical
neurons have been reported. One method relies on a cocktail of molecules to both pattern the
cells to dorsal forebrain lineage and then inhibit neural stem cell self-renewal to drive
neurogenesis, which preliminary data suggests can be timed to achieve the production of
neurons of different cortical layers (Qi et al., 2017). Forced expression of the transcription
factor Ngn2 in stem cells further accelerates the differentiation to yield very pure populations
of glutamatergic neurons (Zhang et al., 2013) that can be enhanced with the addition of

developmental cues (Nehme et al., 2018). Transcriptional studies suggest this method favors
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the production of upper layer neurons, therefore additional methods to achieve the full diversity
of cortical layers may still be necessary. After injecting into the postnatal mouse brain, human
cortical neurons generated using the methodologies described above displayed proper, long-
distance projection patterns and integrated functionally within the host’s circuitry (Espuny-
Camacho et al., 2013; Qi et al., 2017; Zhang et al., 2013). Whether they can ameliorate
disease phenotypes in animal models remains an unanswered question, but neurons
transplanted into a murine AD model display pathological hallmarks of the disease including
altered tau biochemistry (Espuny-Camacho et al., 2017).

GABAergic inhibitory neurons

In both the brain and spinal cord, gamma-aminobutyric acid (GABA)-releasing
interneurons are the major class of inhibitory neurons and play crucial roles in modulating
neural circuits. There are many distinct subtypes of interneurons that differ in their synaptic
connections, expression of neuropeptides, neurotransmitter machinery, and developmental
origin with some immature interneurons having the remarkable ability to migrate and disperse
long distances to integrate throughout the CNS (Southwell et al., 2014). This integrative
property makes interneurons a promising candidate for cell replacement therapies.

Several groups have developed directed differentiation approaches for producing
interneurons from human pluripotent stem cells (Liu et al., 2013a; Maroof et al., 2013; Nicholas
et al., 2013). These approaches typically inhibit both branches of SMAD signaling as well as
WNT signaling using small molecules to achieve robust forebrain induction into cells
resembling the MGE, as suggested by expression of the transcription factor Nkx2.1. Careful
timing of SHH activation then allows for induction of ventral cell fate in these progenitor cells
that develop into GABAergic interneurons as opposed to basal forebrain cholinergic neurons
(Liu et al., 2013a). In addition to directed differentiation approaches, transcription factor-
mediated inductions of interneurons from stem cells have also been described (Chanda et al.,
2014; Sun et al., 2016; Yuan et al., 2018). Minimally, transient expression of ASCL1 and DLX2
can convert stem cells into GABAergic interneurons. When injected into the mouse brain,
these cells, migrated, integrated, and matured into a variety of interneuronal subtypes,
including expression of the mature subtype markers parvalbumin or somatostatin. Further
studies, such as single-cell transcriptomic approaches, are needed to characterize the full
repertoire of subtypes of interneurons that can be obtained from pluripotent stem cells.
Impressive studies have gone on to show that transplanted interneurons were capable of
improving memory (Anderson et al., 2018) and in some cases suppressing seizures and
abnormal behaviors in an epileptic mouse model (Cunningham et al., 2014). Based on these
promising studies, one biotech company, Neurona Therapeutics, is pioneering the clinical

uses for interneuron-based cell therapies for epilepsy and neuropathic pain.

74/180



75

Hippocampal neurons

Composed of granule and pyramidal neurons, the hippocampus plays a critical role in
learning and memory. It is also an area of the brain that deteriorates in Alzheimer’s disease,
additional forms of dementia, and other age-related cognitive declines of distinct etiologies.
Interestingly, in addition to the subventricular zone, the dentate gyrus of the hippocampus is
a unique site of adult neurogenesis (although the absolute rate of neurogenesis remains
controversial). Therefore, incorporation of immature stem cell-derived neurons into existing
neural circuity beyond embryonic development is a hopeful prospect.

To generate hippocampal neurons, stem cells are patterned to dorsal forebrain
progenitors by inhibiting both branches of the SMAD signaling (dual-SMAD inhibition) as well
as factors to promote WNT and SHH signaling. Subsequently, WNT3a is applied along with
BDNF to drive the neurogenesis of hippocampal granule neurons (Hiragi et al., 2017;
Sakaguchi et al., 2015; Yu et al., 2014). Initial findings indicate concurrent WNT and BMP
activation can drive the differentiation of the dorsal forebrain progenitors into pyramidal
neurons (Sakaguchi et al., 2015). Rodent transplantation studies with hippocampal neural
precursors revealed that the human neurons could integrate into the dentate gyrus (Yu et al.,
2014), but it remains to be determined if these xenografts can affect disease-related

phenotypes in animal models.

HUNTINGTON’S DISEASE

Huntington’s disease is caused by a CAG trinucleotide repeat expansion within the
coding region of the HTT gene, resulting in an extended polyglutamine (polyQ) tract within the
Huntingtin protein. The progressive loss of neurons and gross atrophy in the neostriatum
(caudate nucleus and putamen) disrupts neuronal circuits involving the basal ganglia and
leads to gradually worsening motor impairment and, as additional brain regions are affected,
significant cognitive and psychiatric symptoms.

Medium spiny neurons

Medium spiny neurons that reside in the striatum, contribute to the complex circuits
that control movement and are particularly vulnerable in Huntington’s disease. During
development, these inhibitory neurons arise from the lateral ganglionic eminence (LGE) and
are marked by the expression of DARPP32 (dopamine- and cAMP-regulated phosphoprotein
Mr~32 kDa) (Fjodorova et al., 2015). The relatively specific loss of DARPP32+ medium spiny
class of neurons in the neostriatum makes Huntington’s disease a strong candidate for cell
replacement therapies. Like for Parkinson’s disease, fetal transplants have paved the way for
stem cell-derived therapies for HD (Freeman et al., 2000).

Numerous groups have validated directed differentiation approaches for producing

medium spiny neurons from stem cells (Aubry et al., 2008; Carri et al., 2012; Ma et al., 2012).
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Like the methods for producing other inhibitory neurons from the neighboring MGE,
combinatorial SHH/WNT signaling modulation induces an anterior-ventral fate. Of note,
reduced activation of SHH signaling and the addition of Activin A can favor a LGE fate while
inhibiting a MGE fate (Fjodorova et al., 2015). A direct conversion method has also recently
been described for transforming fibroblasts into medium spiny neurons, specifically, with a
combination of 4 transcription factors (CTIP2, DLX1, DLX2, and MYT1L) and two microRNAs
(miR-9/9 and miR-124) (Victor et al., 2014). Whether these direct programming methods can
be applied to pluripotent stem cells remains to be determined but could be used to improve
the yield of medium spiny neurons from stem cells, which are at best ~50%. When
transplanted into a murine striatum, the neurons integrate into the host circuit and project to
the proper anatomical targets. In some cases, the transplanted cells neurons can rescue
motor deficits in quinolinic acid, an excitotoxin, striatal-lesioned mice, a model of HD (Carri et
al., 2012; Victor et al., 2014). In another study, however, the transplanted cells also resulted
in cellular overgrowth (Aubry et al.,, 2008). Based on these studies, refined purification
methods to yield more homogenous neuron populations followed by additional animal model

studies seem warranted.

ATAXIAS

Spinocerebellar ataxias (SCAs) are a clinically and genetically heterogenous group of
neurological disorders associated with impairments in motor coordination due to degeneration
of the cerebellum and connected neuronal pathways. Many SCAs are caused by CAG
nucleotide repeat expansions within certain genes leading to the production of polyglutamine
(polyQ)-containing proteins with putative toxic gain-of-function effects. For instance, an
autosomal dominantly-inherited, abnormally long (>33 CAG repeats) trinucleotide repeat
expansion within ATXN-2 results in SCA2 that can manifest with ataxia, loss of neurological
reflexes, and Parkinsonian symptoms. Ataxias can be associated with other inherited
disorders. For examples, an autosomal recessively-inherited GAA trinucleotide repeat
expansions in FXN, encoding frataxin, cause Friedrich’s ataxia, which is characterized by
progressive ataxia, impaired speech, loss of vibratory and proprioceptive sensation due to
degeneration of spinal cord neurons and nerve fiber tracts connecting to the cerebellum. There
are no effective treatments for these debilitating and often fatal diseases.

Purkinje cells

Purkinje cells are large inhibitory GABAergic neurons with extensive dendritic arbors
that reside within the hindbrain structure of the cerebellum. As the output neurons of the
cerebellar cortex, they project to neurons within deep cerebellar nuclei and play an important
role in motor coordination. Until recently, the differentiation of human PSCs into Purkinje

neurons remained elusive, perhaps due to their late emergence during development. An initial
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directed differentiation approach for this cell type required several steps and many factors.
First, exogenous factors were employed to stimulate endogenous Wnt1 and FGF8 signaling
and promote a midbrain/hindbrain identity, and inhibition of SHH signaling was used to pattern
cells towards a dorsal identity (Muguruma et al., 2015; Wang et al., 2015). Then, the
maturation process could be accomplished through several methods: plating precursors on
mouse cerebellar slice cultures (Watson et al., 2018), within self-organizing, polarized
cerebellar structures (Muguruma et al., 2015), or more recently in a defined basal medium
optimized for cell culture (Bardy et al., 2015; Silva et al., 2020). Studies indicate that the stem
cell-derived Purkinje cells are susceptible to genetic insults, such as the trinucleotide CAG
repeat in CACNA1A associated with SCA6 (Ishida et al., 2016), that trigger their selective
demise, and that they can also engraft into the mouse cerebellum (Wang et al., 2015).
Although more defined and robust methods are needed before cell replacement therapies
should be considered clinically, the initial findings have paved the way for producing this

neuronal type that is relevant to many neurological disorders.

MOTOR NEURON DISEASES

The specific loss of motor neurons underlies several devastating neurological diseases
including amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). Both
diseases involve the progressive loss of motor function, eventually progressing to fatal
paralysis. In nearly all (~97%) of cases of ALS, motor neurons in both the brain and spinal
exhibit pathological changes in the cellular localization of the RNA binding protein TDP-43,
which include loss of the normal nuclear localization and the formation of cytoplasmic
inclusions (Klim et al., 2021).

Spinal Motor Neurons

Motor neurons represent a diverse group of neuronal subtypes and provide the pivotal
link between mind and the animation of the body. Generally, there are two types of motor
neurons; upper motor neurons that reside in the frontal cortex and project to lower motor
neurons, found in the ventral brainstem and spinal cord, which in turn form synapses with the
musculature. Decades of developmental studies and genetic analyses have illuminated the
molecular underpinnings of lower motor neuron specification during embryo development
(Dasen and Jessell, 2009) with the morphological gradients well established (Davis-
Dusenbery et al., 2014).

Leveraging this knowledge, stem cell scientists developed methods to generate motor
neurons from mouse embryonic stem cells by applying retinoic acid (RA) to caudalize the cells
towards a spinal cord (the distal or tail end of the neural tube) identity and activating SHH to
ventralize them toward a motor, rather than sensory, identity (Wichterle et al., 2002). Several

research groups have advanced these earlier findings to reproducibly convert human
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pluripotent stem cells into vast quantities of motor neurons (Amoroso et al., 2013; Du et al.,
2015; Klim et al., 2019; Maury et al., 2015). These approaches typically rely on neural
induction through small molecule dual-SMAD signaling inhibition, in some cases activation of
WNT signaling, accelerated neurogenesis through inhibition of FGF or NOTCH signaling, all
coupled with MN patterning described above (RA and SHH). Ichida, Son, and colleagues have
used a large cadre of MN-related transcription factors (Isl1, Ascl1, Myt1l, Brn2, Ngn2, Lhx3,
and Neurod1) to directly convert fibroblasts into induced motor neurons(Son et al., 2011).
Alternatively, simpler protocols were achieved that used a subset these factors to transform
human stem cells into motor neurons (Goto et al., 2017; Hester et al., 2011). Recently, we
have also shown that transcription factor-based and small molecule approaches could be
combined to yield a highly pure population of cervical-like motor neurons from iPSCs with
100% efficiency through the inducible expression of Ngn2 (neurogenin-2) alone coupled with
RA and SHH treatments (Limone et al., 2022). Interestingly, carefully varying the timing of
retinoid application has been demonstrated to afford more caudal motor neuron fates
(Lippmann et al., 2015), but methodologies for producing upper motor neurons, also known
as cortical spinal motor neurons (CSMNSs), are still lacking. As degeneration of cortical and
spinal cord motor regions occur in ALS, a full array of motor neuron subtypes might be needed
as a cell replacement therapy.

So far, motor neuron transplant results have been encouraging. For example
pioneering transplant studies demonstrate that mES-derived motor neurons injected into tibial
nerve of adult mice can form functional NMJs and ameliorate muscle atrophy (Yohn et al.,
2008). Another notable study was able to transplant human iPS cell-derived motor neurons
into the ventral horns of an SMA mouse model (Corti et al., 2012). The transplanted motor
neurons could survive and engraft into the murine spinal cord and could even ameliorate
disease phenotypes and extend the life span relative to those receiving a fibroblast transplant
(Corti et al., 2012). These exciting initial studies highlight the need for large animal models for

testing motor neuron-based cell therapies.

GLIAL CELLS

Although glia are more abundant than neurons, nuances remain in our understanding
of how their exact cellular identities are established and how glial developmental pathways
can be recapitulated in vitro for cell replacement approaches. Three main types of glia exist in
the CNS: astrocytes, oligodendrocytes (OLs), and microglia. In brief, astrocytes are
responsible for forming and modulating the blood-brain barrier (BBB) and modifying the
chemical microenvironment governing synaptic function. Microglia are the resident immune
cells of the CNS that function in synaptic pruning during development, immune surveillance,

debris clearance and defense from pathogens. Oligodendrocytes are responsible for
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myelinating axons in the CNS, thereby maintaining strong electrical connectivity of brain
circuitry. Glia have been implicated in almost all neurodegenerative diseases, and their
dysfunction in this context are more extensively reviewed elsewhere (Zheng et al., 2018). Glial
transplantation for the treatment of neurodegenerative diseases has been explored much less
than for neurons, though might be advantageous for ameliorating glial dysfunction as well as
mitigating the loss of degenerating neurons by engaging in supportive roles. Like neurons,
glial cells can be generated by activating development cues or overexpression of cell type-
specific transcription factors. We will discuss a selection of strategies to generate glia and
their most promising applications to neurodegenerative diseases.

Astrocytes

Astrocytes are star-shaped glial cells that reside in both the brain and spinal cord to
maintain BBB integrity, regulate nutrient flow, and govern neuronal function. They arise
relatively early in neuronal development from radial glial progenitor cells usually after these
cells have generated neurons. Broadly, differentiation protocols recapitulate developmental
cues (Krencik et al., 2011; Shaltouki et al., 2013) by promoting neuronal stem cell (NSC)
identity via dual SMAD inhibition and then gliogenesis with morphogens (Krencik and Zhang,
2011). Promoting gliogenesis after NSC differentiation has traditionally been a slow rate-
limiting step in the generation of astrocytes, but recent transgenic and chemical strategies
have greatly accelerated this process. Expansion of NSCs with Activin A, Heregulin 1B
(Neuregulin1), and IGFI (Shaltouki et al., 2013; Tcw et al., 2017), flow cytometry-based
enrichment strategies (Barbar et al., 2020) or overexpression of TFs NFIA and SOX9 can
dramatically shorten differentiation protocols (Canals et al., 2018; Tchieu et al., 2019). hPSC-
derived astrocyte-like cells can be generated in as little as 30 days and show functional
properties similar to primary astrocytes in that they uptake glutamate, promote neurite
outgrowth, propagate calcium waves, and retain their identity in vivo (Krencik and Zhang,
2011; Li et al., 2018; Shaltouki et al., 2013). Many groups have recently developed methods
to increase maturity and function of these cells by differentiating them from 3D structures
coupled with cell sorting methods (Barbar et al., 2020).

Studies on ALS and PD animal models are laying the foundation for astrocyte
transplantation therapies. In ALS models, astrocytes exert toxic gain-of-function effects that
can act in a cell non-autonomous manner to contribute to motor neuron degeneration (Di
Giorgio et al., 2008; Di Giorgio et al., 2007; Hall et al., 2017; Meyer et al., 2014). For instance,
mice expressing human mutant SOD1 in astrocytes in addition to neurons had reduced to
survival compared to mice only expressing mutant SOD1 in neurons, in other words, a wild-
type astrocyte microenvironment may promote motor neuron survival (Batavelji¢ et al., 2012).
Focal transplantation of glial-restricted NPCs (Neuronal Progenitor Cells) into the cervical

spinal cord of SOD1 transgenic rats during disease progression extended survival and
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decreased motor neuron death, in part due to the partial rescue of GLT1 expression in
astrocytes (Clement et al., 2003). Clinical trials are ongoing to prove the efficacy of
transplanted PSC-derived astrocytes to boost neuronal survival and slow disease progression.
For instance, a phase 1/2a trial in a small cohort of ALS patients (NCT02943850) has shown
that a single injection of human NPCs engineered to produce glial cell line-derived
neurotrophic factor (GDNF) into the spinal cord is safe, and viable grafts differentiated into
astrocytes that may be neuroprotective through increased GDNF production (Baloh et al.,
2022).

Transplantation studies for PD also showed promising results. Co-transplantation of
primary fetal NPCs and rat astrocytes increased long-term engraftment of mature midbrain
dopaminergic neurons and increase anti-inflammatory markers in the brains of PD rats
(Lepore et al., 2008). Transplantation of primary astrocytes into the SNpc increase
synaptosomal dopamine uptake in the striatum, reduce ROS stress, and improved motor
deficits of pharmacologically-induced PD rats (Song et al., 2017). These observations suggest
hPSC-derived astrocytes may be used to slow disease progression and complement
dopaminergic neuron transplantation.

Oligodendrocytes
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therapies.
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To generate OLs, hPSCs are first converted to a neural stem cell with small molecules
or a neural epithelial identity through SHH activation and are then pushed towards an
oligodendrocyte progenitors (OPCs) identity by the addition of PDGF-AA. These OPCs can
be matured into OLs by various cocktails of small molecules, often containing IGF-1 and T3
(Douvaras and Fossati, 2015; Douvaras et al., 2014; Wang et al., 2013). Several groups have
shown that complete maturation of OPCs into highly myelinating oligodendrocytes can be
achieved either by injecting these cells in vivo (Douvaras et al., 2014) or by differentiating
these cells in 3D structures (Marton et al., 2019). Protocols relying on overexpression of
several transcription factors, including OLIG2, NKX6.2, and SOX10, were developed to be
faster and similarly efficient (Ehrlich et al., 2017; Garcia-Ledn et al., 2018). Garcia-Leon et al.
found, however, that overexpression of SOX10 alone in NSCs was the most efficient at
generating OLs in as little as 20 days, and the generated OLs were capable of myelinating
cortical neurons both in vitro and in vivo (Garcia-Le6n et al., 2018).

Stem cell-derived OLs hold promise for both demyelinating diseases and spinal cord
injury. Multiple sclerosis (MS) is a chronic, autoimmune disease characterized by the loss of
myelin and associated oligodendrocytes, often in a remitting and relapsing clinical course that
results in gradual neurological decline. MS-iPSC-derived OPCs can myelinate the corpus
callosum of immunocompromised hypomyelinated (shiver) mice (Douvaras et al., 2014; Wang
et al., 2013), offering a potential regenerative route for re-myelination for cases of MS that are
resistant to immune-suppressant treatment. Strikingly, human iPSC-derived OPCs can
myelinate axons in a non-human primate marmoset model (Thiruvalluvan et al., 2016). Long
term transplantation studies in both shiver mice and demyelinating cuprizone treatment also
showed that these cells can not only migrate to distal regions of the CNS farther than
previously believed but can also improve behavior and motor function in murine models
(Windrem et al., 2020). These results highlight the feasibility of an iPSC-derived OL

transplantation therapy for MS and perhaps for other demyelinating diseases.

Microglia

Unlike other glial cells, microglia are immune cells not derived from the neuroectoderm
but originate from the embryonic yolk sac in early stages of development and then migrate to
the neural tube (Ginhoux et al., 2010; Kierdorf et al., 2013). Chemical differentiation strategies
generally generate early myeloid progenitors by isolation of delaminating cells from so-called
yolk-sac embryoid bodies (Haenseler et al., 2017; Muffat et al., 2016) or by promoting
hematopoiesis with hypoxic conditions and defined medias (Abud et al., 2017). Initial studies
used co-cultures of these immature myeloid cells with human neurons or murine brain extracts
to generate resident brain-like microglia (Takata et al., 2017). These protocols made scalability

challenging so others have devised ways to further push immature myeloid progenitors toward
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microglia-like cells (MGLs) with defined medias containing M-CSF to generate myeloid cells
coupled with CNS-enriched TGF-beta and CNS-specific, CSF1-receptor ligand IL34 to
promote a brain-like specification of these myeloid progenitors. Generated MGLs show
competence to phagocytose (Abud et al., 2017; Dolan et al., 2022; Douvaras et al., 2017;
Haenseler et al., 2017; Limone et al., 2021; Muffat et al., 2016; Pandya et al., 2017) respond
to IFN-y and LPS stimulation via secretion of pro-inflammatory cytokines (Abud et al., 2017;
Muffat et al., 2016), and migrate to sites of injury (Muffat et al., 2016). When co-cultured with
neurons, MGLs have also been observed to secrete anti-inflammatory and pro-remodeling
cytokines (Haenseler et al., 2017). Like for other glial cells, transcription factor-based protocols
may offer increased efficiency and decreased time for the generation of microglial-like cells.
One study has shown that overexpression of transcription factors CEBPA and PU.1 coupled
with CNS-patterning molecules described above can generate Microglia-like cells from human
iPSC (Chen et al., 2021) with a second one showing improved efficiency by overexpressing
PU.1 from primitive hematopoietic progenitors (Sonn et al., 2022). A recent study has defined
a set of six transcription factors for the generation of microglia-like cells at a scale sufficient
for genetic screening (Drager et al., 2022). Following the progress in the derivation of specific
neuronal populations, it is plausible that newer approaches might find that just a few
transcriptional factors could be sufficient, when coupled with small molecules, for the
generation of this cell type.

Long term engraftment studies have been rendered difficult by the lack of homology
between murine and human CSF1, which is pivotal for long term microglial survival. However,
initial studies have shown the feasibility of transplantation of hiPSC-derived iIMGLs in

humanized mouse models (Svoboda et al., 2019; Xu et al., 2020) .

TECHNOLOGICAL ADVANCES

Directed differentiation approaches have evolved considerably since the initial
derivation of neurons from human embryonic stem cells (Zhang et al., 2001). Although defined
culture conditions that primarily employ small molecules instead of poorly defined co-culture
systems are more robust, modern directed differentiation approaches still tend to yield highly
heterogeneous cultures containing the cell type of interest along with developmentally related
cells. Direct conversion strategies like the ones described above typically yield more
homogenous cell populations, but viral integration could disrupt normal gene expression and
thus might not be amenable to clinical applications. Alternatively, the use of cell surface
antibodies for sorting different neural populations has been pioneered to enrich for more
defined cell populations (Yuan et al., 2011), or dyes that are selectively taken up by specific
cells could theoretically also be used to mark specific cell types as has been demonstrated for

neural precursor cells (Yun et al., 2012). These advances have led to several of these
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differentiation protocols being used for modeling neurodegeneration in different cell types in
vitro (Giacomelli et al., 2022), opening the door to their adaptation to transplantation studies
in the future. Additionally, several groups have made significant progress in the development
of protocols for the generation of 3D structures containing various CNS cell types (known as
brain organoids) that can enhance cell type specification and maturation (Del Dosso et al.,
2020). Whether this technology can be translated into reproducible, manufacturable products
for transplantation studies remains unclear, though it does offer a myriad of intriguing
possibilities for the field.

It is unclear whether nascent, immature neurons or elaborate, mature neurons will
integrate more successfully into a degenerating brain to provide therapeutic benefit. Either
way, the ability to control the functional maturation of stem cell-derived neurons would benefit
many applications. For in vitro disease modelling studies, we have found that co-culture of
human neurons with murine glial cells effectively increased neuronal activity, but co-culture
with non-human cells is not an ideal strategy for cell replacement therapies. Instead, Gage
and colleagues have developed a defined neuronal medium, BrainPhys, which better mimics
the environment present in healthy human brains and enhances both spontaneous electrical
and synaptic activity of human neurons (Bardy et al., 2015). Whether increased activity
translates into increased survival after transplantation remains an unanswered but fascinating
question.

The process of reprogramming adult cells back to the pluripotent state erases many
aspects of aging that put vulnerable cells at risk in the first place(Mertens et al., 2018).
Although resetting the biological clock makes disease modeling more challenging, it might rid
the newly derived cells from the neurodegenerative stimuli of aging when transplanted. Still,
there might be aspects of maturation that are critical for neuronal integration or function. Unlike
stem cell-derived neurons, for example, neurons directly converted from adult fibroblasts
capture the faithful expression of all tau isoforms detected in adult brains at the proper ratios.
Direct conversion of adult cells to replace lost neurons might therefore be alternative
technology to consider (Capano et al., 2022) and has even been shown to reverse symptoms
of Parkinson’s disease in a rodent model by converting midbrain astrocytes to dopaminergic

neurons (Qian et al., 2020).

LIMITATIONS AND CHALLENGES

Induced pluripotent stem cell technology marshalled in the possibility of personalized
regenerative medicine using therapies based on an individual's own cells. To this end,
investigators in Japan started a clinical trial to treat age-related macular degeneration using
autologous transplants, however, the trial was eventually suspended after treating one patient

(Mandai et al., 2017). Several hurdles generate significant headwinds for this type of approach
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including 1) the time and effort needed to generate iPS cells, 2) genomic instability of
pluripotent stem cells, and 3) the cost of personalized therapeutics. Most of these hurdles
have several potential solutions that we will describe here briefly.

Despite recent advances, the overall time to move from the collection of fibroblasts via
skin biopsy in the clinic, the reprogramming of fibroblasts into PSCs with completion of
appropriate quality controls, to the differentiation of individualized stem cells into a personal
population of a specific cell type, such as mature motor neurons, remains extensive, and
hence possibly beyond the therapeutic window for rapidly progressive neurodegenerative
diseases like ALS. To meet the demands of future clinical applications, state-of-the-art
technologies for the cryopreservation of differentiated cell types are being tested to provide a
ready to go off-the-shelf product (Holm et al., 2010; Nishiyama et al., 2016). Indeed, this
approach is being pioneered within the Parkinson’s disease cell replacement field, which has
demonstrated that cryopreserved iPSC-derived neurons can maintain high viability and the
molecular properties of a dopaminergic neuron. Moreover, these cryopreserved cells can be
directly transplanted into a rat model of PD to reverse functional deficits (Wakeman et al.,
2017).

For cell replacement therapies, even rare proliferating cells are especially worrisome
because they could ultimately lead to the growth of tumors. Moreover, genomic instability of
pluripotent stem cells has long been a concern for the field as aneuploid cells have readily
been observed (Draper et al., 2004). To identify more subtle genetic changes, groups have
performed whole-exome sequencing on many of the hES cell lines listed on the US National
Institutes of Health registry and reported the acquisition of dominant negative p53 mutations,
a mutation associated with many cancers, for several hES cell lines (Merkle et al., 2017), and
other genomic changes associated with cancer and tumorigenesis (Merkle et al., 2022).
Similar studies have also identified recurrent mutations that can occur during the
reprogramming process and subsequent propagation (Pera, 2011). Therefore, thoughtful
genetic characterization should be standard before stem cells or any of their derivatives are
used in the clinic. This analysis will not only be useful to rule out stem cell lines with potentially
dangerous mutations but could also be used after transplant to retrospectively identify the
distribution of the donor cells.

To overcome the laborious nature of converting somatic cells into pluripotent stem
cells, the New York Stem Cell Foundation has developed an automated platform for the high
throughput conversion of skin biopsies into iPS cells (Paull et al., 2015). This high throughput
platform can be used in conjunction with synthetic modified RNA to reprogram cells and avoid
viral transduction (Warren et al., 2010). Finally, xenofree culture conditions have been

developed and are now commercially available for deriving and propagating human pluripotent
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stem cells (Chen et al., 2011; Klim et al., 2010). Collectively, these innovations will help
expedite the large-scale generation of clinical grade iPS cells.

Finally, widely applicable and efficient cell banking methods are needed to meet the
demand of cell transplantation therapies. There are ongoing efforts in both Japan and the
United States to screen and bank cells for allogeneic transplantations. Estimates from Cellular
Dynamics International suggest that top 183 haplotypes could cover 95% of the US
population. To gain maximum population coverage and provide social justice (Ellison, 2016),
a universal stem cell donor could be part of the banking effort. This tactic proposes to use
genetic engineering to reduce immunogenicity by removing the MHC molecules from the
surface of the cells while also introducing well-established tolerance-inducing molecules (Han
et al., 2019; Riolobos et al., 2013). Ultimately, stem cell banking will facilitate regenerative
therapies by providing a common and less costly off-the-shelf cellular materials that can be

thoroughly characterized before regular and repeated clinical use.

CONCLUDING REMARKS

It's an incredibly exciting time for stem cell-based regenerative medicine with a number
of clinical trials started and more just on the horizon for neurodegenerative diseases, including
one for Parkinson’s disease (Kimbrel and Lanza, 2015). The International Society for Stem
Cell Research (ISSCR) has established an updated set of guidelines (Daley et al., 2016) for
the clinical translation of stem cell research to ensure safety and appropriate rigor while
avoiding the real and present dangers of unregulated stem cell therapies (Berkowitz et al.,
2016).

The demand for neurodegenerative disease therapeutics continues to grow as
populations around the globe age. Currently, no pharmacological strategies exist that can
significantly alter disease course for neurodegenerative diseases, thus cell replacement
therapies remain an attractive avenue of exploration. Although the prospect of using stem cell-
derived neurons to treat many of the diseases discussed above remains abstract, the
Parkinson’s disease clinical trials, grounded on years of fetal transplant studies and animal
models with high fidelity, will provide important guideposts as others venture into these
uncharted territories. In this review, we highlighted current methodologies for generating
therapeutically relevant neuronal and glial cell types. Although directed differentiation
strategies for some of these CNS cell types are in their nascent stage, they represent

important first steps towards heralding in a new era of cellular therapeutics.
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Chapter 4:

Efficient generation of lower induced Motor Neurons by

coupling Ngn2 expression with developmental cues

In this chapter we describe a new protocol to differentiate motor neurons from human
Pluripotent Stem Cells (hPSCs) for a big-scale, high-throughput study of neurodegenerative

diseases with the aim to provide a platform for more reproducible modelling of ALS from large
cohort of hiPSC lines.

Cortical-like piNs

+ WNT inhibition

50 hPSC lines
Ngn2 overexpression T]El:]:g’::ﬁ.rz:fgc;bslf
+ dual-Smad inihibiton i a dish 9

+ retinoic acid

+ SHH stimulation Motoneuron-like liMNs

Graphical abstract. Limone et al. induce neuralization of hPSCs into spinal MNs by small molecule patterning and TF
overexpression. Multiplexed, pooled single-cell RNAsequencing showcases high reproducibility in dozens of cell lines.
These MN villages resemble in vivo spinal MNs and produce disease-relevant MN populations.

This work is published on Cell Reports, 2022
https://doi.org/10.1016/j.celrep.2022.111896

Earlier versions of this chapter can be found on bioRxiv
https://doi.org/10.1101/2022.01.12.476020
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Human pluripotent stem cells (hPSCs) are a powerful tool for disease modelling
of hard-to-access tissues (such as the brain). Current protocols either direct neuronal
differentiation with small molecules or use transcription-factor-mediated programming.
In this study, we couple overexpression of transcription factor Neurogenin2 (Ngn2) with
small molecule patterning to differentiate hPSCs into lower induced Motor Neurons
(liMoNes/liMNs). This approach induces canonical MN markers including motor neuron
(MN) specific marker Hb9/MNX1 activation in >95% of cells. liMNs resemble bona fide
hPSC-derived MN, exhibit spontaneous electrical activity, express synaptic markers
and can contact muscle cells in vitro. Pooled, multiplexed single-cell RNA sequencing
on 50 hPSC-lines reveals reproducible populations of distinct subtypes of cervical and
brachial MNs that resemble their in vivo, embryonic counterparts. Combining small
molecule patterning with Ngn2 overexpression facilitates high-yield, reproducible
production of disease-relevant MN subtypes, which is fundamental in propelling our

knowledge of MN biology and its disruption in disease.

INTRODUCTION

Many groups have recognised the ability of stem cells to differentiate into almost any
cell type of the body. This unique capability can facilitate the understanding of basic biology
of tissues that are hard to access and that are specifically highly evolved in humans, such as
the Central Nervous System (CNS)'. Most neuronal differentiation schemes mimic
developmental embryonic signals by small molecule patterning. The neuralisation of stem
cells is achieved by manipulating bone morphogenic protein (BMP) and transforming growth

»2

factor g (TGFpB), commonly referred to as “dual-Smad inhibition™. This study further showed

that different combinations of small molecules used as patterning factors could push neuronal
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progenitors towards distinct neuronal fates. From there, many have developed and refined
differentiation protocols for specific neuronal subtypes. However, caveats still remain, such
as: the incomplete neuralisation of cultures, underlining the need for additional neuralising
factors®; the long time needed to generate mature cultures and the heterogeneity in
differentiation efficiency amongst cell lines*°.

To overcome these limitations, others have employed different approaches such as
the overexpression of a transcription factors (TFs)®. These TFs have been used to generate
induced Neurons (iNs) from fibroblasts’, and the combination with subtype-specific TFs was
able to generate specific types of neurons®. These approaches have been transferred to stem
cells with one of the more recent reports of Neurogenin2 (Ngn2, Neurog2, Atoh4) being able
to differentiate human Pluripotent Stem Cells (hPSCs) into glutamatergic neurons®. These
advances allowed reproducible generation of neurons in a shorter time and fewer steps. This
approach may, however, skip pivotal developmental steps part of neuronal specification so
questions have been raised regarding the identity of the generated populations and the impact
of the overexpression of TFs to downstream applications'.

Previously, we have demonstrated that overexpression of Ngn2 coupled with small
molecule patterning is able to enhance the regional specification of neurons to cortical-like
patterned induced Neurons - piNs''. Additionally, small molecules have also been reported to
enhance efficiency of MN programming'®'. These findings led us to hypothesize that
combining Ngn2 expression with different patterning molecules could generate different
neuronal cells.

We wanted to generate spinal Motor Neurons (MNs) for biological modelling of
degenerative motoneuron diseases, such as Amyotrophic Lateral Sclerosis (ALS) and Spinal
Muscular Atrophy (SMA) that selectively affect these highly specialised neurons™. MNs reside
in the spinal cord and are the only neurons to exit the nervous system and contact skeletal
muscles to allow us to breathe and move through a specific synaptic contact, the Neuro-
Muscular Junction (NMJ). Protocols to differentiate MNs are based on decades of

1516 and are extensively reviewed elsewhere'”'®, Most protocols

developmental biology studies
entail the neuralization inputs described above coupled with ventralising factors like Sonic
Hedgehog and/or its agonists (Shh/SAG) and the caudalising effects of retinoids (retinoic acid
—RA)*"%21 or, alternatively, the overexpression of a combination of transcription factors: Ngn2,
Isl1, Lhx3 (i.e. NILs)'>?2, Both approaches have proven to be useful for investigating MN
biology. However, on one hand directed differentiation produces cultures containing different
cell types other than MNs with high line-to-line heterogeneity rendering disease modelling
difficult. On the other hand, the overexpression of three TFs produces pure cultures but very
specific subtypes of MNs limiting the scalability of these studies since several, specific

combinations of TFs are needed to reproduce the diversity of MN subtypes in vitro.
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Here, we report that the addition of patterning molecules during Ngn2-programming of
hPSCs can lead to specification of regionally defined neuronal states. With time in culture,
differentially patterned cells developed into morphologically distinct neurons that maintain
regionally defined features according to developmental patterning mimicry. A reporter cell line
for the MN-specific transcription factor MNX1/Hb9 demonstrated that ~95% of the cells
subjected to MN patterning activated this master regulator of MN development. This finding,
in combination with the expression of pan-MN markers validated the cellular identity of SAG-
and RA-patterned-Ngn2 cells as MN-like cells: the lower induced Motor Neurons
(liMoNes/liMNs). liIMNs expressed canonical markers and resembled bona fide hiPSC-derived
MNs, they were electrophysiologically active and able to form synaptic contact with muscle
cells in vitro. By leveraging newly developed analysis tools for single-cell RNA-sequencing
(scRNAseq) technology that enable analysis of many cell lines cultured in the same dish
simultaneously, we demonstrated that our protocol produced several subtypes of disease-
relevant diaphragm- and limb-innervating MNs in a robust fashion, that is reproducible across
47 stem cell lines, which resemble primary MNs from the human spinal cord. This
combinatorial approach addressed several shortcomings from previously published protocols

and will facilitate the understanding of basic spinal MNs biology and its disruption in disease.

RESULTS

Ngn2-driven neuralization can be directed to different neuronal fates by small
molecules patterning

Given that the combination of patterning molecules with Ngn2 expression could
generate cortical excitatory neurons’!, we wondered whether the protocol could be repurposed
with alternative patterning factors to generate other types of neurons. To test this hypothesis,
we used an overexpression system in which a doxycycline inducible tetO-Ngn2-T2A-Puro/rtTA
lentiviral system is used to infect hPSCs for strong overexpression of the neuralising factor
Neurogenin2®. We started by substituting WNT inhibition, used to generate cortical cells
(piNs)"', with ventralising SAG and caudalising RA to induce a ventral-posterior fate and
ultimately produce lower-induced Motor Neurons (liMNs) (Figures 1A-B).

To test if the patterning induced regionally specified neuronal states, we selected
markers pivotal for early neuronal development that are divergent between cortex and spinal
cord (Figures 1C). To this end we collected RNA and performed RT-gPCR at day 4, a stage
described as Neuronal Progenitor Cell (NPC)-like'!, to assess the expression of these
markers. While rostro-dorsalising WNT inhibition induced the expression of master regulators
of cortical development EMX1, FOXG1, OTX1 and OTX2 (Figure 1D), the caudal-ventral
patterning induced the expression of posterior markers HOXB4 and HOXC®6, of cholinergic
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master regulator /ISL12% and of MNX1 (Hb9), expressed by spinal motor neurons in the nervous
system?* (Figure 1E). Importantly, caudal-ventral patterning reduced the expression of OTX1
and OTX2, transcription factors that regulate the schism between the cortex and posterior
regions of the CNS?. In line with previous studies, dual-Smad inhibition in combination with
Ngn2 resulted in loss of pluripotency markers, OCT4 and SOX2, and acquisition of pan-
neuronal markers, PAX6 and TUBB3 (Figures S1A-B)"".

WNT RA RT-gPCR mouse glia
HUES3-Hb9::GFP " y
—— Imagin, O\
ﬁost, +TetO-Ngn2-puro Flow'czlt‘orwetry maging + \Xz
| I 1 1 g 1
& 2 S S 28
Dox puromycin | !
Hind g'§P~C°L (Zhang etal.) doxycycline-induced NGN2 | B27 w/o VitA + BDNF + CNTF + GDNF_ |
D LSB dual-Smad inh. | B27 w/o vitA + BDNF + CNTF + GDNF |
BMPs +
piNs dual-Smad inh. | 'B27 wio vitA + BDNF + CNTF + GDNF |
(Nehme et al.) XAV939
+
. ) dual-Smad inh. | B27 + N2 +BDNF + CNTF + GDNF |
liMoNes/liMNs RA+ SAG
c WNT RA D, Foxe1 s EMX1 s o7X1 . oxz - .
w &° 4 huES3
A > P e £, - SW11
o B
o g . swi
©
£ P
Q 3
o E'"
= 0
E
0 ok
og s huES3
& £ = SW11
c & 160 * SW1
s
= 140
g g 120
53
§ E 100-
e
F G
5 ‘ Dox LSB piNs liMNs
t'rr‘.
2 -
s 1,87%
o ) (] 4
2 £
—— 3
01 0 ¢ e 55X 7]
B ——
o | B ]
=]
:
E-u‘
- 73% O ~ -
" Jos o |Oa ll)A |05
Hb9::GFP intensity
o Hbé?:GFFg N

Figure 1 Ngn2-driven neuralization can be directed to different neuronal fates by small molecules patterning. (A) Diagram
of known developmental cues used to design patterning strategy. (B) Differentiation schemes used for comparison of divergent
Ngn2-driven trajectories: Dox — original Ngn2 overexpression from Zhang et al. 2013; LSB — Ngn2 overexpression coupled with
neuralising dual-Smad inhibition (LDN193189, SB431542); piNs — cortical-like patterned induced Neurons (Nehme et al. 2018);
liMoNes/liMNs — lower induced Motor Neurons generated by Ngn2-overexpression and ventro-caudal patterning (Retinoic Acid
and Smoothened Agonist). (C) Genes selected as master regulators of anterior-dorsal, cortical development and ventro-caudal,
spinal cord development. (D) RT-gPCR quantification for induction of cortical genes after rostro-dorsalising WNT inhibition at day
4 (three cell lines in n=3 technical replicates each, p-values from one-way ANOVA). (E) RT-gPCR quantification demonstrating
induction of spinal genes after caudal-ventralising induction of SAG and RA at day 4 (three cell lines in n=3 technical replicates
each, one-way ANOVA). (F) Flow cytometry quantification of Hb9::GFP positive cells at day 4. (G) Hb9::GFP intensity at day 4
of differentiation demonstrating higher total intensity of the Hb9::GFP signal in liIMNs (H) Hb9::GFP expression day 7 post-
induction in piNs and liMNs, the majority of liIMNs express the reporter (scale bar 50 um).
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To further confirm the regional specification of NPCs, we took advantage of a reporter

26.27 inserted into human

19,28-30

line that expresses GFP under the murine, MN-specific, Hb9 promoter
embryonic stem cell line used to validate differentiation protocols . Flow cytometry
analysis confirmed that by day 4 after induction, more than 70% of cells treated with RA and
SAG were GFP positive (Figures 1F). Strikingly, not only was the percentage of GFP™ cells
higher, but the intensity of GFP signal also increased (Figure 1G and S1C), in agreement with
higher levels of MNX1/Hb9 RNA. By day 7, cells subjected to RA and SAG showed strong
Hb9::GFP expression whereas only a fewer, dimmer GFP positive cells were visible in the
other conditions (Figures 1H and S1D). Taken together, these data suggests that differential
patterning coupled with Ngn2-overexpression leads to the specification of different neuronal

fates, including MN.

Neuronal fates induced by patterned Ngn2 expression maintained throughout
differentiation

We then proceeded to confirm that regional specification was maintained long-term
after neurogenesis. For this purpose, we extended in vitro culturing by replating cells in
neuronally supportive conditions (Figure 2A). First, we analysed cell morphology by
microscopy. Patterning produced neurons with strikingly different morphology; with piNs
showing small, polarised cell bodies and MN-patterned cells showing a wider soma with a
multipolar shape with one extended axon-like structure (Figure 2B and S2A-B), strikingly
reminiscent of the morphology of cortical pyramidal neurons and spinal, ventral-horn motor
neurons in vivo, respectively®'.

To confirm that the regional identity specified by patterning was maintained, we
collected RNA at day 30 of differentiation and investigated the expression of genes known to
be specifically expressed in either glutamatergic neurons of the cortex or cholinergic MNs of
the spinal cord (Figure 2C). We confirmed that caudalisation repressed cortical genes SATB2
and TBR1 (Figure 2D). Expression of posterior markers HOXB4 and HOXC6 was sustained
in caudalised cells and suppressed in piNs (Figure 2E). Moreover, mature ventralised cells
expressed the MN-specific TF, MNX1/Hb9 and higher transcript levels of the main component
of the cholinergic machinery, Choline Acetyltransferase (CHAT) (Figure 2E), while maintaining
expression of pan-neuronal markers (Figure S2C). According to this polarised gene
expression, expression of the Hb9::GFP reporter was also maintained through-out
differentiation only in RA- and SAG-patterned cells, reaching a peak of ~95% at day 7 (Figure
2F-G and S2E), and was then slightly downregulated as seen in early development of MNs of

the spinal cord in vivo®. To further ensure their MN identity and overcome some of the

100/180



101

limitations of the reporter, we combined the Hb9::GFP reporter with staining for Islet1 and
SMI32, the triad recognised as the human pan-Motor Neuron staining’® and confirmed that
80% of the cells co-expressed at least two of these markers (Figure 2 H-l and S2D). The data
so far confirmed that coupling of Ngn2 overexpression with patterning factors can produce
regionally specified neurons and we define the ventralised and caudalised cultures as lower-
induced Motor Neurons: liMoNes/liIMNs.
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Figure 2 Patterned Ngn2-induced neuronal fate is maintained throughout the differentiation (A) Differentiation schemes
for neuronal maturation after one-week of patterning: Dox — original Zhang et al. 2013; LSB — Ngn2 with dual-Smad inhibition;
piNs — cortical-like piNs (Nehme et al. 2018); liIMNs — lower induced Motor Neurons. (B) Brightfield image at day 30 of piNs and
liMNs (scale bar 100 um). (C) Diagram of genes specifically expressed in either anterior-dorsal cortical neurons or ventro-caudal,
spinal cord motor neurons. (D) RT-qPCR quantification for induction of cortical genes at day 30 (four cell lines in n=3 technical
replicates, one-way ANOVA). (E) RT-gPCR quantification for spinal cord genes at day 28 (four cell lines in n=3 technical
replicates, one-way ANOVA). (F) Hb9::GFP reporter expression at day 14 post-induction in piNs and liMNs (scale bar 50 um).
(G) Quantification of Hb9::GFP reporter expression at day 7, 10 and 14 post-induction in piNs (blue) and [IMNs (green) by
immunofluorescence (n=5, p-values from t-test at each time point). (H) IF analysis for pan-MN SMI-32, Islet1 and Hb9::GFP
reporter expression at day 7 post-induction (scale bar 50 um). (I) Quantification H (n=3 replicates).

liMNs reproducibly express canonical pan-Motor Neuron markers and resemble
bona fide hPSC-MN

Given that neuralisation by Ngn2 overexpression can be directed to different neuronal
fates and maintained during in vitro culture, we wanted to confirm the expression of key motor
neuron markers at the protein level. As early as day 14, [iIMNs expressed the ventral horn
motor neuron specific marker Stathmin2 (STMN2) (Figure 3E)****. By day 30, liMNs
expressed Cholinergic Acetyltransferase (ChAT) (Figure 3B) and limb-innervating marker
Foxp1 (Figure 3C)*. Moreover, liMNs showed reactivity for antibodies against the transcription
factor Islet1 along with SMI-32, that recognises spinal MN-enriched neurofilament heavy chain
(Figure 3D). Indeed, 60-90% of cells express at least one of these markers (figure 3E), while
MN markers were robustly and reproducibly expressed by 80-90% of cells by different cell
lines (Figure 3F).

We next wanted to confirm that liIMNs resembled cells defined by the scientific
community as bona fide hiPSC-derived motor neurons. We thus differentiated MNs following
a conventional, widely used method using just small molecule patterning factors (2D MN)*®.
Briefly, stem cells were subjected to neuralising dual-Smad inhibition followed by DAPT and
SU5402 while caudalised and ventralised with RA and SAG. Differentiated neurons were
separated from the mixed cultures by sorting for cell surface marker N-CAM 14 days post-
neuronal induction®®, and then cultured in neuronal differentiation media, under similar
conditions to liIMNs for 14 more days (Figure 3G, Figure S3A-B). We then compared the
morphologies of the conventional 2D MNs and liIMNs by imaging. We found that liIMNs were
morphologically similar to 2D MN, with large multipolar cell bodies, and very distinct from
cortical cells (Figure 3H). Moreover, liMNs and 2D MN expressed similar patterns of pan-MN
staining (Figure S3C-D). Remarkably, RT-gPCR analysis revealed that liIMNs expressed
comparable levels of other motor-neuron markers and even higher transcript levels of limb-
innervating motor neurons marker HOXC6 (Figure 3l). These results confirmed that liIMNs
resemble one kind of bona fide hiPSC-derived motor neurons defined by the broader scientific

community.
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Figure 3 liMoNes reproducibly express canonical Motor Neuron markers (A) Immunofluorescent staining for spinal MN-
specific marker Stathmin2 (STMN2) and neuronal cytoskeletal proteinTUBB3 (Tuj1) in day14 liMNs cultures (scale bar 100 um).
(B) Immunofluorescent staining for cholinergic marker Chat and neuronal cytoskeletal proteins MAP2 and TUBB3 (Tuj1) at day
30 (glial co-cultures - scale bar 30 um). (C) Immunofluorescent staining for limb-innervating MN marker FOXP1 and neuronal
MAP2 and TUBB3 (Tuj1) at day 30 (glial co-cultures - scale bar 30 um). (D) Immunofluorescent staining for MN-enriched SMI-
32, cholinergic transcription factor Islet1 and neuronal MAP2 at day 30 (glial co-cultures - scale bar 30 ym). (E) Quantification for
cells in B-D (n=10). (F) Quantification of expression of selected markers in five independently differentiated lines (five cell lines,
n=2 each). (G) Differentiation schemes implemented to compare liMNs with bona fide MN derived from pluripotent cells by
conventional small molecule induction (2D MN, in purple). (H) Morphology of neuronal cells produced: piNs, liMNs and 2D-MN
(scale bar 50 um). (I) RT-gPCR quantification of MN markers between liMNs (green) and 2D-MN (purple) (n=3).

liMNs form active synaptic networks and contact muscle cells in vitro

We next set out to assess liIMNs functional properties and ability to form synapses.
liIMNs expressed both pre- and post-synaptic molecules Synaptophysin and PSD-95 (Figure
4A, Figure S4A-B) and displayed abundant staining for Synapsin and axonal AnkyrinG,
similarly to piNs (Figure S4C). Multielectrode arrays (MEAs) analyses showed that cultures
have a steady increase in spiking rates over time (Figure S4D-E). Treating cells with
potassium-gated channel opener Retigabine, a potential therapeutic agent for ALS®"38
silenced cultures underlining the usefulness of liIMNs as model for therapeutic strategies in
neurodegenerative diseases (Figure 4B).
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MNs are the only neurons to connect with muscles through a highly specific synapse:
the NMJ. To test the ability of lIMNs to form NMJ-like structures we established co-cultures
with murine muscle cells in compartmentalised microfluidic devices where neurons grown in
one chamber can extend axons through groves that connect to muscle cells (Figure 4C).
Staining showed that liIMNs extended neurites to the second chamber, contact muscle cells
and form structures expressing pre-synaptic protein Synapsin (Figure 4D'-D" and S5A-E), a

sign of an early development of contact.
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Figure 4 liMoNes can form active synaptic structures in vitro (A) Day50 liMNs express pre- and post-synaptic density proteins
(scale bar 50 um). (B) Mean number of spikes in day50 cultures treated with raising concentrations of Retigabine (n=6). (C)
Diagram of co-culture experiments of liMNs and primary murine myoblasts in microfluidic devices. (D) Immunofluorescence of
co-culture of liIMNs and primary murine myoblasts showing glia-liMNs co-cultures (right), where neurons extend axons through
the channels (middle), contacting primary muscle cells (left). (D'-D") Insets of (D) showing liMNs forming synaptic-like contacts
with muscles cells (scale bar 50 um).

104/180



105

scRNA-seq confirms expression of MN-specific genes and reproducibility of the
protocol

After confirming the MN-like properties of liIMNs, we set out to further characterise their
molecular identity and reproducibility by single cell RNA sequencing. We coupled sequencing
with two newly developed technologies: Census-seq and Dropulation®***° to enable the
characterization of lines from many different donors in a single experiment. These methods
utilise the intrinsic variability of single nucleotide polymorphisms (SNPs) within a population
as a barcode to assign identities in a mixed culture - a “village” - of multiple donors, similarly

41-43

to pooled CRISPR-Cas9 barcoded screens More precisely, Census-seq allows
population-scale, quantitative identity assignment from a mixed group of donors*°, Dropulation
can assign identities at a single cell level in a “village” for scRNAseq studies*®. With this aim
in mind, we produced liMNs “villages”: 50 embryonic stem cell lines, previously subjected to
whole-genome sequencing, were separately differentiated into liIMNs. At day 7 post-induction,
postmitotic cells were pooled in equal numbers to make up “villages” containing all donors in
one dish. Using genotypes from WGS we were able to reassign the donor identities in a mixed

village (Figure 5A).
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Figure 5 scRNA-seq confirms expression of MN-specific genes and reproducibility of the protocol (A) Pooling strategy
and village construction for Census-seq and Dropulation analysis. (B) Sandplot of Census-seq analysis showing balanced
representation of 47 detected donors throughout several days post-induction. (C) -SNE projection of scRNAseq analysis of
25,288 cells of two timepoints of mature liMNs differentiation. (D) -SNE projection with expression of markers for neurons of the
peripheral nervous system. (E) -SNE projection of 25,288 cells depicting donor’s identity of each cell from 47 donors detected
by Dropulation analysis. (F) Fraction representation of 47 donors in the two timepoints of mature liMNs differentiation.
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To ensure that the donor composition remained balanced, cells were harvested once
a week to collect genomic DNA for low-coverage sequencing. Census-seq analyses showed
that we could detect 47 of the 50 donors originally pooled and confirmed that donor distribution
remained consistent for four weeks (Figure 5B). Neurons were harvested at day 35 and day
49 for scRNA-seq and Dropulation analysis. Libraries generated from 25,288 cells
demonstrated strong expression of neuronal markers, especially of the peripheral nervous
system (PNS), NEFM and PRPH (Figure 5C-D and S6A). liMNs did not express cycling cells
markers (Figure S6B), nor markers of ventral, spinal interneuronal pools V1, V2a, V2b, V3 nor
mid-dorsal spinal interneurons VO (Figure S6C-E). liIMNs expressed MN-enriched STMN2,
NEFH, ISL1 and MNX1 (Figure S6F)'®*33444 and low but detectable expression of cholinergic
genes ACHE, SLC5A7 (Cht1), SLC18A3 (VAChT) (Figure S6G). Finally, we detected
expression of AGRN and NRG1, expressed by MNs to form NMJs (Figure S6H).

Using the newly devised Dropulation analytical pipeline, we assigned donor identity to
barcoded droplets. Initial -SNE clustering showed an even distribution of each donor (Figure
5E) and we confirmed that the contribution of each donor remained constant at both timepoints
(Figure 5F) underlying the robustness and reproducibility of the protocol. We therefore

confirmed that our protocol can reproducibly generate MN-like cells from many cell lines.

Cell villages confirm polarization generated by differential patterning of Ngn2
differentiation

To unbiasedly confirm that differential patterning strategies could generate different
neuronal fates we then compared single cell libraries from liMNs to libraries similarly generated
from piNs (Figure S7A). t-SNE clustering showed a clear separation of piNs and [iMNs (Figure
6A). All cells expressed neuronal markers (Figure 6B and S7B) but piNs expressed higher
levels of genes of dorsal, cortical and glutamatergic cells (Figure 6C and S7C), whereas liMNs
expressed higher levels of genes of ventral, spinal and cholinergic cells (Figure 6D and S7D),
confirming that the two different patterning strategies preferentially upregulate genes
connected to these distinct cellular identities in a strongly polarised manner (Figure 6E).
Interestingly, HOX genes, mostly expressed in the midbrain and in the spinal cord and known
markers of caudalisation, were highly expressed in liIMNs and barely detected in piNs (Figure
6F-G). We assigned donor identity to barcoded droplets with Dropulation and showed an even
distribution of each donor across the different clusters (Figure S7E-F) underlying the

robustness and reproducibility of these protocols.
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Figure 6 Confirmed divergent neuronal fate of piNs and liMNs (A) -SNE projection of scRNAseq analysis of 25,288 cells of
two timepoints of piNs and liMNs differentiation. (B) -SNE projection with expression of neuronal marker. (C) -SNE projection
with expression of cortical-enriched marker. (D) t-SNE projection with expression of MN-specific marker. (E) Dotplot for differential
gene expression of markers specific to either cortical excitatory neurons or spinal MNs. (F) {~-SNE projection with expression of
brachial MN-specific HOX gene expression. (G) Dotplot for gene expression of all retinoid-dependent HOX genes in piNs and
liMNs.

Ventro-caudal patterning of Ngn2 can produce different MN subtypes

In vivo motor neurons are classified in subtypes (a.k.a. pools or columns) according to
their position along the cord and the anatomical part of the body they innervate. Four groups
lie in spinal cord areas developmentally regulated by retinoids: 1. Medial Motor Column
(MMC), along the entire spine, connects to axial musculature to maintain posture, 2. cervical
Spinal Accessory Column (SAC) innervates head and neck, 3. Phrenic Motor Column (PMC),
also cervical, innervates the diaphragm, 4. Lateral Motor Column (LMC), at brachial level on
the cervico-thoracic boundary, connects to forelimbs and is divided in ventral-innervating,
medial or dorsal-innervating, lateral LMC (Figure 7A)'®. Remarkably, we were able to find
markers specific to these pools in our dataset: a small group of PHOX2B-expressing SAC-like
cells, wide expression of PMC-enriched ALCAM and POU3F1 (SCIP) and markers of both
lateral- and medial-LMCs: FOXP1 and LHX1 (Figure S8A-D).

We wondered if the discrete expression of these markers shaped subgroups with
different transcriptomic profiles. We decided to unbiasedly identify subclusters and found four
groups: liMNs 0,1,2,3 (Figure 7B). Intriguingly, markers of MN pools segregated within the
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groups demarcating an ALCAM® group, an LHX71" and a FOXP1" groups, and a small
PHOX2B" group (Figure 7C and S8E-G). No expression of MMC markers was found (Figure
S8H) consistent with reports identifying this population as less responsive to certain patterning
factors'®*. Differential genes expression analysis for genes specifically expressed in each
subgroup unbiasedly confirmed regional specification consistent with the markers described
above (Figure S8I, Table S1). We observed two additional features: expression of markers of
anterior digit-innervating MNs FIGN and CPNE4 in a small percentage of cells (Figure
S8J)*“7: and expression of HOX genes activated in response to retinoids*® and specifically in
cervical/brachial MNs*® (Figure S8K-L). Taking advantage of the Dropulation technology, we
investigated the distribution of donors within each subcluster and surprisingly found that each
of the 47 donors distributed evenly within clusters highlighting the robustness and
reproducibility of the protocol (Figure 7D and S9A-B).

To ensure that lIMNs resembled cervico-brachial MNs, we integrated our data with a
recently published scRNA-seq dataset generated from human embryonic spinal cord*, and
visualised the resulting dataset using UMAP (Uniform Manifold Approximation and Projection).
First, we confirmed we could identify neurons and progenitors of different spinal lineages
matching the cell types identified in Rayon et al. (Figure S10A-D). In the integrated analysis,
liMoNes clustered closely to embryonic post-mitotic MNs (MNs) (Figure 7E), while they
clustered separately from both sensory neurons and dorsal interneurons (Figure 7F) and
partially closer to ventral interneurons (Figure 7G and S10E), further validating the MN-like
fate of lIMNs. We then isolated MN-like cells from the integrated dataset and analysed them
separately from the rest of the spinal cord, liIMNs and primary MN clustered separately from
progenitor cells (pMNs) (Figure 7H). Consistent with HOX expression, liMNs clustered more
closely to MN of brachial origin, consistent with the more caudal position of samples in the
primary human dataset and therefore low expression of more hindbrain markers (Figure S10F-
G), and from mid-to-late stages of development (Figure 71). Taken together, our integrative
analyses with human embryonic spinal cord cells not only confirms the MN identity of liMoNes,
but also demonstrates that are composed of a plethora of motor neuron subtypes that
intrinsically recapitulates pools and columns identified in the cervical and brachial spinal cord

and that these subtypes can be robustly generated in a myriad of cells lines.
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Figure 7 Ventro-caudal patterning of NGN2 can produce different MN subtypes. (A) Diagram of known pools of MN subtypes
along mammalian spinal cord. (B) --SNE projection of four, unbiasedly identified subclusters in the 25,288 cells analysed. (C)
Dotplot for differential gene expression of MN subtype-specific markers in the four cervico-brachial MN groups. (D) Fraction of
each donor’s share between the identified subclusters as calculated by Dropulation. (E) t-SNE projection of integrated datasets:
liMoNes and MNs and pMNs (progenitors) from human embryonic spinal cord Rayon et al. 2021. (F) t-SNE projection of
integrated datasets: liIMoNes, sensory neurons and dorsal interneurons from Rayon et al. 2021. (G) t-SNE projection of integrated
datasets: liMoNes and ventral interneurons from Rayon et al. 2021. (H) -SNE projection of integrated datasets with MNs only. (l)
t-SNE projection of integrated datasets with MNs only with regionality and timepoints (Carnegie Stage) from Rayon et al.
highlighted.
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DISCUSSION

In this study we describe a rapid and efficient protocol to generate human MN-like cells
from hPSCs by combining the overexpression of neuralising factor Ngn2° and ventralising and
caudalising small molecules patterning in human ESC/iPSCs?®**°. We demonstrated that
different patterning molecules can direct Ngn2-driven neuralisation into the specification of
distinct neuronal fates that are maintained during in vitro culture. In particular, we show that
ventral-caudal patterning induces expression of the MN-specific TF MNX71/Hb9 in >90% of
differentiated cells bypassing the previously used sorting methods to isolate MN from mixed
cultures and in a shorter period of time. The ventro-caudalised cells expressed pan-MN
markers as identified in vivo and resembled bona fide hPSC-derived MN giving them a lower
motor neuron identity - hence lower induced Motor Neuron (liMoNes/liMNs). liIMNs generated
electrophysiologically active cultures capable to form early contact points with muscle cells in
vitro. By leveraging newly developed single-cell RNA-sequencing analyses tools, we
demonstrated that this protocol could successfully generate a previously reported hard-to-
produce neuronal cell type by a straightforward one-step programming. Additionally, we
showed that the differentiation scheme is highly scalable and reproducible across 47 cell lines,
and that the generated cultures contain a diverse population of disease-relevant MN subtypes
that closely in part resemble their human, embryonic, in vivo counterpart.

The protocol described here enabled us to overcome some of the main issues reported
in previously published differentiation schemes based on small molecules patterning.
Specifically, we showed how with a single step induction, we were able to generate in only
seven days, a pure population of post-mitotic neurons in which virtually all cells expressed the
MN-specific marker MNX1/Hb9, whereas most protocols reported at least two weeks of
differentiation to achieve partial expression of this reporter'’. Moreover, we demonstrated how
the enforced expression of one transcription factor can achieve complete neuralisation of cells
to avoid the heterogeneous generation of other cell types on a cell-line-to-cell-line dependent
manner* and how this method could be replicated in dozens of pluripotent lines. This single-
step, 7-day induction protocol would allow the generation of defined motor neuron cultures for
in vitro modelling studies and avoid time-consuming and expensive cell-sorting step to select
relevant cell types from mixed ventral-caudal populations®. Intriguingly, very few reports

showed NMJ-like structures in vitro from human MNs®'-%¢

and so far only one has established
a system that allows it in culture conditions that resemble human physiology®’. The
combination of our highly pure, accelerated protocol and this report could allow further
understanding of NMJs in a physiologically relevant, human context.

Our study is among the first reports to highlight the malleability of Ngn2-based
reprogramming and its ability to be directed to differential states by small molecules patterning

mimicking embryonic development. We have thoroughly demonstrated in a previous report
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that patterning can direct Ngn2 towards a cortical-like state'’, but this is the first side-by-side,
systematic comparison of the ability of this programming method to diverge into different
neuronal fates. Others have reported that overexpression of Ngn2 alone is able to produce an
admixture of different neuronal subtypes of both the central and peripheral nervous system'?,
confirming that Ngn2-driven neuralisation yields several neuronal subtypes. Here, we expand
on this biology showing that small molecule patterning can direct the multipotent neuralising
ability of Nuerogenin2 to populations of regionally specified neurons in a robust, reproducible
manner.

Many molecular studies have shown how retinoids can specifically act as epigenetic
modulators, open chromatin domains in neural progenitor cells consistent with spinal cord
identity and aid posteriorisation in MN differentiation systems'®. Moreover, transcriptomic and
epigenomic studies along NIL-based MN differentiation have shown that Ngn2 acts
independently of the Isl1-Lhx3 heterodimers, upregulating neuralising factors that in turn open
sites of chromatin that allow further specification into MN-fates®®. Intriguingly, others have
reported that overexpression of Ngn2 in fibroblasts coupled with patterning factors could
generate small populations of cholinergic neurons, hinting at the malleability of this system®.
We speculate that the addition of patterning molecules to Ngn2-programming permits the
opening of chromatin at sites of MN-specific genes usually achieved by the overexpression of
other TFs forming a permissive epigenetic landscape that allows specification into motor
neuron identity. Other groups have reported that in other TF-based differentiation systems,
addition of RA can upregulate sets of genes that the TFs alone could not achieve®, confirming
that combinatorial approaches might aid specification into desired cell types.

The use of only one transcription factor combined with small quantities of inexpensive
patterning molecules renders this protocol amenable to large-scale, high-throughput studies
compared to previous studies'?. The combinatorial use of multiple TFs often induces the
generation of extremely specified subtypes of MNs?? that, even though pure and well-
defined, limit the ability of hPSC to differentiate into the intrinsic admixture of MNs generated
by retinoids/Shh and only elicits the transcriptomic programs of restricted pools*®. Moreover,
others have demonstrated how combinations of multiple transcription factors might take longer
time to develop hPSC into neurons when compared to Ngn2 alone and that the timing of
overexpression could interfere with the subtypes of neurons generated®. Here we propose
that a short pulse of Ngn2 overexpression coupled with patterning molecules not only reduces
the number of TF needed to direct the specification of neuralisation but also allows intrinsic
developmental processes to take place and generate myriad MN subtypes seen in spinal cord
development, as shown by the similarities with our cells and primary samples. Given the

differential susceptibility of subtypes of MNs to degenerate in certain diseases like ALS®’,
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having both resistant and susceptible populations of MNs reproducibly generated in one dish

could help to further understand the dynamic process of neurodegeneration.

Limitations of this study

One of the strengths of this protocol is its high reproducibility and accelerated nature.
However, the method still lacks pivotal positional, geographical, sequentially timed signals that
generate the milieu of motoneurons in the spinal cord. This method thus produces MNs that
do not exactly reproduce transcriptomic profiles of columns in vivo, for example the incomplete
co-expression of HB9 and Islet1 in young neurons that is only achieved later into the
differentiation, the discrepancy between |iIMNs identities at protein and RNA-levels, or the
incomplete overlap of certain markers between [IMNs and their in vivo counterparts.
Considering different concentrations and timing of patterning molecules and also exploring

45,62

RA-independent ways of generating MNs™*“, would be an important follow-up to this study.
Furthermore, our microfluidic system did not show clustering of postsynaptic acetylcholine
receptors (AchR) on muscle cells. Formation of mature NMJ contacts has been a primary
limitation of in vitro hPSC-derived MNs and muscle co-cultures as observed in vivo®. Towards
optimization of this model, a recent study has shown that supplementation of agrin and laminin
increased clustering of AchR in in vitro human co-cultures system®’, adapting this system to
our protocol might provide essential steps for the further maturation of these synaptic
structures for liMNs. These discrepancies are shortcomings of accelerated systems like ours,
nonetheless, our approach provides a platform for the study of the biology of different MN
subtypes and their functionality in health and disease in a scalable, highly reproducible manner

never achieved before.
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INCLUSION AND DIVERSITY

We worked to ensure diversity in experimental samples through the selection of the cell lines.
We worked to ensure diversity in experimental samples through the selection of the genomic
datasets. One or more of the authors of this paper self-identifies as an underrepresented
ethnic minority in their field of research or within their geographical location. One or more of
the authors of this paper self-identifies as a gender minority in their field of research. One or
more of the authors of this paperself-identifies as a member of the LGBTQIA+ community.

STAR METHODS

LEAD CONTACT

Kevin Eggan (kevin.eggan@bmrn.com).

MATERIALS AVAILABILITY

This study did not generate new unique reagents.

DATA AND CODE AVAILABILITY

All codes and algorithms necessary for re-analysis of the single-cell RNA-sequencing data are publicly
available and can be found in other publications3%4°. Raw sequencing data and count matrices have
been deposited in GEO and DUOS and can be requested using the ID GSE219112 and DUOS-000121
(https://duos.broadinstitute.org/). This paper does not report original code. Further information requests
can be directed to Kevin Eggan (kevin.eggan@bmrn.com) or Francesco Limone
(francesco_limone@fas.harvard.edu).

EXPERIMENTAL MODELS AND SUBJECT DETAILS

NGN2-based differentiations

Stem cells were grown in mTeSR1 (Stem Cell Technologies, 05850) and grown on Matrigel (Corning)
coated pates at 37°C and 5% CO2. hPSCs were infected with TetO-Ngn2-Puro, TetO-GFP and riTA
lentiviral constructs® produced by Alstem in mTeSR medium with 1 uM RoCK inhibitor Y-27632 for 24
hours. hPSs were then passaged and differentiation was started when cells reached 70-80%
confluency. For the first four days of differentiation cells were grown in induction medium: DMEM/F12
(Life Technologies, 11320-033), N2 supplement (0.5%v/v, Gibco), 1X GlutaMAX (Gibco), 0.1mM Non-
essential amino acid (Gibco), 0,5% glucose, doxycycline hyclate (2 pg/mL). Small molecules added:
day 1 — DOX: none; LSB: 10 uM SB431543 (Custom Synthesis), 200 nM LDN193189 (Custom
Synthesis); piNs: 10 uM SB431543 (Custom Synthesis), 200 nM LDN193189 (Custom Synthesis), 4
uM XAV939 (Stemgent, 04-00046); [iIMNs: 10 uM SB431543 (Custom Synthesis), 200 nM LDN193189
(Custom Synthesis), 2 uM retinoic acid (Sigma) and 2 uM Smoothened agonist (Custom Synthesis).
Day 2 to 4 - DOX: puromycin (5 pg/mL); LSB: puromycin (5 ug/mL), 10 uM SB431543 (Custom
Synthesis), 100 nM LDN193189 (Custom Synthesis); piNs: puromycin (5 pg/mL), 10 uM SB431543
(Custom Synthesis), 100 nM LDN193189 (Custom Synthesis), 2 uM XAV939 (Stemgent, 04-00046);
[iIMNs: puromycin (5 ug/mL), 10 uM SB431543 (Custom Synthesis), 100 nM LDN193189 (Custom
Synthesis), 1 uM retinoic acid (Sigma) and 1 uM Smoothened agonist (Custom Synthesis). On day 4
cells were dissociated using Accutase (Gibco) and replated in a 1:2 dilution to ensure puromycin
selection of uninfected cells. For day 4 to 7, DOX, LSB and piNs cells were grown in neuronally
supportive medium supplemented with small molecules as described above: Neurobasal (Life
Technologies 21103049) supplemented with B27 supplement w/o VitA (2%v/v, Gibco), 1X GlutaMAX
(Gibco), 0.1mM Non-essential amino acid (Gibco), 0,5% glucose with the addition of 10 ng/ml of BDNF,
CNTF and GDNF (R&D Systems). For day 7 to 10, liIMNs were grown with small molecules as described
above in neuronally supportive medium: Neurobasal (Life Technologies 21103049) supplemented with
B27 supplement (2%v/v, Gibco), N2 supplement (0.5%vV/v, Gibco), 1X GlutaMAX (Gibco), 0.1mM Non-
essential amino acid (Gibco), 0,5% glucose with the addition of 10 ng/ml of BDNF, CNTF and GDNF
(R&D Systems). On day 7, cells were dissociated using accutase and replated on glial co-cultures as
described previously?® in medium described above. From this time onwards, half-media change was
performed every 2-3 days in neuronally supportive media described above with the only addition of 10
ng/ml of BDNF, CNTF and GDNF (R&D Systems). For most experiments, neurons were co-cultured
with murine glial cells (50,000 cells/cm?) derived from postnatal brains (P0-2) as previously described?®,
neurons were mixed with glia when replating day 7 cells 30,00 cells/cm?.

2D MN differentiation

Stem cells were grown in mTeSR1 (Stem Cell Technologies, 05850) and grown on Matrigel (Corning)
coated pates at 37°C and 5% CO.. Stem cells were differentiated to bona fide 2D Motor Neurons as
previously described®®:648% This protocol based on the principle of neuralization by dual-Smad inhibition
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followed by the inhibition of NOTCH/FGF pathway both under the patterning capability of retinoids and
Sonic Hedgehog. Briefly, once 90-95% confluent, stem cell medium was switched to differentiation
medium: 1:1 mix of Neurobasal (Life Technologies 21103049) and DMEM/F12 (Life Technologies,
11320-033) supplemented with B27 supplement (2%v/v, Gibco), N2 supplement (0.5%v/v, Gibco), 1X
GlutaMAX (Gibco), 0.1mM Non-essential amino acid (Gibco). For the first six days, differentiation
medium was supplemented with 10 uM SB431543 (Custom Synthesis), 100nM LDN193189 (Custom
Synthesis), 1 uM retinoic acid (Sigma) and 1 uM Smoothened agonist (Custom Synthesis). For the
second week, differentiation medium was supplemented with: 5 uM DAPT (Custom Synthesis), 4 uM
SU-5402 (Custom Synthesis), 1 uM retinoic acid (Sigma) and 1 uM Smoothened agonist (Custom
Synthesis). To isolate neurons from mixed cultures we utilised an immune-panning based method
previously described365¢. At day 14, monolayers were dissociated with Accutase (Gibco) for 1 hour at
37°C. After gentle, repeated pipetting, cells were collected, spun down and resuspended in sorting
buffer and filtered. Single cell suspensions were incubated with antibody against NCAM (BD Bioscience,
557919, 1:200) for 25 minutes, washed and NCAM* cells were sorted with an BD FACS Aria Il cell
sorter. Sorted 2D MN were plated on mouse glial cultures in motor neuron medium (Neurobasal (Life
Technologies 21103049) supplemented with B27 supplement (2%v/v, Gibco), N2 supplement (0.5%v/v,
Gibco), 1X GlutaMAX (Gibco), 0.1mM Non-essential amino acid (Gibco), 0,5% glucose) with the
addition of 10 ng/ml of BDNF, CNTF and GDNF (R&D Systems). Neurons were co-cultured with murine
glial cells (150,000 cells/cm?) derived from postnatal brains (P0-2) as previously described?®.
Co-culture of Ngn2 motor neurons and mouse myoblasts in microfluidic devices

Mouse myoblasts from hindlimb skeletal muscles of young adult mice and mouse glia form neonatal
mouse brains were isolated and cultured as previously described?%”. Microfluidic device chips (XC450,
XONA Microfluidics) were designated a motor neuron compartment and a muscle compartment. The
motor neuron compartment was coated with 0.1 mg/ml poly-L-ornithine (Sigma-Aldrich) in 50 mM
Borate buffer, pH = 8.5 and 5 pg/ml laminin (Invitrogen), while the muscle compartment was coated
with Matrigel (Corning). Day 7 Ngn2 motor neurons and mouse glia were seeded at a concentration of
100,000 neurons-200,000 glia/device. Myoblasts were seeded at a concentration of 150,000 device.
Motor neurons were seeded in the motor neuron media described above with the addition of 10 ng/ml
of BDNF, CNTF and GDNF (R&D Systems). For seeding and culturing the first 2 days, myoblasts were
maintained in Myoblast media (DMEM/F12, 20% Foetal Bovine Serum and 10% heat-inactivated Horse
Serum, and 10 ng/ml bFGF), after that, differentiation was initiated by adding myoblast differentiation
media (DMEM high glucose, 5% heat-inactivated Horse Serum). Myoblast were sustained in
differentiation medium for 3 days and then switched to motor neuron medium with the addition of 10
ng/ml of BDNF, CNTF and GDNF (R&D Systems) and while medium in motor neuron compared
contained no neurotrophic factors to start recruitment of motor neuron axons to the muscle compartment
by generation of a volumetric gradient (50 pl difference in volume between the compartments) in the
device. Volumetric gradient was kept for every medium change, done every other day. Co-cultures were
fixed at day 21 post-seeding for visualization of motor axon-muscle synaptic contacts.

METHOD DETAILS

FACS analyses

We used an Hb9::GFP reporter stem cell line previously described infected with the Ngn2 lentiviral
constructs as described above?. Briefly, cells were differentiated in 24 well plates and subjected to
different patterning molecules. At each time point, cells were dissociated with Accutase (Gibco) as
previously described, each replicate was frozen in Cryostor® CS10 (STEMCELL Technologies). After
all samples were collected, cells were thawed in separated tubes are resuspended in sorting buffer as
described by others®, The BD FACS Aria Il cell sorted was used to quantify the percentage of
Hb9::GFP* cells in each sample after using DAPI signal to determine cell viability.
Immunofluorescence assays

Cells were washed once with PBS, fixed with 4% PFA for 20 minutes, washed again in PBS and blocked
for one hourin 0.1% Triton in PBS with 10% donkey serum. Fixed cells were then washed and incubated
overnight with primary antibodies at 4°C. Primary antibody solution was washed and cells were
subsequently incubated with secondary antibodies (1:2000, Alexa Fluor, Life Technologies) at room
temperature for 1 hour, washed with PBS and stained with DAPI. Primary antibodies used: Tuj1 (R&D,
MAB1195), Islet1 (Abcam, ab178400), MAP2 (Abcam, ab5392), Synapsin (Millipore, AB1543), SMI-32
(BioLegend, 801702), Chat (Millipore, AB144P), Foxp1 (Abcam, ab16645), AnkyrinG (Millipore,
MABN466), Synaptophysin (Synaptic Systems, 101 004), PSD-95 (Abcam, ab2723), STMN2 (Novus
NBP49461). Images were analysed using FIJI.
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RNA extraction and RT-qPCR analyses

RNA was extracted with the miRNeasy Mini Kit (Qiagen, 217004). cDNA was produced with iScript kit
(BioRad) using 50 ng of RNA. RT-gPCR reactions were performed in triplicates using 20 ng of cDNA
with SYBR Green (BioRad) and were run on a CFX96 Touch™ PCR Machine for 39 cycles at: 95°C for
15s, 60°C for 30s, 55°C for 30s.

Western blots

For WB analyses, cells were lysed in RIPA buffer with protease inhibitors (Roche). After protein
quantification by BCA assay (ThermoFisher), ten micrograms of protein were preheated in Laemmli’'s
buffer (BioRad), loaded in 4-20% mini-PROTEAN® TGX™precast protein gels (BioRad) and gels were
transferred to a PDVF membrane. Membranes were blocked in Odyssey Blocking Buffer (Li-Cor) and
incubated overnight at 4°C with primary antibodies (1:1000 dilution). After washing with TBS-T,
membranes were incubated with IRDye® secondary antibodies (Li-Cor) for one hour and imaged with
Odyssey® CLx imaging system (Li-Cor). Primary antibodies used: Tuj1 (R&D, MAB1195), Synapsin
(Millipore, AB1543), PSD-95 (Neuromab, 75-028), GAPDH (Millipore, MAB374).

Multi Electrode Array analysis

Electrophysiological recordings were obtained by Axion Biosystems Multi-Electrode Array (MEA) plate
system (Axion Biosystems, 12 wells or 48 wells formats) that recorded extracellular spike potential. On
day 7 of differentiation, cells were detached and counted and mixed with murine glia as described
above. MEA plates were previously coated with Matrigel (Corning) and cells were seeded in Neurobasal
medium supplemented with ROCK inhibitor for 24 hours. Recordings were performed every 2-3 days
and medium was changed after recordings. Analysis was performed with AxIS (Axion Biosystems —
Neuronal Metric Tool) as described by others'":68,

QUANTIFICATION AND STATISTICAL ANALYSIS

Stem cell lines, villages, single-cell RNA-sequencing, Census-seq and Dropulation

Methods for Census-seq and Dropulation are described elsewhere®®4°, brief description below:
Human pluripotent cell lines and village generation®®

Human ESC lines used in this study were part of a collection previously described . These lines were
exome sequenced and whole genome sequenced after minimal passaging and cultured as described.
Individual lines were cultured and differentiated into neurons as described. At day 6 after doxycycline
induction, when cells are postmitotic, cultures were dissociated with Accutase (Gibco) and resuspended
in mTeSR medium with 1 uM RoCK inhibitor Y-27632. To generate balanced “villages”, cell suspensions
were counted using a Scepter 2.0 Handheld Cell Counter (Millipore Sigma) with 60 uM Scepter Cell
Counting Sensor (Millipore Sigma), 0.5M viable cells from each donor cell line were mixed. At this
timepoint 0.5M cells were harvested for Census-seq analysis and ensure balanced representation, the
rest was plated for subsequent experiments.

DNA isolation and library preparation3®

Every seven days, pellets were harvested from separate wells of the “liMNs village” after dissociation
with Accutase (Gibco). Pellets were lysed and DNA precipitated and DNA was used to generate libraries
using TruSeq Nano DNA Library Prep Kit (lllumina), libraries were sequenced using NextSeq 500
Sequencing System (lllumina). Generated libraries were aligned to human genome using BWA,
reference genome was selected to match the genomes used to generate VCF files containing the
whole-genome sequenced genotypes of each donor cell line. To exclude confounding mouse DNA from
glia, a multi-organism reference was used, reads competitively aligned to both genomes and only high
quality (MQ=10) were used for assignment.

Census-seq analysis®®

The algorithms used to assign donor contribution to villages are extensively described elsewhere and
their validation is outside the scope of this publication. However, briefly the aim of Census-seq
algorithms is to accurately detect and precisely quantify the contribution of donors in a mixed DNA
sample to monitor population dynamics over time and/or conditions. This can be achieved
systematically and inexpensively by lightly sequencing genomic DNA, the algorithms attempt to
determine the donors’ mixture by determining the ratio of alleles present at every SNP. The gradient-
descent algorithm can then use this data to identify the donor-mix that maximizes the likelihood of any
observed sequence data. Once the best ratio is identified, the algorithms compare the computed “most
likely donor mix” to a VCF file that contains whole genome-sequencing data from all stem cell lines in
the collection. These VCF files contain a filtered and refined matrix with alternate alleles at each variant
for every donor’s genotype. Census-seq can use this data to find a vector of donor-specific contribution
(to the mix) that can explain the allele counts detected at each site in the sequencing data provided.
For each site, the allele frequency is inferred using the VCF reference files and its proportion of donor
in the pool of DNA can then be calculated over the total counts for that specific site. The algorithms are
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then able to sum the proportion of each donor’s representation at every specific site and calculate total
representation of each genotype, a.k.a. donor, in the pooled DNA, providing us an estimate of the ratio
of donors in the village.

Dropulation: scRNA-sequencing and donor assignment*°

For single-cell analyses, cells were harvested and prepared with 10X Chromium Single Cell 3' Reagents
V3 and sequenced on a NovaSeq 6000 (lllumina) using a S2 flow cell at 2 x 100bp. Raw sequence files
were then aligned and prepared following previous Drop-seq workflow’. Human reads were aligned to
GRCh18 and filtered for high quality mapped reads (MQ=10). In order to identify donor identity of each
droplet, variants were filtered through several quality controls as described previously be included in
the VCF files*®"", to summarise the goal is to only use sites that unambiguously and unequivocally can
be detected as A/T or G/C. Once both the sequenced single-cell libraries and VCF reference files are
filtered and QC’ed, the Dropulation algorithm is run. Dropulation analyses each droplet, hence a cell,
independently and for each cell generates a number representing the likely provenance of each droplet
from one donor. Each variant site is assigned a probability score for a given allele in the sequenced
unique molecular identifier (UMI) calculated as the probability of the base observed compared to
expected based, and 1 — probability that those reads disagree with the base sequenced. Donor identity
is then assigned as the computed diploid likelihood at each UMI summed up across all sites.

This probability-based analysis allows to increase confidence in donor detection per barcode by
increase the numbers of individuals in the VCF files: more individuals, more UMIs with site variants,
more confident scores, higher quality donor assignments. After assigning a “likelihood score”, sites
where only few donors have detected reads are ignored and scores are adjusted to allow only high
confidence variant sites to be included. This second computer score is then added to the original
likelihood as a weighted average score, this mixed coefficient defines the proportion of the population
that presents each genotype and in adds to 1. Based on this mixed coefficient that takes into account
reads mapped to each donors and the confidence to which each site can be used for this assignment,
Dropulation then contains algorithms able to detect “doublets”, barcoded droplets with genetic DNAs
assigned to two different donors, to avoid analysing barcodes with admixed identity but also to avoid
excluding barcoded droplets with unclear donor assignment based on the coefficient previously
calculated*°.

Once scores are calculated, the algorithm assigns donors to single droplets. Then runs the double
detection and cells that are likely doublets are filtered out. After that, donor identities are confirmed only
if p-value<0.05. These cells are then validated by crossing proportions of each donors as known inputs
in the village and excluding any unexpected identity. Donors composing less then 0.2% of the libraries
are excluded from the experiment*°.

More details on the preparation of libraries and donor identification can be found in published work?.
scRNAseq analysis of villages and integrated datasets

Matrices from neuronal villages were built from 12 separate runs of 10X Chromium Single Cell 3’
Reagents V3 as described above. Any barcode with less than 400 genes and combined UMI matrices
were used for downstream analysis using Seurat (v3.0.2)"2. After that, barcodes were further filtered by
number of genes detected 1500<nFeature_ RNA<7000 and percent of mitochondrial and ribosomal
genes to reduced the number of dying -cells/debris: percent.mito<20, 3<percent.RPS<15,
5<percent.RPS<10. The matrix was then processed via the Seurat pipeline: log-normalized by a factor
of 10,000, followed by regressing out UMI counts, mitochondrial and ribosomal genes, scaled for gene
expression. After quality filtering, barcodes were used to compute SNN graphs and -SNE projections
using numbers of Principal Components based on ElbowPlot analysis. SNN-graphed -SNE projection
was used to determine minimum number of clusters obtain at resolution=0.2 (FindClusters) as
described previously®®. Integration with Rayon et al. 2021 was performed using matrices and metadata
available at https://github.com/briscoelab/human_single_cell. Only barcodes with available metadata
concerning their cellular identity from Rayon et al. were selected to use identities assigned by peer
review publication*4. The available barcodes were then loaded into Seurat v4.0.173. Integration with
libraries previously generated from villages of iIMNs was achieved using SCTransform on a merged
object running the PreSCTlIntegration() function according to the sctransform integration pipeline’™.
Analysis of MN alone was conducted as described above by comparing liMNs generated in this study
with barcodes identified as “pMN” and “MN” by Rayon et al.
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Supplementary Figure 1. Ngn2 neuronal patterning can be directed to different neuronal fates by small molecules
patterning

(A-B) RT-gPCR quantification of pluripotency genes and genes involved in pan-neuronal development (p-values from one-
way ANOVA).

(C) Flow cytometry quantification of Hb9::GFP positive cells by day 4 for the other conditions.

(D) Hb9::GFP expression at day 7 post-induction in original Ngn2-induced Dox and LSB conditions (scale bar 50 um).
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Supplementary Figure 2. Patterned Ngn2-induced neuronal fate is maintained throughout the differentiation.

(A) Quantification of arborization of piNs and liMNs.

(B) Viral tetO-GFP imaging at day 30 in piNs and liMNs, showing different cell morphology (scale bar 50 um).

(C) RT-gPCR quantification of pan-neuronal markers (p-values from one-way ANOVA).

(D) IF analysis for pan-MN SMI-32, Islet1 and Hb9::GFP reporter expression at day 7 post-induction in two clones of the same
reporter (scale bar 50 um).

(E) Images of Hb9::GFP expression at day 7, 10 and 14 post-induction in piNs and liMNs by immunofluorescence.
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Supplementary Figure 3. Bona fide, hPSC-derived 2D MN express similar MN markers as liMNs.

(A) Hb9::GFP expression day 14 of differentiation in 2D-MN (scale bar 50 um).

(B) Flow cytometry quantification of Hb9::GFP positive cells in day 14 2D-MN.

(C) Immunofluorescence analysis for cholinergic transcription factor Islet! and neuronal cytoskeletal proteins
MAP2 and TUBB3 (Tuj1) in sorted 2D MN (scale bar 50 um).

(D) Quantification for cells in A.
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Supplementary Figure 4. liMNs can form active synaptic contacts comparable to previously characterised piNs.

(A) Day 50 liMNs express pre- and post-synaptic density proteins (glial co-cultures - scale bar 50 um).

(B) Western blot analysis shows expression of pre- and post-synaptic density molecules in both cell types.

(C) Immunofluorescence for proteins involved in the formation of functional axons and synaptic structure in piNs and liMNs (glial
co-cultures - scale bar 50 um).

(C-D) Network activity of liIMNs. (C) Mean number of spikes in 10-s period in liMNs co-cultured with murine cortical glial
preparations. (D) Proportion of active electrodes detecting spontaneous activity throughout the differentiation (days). Data fit by
sigmoidal function (green), median sigmoidal in black.
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Supplementary Figure 5. liMoNes can form NMJ-like structures in vitro.
Immunofluorescence of co-cultures of liIMNs and primary murine myoblasts from three devices from separate rounds of differentiation.

(A) Representative image of neurons extending axons through the channels (middle), contacting primary muscle cells (rigth).
(B) Insets of (A) showing liIMNs forming synaptic-like contacts with muscles cells.

(C-E) Representative images from separate devices showing liMNs forming synaptic-like contacts with muscles cells (n=10 devices).
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Supplementary Figure 6. scRNAseq confirms expression of MN markers.
(A) t-SNE projection with expression of markers specific for post-mitotic neurons.
(B) t-SNE projection with expression of cycling cells markers.

(C) t-SNE projection with expression of inhibitory neurons.

(D) t-SNE projection with expression of spinal ventral inhibitory V1, V2a, V2b, V3.

(E) t-SNE projection with expression of markers specific for mid-spinal neurons V0.

(F) t-SNE projection with expression of MN-specific markers.
(G) t-SNE projection with expression of genes involved in cholinergic machinery.
(H) t-SNE projection with expression of genes involved NMJ formation.
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Supplementary Figure 7. piNs and liMNs transcriptomic differences.

(A) Pooling strategy and village construction for sequencing analysis of piNs and liMNs.
(B) t-SNE projection with expression of neuronal markers.

(C) t-SNE projection with expression of cortical-enriched markers.

(D) t-SNE projection with expression of MN-specific markers.

(E) t-SNE projection of cells depicting donor’s identity of each cell from 47 donors detected by Dropulation analysis.

(F) Fraction representation of 47 donors in the two timepoints for liIMNs and day 35 piNs.
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Supplementary Figure 8. Sub-columnar localization of liMNs.

(A) t-SNE projection with expression of markers specific for SAC subtypes.
(B) t-SNE projection with expression of markers specific for PMC subtypes.
(C) t-SNE projection with expression of markers specific for mLMC subtypes.
(D) t-SNE projection with expression of markers specific for LMC subtypes.

(E) Dotplot for expression of markers specific for SAC — Spinal Accessory Column.

(F) Dotplot for expression of markers specific for PMC — Phrenic Motor Column.
(G) Dotplot for expression of markers specific for LMC — Lateral Motor Column.
(H) Dotplot for expression of markers specific for MMC — Median Motor Column.

(1) Heatmap of genes differentially expressed in each subtype, highlighted genes in volved in subtype specific MN biology.
(J) t-SNE projection with expression of markers expressed by digit-innervating motor neurons.

(K) Schematic of spinal cord HOX genes expression.
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(L) Dotplot for expression of all HOX genes detected in the four subclusters. Retinoid dependent Hox activation in vertebrates (green

line) and specifically expressed in ventral spinal cord MNs (asterisks).
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Supplementary Figure 9. Donor composition of liMNs.
(A) Violin plot showing distribution of each donor in the villages.
(B) Heatmap depicting donors composition of each subgroup and highlighting the absence of outliers by Grubb’s test alpha=0.05.

129/180



130

MNX1

Human embryonic

'*\ spinal cord

liMoNes

k]

c SLC18A3 ISL1 AGRN

—
"'“'u,
%4

m—

10 0 10 °
UMAP_1 )

OLIG2 EN1 ASCL1 LHX9 LHX5

S

£ €
E F . _
Nonpeptidergic primary MN liMoNes primary MN liMoNes
Peptidergic
3 b}
10 . " I, . Q
® L
5 [ L} E = 13 T & = [ T E ] [3
o L s = P
%l
3 G . .
primary MN liMoNes primary MN liMoNes
m He
8 3 Q3 py S}
-5 H 24 it X3 : i X
3] gl 5

3 T B} 5
roTa) [rove)

UMAP_1

Supplementary Figure 10. Comparison of liMoNes and human embryonic spinal cord from Rayon et al. 2021.

(A) t-SNE projection of integrated datasets: liMoNes and human embryonic spinal cord Rayon et al. 2021.

(B) t-SNE projection with expression of MN-specific markers.

(C) t-SNE projection with expression of genes involved in cholinergic machinery.

(D) t-SNE projection with expression of markers specific to spinal, ventral inhibitory neurons, mid- and dorsal spinal neurons and
progenitor cells.

(E) t-SNE projection of integrated datasets: liMoNes and human embryonic spinal cord with cell types identified by Rayon et al. 2021.
(F-G) t-SNE projection with expression of markers specific to hindbrain/cervical (F) and brachial (G) MN pools in primary MNs from
Rayon et al. 2021 (left side of panel) and liMoNes (right side of panel).
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Chapter 5:

Future directions: building stem cell models to study ALS-

driven changes in vitro

This section will summarise ongoing efforts to use the models established in chapter
4 in conjunction with changes identified in chapter 3 to the nomination of proteostatic
modulators that might function as neuroprotective targets. Moreover, this section will present
preliminary data on the characterization of co-culture systems of different brain cell types
derived from human iPSCs described in chapter 5 that could be use to study changes
identified in sporadic ALS brain samples described in chapter 3.

With this section we hope to provide new, more complex in vitro systems to model

degeneration and multicellular interactions disrupted in ALS.

This work has been generated thanks to the effort of several talented scientists:
Limone F., Couto A., Smith J.L.M., Guerra San Juan I., Joseph B. J., Therrien M.,
Smith K., Burberry A., Mordes D., Pietildinen O., Kadiu I., Eggan K.

Work partially funded by UCB Pharma, Harvard Department of Stem Cell and

Regenerative Biology, Broad Institute of MIT and Harvard and Harvard Stem Cell Institute.
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Identification of potentially protective targets in response to proteostatic

stress in human iPSC-derived neurons

SUMMARY

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease
characterised by a progressive loss of motor function that results from the degeneration of
motor neurons in the cortex and the spinal cord. As of today, only three drugs have been
approved for use as therapeutics for ALS but, although efficient, they extent lifespan by only
a few months. Many groups are tirelessly working to identify new candidates for therapies and
eventually a cure but many have recognised the new for the field to build more robust,
specifically human models that could enhance the translationability of laboratory findings. With
this work, we aim to deeply characterise an in vitro system to robustly model proteostatic
stress in human neurons derived from induced Pluripotent Stem Cells (iPSCs) by RNA
sequencing. We used this system to, first of all, characterise canonical mechanisms activated
by proteostatic stress, secondly, to identify specifically neuronal changes driven by
proteostatic stress such as dysregulation of ALS-related genes and synaptic biology. By
comparing our findings with published single-nucleus RNA-seq studies of ALS patient cortices,
we confirmed that these alterations are not only disease-relevant but specific to excitatory
neurons degenerating in the disease. Finally, we nominate a proteosomal regulatory subunit,
PSMD12, as a possible neuroprotective target in proteostatic stress responses. Manipulation
of PSMD12 in our system resulted in alterations of protein influx that, even though initially
beneficial, might not be therapeutically translatable. The system we describe in this work
provides a platform to further dissect mechanisms disrupted in stressed neurons that might

reveal therapeutical targets useful for ALS but also for other neurodegenerative diseases.

INTRODUCTION

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder characterised by
the loss of neurons that control movements, motor neurons (MNs), in both the cortex and the
spinal cord. This rapidly progressive disease is fatal and respiratory failure occurs 2-5 years
from onset’. Although genetic studies have advanced our knowledge of the disease, only
~10% of cases are inherited and familial (fALS), whereas 90-95% of diagnoses are sporadic
(sALS), occurring without family history nor known genetic cause’2. Several studies used bulk
RNA-sequencing (RNA-seq) analysis of ALS post-mortem tissue to investigate disrupted
mechanisms and identified differences between familial® and sporadic cases*® and highlighted
shared profiles independent of disease onset’. Besides the uncertainties in underlying

mechanisms, one common feature to all ALS cases is the pathological accumulation of
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ubiquitinated protein aggregates in neurons of patients’. These aggregates are composed of
aggregated TAR DNA-binding protein-43 (TDP-43), DNA/RNA binding protein found insoluble
in at least 90% of cases®. TDP-43 has an important role in RNA biology and metabolism and
crucial studies have shown its importance in neuronal biology®, specifically in a human
context'®. The convergence of mechanisms that lead to disease is still unknown but the loss
of MNs and the fact that one of the few therapies approved for treatment is a drug that can
modulate synaptic function' puts neurons and their proteostatic balance at the centre of
interest in research and drug development.

Given the identification of highly ubiquitinated aggregates in neurons, many groups
have focused on understanding the role of proteostasis in ALS. The ubiquitin-proteasome
system, the unfolded protein response (UPR), stress of the endoplasmic reticulum (ER),
autophagy and other pathways involved in protein folding and degradation are a large
component of degenerative mechanisms in ALS'?, especially if we take into account the
number of genes linked to fALS that are involved in these pathways: UBQLN2, SQSTM1/p62,
OPTN, VCP, CHMP2B, VAPB, TBK1, FIG4, GRN, C9orf72"3. Moreover, Dipeptide Repeats
(DRPs) derived from C9orf72 hexanucleotide RNA foci can form neuronal aggregates that
sequester proteasome subunits compromising neuronal proteostasis™. This is just part of the
evidence that points at a pivotal role of protein homeostasis, specifically in neurons, in ALS".

Two questions remain key in the field: why is protein homeostasis specifically disrupted
in human neurons? What mechanisms are triggered by this imbalance? We therefore decided
to expand our knowledge of human neuronal biology in a proteostatically disrupted context.
First, we further characterised a previously established human iPSC-derived in vitro system
of neurons subjected to proteostatic stress through proteasome inhibition'®'s. Our meta-
analysis identified upregulation of several pathways involved in proteostasis in neurons under
this disease-relevant stress. We highlight novel biology by showing the downregulation of
synaptic genes in stressed neurons, further confirming the importance of neuronal excitability
in ALS. To gain more insights into primary disease, we compared this analysis with previously
published single-nucleus RNA-seq study on motorcortices of sporadic ALS patients'® and
confirmed that ALS-triggered alterations in proteostasis are indeed accompanied by loss of
synaptic transcripts in ALS patients and that these changes are specific to excitatory neurons
of the motorcortex. Finally, we leverage this comparative analysis to nominate genes that
could be neuroprotective under proteostatic stress. We focus on PSMD12, a regulatory
subunit of the proteasome, because of its pro-survival role against proteasome inhibitors and
because it was consistently upregulated both in vitro and in patients’ cells. Knock-down of
PSMD12 in stressed human neurons triggered a complex regulation of its RNA and protein
resulting in a general inhibition of the proteasome in favour of an increase in the production of

autophagic machinery, a different route to protein degradation. Our data suggests that
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manipulation of proteosomal biology could be beneficial for neuronal survival by diverting
protein degradation towards other degradative systems, however, these mechanisms are also
disrupted in ALS.

RESULTS

Modelling proteostatic stress in human neurons in vitro

We decided to start by further dissecting data presented in snRNAseq study,
specifically we took a deeper dive into the comparison of RNA-sequencing experiments of
human iPSC-derived neurons under proteostatic stress and the single-nucleus RNA
sequencing of sporadic ALS motorcortices'. At the moment, in vitro modelling of sporadic
ALS is complex and requires high numbers of lines and high-throughput methods and needs
further standardization'®. We therefore implemented transient proteasome inhibition as a
model to induce ALS-related phenotypes such as TDP-43 nuclear-to-cytoplasmic
translocation'®. This model would allow us to: 1) identify differentially regulated by neurons
under stress conditions, 2) focus on specific pathways or molecular processes that are altered
in patients when comparing to the data derived from primary human control and patient
samples.

In brief, to recapitulate proteostatic stress we generated neuronal cells from human
embryonic stem cell line engineered with a GFP-reporter under the motor neuron specific gene
Hb9, as previously described'®'®'”. We then induced proteostatic stress through the use of
known a proteasome inhibitor MG132. Neurons were cultured and once mature subjected to
two different concentrations of MG132 (0.15 and 0.5 uM) for 48 hours and collected to extract
RNA for sequencing studies (Fig. 1A). Treatment had a strong effect on cells with 97%
variance in the dataset explained by treatment regardless of the concentration (Fig. 1B), 3%
of the variance explained by different dosage and negligible residual variance which highlight
the strength of this system. Treatments were so potent that transcriptomic changes driven by
the two doses were almost overlapping (Fig.1C). For this reason, we decided to first treat the
two doses as one and investigate broad changes driven by proteasome inhibition in human
neurons. Differential gene expression analysis identified over 11,000 genes as being either
upregulated or downregulated after treatment (Fig. 1D), underlying the substantial effect on
this drug on neurons, and as a positive control we show that most proteasome subunits were

upregulated upon treatment (Fig. S1).
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Proteostatic stress responses in human neurons alters ALS-related genes

We started by focusing on genes upregulated after treatment. Around 5464 genes
were identified as being significantly upregulated by at least two-folds (adjusted p-value<0.05)
between treated and untreated neurons. Gene Ontology analysis of these genes confirmed
that protein folding responses, the proteasome and ubiquitin-binding processes were
upregulated but also apoptotic processes and vesicle trafficking were induced by proteasome
inhibition in human neurons (Fig. 2A-C and Fig. S2). Protein-protein interaction network
analysis confirmed the involvement of proteasome components, chaperonins, ubiquitin
ligases, proteins involved in autophagy and protein folding in the endoplasmic reticulum (ER)
and control of translation, RNA biology and splicing (Fig. 2D). Intriguingly, we noticed that
several genes connected to familial forms of ALS or identified as genetic risk factors and
modifiers of the disease were similarly upregulated after treatment (Fig. 2E). This evidence
underlines that several processes altered by ALS are directly connected to proteostatic stress.
As previously shown (ref), it is well established that proteasome inhibition in human neurons

results in nuclear translocation of TDP-43, histopathological hallmark of ALS® (Fig. 2F-G).

Proteostatic stress induces synaptic dysfunction in human neurons

We then carried out similar analyses for genes downregulated upon proteasome
inhibition. (4413 genes, LFC>2, adj p-value<0.05). Intriguingly, genes downregulated upon
treatment were connected to synaptic biology and modulation of electrical impulses through
neuronal cultures (Fig. S3). Gene Ontology analysis of the downregulated genes confirmed
that neuronal projections, axon guidance and synaptic processes were downregulated and
specifically expression of genes involved in glutamatergic synapse and both pre- and post-
synaptic machinery were decrease by proteasome inhibition in human neurons (Fig. 3A-C and
Fig. S3) as confirmed by protein-protein interaction network (Fig. 3D). These observations are
extremely relevant given that diagnostic tools for ALS include electrophysiological analysis for
hyperexcitability in the motor circuit of patients'®'® and one of the three approved drugs for
ALS modulates synaptic function'"?°. Even though quite similar, differences in between
treatments include the striking downregulation of tubulins and cytoskeletal proteins in the
higher dose treatment, also relevant to disruptions of cytoskeletal dynamics in ALS?. Taken
together, this analysis suggests that proteostatic stress in human iPSC-derived neurons
triggers upregulation of stress responses connected to protein degradation and
downregulation of synaptic function likely to decrease metabolic need connected to

electrophysiological activity.
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Proteostatic stress responses in vitro replicate alterations in patients’ neurons

To investigate the correlation between transcriptomic signatures identified in vitro with
neurons from sporadic ALS patients, we compared genes misregulated after treatment with
genes differentially misregulated in in excitatory neurons from a previously published dataset
from sALS patients’ motorcortices. This comparison showed a discrete overlap between
genes upregulated upon treatment in hiPSC-dervied neurons and genes upregulated in
excitatory neurons of ALS patients (Fig. 4A). Shared genes are connected to proteasome
subunits and heat-shock response-associated chaperonins and GO and protein-protein
interaction analyses confirmed upregulation of pathways involved in protein folding and RNA
biology and the connection to neurodegenerative diseases (Fig. 4B-E and S4). As shown by
others, some of these changes also overlapped with the transcriptomic signature altered in
human neurons after downregulation of TDP43 in vitro™. This suggests that changes identified
in sporadic ALS neurons are connected to neuronally intrinsic proteostatic alternations that
are at least in part connected to TDP-43-dependent dysfunction confirming that

Similar comparison for downregulated genes showed connection to synaptic biology,
neuronal projections and modulation of electrical impulses through neuronal cultures (Fig. 5A-
D and S5). In order to understand if these changes are specific to neurons, we selected genes
misregulated in both conditions and we computed a module score for these get sets, we
generated a standardised z-score for the expression of gene each and sum it up as a total
score for the gene set. For genes upregulated under proteostatic stress, excitatory neurons
and to a lower extent inhibitory neurons from ALS patients showed the highest expression
(Fig. 5E) suggesting that neurons are the only cell types upregulating unfolded protein
responses in ALS patients. Conversely, for genes downregulated under protesostatic stress
the biggest differences are seen in neurons, where as expected neurons in controls express
high levels of synaptic genes whereas cells from patients downregulate the expression of
transcripts connected to synaptic biology (Fig. 5F). This suggests that changes identified in
sporadic ALS neurons are connected to neuronally intrinsic proteostatic alternations that are
at least in part connected to TDP-43-dependent dysfunction and that trigger changes in

electrophysiological properties of neurons.
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Neuronal proteosomal activity is tightly regulated in response to stress

We then wondered whether manipulation of these genes could alter neuronal stress
responses. We first decided to exclude heat-shock related chaperonins and translational
machinery because of their pivotal role in basic biological functions so we focused on the
proteasome related proteins (Fig. S4, left). We excluded core proteasomal subunits (PSMAs,
PSMBs) because of the necessity of maintaining its intact enzymatic activity and focused on
regulatory subunits (PSMCs and PSMDs) which might change proteasomic influx without
impeding core catalytic function. We centred our interest ion PSMD12 for the recent
identification of genomic deletions in the PSMD12 gene leading to a rare form of
neurodegenerative disease?' but also for intriguing evidence arising from studies in cancer
cells. As mentioned above, MG132 was first discovered as a chemotherapeutic, one side
effect of proteasome inhibitors as chemotherapy is the induction of peripheral neuropathies in
patients? prompting its use in research to mimic neuronal degeneration in vitro. Even though
quite susceptible to proteasome inhibition, myeloma often develops resistance to these drugs.
One study ran an almost-genome-wide genetic screen to identify genes whose
downregulation would increase survival to proteasome inhibitors and showed that
downregulation of subunits of the 19S regulatory proteasome could confer increased
survival?®, In the same year, another group used a similar strategy and found that PSMDs
subunits could confer increased survival of cells under proteotoxic stress and suggested that
resistance might be mediated by upregulation of other protein degradation pathways, such as
autophagy?*. We therefore decide to manipulate PSMD12 levels in neurons under proteostatic
stress and investigate its effect in neuronal survival.

We proceeded by implementing an experimental set up that allows efficient
downregulation of transcript in postmitotic neurons devised in our lab and previously
described'?. Briefly, neurons were first transiently transfected with siRNA against PSMD12 or
a non-targeting scramble control, after that both WT and KD cells were treated with
proteasome inhibition to look at proteasomal activity, cell survival and protein degradation
dynamics (Fig. 6A). First, we ensured that knock-out strategy worked and confirmed that
siRNA has a >95% efficiency (Fig. 6B), but also that treatment with proteasome inhibition
upregulated PSMD12 RNA (Fig 6B), as detected by RNA-sequencing (Fig. S1), and that KD
was still efficient upon treatment (Fig 6B). We then proceeded to test whether knock-down
could manipulate proteasome activity. To our surprise, KD-cells presented reduced
proteasomal activity even without treatment with MG132 (Fig. 6C), highlighting the importance
of integral proteasomal stoichiometry for functional catalytic activity. These changes do not
seem to be connected to cell loss since KD and MG132 do not result in gross cell death (Fig.
S4A) but cells treated with siRNA against PSMD12 do show typical enlarged cytosolic
morphology seen in WT cells treated with MG132.
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Neuronal proteosomal activity is tightly regulated in response to stress

We then wondered whether these changes might be connected to different ratios
between core, catalytic 20S proteasome and regulatory subunits. Western blot analyses
showed that, even though extremely efficient, siRNA treatment only modestly decrease
PSMD12 protein levels in untreated cells and that proteasome inhibition itself strongly
decreased expression of PSMD12 protein independently of siRNA treatment (Fig. 6D),
suggesting that PSMD12 levels are tightly controlled by post-translational mechanisms. On
the other hand, levels of the core catalytic 20S subunit do not different between WT and KD
and are upregulated to similar levels in both conditions after MG132 treatment (Fig. 6E).
Therefore, changes seen in proteasome activity upon KD seem to be connected to regulatory
activity of PSMD12 itself, rather than loss of proteasomal core integrity. We then wondered
these alterations in proteasome activity might proteins towards other degradation pathways
and indeed we identify altered expression of autophagy-related proteins p62 and LC3 under
proteostatic stress (Fig. 6F). These results are consistent with previous reports showing that
initial loss of regulatory subunits of the proteasome might result in impaired protein flux in the
proteasome without impacting its core catalytic subunit?®> and that this decrease might be
supplemented by increased inputs through the autophagic system?*. These changes do not
seem to be connected to drastic alterations in cell numbers (Fig. S4B).

Taken together, these results suggest that loss of regulatory 19S proteasome subunits
can change the direction of degradative protein flux in human neurons and that under
proteostatic stress loss of PSMD12 might elicit autophagy as an alternative pathway.
Unfortunately, others have reported how these balance between loss of proteasomal
regulation and autophagic influx can have both a beneficial or detrimental effect depending on
other factors involved?®. Moreover, given the association of autophagy related genes with
ALS/FTD (e.g p62, TBK1, OPTN), the switch to autophagy as a degradation pathway might
be an initially beneficial response to proteostatic stress but might still result in ALS-related
neurodegeneration. Nonetheless, this small report adds a little piece in the puzzle of the role

that proteostasis plays in neurodegeneration in ALS.
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DISCUSSION

In this report, we carry out a meta-analysis of published RNA-sequencing studies and
validations in human iPSC-derived models to understand responses to proteostatic stress in
human neurons. Firstly, we characterised a robust system to model proteostatic stress in
human neurons in vitro. We confirmed that proteasome inhibition activates canonical stress
pathways such as proteasome subunits upregulation, activation of Unfolded Protein
Responses (UPR) and heat-shock chaperonins. These changes are remarkably accompanied
by alterations in splicing factors and translational machinery but also with the upregulation of
genes associated with ALS and other neurodegenerative diseases. Surprisingly, these stress
responses are associated with downregulation in transcripts encoding synaptic molecules,
drawing a connection between proteostatic stress and neuronal excitability, which is the only
diagnostic tools for ALS. By leveraging comparison with single-nucleus RNA-sequencing
dataset from ALS patients and unaffected individuals, we were able to show that not only these
changes in our in vitro models mimic biology disrupted in patients, but also that these
alterations are specific to excitatory neurons. Finally, we intersect these analyses to nominate
a proteasomal subunit, PSMD12, whose manipulation might be neuroprotective.
Unfortunately, changing levels of PSMD12 results in alterations of proteostatic influx that result
themselves in proteasome inhibition and activation of autophagic pathways that are
unfortunately also disrupted in ALS.

The connection between ALS and proteostatic stress is a long-lasting theme in the
field since the very first connection of ALS-related gene SOD1 to protein degradation
pathways?® and many others have then confirmed this disruptions in ALS patients®'3,
especially in neurons?. What is surprising is that in our system these alterations are connected
to 1. RNA metabolism and 2. ALS-associated genes. The connection to RNA biology in a
human neurons is extremely relevant because of the changes connected to alterations of
splicing functions identified by us and others specifically in neurons®'® and the emerging need
for humanised models in the field?’, with this reproducible and robustly characterised system
we know provide a platform to investigate these changes in a human context. Moreover, the
upregulation of ALS-associated genes in neurons undergoing proteostatic stress is extremely
relevant given that disease-relevant classes of neurons intrinsically express higher levels of
ALS genes in both the cortex'® and the spinal cord?®. The upregulation of similar sets of genes
in response to proteostatic stress might explain the higher susceptibility of these classes of
neurons to ALS.

Another striking mechanism disrupted by proteostatic stress is neuronal excitability.
Alterations in electrical circuits is a well-characterise symptom and as of today, the most
reliable diagnostic tool for ALS'8. Moreover, one of the three drugs approved to use in patients,

Riluzole, acts on modulating neuronal firing"" and many familial mutations have been shown
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to result in neuronal hyperexcitability?®. Our system could provide a platform to further dissect
mechanisms connection between ALS-driven proteostatic stress and synaptic function in
human neurons. The specifically neuronal expression of these genes and the fact that these
genes are differentially expressed only excitatory neurons in ALS patients, underlies the
usefulness of our system to not only broaden our understanding of neurodegeneration in ALS,
but also provides a platform for the discovery of new therapeutic approaches to the disease.
Because of this, we attempted to nominate one target that could be neuroprotective
under proteostatic stress, PSMD12. Given the chemotherapeutic-resistance acquired by
cancer cells following loss of PSMD12%2-24, we hoped to replicate this pro-survival phenotype
in neurons by boosting proteasome activity. Indeed, modulating PSMD12 levels resulted in
changes in proteasome activity but in the opposite direction. The connection between
modulating levels of proteasomal subunits in favours of other protein degradation pathways
was demonstrated before?* and others have recently suggested that, at least in cancer, these
changes might also modulate endosomal trafficking®’, a pivotal mechanism for health synaptic
function, which draws a connection in between proteostasis and synaptic biology in neurons
revealed by our study. Unfortunately, this mechanism, that might be initial beneficial for
neuronal survival under stress, might not be feasible for the development of therapeutics for
ALS given that autophagy is also a degradative pathway disrupted in both familial and sporadic
cases of the disease*. Nonetheless, our platform remains a useful tool to nominate other

targets that could be investigated for therapeutical strategy in ALS.
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Fig. S3 | Genes downregulated by proteasome inhibition. Genes downregulated after treatment are connected to synaptic biology.
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Establishment of human glial co-culture systems for the study of cell-to-

cell interactions

As we highlight in chapter 1 and 3, besides being a purely neurocentric disease many
other cell types take part into the initiation and/or exacerbation of neurodegeneration in ALS.
Because of the impossibility to readily access brain tissue and the human specificity of certain
aspects of ALS biology, we decided to establish differentiation protocols for other cells of the
brain, i.e. microglia and oligodendrocytes, and start characterizing their interactions in a dish.

A small summary of this work will be presented below.

Microglia

Microglia are the resident macrophages of the brain and play a pivotal role in several
mechanisms during development, adult homeostasis and disease by shaping synaptic
function, removing debris, performing immune surveillance and defend us against pathogens.
Here we present a protocol to generate human Microglia-like cells (iMGLs), adapted from
previous schemes' and already applied for modelling dysfunctions in neurodegenerative
disease contexts?3. To mimic primitive haematopoiesis*, hPSCs are cultured in three-
dimensional embryoid bodies in reduced oxygen levels and subjected to small molecules to
push them towards a haemogenic fate. These primitive structures are then stimulated to
produce haematopoietic progenitors that rapidly bud out as single cells thanks to a cocktail of
stem cell factors, these cells can be harvested and replated to generate myeloid progenitors
through M-CSF and specifically brain-like cells thanks to brain-specific IL34 and CNS-enriched
TGBB. After a few weeks, CNS-resident-like myeloid progenitors are further matured by
adding microglial ligands CD200 and fractalkine (CX3CL1) (Fig. 7A). After 14 days >95% of
cells express myeloid specific markers PU.1 and Iba1 (Fig. 7B). Their expression is maintained
till the end of differentiation at day 40 with the addition of microglia-enriched markers Trem2
and CX3CR1 (Fig. 7C). Moreover, cells express surface markers typical of immune myeloid
cells and specifically microglia (Fig. 7D).

By day 40 of differentiation, cells assume typical ramified morphology and are highly
motile throughout the culture, they contact each other and extend plenty of protrusions and
filipodia typical of myeloid cells and reminiscent of brain-resident microglia (Fig. 7F). To further
test their functionality, we fed iIMGLs with beads covered with E. coli extracts and a pH
sensitive dye that shows no fluorescence at neutral pH and fluoresces brightly in acidic
formations like phagosomes and lysosomes and allows detection of phagocytosis (Fig. 7G).
After only 10 minutes from feeding, iMGLs show high degree of internalization demonstrating

their highly phagocytic activity (Fig. 7G).
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With this preliminary characterization (and other data not shown), we present a highly
scalable system to generate microglial cells in vitro. We hope to utilise this platform to widen

our knowledge in human microglial functions and further investigate its misregulation in ALS.
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Figure 7 Characterization of human Microglia-like Cells (iMGLs). (A) Diagram of differentiation protocol from primitive
haematopoiesis to early myeloid progenitors into microglia-like cells. (B) immunofluorescence staining of myeloid markers
PU.1 and Iba1 at day 14. (C) Immunofluorescence staining of myeloid markers PU.1 and Iba1 at day 40. (D)
Immunofluorescence staining of microglia-enriched markers Trem2 and CX3CR1 at day 40. (E) Flow cytometry analysis
of immune (CD45), myeloid (CSF1R and Cd11b) and microglial markers (CX3CR1 and Trem2) at day 40. (F) hiMGLs
motility and branching at day 40. (G) hiMGLs rapidly phagocytose fluorescent beads.
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As described in chapter 3, intrinsically higher expression of ALS-related genes in
neurons and their connection to proteostasis is at the bottom of the susceptibility of these cells
to ALS and triggers responses in other cell types, i.e. microglia®. We wondered if MG132
treatment could be sufficient to induce these changes in microglia. We established a co-culture
system of hiPSC-neurons and human iMGLs, where separately generated iMGLs' were add
on top of neuronal networks®®. In steady state, microglia assume a ramified morphology and
interact mostly with neurites removing debris (Fig. 8A). When neurons are pre-treated with
MG132 and microglia are added on top, iIMGLs acquire an amoeboid morphology, typically
associated with reactive states, appear to interact with neuronal cell bodies (Fig. 8B),
potentially phagocytosing these cells. As mentioned, iIMGLs can be stimulated to express
reactive genes by feeding them apoptotic neurons. Pre-activation of iMGLs before co-culture
was sufficient to induce amoeboid morphology, as seen when co-cultured with stressed
neurons, suggesting that reactive microglia might be deleterious to healthy neurons just as
much as proteostatic stress in neurons can trigger reactive microglial phenotypes (Fig. 8C).
As expected, co-cultures of both MG132-treated neurons and stimulated microglia resulted in
drastic changes in cell morphology with loss of neurite networks (Fig. 8D).

Untreated neurons Neurons pre-treated with MG132

Homeostatic microglia

MAP2 Ibal

Reactive microglia

MAP2 Ibal

Figure 8 Pre-treatment of neurons with MG132 induces reactivation in microglia. (A) Untreated neurons and
homeostatic iMGLs co-culture. (B) Neurons pretreated with MG132 and homeostatic iMGLs. (C) iMGLs pre-stimulated
with apoptotic cells co-cultured with untreated neurons. (D) iMGLs pre-stimulated with apoptotic cells co-cultured with
MG132-treated neurons.
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Oligodendrocytes

Oligodendrocytes are responsible for myelinating axons in the CNS, thereby
maintaining strong electrical connectivity of brain circuitry. Oligodendrogenesis happens quite
late during development and most myelination occurs postnatally, therefore most
differentiation protocols published as of now are extremely long and quite complex’2. In an
effort to make these processes more amenable to scalability, we decided to adapt a protocol
that differentiated oligodendrocytes from hPSCs’® to floating three-dimensional cultures in
bioreactors, a well-established method to produce neuronal cells in big scale settings'?. Briefly,
hiPSCs/hESCs cultured in 3D bioreactors are first converted to neural stem cells with small
molecules inhibition of double Smad (as described extensively in chapter 5) and are then
ventralised through SHH activation and posteriorized through retinoids (Fig. 9A). These
progenitors are then pushed towards an oligodendrocyte progenitors (OPCs) identity by the
addition of PDGF-AA and IGF and subsequently induced to further differentiate into
myelinating oligodendrocytes with T3 (Fig. 9A). Initial analysis of gene expression by RT-
gPCR showed upregulation of neuronal progenitor gene PAX6 in early stages of differentiation
and of OPC-specific genes in mid-stage of the protocol in spinner bioreactors at comparable
levels than the original monolayer protocol (Fig. 9B).

Throughout the differentiation some of the spheroids were periodically harvested and
as separate cultures to form monolayers and monitor differentiation of OPC/oligodendrocytes
through live immunofluorescent staining for O4, an antibody that recognizing a sulfoglycolipid
specific to OPC/early oligodendrocytes. As early as day 50 (week 7) of the protocol, cultures
generated O4* cells that presented typical oligodendroglial morphology (Fig. 9C). By the end
of the differentiation protocol (week 10/day 80), we could readily detect in these cultures a
mixed of cell types of the CNS: O4*MBP"* early myelinating oligodendrocytes cells (Fig. 9C),
which were interacting with neurons (Fig. 9E) and with astrocytes (Fig. 9F), which are both
typically generated in this differentiation protocols”.

We then decided to integrate microglia in these complex oligodendroglial cultures. To
do so we plated oligodendrocytes spheres around week 7 and let them maturate in 2D while
in parallel differentiating iIMGLs, by day 20 when cells reach a microglial-progenitor like state,
we harvested them and added them on the oligodendroglial co-cultures for the last 20 days of
maturation (Fig. 10A). Microglial cells fully integrate into the milieu of cells (Fig. 10B), acquire
a complex morphology reminiscent of their in vivo counterparts (Fig. 10C) and are highly motile
throughout the culture interacting very closely with the neuronal network (Fig. 10D).
Immunofluorescence analysis revealed that neurons, oligodendrocytes and microglia interact
with each other and assume typical morphology (Fig. 8F-G). We believe that this system could
be suitable to further model and dissect some of the interactions seen in the brains of ALS

patients.
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Figure 1 Characterization of 3D human Oligodendrocytes differentiation protocol. (A) diagram of differentiation
protocol. (B) RT-qPCR analysis of Oligodendrocyte Progenitors Markers at early stages of differentiation. (C) Live O4
immunofluorescence staining of committed oligodendrocytes day 50 (week 7). (D-F) immunofluorescence staining of brain
cells markers from 2D cultured spheres (day 80, week 10): O4 — OPCs and oligodendrocytes, MBP — myelinating
oligodendrocytes, MAP2 — neurons, GFAP — astrocytes.
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Figure 2 Characterization of Oligodendrocytes and microglial co-cultures. (A) diagram of co-culture protocol. (B)
immunofluorescence staining of brain cells markers from spheres cultures in 2D: O4 — OPCs and oligodendrocytes, Iba1
— iMGLs, MAP2 — neurons. (C-D) immunofluorescence staining of microglia and 2D neurosphere cultures shows full
integration of myeloid cells in neuronal network. (E) microglia show mature morphology and motility in co-cultures. (F-H)

immunofluorescence staining of microglia and 2D neurosphere cultures shows diverse cell interactions in the mixed
cultures.
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Overview

With this thesis, we offer solutions to two barriers faced by scientist approaching
neurodegenerative diseases: first, a wider understanding of cellular and molecular pathways
disrupted in primary samples from patients affected by Amyotrophic Lateral Sclerosis at a
single cell resolution; and second, we put forward novel systems to model these disfunctions
in laboratory settings and the ability to study cells normally hard to reach.

In chapter 2, we review our work on single nucleus RNA sequencing of ALS cortices.
By examining cell-type specific expression of genetic risk factors for ALS/FTD, we found that
specific subclasses of excitatory neurons intrinsically express higher levels of these disease-
associated genes. We propose that these genes may be most essential in extratelencephalic
(L5-ET) motor neurons and that mutations might have large ramifications within them. To
further dissect the vulnerability of these cells we unbiasedly investigated transcriptomic
changes triggered by the disease and found that shared sets of genes are altered in groups
of L5-ETNs. The pathways that these genes play a role in includ unfolded protein responses,
proteosomal subunits and RNA metabolism. These disruptions revealed another contributor
to susceptibility: the genes identified, like genetic risk factors, are constitutively expressed at
higher levels in L5-ETNs. We hypothesize that these forms of sensitivity collaborate to make
L5-ETNs the “first over the line” to degenerate in ALS. These alterations are accompanied by
concurrent effects in other cells: neurons of upper layers upregulate synaptic genes, probably
to compensate for lost inputs to the cord; oligodendrocytes switch to a neuronally-engaged
state to the expense of myelinating abilities; microglia acquire a pro-inflammatory signature
associated with vesicles biology, likely triggered by neuronal apoptosis. We propose that the
intrinsic vulnerability of classes of neurons to ALS/FTD initiates responses in other cells but at
the same time show that genetic risk factors are involved in processes altered in different cell
types. This makes the promotion of neuronal survival undoubtedly crucial but suggests that
targeting other cell types might be as important in restoring a neuroprotective environment.

These novel insights are essential in widening our knowledge on disease mechanisms.
However, they are only a snapshot of disease, they are based on a small cohort not allowing
the full investigation of a highly heterogeneous disease like ALS/FTD, and they leave no room
for manipulations. To overcome these obstacles, we provide in vitro tools that would allow the
manipulations of human brain cells in a dish from a variety of individuals.

In chapter 3, we put together a compendium of protocols to differentiate hPSCs into
different brain cell types that could be used to further dissect multicellular contributions to
neurodegeneration. In this instance, we focus on studies that tested efficacy of transplantation

of these products in an effort to repopulate cells lost to degeneration but we also provide a
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detailed and valuable resource for researchers to draw from to model biology of the central
nervous system in vitro and dissect mechanisms disrupted by ALS in different cell types.

In chapter 4, we show that the combination of Ngn2 overexpression and ventralising
and caudalising factors can generate populations of cervical and brachial motor neuron (MNs)
from at least 47 human pluripotent stem cell lines, with extremely high reproducibility and the
amenability to expand to hundreds of lines. These MN-like cells, liMNs or liMoNes, express
canonical MN markers, resemble other hiPSC-derived MN and exhibit formation of synapsis
both in-network with muscle cells in vitro. Our pooled and multiplexed sequencing approaches,
Census-seq and Dropulation, revealed the exceptional reproducibility of this system in forming
anatomically distinct MN classes that in part resemble their cervical and brachial in vivo
counterpart. Moreover, our preliminary data provides new tools and technologies that can be
used as platforms to manipulate postmitotic neurons in vitro and to establish co-culture system
with glial cells to investigate biology disrupted in disease. We conclude that combining small
molecule patterning with Ngn2 overexpression can facilitate the high-yield, robust and
reproducible production of multiple disease-relevant MN subtypes, which is fundamental in
propelling our knowledge of motor neuron biology and its disruption in disease.

In chapter 5, we describe how we are using the models established in chapter 3 and
4 in conjunction with changes identified in chapter 2 for the nomination of neuroprotective
targets under proteostatic stress conditions. Moreover, this section presents preliminary data
on the characterization of co-culture systems of different brain cell types derived from human
iPSCs described in chapter 3 that could be used to study changes identified in sporadic ALS
brain samples described in chapter 2. With this section we hope to provide new, more complex

in vitro systems to model degeneration and multicellular interactions disrupted in ALS.

Future Perspectives and concluding remarks

1. Expanding knowledge of neurodegeneration at a single cell resolution

In the introduction to this work we have highlighted how different cell types might play
pivotal roles in initiation, progression, exacerbation and/or resistance to ALS and even though
not described in this work this concerted dissonance has emerged for many other
neurodegenerative diseases. In order to understand the disruptions underlying these complex
interactions, several groups have undertaken the endeavour to dissect neurodegeneration
using single cell/nucleus RNA sequencing technologies.

In the last five years various groups have reported studies using primary samples from

patients of Multiple Sclerosis (MS)"2, Alzheimer’'s Disease (AD)?3, Parkinson’s Disease (PD)°
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and Frontotemporal Dementia (FTD)'. Many others have also looked at specific cell types
identifying disease relevant biology, however, only by looking at the complex composition of
the multicellular environment of the brain we might get further insights into disease pathology.

These studies have contributed answering a long-lasting question in the field: why are
certain classes of neurons selectively sensitive to specific diseases? Some of these reports
unravelled susceptibility of specific neuronal subtypes: mid-layer RORB* neurons accumulate
tau aggregates and are depleted in ADS; upper layer CUX2-neurons are more affected by
meningeal inflammation in MS'; ventral dopaminergic neurons in Parkinson’s Disease®; our
study that points at heightened intrinsic susceptibility and select vulnerability of classes of
cortical L5-ET neurons in ALS/FTD'"; recent reports that highlighted a similar scenario for
spinal MN in ALS'2. These findings are milestone in the quest to defining a disease-associated
signature that might be at the base of selective neuronal death and at the same time provide
a repository that should be compared and further investigated, marking the beginning of a new
era in the understanding of selective neuronal vulnerability to degeneration.

At the same time, these studies have provided insights into the role of other cell types
in degeneration. In some cases, the culprits might have been hypothesised suspects like
astrocytes®®’8 and microglia*” in AD or oligodendrocytes? in MS, pointing at cell-type-specific
molecular dysfunctions. In other instances, however, these reports highlighted new rolesfor
certain cell types in disruptions generated by the disease such as microglia’ in MS,
oligodendrocytes in AD® and brain vasculature in AD® and FTD8. We contribute by identifying
patient-specific changes in oligodendrocytes and microglia in ALS™.

Parts of this work specifically aim to highlight the multicellular complexity of
neurodegenerative diseases and the diverse role that various characters of the cerebral milieu
might play in the great masterpiece that is the human brain. The main point that we would like
to deliver is that, besides the central role that one cell type might play in a disease, no cell
reaches the role of soloist in the commonwealth that shapes the nervous system lyrical
ensemble and focusing on only one of them clashes with the final goal of understanding how

the harmony of the CNS is disrupted by degeneration.

2. hiPSC modelling: building complex, reproducible systems to mimic in

vivo function and encompass the diversity of the human brain
Despite the immense potential for in vitro modelling brought about by human induced

Pluripotent Stem Cells, many issues are still to be resolved: technical variability between

differentiations and immaturity of cultures, non-cell autonomous effects and cell-to-cell
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interactions but also variability between cell lines that highlight the need for increased
scalability to correctly represent the genomic, genetic and phenotypic diversity of humankind.

Several groups have developed methods to improve consistency between
differentiations and to increase line-to-line reproducibility like the inclusion of small molecules
to boost the representation of a cell type'®, the use of enrichment strategy through the
identification of cell surface markers for cell types of interest'' or transgenic reporters'®.
Cellular maturity is a delicate subject in the field given the lack of consensus on the definition
of “maturity” and what criteria identify a cellular transition from a foetal to an adult state.
However, many have used co-cultures of cell type of interest with other cells of the brain,
isolated from primary rodent extracts or human foetal samples, to increase maturation through
exogenous factors' '8, Parts of our work aim at increasing reproducibility and standardization
of differentiation protocols to overcome many of these issues.

In recent years many have developed systems that allow differentiation of hiPSCs into
complex 3D structures composed of different cell types called organoids. These methods allow
a more physiological development of several cell types together, implementing maturation
stages driven by cell-to-cell contacts and allowing the possibility to widen our knowledge on
human cells interactions. Even though most research has been focusing on anterior regions
of the nervous system'®, a few groups have developed methods to differentiate organoids of
posterior identity for the isolation of specific cell types like spinal motor neurons?, astrocytes?’
and oligodendrocytes?>?3, The first report of a human iPSC-derived organoid generated
complex 3D structures containing motor neurons, inhibitory neurons and astrocytes of spinal
cord identity?* has now been followed by more advanced models of spinal organoids with
skeletal muscles that can form neuromuscular junctions?®. However, for the modelling of ALS,
more complex systems are needed since the motor circuit is shaped by cells in the cortex,
spinal cord and muscles. The ability of cortical organoids to extend axons towards muscles
was first proven by their co-culture with murine spinal cord extracts?® and later cortical, spinal
and muscular organoids were fused together proving a full human motor circuits can be built
in vitro?”. These models are extremely complex and not fully standardized yet efforts towards
the generation of more reproducible organoids?>2%2° give hope that one day these structures
could be used for the modelling of motor circuit. The work presented in this thesis tries to add
a block into the building of complex, multicellular, human systems.

Another caveat of using human stem cells for disease modelling is the current inability
to scale up and analyse cell lines from a high number of individuals. Currently, in vitro
modelling of ALS, especially sporadic, requires big number of lines and high-throughput
methods and needs further standardization®. This is why we believe the generation of more
efficient differentiation paradigms amenable to hundreds of stem cell lines could be highly

beneficial to the field. Moreover, the generation of different MN subtypes in our system could
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allow the identification of factors that renders certain motor neuron pools more susceptible or
more resistant to ALS®'. Finally, the intermediate penetrance of ALS-associated genes and
the complex genetics behind sporadic cases, generated by small effects from common
variants and stronger effects from rare variants, suggest that we do not fully understand the
full pictures of the genetics underlying ALS. Multiplexed, pooled approaches described in this
work323* might allow the simultaneous analysis of neurons from hundreds of patient-derived
hiPSCs and might allow firstly the hypothesis-driven assessing of disease relevant
perturbations in disease relevant cells but also shade a light on the complex interplay

underlying sporadic cases.

Confronting ALS: understanding multicellular contribution to

neurodegeneration
Computational analysis and hiPSCs in vitro modelling as a multidisciplinary

approach

Overall, with this work we hope to open the field to a more holistic approach to the study
of ALS and neurodegeneration as a whole, where multi-disciplinary techniques and the use of
different models might expand our knowledge on disease. This effort is just the beginning and
a lot more work is necessary to translate this knowledge into effective changes for ALS but |
do hope to have offered a different view on the need to merge new technologies in innovative
ways, stressed the importance of considering primary samples as the orchestra maestro and
main driver of our work and use models while being aware of their advantages but also their
shortcomings. Not all questions can be answered using one system just like different

instruments are needed to create a melody.
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Nederlandse Samenvatting
De confrontatie aangaan met ALS: meercellige bijdrage aan

neurodegeneratie begrijpen
Computationele analyse en hiPSC's in vitro modellering als een

multidisciplinaire aanpak

Amyotrofische laterale sclerose (ALS) is een dodelijke neurodegeneratieve aandoening
die wordt gekenmerkt door een progressief verlies van motorische functies. Hoewel het
bekend staat om de gelijknamige sclerose van het ruggenmerg die te zien is bij een autopsie,
is ALS het resultaat van de degeneratie van extratelencefale cortico-spinale motorneuron
(CSMN), en het daaraan gelinkte geleidelijk verlies van cortico-spinale banen en de
degeneratie van motorneuronen van het ruggenmerg, wat resulteert in controle verlies over
spieren en ademhalingsfalen. Het blijft onduidelijk waarom specifieke soorten motorneuronen
selectief door de ziekte worden aangetast. Hoewel genetische studies van familiale ALS ons
begrip van deze aandoening enorm hebben vergroot, is de overgrote meerderheid van de
ALS-gevallen sporadisch (90%), zonder familiegeschiedenis en meestal zonder bekende
genetische oorzaak. Het is nog onbekend of familiale mutaties en sporadische mutaties leiden
tot vergelijkbare moleculaire veranderingen en hoe verschillende cellulaire subtypes kunnen
bildragen aan deze veranderingen, wordt nog nader onderzocht. De beperkte
beschikbaarheid van hersenweefsel en de onduidelijkheid over de veranderingen in specifieke
celtypen vormen twee belangrijke hindernissen: ten eerste dienen de moleculaire processen
die bij patiénten worden verstoord te worden begrepen op cellulair niveau per celtype; ten
tweede, is er een noodzaak om verschillende systemen te bouwen om deze mechanismen in
vitro te modelleren.

Dit proefschrift probeert aspecten van deze vragen te beantwoorden door te beginnen
met een poging om de unieke moleculaire eigenschappen te begrijpen die motorneuronen
gevoelig maken voor ALS. Met dit doel voerden we RNA-sequencing uit van 79.169 losse
kernen van cortices van patiénten en controles van vergelijkbare leeftijd. Bij gezonde
personen ontdekten we dat de expressie van ALS-risicogenen significant verrijkt was in
THY1+ laag-5, extratelencefale (L5-ET) neuronen en niet in andere celtypes. Bij patiénten
werden deze genetische risicofactoren, evenals genen die betrokken zijn bij eiwithomeostase
en stressreacties, significant geinduceerd in THY1+ L5-ET en een bredere verzameling
extratelencefale neuronen. Onderzoek van oligodendrogliale en microgliale kernen legde
patiéntspecifieke genexpressieveranderingen bloot die op zijn minst gedeeltelijk een reactie
waren op ziektegerelateerde veranderingen in neuronen. Onze bevindingen suggereren dat

de selectieve kwetsbaarheid van extratelencefale neuronen gedeeltelijk verband houdt met
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de intrinsieke moleculaire eigenschappen die hen gevoeliger maken voor genetische en
veranderingen die worden veroorzaakt door ALS-pathologie.

In een poging om nieuwe modellen te creéren om deze mechanismen te bestuderen,
bespreken we vervolgens de generatie van een nieuw protocol om motorneuronen te
genereren uit menselijke pluripotente stamcellen (hPSC's). In deze studie hebben we de
overexpressie van de neuraliserende transcriptiefactor Neurogenin2 (Ngn2) gecombineerd
met kleine moleculen om hPSC's te veranderen in geinduceerde onderste motorneuronen
(liMoNes/liMN's). Met behulp van een Hb9::GFP-cellijn toonden we aan dat deze aanpak
activatie van de spinale motorneuron (MN)-specifieke transcriptiefactor Hb9/MNX1
induceerde, waarbij tot 95% van de cellen Hb9::GFP positief werd. Deze cellen verkregen en
behielden expressie van bekende vroege en late MN-markers. liMN's waren vergelijkbaar met
hPSC-afgeleide MN die met een conventionele methode gegenereerd waren, vertoonden
spontane elektrische activiteit, brachten synaptische markers tot expressie en vormden in vitro
contacten met spiercellen. Samengevoegde, multiplex RNA-sequencing van losse cellen uit
50 cellijnen toonde aan dat populaties van verschillende MN-subtypen reproduceerbaar
gegenereerd werden. Namelijk populaties van cervicale, brachiale en spierweefsel-
innerverende MN’s die lijken op hun jn vivo tegenhangers in het menselijke embryonale
ruggenmerg. We concluderen dat de combinatie van kleine moleculen met overexpressie van
Ngn2 zorgt voor een hoge opbrengst, en een robuuste en reproduceerbare productie van
meerdere ziekterelevante MN-subtypen. Dit is van fundamenteel belang voor het vergroten
van onze kennis van motorneuronbiologie en de verstoring ervan bij ziekte.

Ten slotte hebben we een verzameling van protocollen samengesteld om hPSC's te
differentiéren in verschillende hersenceltypen die kunnen worden gebruikt om de bijdrage van
meerdere celtypen aan neurodegeneratie verder te onderzoeken. In dit geval richten we ons
vooral op studies die de werkzaamheid van transplantatie van deze cellulaire producten
hebben getest in een poging om cellen die verloren zijn gegaan door degeneratie te
vervangen, maar we bieden ook een gedetailleerde en waardevolle bron van informatie om
de biologie van het centrale zenuwstelsel in vitro te modelleren en om onderliggende
mechanismen van ALS in verschillende celtypes te onderzoeken.

Het doel van dit proefschrift is om op celniveau inzicht te krijgen in de moleculaire
mechanismen die verstoord zijn in de ziekte, om opties aan te bieden om deze verstoringen
in menselijke modellen te bestuderen, en om te bediscussiéren hoe toekomstige
experimenten met een multidisciplinaire aanpak onze kennis over de ziekte kunnen vergroten

om uiteindelijk nieuwe therapieén voor behandeling of herstel te vinden.
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Summary in English
Confronting ALS: understanding multicellular contribution to

neurodegeneration
Computational analysis and hiPSCs in vitro modelling as a multidisciplinary

approach

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disorder characterised
by a progressive loss of motor function. While it is known for the eponymous sclerosis of the
spinal cord observed upon autopsy, ALS is the result of extratelencephalic Cortico-Spinal
Motor Neuron (CSMN) degeneration, connected to gradual loss of cortico-spinal tracts and
degeneration of spinal cord motor neurons which results in loss of control over muscles and
respiratory failure. It remains unclear why classes of motor neurons are selectively affected
by the disease. Although genetics studies of familial ALS have tremendously increased our
understanding of this condition, the vast majority of ALS cases are sporadic (90%), occurring
without a family history and most often without a known genetic cause. Indeed, whether
familial mutations and sporadic insurgence might converge on similar molecular pathways is
still unknown and how different cellular subtypes might contribute to these changes remain a
subject of investigation. The fundamental inaccessibility of brain tissue and the uncertainty
surrounding the disturbances triggered by the disease in specific cell types poses two main
hurdles: first, the need for a better understanding of what molecular processes are disrupted
in patients at a cell type resolution; second, the need to build different systems to model these
mechanisms in vitro.

This body of work seeks to answer aspects of these questions by starting with an effort
to understand the unique molecular properties that sensitise motor neurons to ALS. To do so,
we performed RNA sequencing of 79,169 single nuclei from cortices of patients and age-
matched, controls. In unaffected individuals, we found that expression of ALS risk genes was
significantly enriched in THY1* layer-5, extratelencephalic (L5-ET) neurons and not in other
cell types. In patients, these genetic risk factors, as well as genes involved in protein
homeostasis and stress responses, were significantly induced in THY1" L5-ET and a wider
collection of extratelencephalic neurons. Examination of oligodendroglial and microglial nuclei
revealed patient-specific gene expression changes that were at least in part a response to
disease-associated alterations in neurons. Our findings suggest that the selective vulnerability
of extratelencephalic neurons is partly connected to their intrinsic molecular properties
sensitising them to genetic alterations produced by ALS pathology.

In an effort to create new paradigms to study these mechanisms we will then discuss

the generation of a new protocol to differentiate motor neurons from human Pluripotent Stem
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Cells (hPSCs). In this study, we coupled the overexpression of the neuralising transcription
factor Neurogenin2 (NgnZ2) with small molecule patterning to differentiate hPSCs into lower
induced Motor Neurons (liMoNes/liMNs). Using an Hb9::GFP-reporter line, we showed that
this approach induced activation of the spinal motor neuron (MN) specific transcription factor
Hb9/MNX1 with up to 95% of cells becoming Hb9::GFP*. These cells acquired and maintained
expression of canonical early and mature MN markers. liIMNs resembled bona fide hPSC-
derived MN differentiated by conventional small molecule patterning, exhibited spontaneous
electrical activity, expressed synaptic markers and formed contacts with muscle cells in vitro.
Pooled, multiplex single-cell RNA sequencing on 50 cell lines revealed reproducible
populations of multiple anatomically distinct MN subtypes of cervical and brachial, limb-
innervating MNs that in part resemble their in vivo counterparts in the human embryonic spinal
cord. We conclude that combining small molecule patterning with Ngn2 overexpression can
facilitate the high-yield, robust and reproducible production of multiple disease-relevant MN
subtypes, which is fundamental in propelling our knowledge of motor neuron biology and its
disruption in disease.

Finally, we put together a compendium of protocols to differentiate hPSCs into different
brain cell types that could be used to further dissect multicellular contributions to
neurodegeneration. In this instance, we mostly focus on studies that have tested the efficacy
of transplantation of these cellular products in an effort to repopulate cells lost to degeneration
but we also provide a detailed and valuable resource for researchers to draw from to model
biology of the central nervous system in vitro and dissect mechanisms disrupted by ALS in
different cell types.

This work aims to shed a light on what molecular mechanisms are disrupted in the
disease at single-cell resolution, offer options on tools to study these disruptions in human
models and further discuss how future experiments using multi-disciplinary approaches could

expand our knowledge on the disease in an effort to find new therapies and a possible cure.
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Riassunto in italiano
Affrontare la SLA: comprendere il contributo multicellulare alla

neurodegenerazione

Analisi computazionali e modelli di hiPSC in vitro come approccio

multidisciplinare

La sclerosi laterale amiotrofica (SLA) € una malattia neurodegenerativa fatale
caratterizzata da una progressiva perdita della funzione motoria. Sebbene sia nota per
l'omonima sclerosi del midollo spinale osservata in autopsia, la SLA é il risultato della
degenerazione dei motoneuroni cortico-spinali extratelencefalici (CSMNs), collegata alla
graduale perdita dei sistemi cortico-spinali e alla conseguente degenerazione dei motoneuroni
del midollo spinale che sfocia nella perdita del controllo muscolare e nell'insufficienza
respiratoria. Non € chiaro perché alcune classi di motoneuroni siano piu selettivamente colpite
da questa malattia. Sebbene gli studi genetici sulla SLA familiare abbiano notevolmente
aumentato la nostra comprensione di questa malattia, la stragrande maggioranza dei casi di
SLA é sporadica (90%), si verifica cioé senza una storia familiare e molto spesso senza una
causa genetica nota. In effetti, non &€ ancora noto se le mutazioni familiari e l'insorgenza
sporadica possano convergere su meccanismi molecolari simili e la maniera in cui i diversi
sottotipi cellulari contribuiscano a questi cambiamenti rimane oggetto di indagine.
L'inaccessibilita fondamentale del tessuto cerebrale e l'incertezza che circonda i disordini
innescati dalla malattia in specifici tipi di cellule pone due ostacoli principali: in primo luogo, la
necessita di una migliore comprensione di quali processi molecolari vengono interrotti nei
pazienti a una risoluzione sul singolo tipo cellulare; in secondo luogo, la necessita di costruire
diversi modelli per studiare questi meccanismi in vitro.

Questo corpus di lavoro cerca di rispondere ad aspetti di queste domande iniziando con
uno sforzo per comprendere le proprieta uniche molecolari che sensibilizzano i motoneuroni
alla SLA. Per fare cid, abbiamo eseguito il sequenziamento dell'lRNA di 79.169 singoli nuclei
estratti da cortecce di pazienti e controlli di stessa eta. In individui non affetti, I'espressione di
geni connessi al rischio di SLA era significativamente arricchita nei neuroni extratelencefalici
THY1" dello strato 5 (L5-ET) e non in altri tipi di cellule. Nei pazienti, questi fattori di rischio
genetici, cosi come geni coinvolti nell'omeostasi proteica e nelle risposte allo stress, sono
indotti in modo significativo in THY1* L5-ET e in un piu ampio gruppo di neuroni
extratelencefalici. L'esame dei nuclei derivanti da oligodendroglia e microglia ha rivelato
cambiamenti di espressione genica specifici di pazienti che sono, almeno in parte, una
risposta alle alterazioni associate a cambiamenti connessi alla malattia nei neuroni. | nostri

risultati suggeriscono che la vulnerabilita selettiva dei neuroni extratelencefalici € in parte
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collegata alle loro proprieta molecolari intrinseche che li sensibilizzano alle alterazioni
genetiche prodotte dalla patologia della SLA.

Questa tesi prosegue con un compendio di protocolli per differenziare le hPSC in diversi
tipi di cellule cerebrali che potrebbero essere utilizzate per spiegare ulteriori contributi
multicellulari alla neurodegenerazione. In questo caso, ci concentriamo principalmente su
studi che hanno testato I'efficacia del trapianto di questi prodotti cellulari nel tentativo di
ripopolare le cellule perse a causa della degenerazione, ma forniamo anche una risorsa
dettagliata e preziosa per i ricercatori da cui attingere per modellare la biologia del sistema
nervoso centrale sistema in vitro e sezionare i meccanismi interrotti dalla SLA in diversi tipi di
cellule.

Nel tentativo di creare nuovi paradigmi per studiare questi meccanismi, discuteremo
quindi un nuovo protocollo per differenziare motoneuroni spinali dalle cellule staminali
pluripotenti umane (hPSC). In questo studio, abbiamo affiancato la sovraespressione del
fattore di trascrizione neuralizzante Neurogenina-2 (Neurogenin2, Ngn2) con il patterning di
morfogeni per differenziare le hPSC in motoneuroni somatici indotti (liMoNes/lIMNs).
Utilizzando una linea reporter Hb9::GFP, abbiamo dimostrato che questo approccio induce
I'attivazione del fattore di trascrizione specifico del motoneurone spinale (MN) Hb9/MNX1, con
fino al 95% delle cellule che diventano Hb9::GFP+. Queste cellule acquisiscono e
mantengono l'espressione di marcatori canonici di motoneuroni precoci e maturi. | [IMN
somigliano a MN derivati da hPSC differenziati dal protocolli convenzionale che usano solo
morfogeni, mostrano attivita elettrica spontanea, esprimono marcatori sinaptici e formano
contatti con cellule muscolari in vitro. Il sequenziamento multiplo di RNA a singola cellula in
pool su 50 linee cellulari ha rivelato popolazioni riproducibili di piu sottotipi MN
anatomicamente distinti a livelli cervicali e brachiali, che innervano gli arti e che in parte
assomigliano alla loro controparte nel midollo spinale embrionale umano in vivo. Concludiamo
che la combinazione di morfogeni e la sovraespressione di NgnZ2 facilita la produzione robusta,
riproducibile ed ad alto rendimento di piu sottotipi di MN rilevanti per lo studio di malattie, che
€ fondamentale per promuovere la nostra conoscenza della biologia dei motoneuroni e la sua
alterazioni in neurodegenerazione.

Questo lavoro mira a far luce su quali meccanismi molecolari sono interrotti nella
malattia alla risoluzione di una singola cellula, offrire opzioni sugli strumenti per studiare
queste interruzioni in modelli umani e discutere ulteriormente come futuri esperimenti che
utilizzano approcci multidisciplinari potrebbero espandere le nostre conoscenze sul malattia

in uno sforzo verso la scoperta di nuove terapie e possibilmente una cura.
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