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A Survey on Explainable Anomaly Detection

ZHONG LI, YUXUAN ZHU, and MATTHIJS VAN LEEUWEN, Leiden Institute of Advanced

Computer Science (LIACS), Leiden University, The Netherlands

In the past two decades, most research on anomaly detection has focused on improving the accuracy of
the detection, while largely ignoring the explainability of the corresponding methods and thus leaving the
explanation of outcomes to practitioners. As anomaly detection algorithms are increasingly used in safety-
critical domains, providing explanations for the high-stakes decisions made in those domains has become an
ethical and regulatory requirement. Therefore, this work provides a comprehensive and structured survey on
state-of-the-art explainable anomaly detection techniques. We propose a taxonomy based on the main aspects
that characterise each explainable anomaly detection technique, aiming to help practitioners and researchers
find the explainable anomaly detection method that best suits their needs.

CCS Concepts: • Information systems→ Decision support systems; Data analytics; Data mining;

Additional Key Words and Phrases: Explainable anomaly detection, interpretable anomaly detection, anom-
aly explanation, anomaly detection, outlier detection, explainable machine learning, explainable artificial
intelligence

ACM Reference format:

Zhong Li, Yuxuan Zhu, and Matthijs van Leeuwen. 2023. A Survey on Explainable Anomaly Detection. ACM

Trans. Knowl. Discov. Data. 18, 1, Article 23 (September 2023), 54 pages.
https://doi.org/10.1145/3609333

1 INTRODUCTION

An anomaly is an object that is notably different from the majority of the remaining objects. De-
pending on the specific application domain, an anomaly can also be called an outlier or a novelty.
Moreover, it may also be known as an unusual, irregular, atypical, inconsistent, unexpected, rare,
erroneous, faulty, fraudulent, malicious, unnatural, or strange object [181]. Except for a few works
such as Reference [181], the term outlier is often used as a synonym for anomaly in most research.
For consistency, we will use the term anomaly in this article.

Since the seminal work in [105], anomaly detection has been well studied and there exists a
plethora of comprehensive surveys and reviews on it, including but not limited to References
[1, 5, 25, 36, 37, 134, 135, 161, 165, 231]. In contrast, we only found a handful of surveys
[162, 189, 225] about the explainability of anomaly detection methods. As suggested by Langone

This publication is part of the project Digital Twin with project number P18-03 of the research programme TTW Perspec-
tive, which is (partly) financed by the Dutch Research Council (NWO). We thank Dr. Gabriel de Albuquerque Gleizer for
his valuable feedback.
Authors’ address: Z. Li, Y. Zhu, and M. van Leeuwen, Leiden Institute of Advanced Computer Science (LIACS), Leiden
University, Snellius Gebouw, Niels Bohrweg 1, Leiden 2333CA, The Netherlands; emails: z.li@liacs.leidenuniv.nl, y.zhu.12@
umail.leidenuniv.nl, m.van.leeuwen@liacs.leidenuniv.nl.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
1556-4681/2023/09-ART23 $15.00
https://doi.org/10.1145/3609333

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 23. Publication date: September 2023.

https://orcid.org/0000-0003-1124-5778
https://orcid.org/0000-0001-5373-4452
https://orcid.org/0000-0002-0510-3549
https://doi.org/10.1145/3609333
https://doi.org/10.1145/3609333
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3609333&domain=pdf&date_stamp=2023-09-06


23:2 Z. Li et al.

et al. [111], model explainability represents one of the main issues concerning the adoption of
data-driven algorithms in industrial environments. More importantly, for applications in safety
critical domains, providing explanations to stakeholders of AI systems has become an ethical and
regulatory requirement [50, 217]. However, after a thorough survey of academic publications on
explainable anomaly detection, we found that existing surveys are either outdated, have missed
some important work, or their proposed taxonomies are relatively coarse and, therefore, unable to
characterize the increasingly rich set of explainable anomaly detection techniques available in the
literature.

To address this gap in the literature, we conduct a comprehensive and structured survey on state-
of-the-art explainable anomaly detection techniques and distil a refined taxonomy that caters to
the increasingly rich set of techniques. Overall, this survey intends to provide both practitioners
and researchers with an extensive overview of the different types of methods that have been pro-
posed, with their pros and cons, and to help them find the explainable anomaly detection technique
most suited to their needs.

Note that some researchers [27, 145, 197] distinguish between the terms ‘interpretation’ and
‘explanation’, the terms ‘interpretable’ and ‘explainable’, and the terms ‘explainability’ and ‘inter-
pretability’. Specifically, Broniatowski [27] defines explainability as a model’s ability to provide a

description of how its outcome came to be and describes interpretability as a human’s ability to make

sense from a given stimulus so that the human can make a decision. Moreover, Sipple & Youssef [197]
argue that explainability is the algorithmic task of generating the explanation and interpretability
is the cognitive task of merging the expert’s knowledge with the explanation to identify a unique diag-

nostic condition and to choose the appropriate treatment. Considering that most researchers in data
mining and machine learning treat explainability and interpretability equally, we use those terms
interchangeably throughout this article. The next section will clarify what we mean exactly when
we say that a technique is explainable.

1.1 Methodology

This survey aims to answer the following research questions and is structured accordingly:

Q0 What is explainable anomaly detection and why should we care about it?
Q1 What are the most important aspects that characterise each explainable anomaly detection

technique? On this basis, how to classify existing techniques?
Q2 How do existing techniques interpret anomalies and what are the main differences between

them?
Q3 What are the challenges and associated opportunities in explainable anomaly detection?

In order to answer these research questions, we employ a comparative and iterative surveying
procedure that consists of three cycles. In the first cycle, we employ a methodology consisting of
two main phases:

— Database Selection: we select well-known scientific databases for literature collection, i.e.,
Google Scholar, IEEE Xplore, ACM Digital Library, DBLP, and Web of Science.

— Literature Selection: we select related research publications that were published between
January 1998 to February 2022 using the following keywords: Interpretable/Interpret/
Interpreting Anomaly Detection, Explainable/Explain/Explaining Anomaly Detection, Inter-
pretable/Interpret/Interpreting Outlier Detection, Explainable/Explain/Explaining Outlier
Detection, Anomaly Interpretation, Anomaly Explanation, Outlier Interpretation, Outlier Ex-
planation. Other useful keywords are: Anomaly/Outlier Description, Anomaly/Outlier Char-
acterization, Outlying Property Detection, Outlying Aspects Mining, Outlying Subspaces
Detection.
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Fig. 1. The procedure of anomaly analysis and the different roles involved in this procedure.

In the second cycle, we inspect research publications that have been referenced by articles col-
lected in the first cycle. In the third cycle, we exclude research publications that are irrelevant, not
published in what we consider high-quality venues, or applications of existing methods to certain
use cases.

This survey is organised as follows: To answer Q0, Section 2 states the motivations for this
work and the terminology used. Section 3 describes the proposed taxonomy for answering Q1.
Sections 4–7 survey existing techniques for explainable anomaly detection in a principled manner
based on the proposed taxonomy, aiming to answer Q2. Section 8 discusses the open challenges
and related opportunities of existing work, and then concludes this survey, answering Q3.

2 THE NEED FOR EXPLAINABLE ANOMALY DETECTION

This section introduces important terminology and concepts, such as anomalies and explainable
anomaly detection, and explains why this is an important field of study.

2.1 What is an Anomaly?

First of all, we need to define what an anomaly is. Inspired by Sejr & Schneider-Kamp [189],
we assume that there are three roles involved in an anomaly analysis task: (1) a/an Stakeholder/

End-user/Data Scientist/Expert that uses the anomaly detection system; (2) an Algorithm Designer/

Anomaly Detection Method that does the actual anomaly detection; and (3) an Algorithm Explainer/

Anomaly Explanation Method that explains identified anomalies. These three roles are illustrated
in Figure 1. The different roles may have different definitions of what an anomaly is, and we dis-
tinguish those definitions as follows:

— Oracle-Definition: the ‘ideal’ definition that defines the anomalies that the end-users of the
anomaly detection system aim to detect. In other words, this definition defines the true anom-

alies in the real-world application and thus strongly depends on the context and is often hard
to formally/precisely formulate.

— Detection-Definition: the anomalies that an anomaly detection model can actually capture.
This definition is given explicitly or implicitly by the anomaly detection model or technique.

— Explanation-Definition: describes why (and when) the anomaly explanation method consid-
ers an anomaly as anomalous.

For example, for a credit card fraud detection system, the end-users aim to detect fraudulent
behaviour, which is defined as “obtaining services/goods and/or money by unethical means”, in-
cluding bankruptcy fraud, theft fraud, application fraud and behavioral fraud [58]. Therefore, the
Oracle-Definition is “behaviour that aims to obtain services/goods and/or money by unethical
means”. However, a given credit card fraud system might only detect anomalous behaviours such
as unprecedented high payments and/or payments at a never-before-seen location. Hence, the
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Detection-Definition is “unprecedented high payments and/or payments at a never-before-seen
location” and this is actually a theft fraud. Moreover, for an identified anomalous payment, the
anomaly explanation method could generate the explanation “the payment is flagged as anoma-
lous because it happened at midnight”, which follows from the Explanation-Definition. Clearly the
Oracle-Definition, the Detection-Definition, and the Explanation-Definition can be different from
each other.

In general, the Oracle-Definition is given based on domain knowledge, which is application-
specific. From this point of view, there is no universal definition of an anomaly. A commonly
accepted definition by Hawkins [81] is that “an outlier is an observation that deviates so much
from other observations as to arouse suspicion that it was generated by a different mechanism”. As
this is informal, each specific anomaly detection model has its own definition of an anomaly, either
explicitly or implicitly. For example, KNN [172] defines objects with ‘far’ k-nearest neighbours as
anomalies, LOF [26] treats objects with a low local density as anomalies, and Isolation Forest [122]
considers ‘easily isolated’ objects as anomalies. Importantly, this Detection-Definition definition
can be different from the Oracle-Definition, which may lead to problems. For example, an anomaly
detector may miss relevant anomalies while detecting ‘anomalies’ that are uninteresting to end-
users. Moreover, depending on the technique used to explain an anomaly, the Detection-Definition

and Explanation-Definition can also be different, especially when the explanation approach does
not reflect the decision-making process behind the anomaly detection model.

2.2 What is Explainable Anomaly Detection?

According to Doshi-Velez & Kim [61], interpretability or explainability is defined as the ability
to explain or provide meaning to humans in understandable terms. Moreover, Arrieta et al.
[13] define Explainable Artificial Intelligence (XAI) as “Given an audience, an explainable
Artificial Intelligence is one that produces details or reasons to make its functioning clear or
easy to understand.” Furthermore, Murdoch et al. [150] define interpretable or eXplainable

Machine Learning (XML) as “the extraction of relevant knowledge from a machine learning
model concerning relationships either contained in data or learned by the model”, where the
knowledge is considered relevant if it provides insight into the problem faced by the target
audience. Accordingly, we define eXplainable Anomaly Detection (XAD) as the extraction of

relevant knowledge from an anomaly detection model concerning relationships either contained in

data or learned by the model, where the knowledge is considered relevant if it can provide insight
into the anomaly detection problem investigated by the end-user. Hereinafter, we utilize XAI and
XML interchangeably as they practically mean the same within the scope of this manuscript.

Miller [142] defined XAI as a human-agent interaction problem at the intersection of Artificial
Intelligence, Human-Computer Interaction (HCI), and the Social Sciences (including Philoso-
phy, Cognitive Science, and Social Psychology). Being a subfield of XAI, XAD can also be situated
at the intersection of those three domains. Therefore, in addition to considering different XAD
tasks and problems together with their algorithmic and computational challenges, it would also
be of interest to consider questions such as how do humans understand an explanation, what kind of

explanations are human-understandable, and how do humans interact with machines to understand

explanations? Thoroughly addressing these questions, however, would require substantial addi-
tional coverage and analysis of the literature; to maintain a clear scope and prevent the survey
from becoming even longer, we will not address these questions. Instead, we refer to recent arti-
cles for perspectives from HCI [202] and social science [142, 143], and leave a broader discussion
of these aspects to a future article.

The anomaly analysis process consists of two equally important tasks, namely, anomaly detec-

tion and anomaly explanation. Anomaly explanation refers to the process of finding out why an
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anomaly is considered anomalous. Because the terms anomaly and outlier are used interchange-
ably, anomaly explanation is also known as outlier explanation, outlier interpretation, outlier de-
scription, outlier characterization, outlying property detection, outlying aspects mining, outlying
subspaces detection, object explanation, and promotion analysis.

An anomaly can be identified by an anomaly detection algorithm or, otherwise, become known
(e.g., from an expert).

— Case 1 (Model). If an anomaly is identified by an anomaly detection algorithm, XAD aims at
explaining the anomaly by making the anomaly detection method interpretable. Specifically,
there exist many approaches to make an anomaly detector interpretable. If the anomaly de-
tector is intrinsically interpretable (e.g., logistic regression, shallow decision trees, and rule-
based models), it is relatively easy to deduce why the anomaly is flagged as anomalous. In
contrast, if the anomaly detector is not intrinsically interpretable (e.g., Isolation Forest [122],
RNN [183], and CNN [74]), post-hoc XAI techniques such as SHAP [128], LIME [174], and An-
chors [175] can be used to interpret the anomaly detector, namely, to describe why it makes
certain decisions. In this case, we aim at making the Detection-Definition and Explanation-

Definition consistent.
— Case 2 (Data). If an anomaly is identified by an expert, an anomaly explanation method can

only aim at explaining why the given data instance is anomalous, extracting no knowledge
from any anomaly detection models. In this case, we attempt to make the Oracle-Definition

(if any) and Explanation-Definition consistent. However, it is also possible that the expert ob-
tains the anomaly by running an existing anomaly detection algorithm, but the design of the
algorithm is unavailable to the expert for some reasons (such as confidentiality). Hence, the
Explanation-Definition may be different from the Detection-Definition (which is not known).

In short, the biggest difference between these two cases is about what to explain: the model
(and possibly the data) or just the data. Case 1 is centred around anomaly detection models. If
we can understand how the anomaly detection model makes decisions, as a by-product, we can
easily explain why an anomaly is flagged as anomalous by the model. In contrast, Case 2 focuses
on anomalies and aims at explaining why they are anomalous where the detection model is not
available. The anomaly explanation methods corresponding to this case can be considered as sur-
rogate methods for the unavailable anomaly detection models. For completeness, we will consider
both cases in this survey.

2.3 Why Should We Care About XAD?

Due to the widespread application of anomaly detection in many domains, the interpretability
of corresponding methods has become increasingly important [162]. For example, anomaly de-
tection algorithms are being used to diagnose diseases in healthcare [212]. In financial services,
many banks use anomaly detection methods to detect abnormal behaviour in credit card trans-
actions [6]. In addition, the self-driving car manufacturing industry applies anomaly detection
algorithms on camera data to detect corner cases [23]. In other safety-critical areas—such as space-
craft design—anomaly detection algorithms are used to detect sensor faults [70]. As we can see,
anomaly detection systems for high-stakes decisions are deeply impacting our daily lives and so-
ciety. One natural question is, how can we trust these systems without understanding and validating

the underlying rationale of the involved anomaly detection components? For this reason, XAD aims
to not only provide accurate anomaly detection results but also to provide tangible explanations
of why a specific object is detected as an anomaly [155].

Providing anomaly detection results with corresponding explanations can help gain the trust
of end-users in anomaly detection systems. Moreover, the explanations can also assist end-users
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to validate the anomaly detection results in unsupervised settings. Even more, explanations can
potentially enable end-users to find the root causes of anomalies and thereby take remedial or
preventive actions.

For a long time, however, the anomaly detection community has mainly focused on detection
accuracy, largely ignoring the interpretation of corresponding decisions. For instance, Micenková
et al. [141] criticise that “almost all existing algorithms stop at the point of providing anomaly
ranking and leave the user without any explanation of why some data points deviate and how.”
Additionally, Dang et al. [53] indicate that “although there is a large number of techniques for
discovering global and local anomalous patterns, most attempts focus solely on the aspect of out-
lier identification, ignoring the equally important problem of outlier interpretation.” Aggarwal [1]
also points out that “only few outlier detection studies considered providing some qualitative in-
formation to explain the form of outlierness.” Similarly, Vinh et al. [216] argue that “current outlier
detection techniques do not usually offer an explanation as to why the outliers are considered as
such, or in other words, pointing out their outlying aspects.”

In summary, the anomaly detection community has long been paying more attention to
giving correct answers rather than providing explanations or—even better—providing correct

explanations. With more and more applications or potential applications of anomaly detec-
tion in high-risk decision-making systems, it has become crucial to gain or increase humans’
trust in and acceptance of anomaly detection techniques. For this it is important to provide
correct answers with correct explanations, i.e., to avoid the Clever Hans Phenomenon [112]
that—in this context—refers to anomaly detection models utilising spurious correlations and
patterns in the data to identify anomalies. Although the identified anomalies are true, these
correlations or patterns may be incorrect or undesirable (e.g., violating the laws of physics).
Such provably incorrect explanations are unacceptable to end-users and would only harm
trust.

2.4 What is a Good XAD Method?

Once explanations are generated by an XAD method, how can one trust them? A natural first step
is to evaluate the quality of generated explanations. Studies relevant to this have been conducted in
the realm of XAI. For instance, references [20, 76] analyze the XAI literature and propose important
properties that should be considered when designing an XAI technique. Next, Barbado et al. [18]
defines some criteria to evaluate rule-extraction-based explanation techniques. Moreover, Zhou
et al. [229] perform a survey on the quality evaluation of machine learning explanations. Recently,
Sipple & Youssef [197] proposes four desiderata for anomaly explanation methods as well as a
method for comparing different explanations. However, there is no consensus on what a good
XAD technique should be. Based on related work on XAI, we find the following properties to be
especially relevant when designing or choosing an XAD technique:

— Accuracy: how accurate is the prediction of unseen anomalous instances as anomalies;
— Fidelity: consistency of Oracle-Definition, Detection-Definition, and Explanation-Definition;
— Comprehensibility: to what extent are the explanations understandable to the end-users;
— Generality: does the technique have special requirements for data type, data size, anom-

aly detection model type, anomaly detection model size, training regimes, or training
restrictions;

— Scalability: does it scale to large input data size and/or a large model;
— Complexity: how many hyper-parameters need to be set by end-users.

The practical implementation and evaluation of XAD techniques are largely dependent on the
application domain and end-users and are, therefore, out of the scope of this survey.
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3 A TAXONOMY OF EXPLAINABLE ANOMALY DETECTION METHODS

Before we introduce the taxonomy that we propose for the field of XAD, we first briefly review
existing surveys and taxonomies.

3.1 Related Work

Compared to the abundance of taxonomies of anomaly detection methods, including but not lim-
ited to these surveys throughout the years [3, 36, 37, 78, 86, 161], the categorization of anom-
aly explanation methods involving XAD techniques has received relatively little attention so far
[162, 185, 189, 216, 225].

We discuss the four most notable existing categorizations. Vinh et al. [216] for the first
time subdivided anomaly explanation approaches into two categories: Feature selection-based

approaches that transform the anomaly explanation task into the classical problem of feature
selection for classification, and Score-and-search approaches that compare the outlyingness degree
of an anomaly across all subspaces followed by inspecting the subspace with the highest anomaly
score. To the best of our knowledge, Samariya et al. [185] was the first work dedicated to the
survey of anomaly explanation methods. They also subdivided related techniques into three
categories: Score-and-Search-based approaches, Feature selection-based approaches, and Hybrid

approaches. More recently, Panjei et al. [162] introduced a survey on anomaly explanation,
wherein they divided relevant techniques into three categories: Importance Levels of Outliers,
Causal Interactions Among Outliers, and Outlying Attributes. Meanwhile, Yepmo et al. [225] also
presented a review of anomaly explanation methods, categorizing existing techniques into four
groups, namely, Explanations by Feature Importance, Explanations by Feature Values, Explanations

by Data Points Comparison, and Explanations by Structure Analysis. Finally, Reference [189] is also
closely related, wherein they have discussed what anomaly explanations are, who needs those
explanations, and why there are different types of anomaly explanations.

After a thorough survey of the scientific literature on XAD techniques, we find that existing sur-
veys are less comprehensive than we aim to be in this manuscript. Specifically, each of the above
surveys contains no more than 40 relevant works in the field. In contrast, our survey has investi-
gated more than 150 relevant articles. In addition, we find the existing taxonomies to be relatively
coarse and sometimes not intuitive. For example, although anomaly score is a very natural rank-
ing of outlying degree, Panjei et al. [162] particularly treat anomaly ranking as a subcategory of
anomaly explanation methods. Furthermore, although Explanations by Feature Importance and Ex-

planations by Feature Values mainly differ in the granularity of provided explanations, Yepmo et al.
[225] regard them as two distinct categories. In brief, existing surveys only partially cover existing
research, and the proposed taxonomies are insufficient to characterize the increasingly rich field
of XAD. For this reason, we perform a comprehensive and structured survey on state-of-the-art
XAD techniques. As new articles are published at a rapid pace, we do not claim to have covered
all relevant research publications. Furthermore, as we intend to include a wide spectrum of XAD
methods, we cannot describe each method in detail. Meanwhile, a refined taxonomy, distilled from
existing surveys on XAI techniques, is presented below and used to categorize XAD methods.

3.2 Proposed Taxonomy

Similar to how anomaly detection is an important part of machine learning and data mining, we
argue that XAD is also an important constituent of what is nowadays called XAI. XAI has received
extensive attention in the past few years due to the emergence and prevalence of black-box models
such as deep neural networks. After carefully scrutinizing existing surveys on XAI [13, 20, 30, 34,
62, 71, 120], we found that some criteria are often used to categorize existing XAI techniques. Cap-
italizing on these findings, we propose six main criteria to taxonomize existing XAD techniques.
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First of all, according to the anomaly detection pipeline as shown in Figure 1, we can subdi-
vide XAD techniques into three categories, namely, Pre-model techniques, In-model techniques and
Post-model techniques. Specifically, pre-model techniques, also known as ante-hoc techniques, are
constructed and implemented before the anomaly detection process. Techniques such as filter fea-
ture selection methods belong to this category. In-model techniques use inherently interpretable
models and can therefore provide explanations without additional or with little effort when per-
forming anomaly detection. For example, anomaly detection methods based on linear regression,
which can simultaneously report the coefficients of the corresponding features, fall into this cat-
egory. In contrast, post-model techniques, also known as post-hoc techniques, attempt to explain
the decisions made by an anomaly detection model after the construction and implementation of
the detection model or when anomalies are obtained from an oracle. For instance, SHAP-based
interpretation methods [128] are part of this category.

Second, we distinguish XAD techniques based on whether they provide a global explanation

or local explanation. Specifically, a global explanation is based on the understanding of the com-
plete ‘model logic’ or some important properties of the anomaly detection model, being able to
explain how all decisions are made. In contrast, a local explanation explains why a specific object
is anomalous or how a specific decision is made.

Third, XAI techniques can be further subdivided into model-agnostic approaches that can be
applied to any anomaly detection model, and model-specific approaches that are only applicable to
specific anomaly detection models.

Fourth, two aspects of a tabular dataset can be used to generate explanations, i.e., a tabular
dataset has features and samples. Therefore, we can subdivide techniques into three subcategories:

— Feature-based methods provide explanations based on features. This group of methods gener-
ally indicates which features are important and/or the corresponding values of investigated
anomalies. Specifically, subspace (e.g., a subset or unordered features), a set of subspaces (e.g.,
a set of feature pairs), feature importance (e.g., assigning a score or an order to each fea-
ture), and feature values (e.g., rare combination of feature values) fall into this subcategory.
Particularly, some studies attempt to define a set of rules based on a subset of features and
their corresponding values, resulting in so-called patterns. Meanwhile, for sequential data
such as time series, a pattern consisting of a collection of consecutive observations is usually
leveraged to detect and explain anomalies. Each observation can be regarded as a feature or
a sample depending on the context. For simplicity, we call them pattern-based methods, but
they are still essentially feature-based methods.

— Sample-based methods generate explanations based on samples. This type of method typi-
cally compares the abnormal object directly to normal objects to demonstrate differences. For
instance, local neighbourhood (e.g., the nearest objects, which may be normal or abnormal,
to an anomaly), counterexample (e.g., the nearest normal object to an anomaly), and contex-

tual anomalies (e.g., the nearest cluster to an anomaly) belong to this subcategory. Moreover,
exception analysis in Reference [76] and representative examples in References [20, 211] also
fall under this category.

— Feature and Sample-based methods leverage both aspects.

Fifth, based on the specific techniques used to generate explanations, we can categorize models
into the following subcategories, which are not mutually exclusive:

— Approximation-based methods, which approximate or mimic complex models with simpler
ones that are much easier to interpret. They are also called surrogate models. Examples
include LIME [174] and Anchors [175].
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Fig. 2. XAD taxonomy based on six criteria (coloured text boxes). Most existing XAD methods fall into one

category for each of the six criteria.

— Perturbation-based methods, which examine the influence of output via input changes to
generate explanations. Examples include Anchors [175].

— Reconstruction Error-based methods, which use reconstruction errors to explain anomalies.
Examples include SHAP-based methods [12].

— Attention Learning-based methods, which use attention learning to localise anomalies. Exam-
ples include Reference [28] and Reference [215].

— Gradient-based methods, which measure feature contribution on midput (intermediate out-
puts) or outputs through back-propagation. Examples include Layer-wise Relevance Prop-
agation [96, 160, 196]. Note that some of these methods may also be Reconstruction Error
based.

— Causal Inference-based methods, which analyze the causal relations between objects and/or
features to explain anomalies. Examples include Reference [124].

— Visualization-based methods, which use plots to explain anomalies. Examples include Ref-
erence [126], which uses heatmaps that is a kind of saliency masks. Note that many other
techniques also leverage visualization to explain anomalies.

— Intrinsically Explainable methods. The above-mentioned subcategories are mainly post-
model techniques that are used to explain deep learning-based anomaly detection models.
Meanwhile, there are in-model techniques that make the anomaly detection model intrinsi-
cally explainable. Examples include Rule-based models [83].

— Miscellaneous other methods. We assign other techniques to this subcategory by indicating
their specific technique. Examples include Pattern Compression [200], and Subspace Anom-
aly Detection [186].

Sixth and last, we also indicate the types of data to which each XAD technique can be applied.
Specifically, the data type can be static or streaming. Furthermore, it can be tabular (numeric,
categorical, or mixed), sequential (time series, other sequential), image, text, video, or graph
data.

Our overall proposed taxonomy is presented in Figure 2: each of the six criteria can be used
to categorize an XAD method. Together these six ‘dimensions’ can be used to provide a detailed
characterization of an existing XAD method, or—the other way around—to find XAD methods
satisfying certain requirements.
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Fig. 3. Structure of the core of this survey, i.e., Sections 4–7 (indicated by S4–7).

3.3 Organisation of the Literature Review

As described in the previous subsection and shown in Figure 2, our taxonomy employs six criteria.
To organize our survey by these six criteria; however, we would have to introduce many section
levels and some subsections would be much longer than others. We will therefore use another
structure (as shown in Figure 3) for the literature review in the following sections, which we will
explain next. We will still make ample use of our proposed taxonomy: to partially structure the
individual sections, to characterize the methods that we describe, and to provide a full characteri-
zation of all methods in a large overview table at the end of each section.

We use the first main criterion to classify pre-model techniques (S4), in-model techniques (S5), and
post-model techniques (S6-7) into different sections. As there are so many post-model techniques,
we split those into deep learning-based methods (S7) and other, ‘shallow’ methods (S6). Next, we
use the characteristics of each of these categories to define subsections. That is, the pre-model tech-

niques section consists of subsections for feature selection and feature representation. Meanwhile,
the in-model techniques section includes subsections for transparent models in supervised learning,
feature subset-based models, and other models in unsupervised learning. The shallow post-model tech-

niques section has subsections for subspace-based methods, surrogate methods, and miscellaneous

methods. Finally, the deep post-model techniques section contains subsections explaining AutoEn-

coders, explaining RNNs, explaining CNNs, and explaining other DNNs.

4 LITERATURE REVIEW ON PRE-MODEL TECHNIQUES

Opaque models are often criticized for their inexplicability. However, the features used as inputs
to models are as critical as, if not more than, the type of models in producing explainable results. In
other words, by having more meaningful and informative features whilst retaining fewer irrelevant
features, we can build simpler models to learn the relationships exhibited in the data while ensuring
comparable anomaly detection accuracy, see Figure 3.

Therefore, this section reviews articles that leverage XAD techniques before the anomaly detec-
tion process. Specifically, the following pre-model techniques are investigated:

— Feature selection methods that select a subset of original features for anomaly detection;
— Feature representation methods that learn a set of high-level and human-understandable

feature representations for anomaly detection.

4.1 Feature Selection for Anomaly Detection

Siddiqui et al. [193] point out that the effort required to investigate an anomaly is usually
proportional to the number of features that describe it. Therefore, dimensionality reduction
techniques—including feature projection and feature selection methods—can be applied to reduce
the number of features that describe an object, thereby, facilitating anomaly explanation. However,
feature projection methods such as Principal Component Analysis convert the original features
into a new set of features, sacrificing interpretability. In contrast, feature selection methods retain
a subset of original features that contain the most important information, greatly improving the
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interpretability and effectively alleviating the curse of dimensionality problem in high-dimensional
data.

There exist very limited unsupervised feature selection methods for anomaly detection. Specifi-
cally, Pang et al. [156] and Pang et al. [158] propose two filter-based unsupervised selection meth-
ods, namely, CBRW_FS and CBRW, which select a subset of features independently from subse-
quent anomaly detection methods. These two methods work only on categorical data through
modelling the feature-value couplings. By assuming strong similarities between rare instances,
He & Carbonell [82] design an optimization framework to jointly select features and instances
for anomaly detection on categorical data. However, this assumption is usually not satisfied since
anomalies are often isolated and thus distinct from each other.

Meanwhile, Noto et al. [154] and Paulheim & Meusel [167] try to find a relevant feature subset for
anomaly detection by exploring the correlations between features. They assume that anomalies are
those instances that violate the normal dependencies between features. Therefore, only features
that are related to other features are considered relevant for anomaly detection. Unfortunately, this
anomaly definition is not applicable to many benchmark anomaly detectors. Moreover, Isolation
Forest [122] can also be used to select a subset of features for anomaly detection. The isolation
forest-based feature selection method, IBFS [223], simply selects features that contribute the most
to the outlyingness of anomalies reported by the Isolation Forest method. To our knowledge, this is
the first unsupervised feature selection method specifically designed for generic anomaly detection
in numeric data. The above three methods are all filter-based, which independently select subsets
of features regardless of subsequent anomaly detection methods. Consequently, suboptimal or
completely irrelevant features may be selected for anomaly detectors.

A platform information technology (PIT) system is a system capable of connecting and com-
municating with other systems, subsystems and devices. To detect attacks in PIT systems, Morris
[146] proposes to use Principal Component Analysis (PCA) or Independent Component

Analysis (ICA) to reduce the number of features considered, thereby promoting interpretability in
the subsequent anomaly detection process. Moreover, he suggests using ensemble learning-based
methods such as Random Forests to detection anomalies after the dimensionality reduction pro-
cess. However, every feature obtained using PCA or ICA is a combination of the original features
and is, therefore, no longer interpretable.

Some feature selection methods are interleaved with the anomaly detection process, rather than
being applied before the anomaly detection process. We call such methods wrapper or embedded
feature selection methods depending on their implementations and will introduce them in the next
section.

4.2 Feature Representation for Anomaly Detection

Due to the complexity entailed in data such as time series, image, video, and so on, deep neu-

ral network (DNN)-based methods have shown superiority in detecting anomalies in these data.
However, DNN-based models are notoriously known for their complexity, which implies unin-
terpretability. To alleviate this problem, Chen et al. [43] and Wu et al. [219] indicate that using
high-level and human-understandable feature representations for anomaly detection can reduce
the complexity of subsequent anomaly detection models, thereby improving their interpretability.

Examples can be observed in the domain of time series anomaly analysis. For instance, Ramirez
et al. [173] introduce an interpretable anomaly detection and classification framework to analyze
human gait. Specifically, they first harness symbolic representations such as Piecewise Aggregate
Approximation to represent the collected multivariate time series data. Particularly, they consider
the symbolic abstraction of the data as the core of their XAD framework, enhancing interpretability
of the results via feature reduction. Second, they apply two discords-based anomaly detection

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 23. Publication date: September 2023.



23:12 Z. Li et al.

methods, viz. HOT-SAX [101] and RRA [191], to discovery anomalies, respectively. Third, they
determine the final anomalies based on the consensus of these two detection algorithms.

Instead of using symbolic representations, Dissanayake et al. [60] investigate the importance
of heart sound segmentation and feature extraction for detecting abnormal heart sound. They
suggest that an automated detection method usually consists of three steps: Segmentation,
Feature Extraction, and Classification. First, they apply the model proposed by Fernando et al.
[69] to perform segmentation. Particularly, the segmentation is based on a feature representation
called Mel-Frequency Cepstral Coefficients (MFCCs). They argue that pre-extracted feature
representations such as MFCCs or spectrogram are commonly used in medical domain as they are
closely related to the original signal. One can gain important insights into the model prediction
results if explaining the feature representations in conjunction with the signal. Second, they
utilise a Convolution Neural Network (CNN) encoder to extract features. Third, they construct
a Multilayer Perceptron (MLP) Network model to perform anomaly detection. Moreover, to
interpret an anomaly, they combine Shapley values and Occlusion maps [227] to investigate how
input features impact the prediction.

Schlegl et al. [187] construct a DNN-based model that can learn interpretable feature repre-
sentations from unlabeled time series, facilitating the evaluation and deployment of subsequent
anomaly detection algorithms. First, they set up a so-called deviation convolution based model to
learn characteristic shapes of normal time series, wherein they impose a separating constraint on
the neural network to make it interpretable. Second, they feed these human-interpretable shapes
to a convolutional-RNN AutoEncoder, which attempts to reconstruct the input shapes while min-
imising the reconstruction errors. Therefore, a test instance with a large reconstruction error is
considered anomalous.

In the field of video anomaly analysis, Wu et al. [219] propose a Denoising AutoEncoder

(DAE)-based model combined with SHAP to detect and explain anomalies in videos. Since unin-
terpretable feature representations hide the decision-making process, they first leverage pretrained
Convolutional Neural Network (CNN) models to extract high-level concept and contextual fea-
tures. Second, they train a DAE model based on these features to predict the video frame. On this
basis, a test instance is considered anomalous if its actual frame is significantly different from
its predicted frame. Third, they apply kernel SHAP [128] to find input features which cause the
anomaly.

4.3 Summary

As shown in Table 1, all pre-model XAD techniques are model-agnostic except for Reference [173].
In other words, most pre-model XAD techniques can be applied to any subsequent anomaly detec-
tion methods. However, fully decoupling the feature selection or feature representation learning
from the subsequent anomaly detection methods may lead to sub-optimal detection accuracy.

Furthermore, most reviewed pre-model XAD techniques are feature-based with the excep-
tion that He & Carbonell [82] also perform instance selection to improve interpretability.
Importantly, all pre-model XAD techniques can provide global explanations in the sense that
they render the subsequent anomaly detection models more transparent and interpretable by
preserving less irrelevant or redundant features, or providing human-understandable feature
representations.

The ultimate goal of using XAD techniques is to ensure that the entire pipeline of anomaly
detection is human-understandable. However, we note that high-level and human-understandable
feature representations are usually obtained by an opaque model, such as a pre-trained CNN
model in Reference [60], which somewhat offsets the benefits of using interpretable feature
representations for anomaly detection.
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Table 1. Summary of Pre-model XAD Techniques

Ref. Spec Pers Tech Data Loc Pros Cons
[156] A F Feature selection Static TC G Handles noisy

features well
Only applicable to
categorical data

[158] A F Feature selection Static TC G Linear time
complexity to data
size

Only applicable to
categorical data

[82] A F & S Feature selection +
Instance selection

Static TC G Jointly selects
features and
instances for AD

Assumes strong
similarities
between rare
instances

[154] A F Feature selection Static TN G Robust to noisy
and
high-dimensional
data

Only explores
correlations
between features

[167] A F Feature selection Static TN G Changes
unsupervised AD
into supervised AD

Only explores
correlations
between features

[223] A F Feature selection Static TN G Applicable to
generic AD for
numeric data

Selects features
without
considering
subsequent AD
methods

[146] A F Feature selection Static TN G Applicable to
generic AD

Obtained features
are not
interpretable

[219] A F Pretrained CNN models
to extract high-level
concept and contextual
features; VAE + SHAP

Static
video

L &
G

Extracted features
are easy to
understand

Weak
interpretability due
to the opacity of
CNN

[173] S P Symbolic representation
using PAA

Static
MTS

G Enables
human-in-the-loop

Only applicable to
symbolic based AD
such as HOT-SAX
and RRA

[60] A F Pre-extracted feature
representations
(MFCCs/spectrogram);
SHAP + Occlusion maps

Heart
sound
sig-
nals/UTS

L &
G

Simple, stable and
efficient
architecture

Only applicable to
DNN

[187] A F Explainable feature
representations

Static
MTS

G Easy to visualize Weak
interpretability due
to the opacity of
RNN-based AD;
Fails to learn less
frequent shapes

Spec indicates whether a method is model-agnostic (A) or model-specific (S). Pers specifies whether a method is
feature-based (F), sample-based (S) or pattern-based (P). Tech indicates the techniques used in each method. Data

indicates the data type for which the method is applicable (TN: Tabular Numeric; TC: Tabular Categorical; TM: Tabular
Mixed; UTS: Univariate Time Series; MTS: Multivariate Time Series; ES: Event Sequence). Loc shows whether a method
provides a local explanation (L) or global explanation (G). Pros and Cons describe advantages and disadvantages of each
method, respectively.

Moreover, it can be seen that the reviewed feature selection and feature representation
techniques are model-based feature engineering methods, which only leverage machine learning
techniques. However, one can employ domain-knowledge-based feature engineering methods
to extract features. For instance, Murdoch et al. [150] point out that combining exploratory data
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analysis tools with domain knowledge is helpful for extracting meaningful features, thereby
improving the interpretability of subsequent anomaly detection.

5 LITERATURE REVIEW ON IN-MODEL TECHNIQUES

This section presents anomaly detection models that are considered to be inherently explainable.
These anomaly detection models can provide insights into the relationships they have learned
from the data, enabling an end-user to understand the decisions they have made. In general, the
following methods are considered intrinsically explainable:

— Commonly seen transparent models in supervised learning, including Linear Models (Lin-
ear Regression, Logistic Regression), Decision Trees, Gaussian Process, Rule-based Learners,
Generative Additive Models, and Bayesian Models;

— Feature subset based methods, including subspace anomaly detection methods, wrapper or
embedded feature selection methods for anomaly detection;

— Miscellaneous other methods (mostly in an unsupervised setting) that reveal the rationale
for how anomaly scores are calculated in a comprehensible way.

5.1 Transparent Models in Supervised Learning

According to Lipton [121], a model is transparent if its intrinsic structure satisfies at least one of
the following three requirements:

— Simulatability: if a model can be simulated by a human, and thus whether it is possible to
reason about its entire decision-making process.

— Decomposability: if a model can be broken down into multiple parts, and these parts are
easy to explain individually.

— Algorithmic Transparency: if a human can understand the process by which the model
generates output from a given input.

In a supervised setting, commonly seen transparent models include Linear Models (such as Lin-
ear Regression and Logistic Regression), Decision Trees, Rule-based Learners in the form of if-then

rules, m-of-n rules, list of rules, falling rule lists or decision sets, Gaussian Process, Generative Addi-

tive Models (GAMs), and Bayesian Models. Although anomaly detection is often an unsupervised
problem, it can often leverage these methods in some way. However, transparency is not sufficient
to guarantee explainability. Specifically, when a transparent model becomes exceedingly complex,
it is not human-understandable anymore. Therefore, anomaly detection models that are developed
based on these transparent models are considered to be explainable as long as they are not overly
complex.

First, rule-based models are often leveraged to learn frequent patterns in the data, enabling inter-
pretable anomaly detection. For instance, He et al. [83] apply frequent pattern mining to identify
and explain anomalies in transaction data. Specifically, they leverage the Apriori algorithm [2] to
find frequent patterns, and utilise the so-called top-k contradictory frequent patterns to explain
each identified anomaly. Similarly, Zhu et al. [230] propose a model to capture frequent motion
and background patterns of activities in video data, treating patterns that deviate from learned
frequent patterns as anomalies. Likewise, Vaculík & Popelínskỳ [213] put forward the DRGMiner
model, which mines frequent patterns in dynamic graphs and considers graphs deviating from
these patterns as anomalous. Besides, Mauro et al. [138] propose HyVarRec to detect and explain
anomalous traces for context-aware software product lines. Concretely, they apply Satisfiability
Modulo Theories [57] to construct a conjunction of constraints that should be satisfied by normal
traces when considering their contexts. As a result, a trace that violates the predefined constraints
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is considered anomalous. Moreover, Böhmer & Rinderle-Ma [24] develop the ADAR model to de-
tect and explain anomalies in process runtime behaviour. Specifically, ADAR leverages association
rule mining to extract a set of ordered rules that normal traces should satisfy. Hence, a test trace
with a small support is considered anomalous. Importantly, they also propose a visualization tech-
nique called A_Viz to show the rule violation.

Second, decision trees and their variants have also been proposed to be used for the detection
of anomalies, resulting in intrinsically explainable detection results. For instance, Kraiem et al.
[108] introduce the Composition-based Decision Tree (CDT) to detect and interpret anomalies
in time series. Specifically, after preprocessing and labelling of given time series, a CDT is con-
structed as an extension of a decision tree on this labelled data, extracting rules for describing
seen anomalies and detecting unseen anomalies. Also, the authors evaluate the explanation qual-
ity in terms of the number of used patterns and the length of rules. Furthermore, Cortes [51]
presents an anomaly detection method that performs supervised decision tree splits on features,
wherein the one-dimensional confidence intervals of each branch are built for the target feature.
As a result, explanations can be obtained from the branching conditions and the general distribu-
tion statistics of non-anomalies that fall into the same branch. Besides, Aguilar et al. [4] propose
the Decision Tree-based AutoEncoder (DTAE) model to detect anomalies. Specifically, they
use a decision tree to depict the encoding and decoding portions of AE, determining whether an
instance is anomalous by comparing the input with the output. The advantage of using decision
trees as encoders and decoders is that each tree contains the rules for categorizing tuples, offer-
ing interpretability. Meanwhile, Itani et al. [90] develop the so-called one-class decision tree

(OC-Tree) model, which employs Kernel Density Estimation to divide data subsets into intervals
of interest and then encloses the data within hyperrectangles that can be explained by a set of
rules. Additionally, Perez & Lavalle [168] devise the alleged User Model to detect potential fraud
in bank transactions, where they fit manually selected features into a threshold-based rule model,
classifying the model outputs in the form of fraud probability into five categories.

Third, another line of research utilises regression models to perform anomaly detection, pro-
viding explanations for identified anomalies. For example, for each data instance, Chen et al. [41]
apply LOESS regression [49] by taking each feature in turn as the target variable and the remaining
features as predictors based on its neighbours. An instance is considered anomalous in a certain fea-
ture if its actual value differs significantly from its predicted value. Particularly, for each identified
anomaly, they provide a natural language explanation consisting of its considered neighbours and
the associated feature differences. Besides, in Burak Gunay et al. [29], the heating and cooling load
patterns of buildings are studied using three inverse models, including a univariate change point
model, a regression trees-based model, and a DNN-based model. Particularly, change point models
and regression trees are easy to interpret and can generate rules from their output. Moreover, Lan-
gone et al. [111] leverage regularized Logistic Regression to identify anomalies in time series. In
brief, they first utilise a bucket-based representation to represent the data, and then implement a
rolling window procedure to extract features. On this basis, they employ the Kolmogorov-Smirnov
distance to select relevant features for anomaly detection, and the resulting features are fed to a
Logistic Regression with Elastic Net regularization to detect anomalies.

Fourth, some researchers utilize intrinsically interpretable models such as Gaussian Processes

(GPs), Generalized Additive Models (GAMs), and Dynamic Bayesian Networks (DBNs) to
detect anomalies. For instance, Berns et al. [21] employ GPs to detect anomalies, where a GP is
a stochastic process defined over a set of random variables such that every finite subset of these
random variables follows a multivariate Gaussian distribution. If the actual value of a test instance
deviates significantly from its predicted value, the GP model treats it as an anomaly. Meanwhile,
Chang et al. [38] present an XAD model named DIAD based on GAMs. Specifically, a GAM model
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is a linear combination of smooth functions, where each function is defined on some variables.
Given an anomaly, one can easily infer which features contribute the most to its outlyingness.
Moreover, Slavic et al. [199] develop a DBNs-based model to predict the state of a moving object
in Autonomous Driving domain, attempting to identify abnormal motion behaviours based on
its motion direction and orthogonal direction. A test instance is considered anomalous if its pre-
dicted state deviates significantly from its actual state. Due to the good properties of DBN, they
can decompose the anomalous motion along its two directions and resort to the corresponding
parameters to interpret the anomaly.

Finally, an important line of research attempts to introduce interpretable components in a com-
plex anomaly detection model, providing weak interpretability. For instance, Zancato et al. [226]
propose the STRIC model to detect anomalies in multivariate time series data. Specifically, STRIC
consists of four layers. The first layer attempts to model the trend of time series by using a cascade
of linear filters. The second layer implements a linear module to model and remove the seasonality
at multiple time scales. Next, the third layer comprises a linear stationary filter bank that is able to
approximate any trend or seasonality. Finally, the fourth non-linear layer consists of a randomly
initialized Temporal Convolution Network model. Therefore, these four layers constitute a model
capable of predicting time series. On this basis, they extend the CUMSUM algorithm [224] to detect
anomalies by using the likelihood ratio between two windows of prediction residuals. Particularly,
the linear components used in STRIC provide interpretability.

Discussion: To take advantage of these transparent models for anomaly detection, one usually
needs to turn the unsupervised anomaly detection problem into a supervised or semi-supervised
setting. For instance, References [24, 199, 213] attempt to learn normal behaviours or patterns
by training the model on exclusively normal data, and then identify anomalies by comparing
a test instance with the expected normal behaviours. Meanwhile, References [41, 108] either
directly leverage labelled data or decompose an unsupervised problem into many supervised
problems [167].

5.2 Feature Subset-based Models

The methods in this subsection select one or more subsets of features to detect and explain anom-
alies. Specifically, it contains subspace anomaly detection methods and feature selection meth-
ods for anomaly detection. Subspace anomaly detection methods find anomalies that are only
detectable in certain subspaces, providing intrinsic explanations based on subspaces. Moreover,
wrapper or embedded feature selection methods select a subset of original features that are rele-
vant for anomaly detection, thereby improving the interpretability of detection results. Note that
wrapper or embedded feature selection methods select features during the process of performing
anomaly detection, not before the anomaly detection process (see Section 4.1). Furthermore, fea-
ture selection methods can be considered as a special case of subspace anomaly detection since
they actually select a subspace for anomaly detection.

First, subspace anomaly detection usually consists of two steps: finding subspaces and assigning
anomaly scores. Subspace anomaly detection has received extensive attention, resulting in a
collection of strategies for finding subspaces and assigning anomaly scores. In general, finding
subspaces and assigning anomaly scores can be decoupled or intertwined. For instance, Muller
et al. [149] propose OUTRES. For each instance, they first use the Kolmogorov–Smirnov goodness
of fit test to exclude some subspaces from the powerset of features. Specifically, they exclude
subspaces in which the local densities of the given instance and its neighbourhood are uniformly
random distributed. Then, for the residual subspaces, they define a dimensionality-unbiased
anomaly scoring function to measure the local density deviation of the given instance. Next,
they aggregate the anomaly scores of each instance across its non-uniformly random distributed
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subspaces. Moreover, Keller et al. [99] present HICS. Specifically, they first look for subspaces with
high contrast by measuring the correlation between features in a subspace using statistical tests,
viz. the difference between marginal probability density and conditional probability density. Sec-
ond, they apply an off-the-shelf anomaly ranking method such as LOF [26] on selected subspaces
and aggregate the results. It can be seen that both methods [99, 149] decouple subspace search and
anomaly scoring. In contrast, Dang et al. [52] leverage spectral graph theory to achieve subspace
anomaly detection. Specifically, they first construct an undirected graph that can capture the local
geometry of all instances. Second, they attempt to learn an optimal subspace that can separate well
an instance from its neighbours, while preserving the intrinsic geometrical structure of data. Cor-
respondingly, a well separated instance is considered anomalous and the corresponding subspace
acts as an explanation. The subspace search and anomaly scoring are intertwined in this method.

Some researchers attempt to leverage dimensionality reduction or feature projection techniques
to perform subspace anomaly detection. For example, given a data instance with its global nearest
neighbours, Kriegel et al. [109] first project these data instances with all d features into subspaces
of varying size, where the subspace is spanned by the l largest principle components using robust
PCA. Meanwhile, they compute the projection to the subspaces spanned by the remaining d − l
principle components as its error vectors. Second, they choose the error vector with the largest
L2-norm value as its anomaly score and explanation. The rationale for using PCA is that the cor-
relation dimensionality is highly related to the intrinsic dimensionality of data. Meanwhile, Bin
et al. [22] develop the ASPCA model. Given a dataset with D features, they first compute and order
the principal components using sparse PCA [94]. The first k principle components which capture
most of the variance are called normal subspace, and the remaining D − k components are called
abnormal subspace. An instance is considered anomalous if it has a large projection length in the
abnormal subspace. Based on sparse PCA, each feature is a linear combination of a few original
features. Therefore, this method can easily obtain the original features that are responsible for an
anomaly, resulting in an explanation. Furthermore, Dang et al. [53] introduce the LODI model. For
each instance, they first select their neighbours using an information-theoretic tool. Second, they
use local dimensionality reduction to select an optimal subspace in which this instance can be max-
imally separated from its neighbours. An instance that is relatively easy to separate is considered
anomalous. More concretely, the local dimensionality reduction problem is solved via matrix eigen-
decomposition, which can return the corresponding original features that are most important to
explain an anomaly. Additionally, Pevnỳ [169] presents Loda, an online anomaly detection model
that can also provide explanations. Specifically, Loda first leverages sparse random projections to
obtain a collection of one-dimensional subspaces. Second, it constructs a histogram in each sub-
space, aiming to approximate the probability density. Third, it aggregates these one-dimensional
histograms to estimate the joint probability density. Consequently, an instance with low estimated
probability density is considered anomalous. For each identified anomaly, Loda can rank features
according to their contributions to the anomaly score as an explanation.

As we can see, the above-mentioned methods utilise some well-defined criteria to search sub-
space and then assign anomaly scores. However, another line of research intends to use random
search strategies to search for subspaces. For instance, Keller et al. [100] propose RefOut, which
consists of three steps. They first generate an initial subspace pool that is a set of randomly se-
lected subspaces. On this basis, they utilise an off-the-shelf anomaly detection model to perform
anomaly detection, resulting in a set of anomaly scores for each instance. Second, for each instance,
they generate a refined subspace by maximizing the discrepancy of anomaly scores. Aggregating
all these refined subspaces leads to a refined subspace pool. Third, they apply again the anomaly
detection model on the refined subspace pool to obtain an anomaly score for each instance. Con-
sidering that the cardinality of each refined subspace may be different, they normalize the anomaly
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scores to ensure comparability. Accordingly, they return the maximum anomaly score and the cor-
responding subspace for each instance as an explanation. Similarly, Savkli & Schwartz [186] put
forward RSMM. Concretely, they first randomly selectm subspaces of dimension k , ensuring that
each dimension contributes equally to the final probability model. Second, they construct a mix-
ture model such as Gaussian Mixture Model in each subspace. Third, they compute the geometric
averaging of the probability densities in all subspaces as the joint probability density. Therefore,
if a test instance is located in a low-density region, it is considered anomalous. Furthermore, to in-
terpret an anomaly, they rank features according to how often they consist in the subspaces where
the anomaly is considered an anomaly.

Second, despite the prevalence of subspace anomaly detection, other techniques such as feature
selection have also been exploited to facilitate the interpretability of anomaly detection. For in-
stance, Pang et al. [159] introduce a wrapper feature selection framework for anomaly detection.
Specifically, they first create an internal evaluation metric for anomaly detection and then select
relevant features for detecting anomalies by iteratively maximizing this metric. They have only
applied this framework to their proposed anomaly detection model though, which only works
on categorical data. Besides, Pang et al. [157] propose an embedded feature selection method for
anomaly detection, dubbed CINFO, which is an ensemble of sequential ensemble learners. Specif-
ically, the base learner, namely, the sequential ensemble learner, iteratively and mutually refines
the anomaly detection and feature selection processes. In this way, they build many similar base
learners, which are then aggregated to produce the final anomaly scores. Hence, the method does
not explicitly provide any selected features and lacks interpretability due to the use of an ensemble
approach. Meanwhile, Roshan & Zafar [178] develop an AutoEncoder (AE)-based model incorpo-
rating the SHAP technique to detect and explain anomalies in computer network data. Specifically,
they first train an AE model on exclusively normal computer network data with all input features,
followed by applying Kernel SHAP to explain the predictions of the trained AE model. Next, they
use the trained AE model to detect anomalies in another dataset containing cyberattacks and then
apply again Kernel SHAP to explain the predictions, aiming to select a subset of important fea-
tures to identify anomalies. Finally, these selected features are used to train a refined AE model
for anomaly detection.

Discussion: The subspace anomaly detection methods introduced here are considered inher-
ently explainable since they only explain anomalies identified by themselves. In other words, the
Detection-Definition and Explanation-Definition of anomaly are usually consistent. Therefore, the
generated explanations are intrinsic regardless of whether the anomaly detection and subspace
search processes are interleaved or decoupled. In contrast, the subspace anomaly detection
methods that will be presented in the shallow post-model techniques section are distinct, as they
aim at interpreting anomalies that are identified by other detection models or experts. As a result,
the Detection-Definition and Explanation-Definition of an anomaly are likely to be different since
the Detection-Definition is generally unknown.

5.3 Other Miscellaneous Models in Unsupervised Learning

In principle, an anomaly detection model that reveals the rationale for how anomaly scores are
calculated in a human comprehensible way can be considered intrinsically explainable. Hereinafter,
we survey a collection of intrinsically XAD methods that do not belong to the commonly seen
transparent methods in supervised learning nor feature subset-based methods. Due to the diversity
of these methods, i.e., they share few basic techniques, we organize them according to the type of
data they have been designed for.

5.3.1 Models for Tabular Data. A plethora of models have been devised to detect anomalies in
tabular data whilst providing intrinsic explanations. For instance, as a typical method, distribution
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based anomaly detection models attempt to fit data with probabilistic distributions. Then, data
instances that do not conform to the fitted model are considered anomalous. According to Agye-
mang et al. [5], distribution-based anomaly detection techniques are intrinsically explainable. This
is because the identified anomalies can be meaningfully interpreted from a statistical perspective
once the probabilistic distribution is known. Dunstan et al. [66] take a different approach and
utilise a data cube structure to divide transaction data instances into different regions. They refer
to each region as a context and show how each instance can be abnormal in different contexts.
More importantly, they create anomaly tables and anomaly lattices to explain anomalies. An
anomaly table contains anomalous transactions alongside their contexts. Meanwhile, an anomaly
lattice graphically displays the anomalies with their contexts. Rather than using groups to
define contexts in which anomalies can be detected, Mejia [139] adapts Adaptive Resonance

Theory (ART) [33] to group instances into clusters such that instances residing in the smallest
clusters are considered anomalous. By virtue of the good properties of ART, one can obtain
the feature differences between every two clusters, resulting in explanations for the anomalous
instances.

Smets & Vreeken [200] take a more global approach to anomaly detection, i.e., they employ
the Minimum Description Length (MDL) principle to determine whether a data instance is
anomalous; in brief, the number of bits required to encode it using compression is used as anomaly
score. They utilise the Krimp algorithm [195] as the compressor, which is trained on exclusively
normal samples to capture normal behaviours. On this basis, they provide explanations by showing
which patterns were recognised in the anomalies, as well as by checking whether small changes
can turn the anomalies into normal instances. If it can, the anomalies are observation errors rather
than real anomalies. Instead of using patterns to represent what is normal, Park & Kim [163] put
forward a model that is an ensemble of Region-Partition (RP) trees. Each RP tree is trained only
on normal data and thus represents a partition of the normal data region. Hence, if a test instance
can arrive at a leaf node of any individual RP tree, it is considered normal. Otherwise, it is an
anomaly. Considering that the size of each RP tree is small, one can easily find the hypercube in
which the anomaly is stuck. On this basis, they take the intersection of hypercubes of all RP trees
as an explanation for the anomaly.

While the above-mentioned models focus on static tabular data, Dickens et al. [59] propose
Mondrian Pólya Forest (MPF) to detect and explain anomalies on large data streams by combin-
ing random trees with non-parametric density estimation approaches. Specifically, the Mondrian
Process [179] is a family of hierarchical binary partitions of data and the Pólya Tree [137] is a non-
parametric approach that can estimate the density function of binary partitions. They combine the
Pólya Tree structure with a truncated Mondrian Process to deal with static data, and combine the
Pólya Tree structure with a Mondrian Tree to handle data streams. In this way, they construct a
forest, namely, MPF, for density estimation and anomaly detection. As a result, an instance with
relatively low estimated density is considered anomalous. Furthermore, with the good properties
of MPF, the resulting anomaly scores are probabilistic and, therefore, interpretable.

5.3.2 Models for Sequential Data. One line of research addresses the problem of detecting and
providing intrinsic explanations in time series data, which is a type of sequential data. Techniques
such as sparse learning and time series decomposition have been leveraged to develop intrinsically
interpretable anomaly detection models for time series data. For instance, Li et al. [116] apply deep

Generative Models (DGMs) to detect anomalies in multivariate time series data. Specifically,
they first set up a stacking Variational AutoEncoder (VAE)-based model that constructs a
single-channel block-wise reconstruction, followed by stacking it multiple times using a weight
sharing technique to handle channel-level similarities. Second, they utilise a graph learning
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module to learn a sparse adjacency matrix for every channel, attempting to extract structure infor-
mation for achieving an explainable reconstruction process. As a result, a test instance with a large
reconstruction error is considered anomalous. Meanwhile, Cheng et al. [46] exploit time series
decomposition techniques from a multi-scale perspective to identify spatiotemporal abnormalities
of human activity. They first employ the Seasonal-Trend decomposition with the Loess (STL)
method to decompose the time series to look for anomalies. As a result, the periodic as well as
trend components of observed data are eliminated during the time series decomposition, and the
remaining components capture anomalous activity signatures. By examining the residual elements
of the time series for each spatial unit, they are able to identify spatiotemporal anomalies in human
activity. Finally, they devise a rule to match anomalies identified at different scales in accordance
with their spatiotemporal influence ranges and explain anomalies based on their multi-scale
characteristics.

Another line of research focuses on the task of identifying and offering intrinsic explanations
in network traffic data, which can be seen as an instance of other sequential data. For example,
Grov et al. [75] first group the network traffic data into different sessions, followed by learning
two behavioural models, namely, a Markov Chain (MC) model and a Finite State Automata

(FSA) model, on normal sessions. Next, for an incoming session, they compute a similarity mea-
sure with respect to these two models, resulting in an anomaly score. More concretely, the MC
model returns two probabilities as the anomaly score and the FSA model returns a distance as the
anomaly score. Meanwhile, Mulinka et al. [147] present HUMAN, a hierarchical clustering-based
method. Specifically, they consider three different clustering methods to group data instances into
clusters, assuming that the normal behaviour is represented by the largest cluster. Therefore, data
instances residing in the smallest clusters are considered anomalous. Next, they explain the de-
tected anomalies by displaying the clustering results, including the number of clusters, the size of
each cluster, and a textual explanation of each cluster. Moreover, Marino et al. [132] propose the
Network Transformer model (NeT). First, the network data is represented by a graph where
its nodes represent network device IP addresses and the edges describe data packets delivered be-
tween different devices. Second, NeT extracts hierarchical features from the graph for anomaly
detection. Third, based on these features, NeT employs existing anomaly detection models—such
as LOF [26], OCSVM [188], and AutoEncoders—to identify anomalies at various granularity levels.
Moreover, NeT provides explanations based on the graph structure, offering a subset of hierarchi-
cal features that allow users to pinpoint the devices affected by the anomalies and the connections
that caused the anomalies.

5.3.3 Discussion. Due to the lack of a unified definition of anomaly and the diversity of data
types, a wide range of in-model XAD techniques have been explored in an unsupervised setting.
More concretely, techniques such as Probabilistic Models (e.g., Mondrian Pólya Forest and other
distribution or density estimation-based approaches), Data Cube structure, Incremental Clustering,
MDL-based Pattern Compression, RP trees are harnessed to detect and explain anomalies in tabular
data. Meanwhile, techniques such as MC, FSA, Hierarchical Clustering, Sparse Learning in VAE,
Time Series Decomposition, and Hierarchical Features in Graph Representation are adapted to
identify and interpret anomalies in sequential data.

5.4 Summary

As shown in Table 2, the in-model techniques presented in this section are model-specific. More-
over, the majority of these methods provide feature-based explanations (including pattern-based
explanations), with the exception of References [46, 75, 83], which offer sample-based explanations,
and References [41, 53] generate explanations from both perspectives.
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According to their main characteristics, we subdivide them into three high-level groups, i.e.,
transparent models in supervised learning, feature subset-based models, and miscellaneous models in

unsupervised learning, for which we make the following observations.
First, for transparent models in supervised learning, we find that most methods can provide global

explanations as their entire logic can be easily understood by humans due to their transparent na-
ture. However, decision tree-based models are hard to explain when the tree is too deep or too wide.
To alleviate this problem, feature selection can be leveraged. Meanwhile, an ensemble of decision
trees can avoid overfitting of the data, thereby improving the generalization performance. How-
ever, an ensemble of trees is not human-understandable. Concerning rule-based models, a large
set of rules or a long rule is difficult to explain. Therefore, a human-reasonable size is required to
maintain interpretability. Furthermore, an inherent problem of using linear models for interpreta-
tion is that when the model does not fit the training data optimally, it may optimize errors using
spurious features that may be difficult to interpret for humans [76]. Overall, for these transparent
models to retain their interpretability characteristics, they must be limited in size and the features
used should be understandable to the end-users [20].

Second, for feature subset-based models, most methods can only provide local interpretations,
that is, only a certain output can be interpreted at a time. Besides, some subspace anomaly
detection methods do not provide explicit explanations due to the use of ensemble techniques
to aggregate anomaly scores in multiple subspaces. However, the contribution of each feature is
relatively easy to obtain. Moreover, most subspace anomaly detection methods were originally de-
signed to tackle the issue of curse of dimensionality when detecting anomalies in high-dimensional
data [231]. Therefore, promoting interpretability is not their main concern. Notably, we observe
that there is extremely limited research on the wrapper or embedded feature selection for anomaly
detection.

Third, for miscellaneous models in unsupervised learning, these methods are quite different from
each other, as they are specifically designed for the anomaly detection and not explored in a
supervised setting. Given the lack of a unified definition of anomalies and the diversity of data
types, it is not surprising that these approaches are very diverse. Importantly, we note that most
of these methods can provide global explanations, in the sense that the logic of the whole model is
human-understandable, or some important properties of the model can be leveraged to interpret
all decisions.

6 LITERATURE REVIEW ON SHALLOW POST-MODEL TECHNIQUES

Post-model methods inspect an anomaly detection model after the detection process is completed,
or just inspect a given anomaly without being given an anomaly detection model. In other words,
these techniques do not interfere with the anomaly detection process, operating only on the basis
of correlating the input of the anomaly detection model (if any) with its output. Due to the prolif-
eration of techniques in this category, in this section, we only introduce techniques designed for
non-deep learning processes, and we call them shallow post-model anomaly explanation techniques.

Most shallow post-model anomaly explanation methods intend to find a subspace or a set of sub-
spaces in which the given anomaly differs the most from other instances, and we call these methods
subspace-based methods. Surrogate methods, on the other hand, resort to identify another model to
explain the anomaly detection model or just the given anomalies. Specifically, a surrogate model
can be a transparent model, such as a set of rules or a decision tree, or an opaque model, such
as XGBoost or SVM. Importantly, if the surrogate model is an opaque model, it should be easy to
interpret by using XAI techniques such as SHAP. Meanwhile, miscellaneous methods such as com-
paring patterns to find differences, leveraging SHAP techniques to measure feature importance,
and visualisation also play an important role in shallow anomaly explanation.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 23. Publication date: September 2023.



A Survey on Explainable Anomaly Detection 23:25

6.1 Subspace-based Methods

Given an anomaly or a group of anomalies, subspace-based methods aim at finding a subspace or a
set of subspaces in which the anomaly deviates the most. Different from the intrinsically explain-
able subspace anomaly detection methods that were introduced in Section 5.2, the subspace based
methods investigated hereinafter do not assume the availability of anomaly detection models.

First, different explanation methods usually have different definitions for anomaly, dubbed
Explanation-Definition in this survey, leading to different measures of abnormality. For instance,
Knorr & Ng [106] define strongest and weak outliers, based on which they use so-called intensional
knowledge to explain anomalies. For each anomaly identified in the original feature space, they
report the minimal subspaces in which it behaves anomalously. Particularly, in their proposed al-
gorithm CELL, for each instance, they utilize the number of neighbours in its local neighbourhood
of a given radius as the anomaly score. However, this anomaly measure can be replaced by other
anomaly measures such as density, depth, and so on. As far as we know, their work is seminal in
anomaly interpretation. Additionally, Zhang et al. [228] propose HOS-Miner to identify outlying
subspaces for a given anomaly. Specifically, they define the sum of distances between the anomaly
and its k-nearest neighbours as its anomaly score in each subspace, thereby returning the outly-
ing subspace with the lowest dimensionality as an explanation. Similarly, Micenková et al. [141]
propose an anomaly explanation technique that works on tabular dataset with numeric features.
Specifically, given an anomaly, they look for a subspace in which this instance is well separable
from the rest. To achieve this, they first generate a classification dataset consisting of a comparable
number of normal and abnormal instances. Second, they apply an existing feature selection method
to find a subset of features that are relevant for the classification, namely, separation. Particularly,
they define a measure of separability based on the probability density function of a normal dis-
tribution as the anomaly measure. Finally, the obtained subspace serves as an explanation for the
anomaly.

Second, some researchers attempt to provide explanations from multiple perspectives or con-
texts. For instance, Angiulli et al. [10] propose a method that is capable of providing explanations
from both global and local perspectives. On the one hand, for an anomaly, they measure its
abnormality with reference to all data instances in different subspaces, delivering the subspace
with the highest abnormality as a global explanation. On the other hand, for an anomaly, they
first select a subset of features and the corresponding values to define a reference group, and then
compute its abnormality with respect to this reference group in different subspaces. Accordingly,
the reference group and the corresponding subspace with the highest abnormality constitute a
local explanation. Note that the definitions of global explanation and local explanation used in
Reference [10] differ from those we defined in this survey. Particularly, the abnormality is defined
in terms of the frequency of the anomalous instance and the frequencies of referencing instances.
Furthermore, Müller et al. [148] present OutRules, which generates multiple explanations for an
anomaly in different contexts. Specifically, OutRules explains an anomaly by generating rules
that describe the deviation of this instance in contrast to its context. On the one hand, a subset
of features is used to define a context consisting of highly clustered instances. On the other hand,
they attempt to find an extended subset of features in which one of these instances is significantly
deviating. Concretely, the anomaly measure used in their framework can be instantiated by the
underlying anomaly score of any anomaly detection model such as LOF. Similarly, Angiulli et al.
[9] devise a method that consists of two steps. Given an anomaly and a dataset, for each feature,
they first determine the interval that includes the anomaly and the associated condition, resulting
in a set of conditions on all features. Second, they employ an Apriori-like strategy to search for
explanation-property pairs for the anomaly. More concretely, an explanation is a set of conditions
used to define a context where the anomaly is located. Meanwhile, a property is an additional
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condition posed on a feature other than the features that are used to define the context, aiming
to distinguish the anomaly from the context. In particular, they define an anomaly measure based
on the probability density function of each feature. Consequently, the explanation-property pair
and the corresponding anomaly score constitute an explanation for the anomaly.

Third, other techniques such as visualisation can be leveraged to further improve the explain-
ability of subspace-based methods. For instance, given a dataset consisting of real-valued features
and a list of anomalies, Gupta et al. [79] propose the so-called LOOKOUT approach to explain
these anomalies. Specifically, they attempt to find a limited number of 2-dimensional subspaces
in which the given anomaly deviates the most from the rest. Particularly, if the anomaly is de-
tected by an anomaly detection model, they utilise the underlying anomaly measure to obtain the
anomaly score. Otherwise, they employ any other off-the-shelf model such as LOF to obtain the
anomaly score. Moreover, they visualise these subspaces using 2-dimensional scatter plots, known
as focus plots in their article, and then present these focus plots to the end-users as explanations.
Also, the above-mentioned approach OutRules [148] utilises parallel coordinates plots to visualise
the anomalies.

Fourth, some methods have been explored to explain anomalies in a group. For instance, Angiulli
et al. [11] extend their previous work [10] to explain a group of anomalies. Furthermore, Macha
& Akoglu [129] propose x-PACS to explain anomalies in a group in three steps. They first utilise
a subspace clustering algorithm to identify clusters that the anomalies form. Second, for each sub-
space cluster of anomalies, they leverage an axis-aligned hyper-ellipsoid to represent it. Third, they
employ the MDL criterion to identify a set of hyper-ellipsoids that are compact, non-redundant,
and pure. Particularly, x-PACS does not require a measure of outlyingness since they address the
anomaly explanation problem from a subspace clustering perspective.

Fifth, with the emergence of many anomaly explanation methods, some researchers endeavour
to formally define the anomaly explanation problem or propose a taxonomy of existing methods.
Concretely, Kuo & Davidson [110] formally define the outlier description (namely, anomaly expla-
nation) problem and propose a Constraint Programming (CP)-based framework to encode the
problem. Particularly, they utilise a neighbourhood density based criterion to measure the outly-
ingness of an instance in each subspace. On this basis, they introduce a CP framework to learn the
optimal subspace to explain an anomaly. Their framework and variants can explain an anomaly
in a single subspace, multiple subspaces, or by introducing the human in the loop. Meanwhile,
Vinh et al. [216] for the first time divide outlying aspects mining techniques into two categories,
viz. feature selection-based approaches and score-and-search approaches, and additionally make
two important contributions. First, they formalize the concept of dimensionality-unbiasedness
for anomaly scoring functions. They show that some widely used anomaly scoring functions
such as distanced-based and density-based scoring measurements violate this important property.
Moreover, they put forward two dimensionality-unbiased anomaly scoring functions, namely,
Z-score and isolation path score, to measure the outlyingness of an instance in different subspaces.
Second, they propose a beam search framework to overcome the limitation of exhaustive search
in exponentially large space. Consequently, for instance, they return the subspace with the
highest dimensionality-unbiased anomaly score as an explanation. However, Samariya et al.
[184] point out an issue of using Z-score normalisation of density to rank subspaces for outlying
aspects mining. Particularly, Z-score normalisation has a bias towards data distribution (with high
variance subspaces) although it is dimensionality-unbiased. To tackle this issue, they propose
another anomaly scoring function called SiNNE for outlying aspects mining. Specifically, SiNNE
consists of an ensemble of models where each model is developed based on a subset of data.
However, due to the use of ensemble techniques, SiNNE cannot provide explanations for identified
anomalies.
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Finally, another line of research attempts to explain any given instance that may be anomalous
or normal. For example, given a data instance, Duan et al. [64] develop a method to find its minimal
outlying subspace, i.e., the subspace with the lowest dimensionality where the query instance is
most deviating from others. To achieve this, they first assume that the instances are generated from
a probability distribution that is often unknown. Second, they utilise kernel density estimation
techniques to approximate the probability density of an instance in each subspace, deriving its
anomaly score. Moreover, they employ heuristic techniques to prune the set of possible subspaces
that need to be explored.

Discussion: Most subspace-based methods reviewed above suffer from two limitations: high
computational costs and poor explanation fidelity. First, most methods intend to find a minimal
subspace in which the anomaly deviates the most. To find such a subspace, they usually need
to go through the exponentially large search space. Although some pruning techniques such as
beam search are leveraged to mitigate this problem, optimality is no longer guaranteed. Second,
almost all methods in this category have their own definitions of anomaly (namely, Explanation-

Definition) when trying to interpret anomalous instances. Importantly, this Explanation-Definition

is very likely to differ from the Detection-Definition, leading to a poor fidelity of the explanation. In
other words, if the anomaly detection model is available, the provided explanation may not reflect
its actual decision-making process.

6.2 Surrogate Methods

A line of research in shallow post-model XAD techniques is to utilise surrogate models to describe
given anomalies or anomaly detection models. In general, the surrogate model can be a transparent
model or an opaque model. If a transparent model such as a set of rules or a decision tree is
employed to depict the anomaly, the result is directly understandable. However, if an opaque model
such as XGboost or SVM is leveraged to approximate the outputs, additional XAI techniques such
as SHAP or LIME are required to make the results understandable.

First of all, model-agnostic rule learners are often leveraged to extract a set of rules or patterns
as the surrogate model, aiming to explain anomalies. For instance, Ertoz et al. [67] present the
MINDS framework for network intrusion detection and explain anomalies by association rules.
Specifically, they first utilise an off-the-shelf anomaly detection model such as LOF [26] to detect
anomalous network connections. Second, they develop a Discriminating Association Pattern Gen-
erator to extract patterns that exclusively characterise normal instances or anomalous instances,
respectively. The extracted patterns are human-comprehensible and thus serve as explanations for
anomalies. Moreover, they attempt to assign anomalies to different groups based on the extracted
patterns. Alternatively, Davidson [55] capitalizes on mixture modelling (a.k.a. model-based clus-
tering) to perform anomaly detection. Specifically, for each data instance, this method calculates
the likelihood of this instance belonging to each cluster. If the maximum obtained likelihood is less
than a predefined threshold, the instance does not belong to any cluster and is therefore consid-
ered anomalous. Moreover, they describe a visualization approach to show normal and abnormal
instances based on scatter plots, enabling end-users to quickly understand why an instance is
considered anomalous. More importantly, they try to extract rules (in Conjunctive Normal Form)
to describe each obtained cluster and those anomalies. By comparing these rules, one can easily
understand why an anomaly is anomalous.

Meanwhile, some model-specific rule learners are proposed to extract a set of rules or patterns
as the surrogate model, aiming to explain anomalies. For example, Das et al. [54] define a novel
formalism, known as compact description, to extract rules to describe discovered anomalies.
However, this method can only be applied to tree-based ensembles, and the extracted rules are
represented using Disjunctive Normal Form (DNF). Moreover, they also develop an active

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 23. Publication date: September 2023.



23:28 Z. Li et al.

anomaly explanation algorithm for generic ensembles, dubbed GLAD. For each detected anomaly,
GLAD first identifies the base-learners (namely, ensemble members) that contribute the most to
the decision. Second, GLAD applies a model-agnostic explanation method such as LIME on these
important base-learners, respectively, to generate explanations for the anomaly. Besides, Barbado
et al. [18] apply several rule extraction techniques to OCSVM models [188] for anomaly explana-
tion, and evaluate the quality of generated explanations accordingly. Specifically, these techniques
first apply OCSVM to obtain normal and abnormal instances. Second, they use an off-the-shelf
clustering method such as K-Prototypes [93] to iteratively divide the non-anomalous instances
into different regions until no anomalies are contained in the generated regions. Third, since these
regions are in the form of hypercubes, they can directly extract rules from the vertices of these
hypercubes to explain why an instance is non-anomalous. More importantly, they define several
metrics including comprehensibility, representativeness, stability and diversity to evaluate the
quality of explanations. Besides, their methods can provide both local and global explanations. Al-
though it is claimed that the whole process can be adapted to any anomaly detection model, this is
not shown.

Second, some rule learners are explored to extract decision trees as the surrogate model, aiming
at explaining anomalies. For instance, Xu et al. [222] propose an approach to detect and explain
system problems by mining console logs. Concretely, they leverage a Principle Component

Analysis (PCA)-based anomaly detection method [65] to identify anomalies, followed by ex-
plaining the results using decision trees to mimic the decision-making process. However, Bin et al.
[22] show that using decision trees to explain the PCA model can be misleading, thereby failing to
reveal the true decision-making process. Besides, Pevnỳ & Kopp [170] introduce a method called
Explainer to explain anomalies using DNF. Specifically, given an anomaly, Explainer first trains a
collection of trees known as Sapling Random Forests (SRF). Each tree in an SRF is a binary deci-
sion tree with the aim of separating the anomaly from other normal instances. Second, once a tree
is built, they utilise DNF to represent the path from the root node to the node that contains only the
anomaly. Third, they aggregate the DNFs from all trees to a compact DNF to interpret the anomaly.
Furthermore, Kopp et al. [107] extend Explainer by introducing two k-means-based clustering
methods to interpret anomalies when these anomalous instances form natural micro-clusters.

Third, some researchers attempt to utilise well-studied opaque models as surrogate models, and
then leverage additional explanation techniques such as SHAP to explain surrogate models. For
example, to monitor the average fuel consumption of fleet vehicles, Barbado and Corcho [17] set
up an unsupervised anomaly detection process capable of explaining decisions through feature
importance. First, they leverage a threshold-based model to detect anomalies. Second, they uti-
lize two types of surrogate models to explain anomalies, including black-box anomaly detection
models with a post-hoc local explanation (XGBoost [44] and LightGBM [98] with LIME or SHAP),
and transparent anomaly detection models (ElasticNet [232] and EBM [153]). Third, they evaluate
these surrogate models in terms of predictive power and explanatory power. Particularly, their ex-
planation method can also integrate domain knowledge given by business rules or counterfactual
recommendations. Furthermore, Kiefer & Pesch [102] put forward an ensemble-based anomaly
detection model combined with model-agnostic explanation technique to identify and interpret
anomalies in financial auditing data. Specifically, they construct an ensemble architecture to incor-
porate a wide range of unsupervised anomaly detection models, attempting to identify different
types of anomalies. To interpret anomalies, they propose a four-step method: synthetic oversam-
pling of anomalies, supervised model approximation (using SVM or XGBoost), LIME-based local
explanation, and explanation post-processing (visualisation or natural language description).

Discussion: As can be seen, most methods in this category leverage rule learners to extract a set
of rules or patterns to describe anomalies. Importantly, the resulting rules are often represented
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using a DNF or Conjunctive Normal Form. Consequently, it might be relatively easy to evaluate
the quality of the resulting explanations, but this depends on many factors.

6.3 Miscellaneous Methods

In addition to subspace-based methods and surrogate methods, miscellaneous methods such as visu-
alisation and Shapley values are often used to obtain feature importance as explanations. Moreover,
pattern comparison is commonly explored in sequential data to interpret anomalies in a post-hoc
manner. Due to the diversity of these methods, we again organize them according to the type of
data to which they are applicable.

6.3.1 Models for Tabular Data. A wide range of methods has been proposed to explain anom-
alies in tabular data by showing feature contribution or selecting a subset of features. Importantly,
some of these methods are model-agnostic. For instance, Liu et al. [123] introduce the COIN frame-
work that consists of four main steps. For each anomaly, they first find its neighbours based on a
distance measure such as Euclidean distance. Second, they leverage existing clustering algorithms
to subdivide the anomaly and its neighbours into multiple disjoint clusters. Third, they apply a
strategy such as synthetic sampling to expand the size of the anomaly cluster where the anoma-
lous instance is located. Fourth, they train a simple classifier to separate these clusters, deriving
an anomaly score and feature contributions from the parameters of the classifier. Moreover, COIN
can also incorporate prior knowledge into the explanation process. Importantly, Siddiqui et al.
[193] present Sequential Feature Explanations (SFEs) to explain detected statistical outliers.
Concretely, given an anomaly identified by any density-based detector, SFEs sequentially present
a feature to the analyst until the analyst can confidently identify this anomaly. As a result, these
features used to identify the anomaly constitute the corresponding explanations. Particularly, Sid-
diqui et al. [194] apply Isolation Forest [122] to detect cyber attacks and leverage SFEs to generate
explanations.

Shapley value-based methods are often leveraged to obtain feature importance as explanations.
For example, Park et al. [164] employ SHAP [128] to explain anomalies by showing feature contri-
butions. Concretely, they set up an anomaly detection model by using random forest and employ
the SHAP approach to explore the relationship between model results and input variables to gener-
ate explanations. Similarly, Kim et al. [103] utilize Isolation Forest on sensor stream data of marine
engines to keep track of unusual engine conditions. Moreover, they leverage SHAP to identify
which sensor is in charge of each abnormal data event and to quantify its contribution to the ob-
served anomaly. Besides, using reconstruction errors as a measure to detect and explain anomalies
is a common practice in unsupervised anomaly detection. However, Takeishi [209] argues that by
simply looking at the reconstruction error of each feature, one may fail to find the true cause of
the anomaly. This is because a large reconstruction error in one feature may stem from another
feature. To mitigate this problem, a method is introduced to compute the Shapley values [205] of
reconstruction errors for PCA-based anomaly detection method. The numerical examples show
that the Shapley values are superior to reconstruction errors for explaining an anomaly.

Model-specific techniques have also been developed to explain anomalies in tabular data, espe-
cially for Isolation Forest [122], a state-of-the-art anomaly detection model. For example, Kartha
et al. [95] develop a method to interpret anomalies identified by Isolation Forest by exploring
the internal structure of an Isolation Forest to generate a feature importance vector, indicating
the contribution of each feature to the anomaly score. Similarly, Carletti et al. [32] propose DIFFI
to obtain feature importance scores for explaining Isolation Forest. Specifically, DIFFI provides a
global feature importance score for each feature, indicating how that feature affects the overall
decisions of Isolation Forest on the training data. Meanwhile, they present a local version of DIFFI,

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 23. Publication date: September 2023.



23:30 Z. Li et al.

named local-DIFFI, to provide a local feature importance score for each feature, describing how
each feature participates in making individual decisions on the test data. Importantly, they develop
a feature selection method for unsupervised anomaly detection problems on this basis. Particularly,
Carletti et al. [31] apply DIFFI on real-world semiconductor manufacturing data to demonstrate
its effectiveness.

6.3.2 Models for Sequential Data. A common strategy to explain anomalies in sequential
data is to contrast the observed pattern with its expected pattern or normal patterns. For
instance, Babenko & Pastore [15] leverage LFA [131] to detect anomalies in system logs. On
this basis, they present the so-called Automata Violation Analyzer (AVA) to automatically
explain anomalies detected by LFA. Specifically, AVA provides basic explanations by comparing
the expected event sequence with the observed event sequence, generating relatively simple
explanations for the anomalous events. Furthermore, they combine these basic explanations to
obtain composite explanations. Finally, they order these basic and composite explanations by their
likelihood of explaining differences between the expected event sequences and the observed
event sequences. In addition, Leue & Befrouei [113] design a method to explain counterexamples
that are symptoms of deadlocks in concurrent systems. These counterexamples can be considered
as anomalies and the authors use sequential pattern mining to produce explanations for these
anomalies. Specifically, they extract fixed-length common substrings from anomalous sequences
and contrast them with normal sequences to explain the occurrence of anomalies.

Meanwhile, leveraging visualization to explain anomalies in sequential data is also a common
practice. For example, Rieck & Laskov [176] propose a technique for explaining intrusion detection
results. Specifically, they present two methods for anomaly detection, viz. global anomaly detection
and local anomaly detection. For each payload, the global anomaly detection method computes its
distance to the centre of all payloads as its anomaly score; In contrast, the local anomaly detection
method computes the average distance to its k-nearest neighbours as its anomaly score. To explain
an anomaly, they present a visualization tool to show the feature differences between the anoma-
lous payload and the normal payloads. A large difference in a feature means that the corresponding
feature value is anomalous. Furthermore, they also highlight the network content corresponding
to the feature value in the original payload. Besides, Alizadeh et al. [7] implement an AutoRegres-

sive Integrated Moving Average (ARIMA)-based model together with a Virtual Reality (VR)
tool to detect and interpret abnormal vehicle operating states. Specifically, modern vehicles are of-
ten equipped with multiple sensors to collect data used to monitor their operating status. To detect
anomalies in such multi-channel time series data, they develop an ARIMA model for each channel
(i.e., for each individual univariate time series). Hence, a large difference between the actual
value and the predicted value indicates an anomaly. Importantly, they build a VR tool to visualize
residuals from ARIMA models, aiming to better understand anomalies. Moreover, Markou et al.
[133] create a tool for exploiting internet data to find abnormalities in transportation networks
and connecting them to unique events. First, the baseline normality corresponding to GPS data
for taxi journeys in New York City is trained based on historical mobility data. Next, they scan
various days to look for days where demand deviates greatly from normality in order to identify
abnormalities. To investigate the severity of daily traffic abnormalities, they consider the Z-score
formula of kernel density values. The current traffic situation is considered abnormal if the Z-score
value exceeds a given threshold. To explain the anomaly, they diagram the time and place of the
anomaly and utilize that information to look for nearby unusual events using Google Searches.

Discussion: This subsection reviewed a wide range of shallow XAD techniques that are explored
to interpret anomalies in a post-hoc manner. In contrast to subspace-based methods and surrogate

methods, the techniques investigated here vary by data type. For instance, Pattern Comparison and
Visualisation are commonly utilized to explain anomaly in sequential data. Methods in this group
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usually do not have an explicit Explanation-Definition of anomalies since they directly illustrate
the anomalies by comparing patterns or using visualisation tools. Meanwhile, feature importance
that is obtained by using SHAP techniques, separation or isolation-based measure, plays an impor-
tant role in explaining anomalies in tabular data. Using Shapley values techniques such as SHAP
to obtain feature importance usually does not require a definition of anomaly. Moreover, model-
specific techniques such as References [7, 32, 95] generally have consistent Explanation-Definition

and Detection-Definition of anomaly as they explore the internal structure of an anomaly detection
model to generate explanations. On the contrary, model-agnostic techniques such as Reference
[123] usually have an Explanation-Definition that may differ from the Detection-Definition.

6.4 Summary

While Table 3 provides the full characterization for all methods discussed in this section based on
the six criteria of our taxonomy, we here make some general observations on shallow post-model
XAD techniques.

First, nearly all subspace-based methods and surrogate methods are model-agnostic in the sense
that they are applicable to any anomaly detection model or given anomalies. In other words, these
methods do not explore the internal structure of an anomaly detection model and, therefore, can-
not have a full grasp of the underlying decision-making mechanism, rendering the provided ex-
planations less useful and potentially resulting in weak interpretability. In contrast, miscellaneous

methods are mainly model-specific, as they explore the internal structure of anomaly detection
models to generate feature importance as explanations. As a result, the obtained explanations are
more reliable and actionable.

Second, all these methods provide feature-based explanations (including pattern-based expla-
nations) except that Davidson [55] provides sample-based explanations. We consider the lack of
sample-based explanation methods to be a gap in the literature that might be of interest for future
research.

Third, most shallow post-model XAD techniques, especially subspace-based methods and mis-

cellaneous methods, can only provide local explanations. In other words, they can merely interpret
an individual anomaly at a time. As a result, the explanation may be highly sensitive to noise or
biased since the employed XAD methods are short of a holistic perspective on the decision-making
process and logic.

7 LITERATURE REVIEW ON DEEP POST-MODEL TECHNIQUES

Deep learning, based on artificial neural networks, has become prevalent in anomaly detection due
to its capability to learn expressive feature representations and/or anomaly scores for complex data
such as text, audio, images, videos and graph [161]. A wealth of deep anomaly detection methods,
including those based on AE, Long Short-Term Memory (LSTM), CNN, Generative Adversar-

ial Network (GAN) and other neural networks, have been proposed and have been shown to be
more accurate than traditional methods when it comes to detecting anomalies in complex data.
However, although deep anomaly detection methods tend to have high detection accuracy, they
are often criticized for their poor interpretability. For this reason, some studies have attempted
to leverage post-hoc XAI techniques to improve the interpretability of corresponding neural net-
works. Importantly, which XAI techniques are available may vary depending on the specific neural
network used. For instance, AE-based models typically employ reconstruction errors to explain
anomalies, while LSTM-based models generally leverage SHAP techniques to interpret anomalies.
Therefore, we will present the review results according to the type of neural network used to per-
form anomaly detection, which is correlated with the data type that can be used (e.g., CNNs for
images and RNNs for sequential data).
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7.1 Explaining AutoEncoders

An AE is a type of neural network that first encodes the given data instances into some low-
dimensional feature representation space and then decodes them back under the constraint
of minimizing the reconstruction error. Several types of AEs have been introduced, including
vanilla AE such as replicator neural network, Sparse AutoEncoders (SAE), DAE, Contractive

AutoEncoders (CAE), VAE, and other variants [16]. AEs are widely used for anomaly detection,
based on the assumption that anomalies are more difficult to reconstruct from the compressed
feature representation space than normal instances.

First of all, Shapley values-based techniques such as SHAP are typically used to obtain feature
contributions for explaining AEs. For instance, Giurgiu & Schumann [72] extend SHAP to explain
anomalies identified via a GRU-based AutoEncoder in multivariate time series data. Specifically,
they modify kernel SHAP [128] to output the windows that contribute the most to the anomaly
and also the windows that counteract the most to the anomaly as explanations. Besides, to detect
and explain anomalies in mobile Radio Access Network (RAN) data, Chawla et al. [40] set up
a Sparse SAE-based anomaly detection algorithm and then applies kernel SHAP to explain the
results. Furthermore, Jakubowski et al. [91] propose a VAE model combined with Shapley values to
detect and interpret anomalies in an asset degradation process. Concretely, they compute Shapley
values to generate both local and global explanations for anomalies. Additionally, Serradilla et al.
[192] utilise different machine learning approaches to detect, predict and explain anomalies in
press machines to achieve predictable maintenance. To interpret an anomaly detected by AE, they
first leverage t-SNE [214] to visualise the learned latent feature spaces. Next, they employ the
GradientExplainer tool [127], which combines SHAP, Integrated Gradients [206], and SmoothGrad
[201], to analyze which input features are associated with the anomaly.

Second, many methods attempt to track reconstruction errors to obtain feature contribution by
exploring the internal structure of AEs. Therefore, these methods are generally model-specific. For
instance, Ikeda et al. [88] design a Multimodal AutoEncoder (MAE) model to detect anomalies
emerging in ICT systems. More importantly, by using sparse optimization, they also propose
an algorithm to estimate the contributing dimensions in an AE to anomalies as explanations.
Besides, Nguyen et al. [151] introduce a framework called GEE to detect and explain anomalies
in network traffic. Specifically, they train a VAE model on a normal dataset to learn the normal
behaviour of a network, and then employ gradient-based fingerprinting technique to identify the
main features causing the anomaly. Similarly, Memarzadeh et al. [140] propose a DGM-based on
VAE. Particularly, they achieve model interpretability by evaluating feature importance through
the random-permutation method. Additionally, Chen et al. [45] put forward DAEMON, which
trains an Adversarial AutoEncoder (AAE) to learn the typical pattern of multivariate time
series, and then use the reconstruction error to identify and explain anomalies. Meanwhile, to
monitor wireless spectrum and identify unexpected behaviour, Rajendran et al. [171] present an
AAE-based anomaly detection method named SAIFE. Since the AAE is trained in three phases,
viz. reconstruction, regularization, and semi-supervised [130], SAIFE attempts to localize the
anomalous regions based on the reconstruction errors coupled with the semi-supervised features,
providing explanations for the anomalies. Furthermore, Ikeda et al. [89] set up an anomaly
detection model based on VAE, and then estimate the features that contribute the most to the
identified anomalies as explanations. Concretely, they present an approximative probabilistic
model based on the trained VAE to estimate contributing features via exploring the so-called
true latent distribution. The true latent distribution defines how an anomalous instance would be
if it were normal. Importantly, they argue that directly estimating feature contribution based on
the deviating latent distribution or reconstruction errors will lead to high false positives and/or
negatives.
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Third, some researchers attempt to utilise surrogate models such as LIME and rule learners to
explain AEs. For example, Wu & Wang [220] propose a neural network-based model incorporat-
ing LIME techniques to detect and interpret fraudulent credit card transactions. Specifically, the
anomaly detection model contains an AE and an MLP classifier, which are trained in an adversarial
manner. To interpret an anomaly, they apply three independent LIME-based models to explain the
AE, MLP, and AE & MLP models, respectively. Besides, Song et al. [203] develop the EXAD system
to identify and interpret anomalies from Apache Spark traces. First, the EXAD system adapts AE
and LSTM to perform anomaly detection. Second, they propose three ways to explain anomalies.
The first one is to build a conjunction of the atomic predicates, which can be solved by a greedy
algorithm but cannot guarantee the performance. To overcome this limitation, the second one
attempts to use an entropy-based reward function to build atomic predicates. Furthermore, they
present these constructed predicates in a Conjunctive Normal Form. The third one is to approx-
imate the anomaly detection neural networks using a decision tree. From the decision tree, they
generate explanations in a DNF. Additionally, De Moura et al. [56] present the Lane Change De-

tector (LCD) model to detect and explain when the surrounding vehicles of an ego vehicle change
their lanes. Specifically, the LCD model consists of three independent AE models trained on three
different datasets. On this basis, they set up a decision rule set based model by extracting rules
from the reconstruction errors produced by these three separate models, to determine when an
anomaly happens. Besides, Gnoss et al. [73] first annotate journal entries with previously trained
AutoEncoders and then train three XAI models using these annotations. First, they utilise Decision
Tree and Linear Regression, two intrinsically interpretable models, to simulate AE. The feature im-
portance values of Decision Tree and the odd ratio values are calculated to show which feature is
relevant to the anomalies. Additionally, they also leverage SHAP to explain the AE model.

Fourth, visualisation techniques such as Heatmaps and Saliency Maps are often constructed to
help explain AEs. For instance, Kitamura & Nonaka [104] set up an encoder-decoder-based model
to detect anomalies in images. To generate explanations for an anomaly, they first develop a fea-
ture extractor that is trained on a dataset consisting of normal images and their corresponding
reconstructed images. Second, using this feature extractor to extract latent features, their method
attempts to find the difference in the feature-level between the input image and the reconstructed
image. On this basis, their method localizes and visualizes abnormal regions as explanations for
the anomaly. Besides, Feng et al. [68] develop a Two-Stream AE-based model to detect abnormal
events in videos and then utilise a Feature Map Visualization method to interpret the anomalies.
Moreover, Guo et al. [77] set up a Sequence-to-Sequence VAE-based model to detect anomalies in
event sequences. To reveal anomalous events, they investigate the differences between the anoma-
lous sequence together with its reconstructed sequence and a set of normal sequences close to
the anomalous sequence in the latent space. Importantly, they build a visualization tool to facil-
itate the comparisons. In addition, Szymanowicz et al. [208] develop a method for detecting and
automatically explaining anomalous events in video. They first design an encoder-decoder archi-
tecture based on U-Net [177] to detect anomalies, thereby generating saliency maps by computing
per-pixel differences between actual and predicted frames. Second, based on the per-pixel squared
errors in the saliency maps, they introduce an explanation module that can provide spatial location
and human-understandable representation of the identified anomalous event.

Finally, a wide range of methods such as feature selection, Markov Chain Monte Carlo, and pro-
viding similar historic anomalies, are also explored to facilitate the interpretability of AE-based
anomaly detection. For example, Chakraborttii & Litz [35] develop an AE-based model to detect
Solid-State Drive (SSD) failures. To produce explanations, they investigate the reconstruction
error per feature, wherein a feature with a reconstruction error greater than the average error is
considered a significant cause. Particularly, they apply three types of feature selection techniques,
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viz. Filter, Wrapper and Embedded, to select important features to train the AE model, facilitat-
ing the interpretability of resulted anomaly detection model. Besides, Li et al. [115] develop a
VAE and genetic algorithm (GA)-based framework, called VAGA, to detect anomalies in high-
dimensional data and search corresponding abnormal subspaces. Concretely, for each identified
anomaly, they utilize a GA to search the subspace where the anomaly deviates most. Additionally,
Li et al. [117] introduce InterFusion, a model based on hierarchical Variational AutoEncoder

(HVAE) and Markov Chain Monte Carlo (MCMC) for detecting and explaining anomalies in
multivariate time series data. Specifically, given an anomaly, they set up a MCMC-based method to
find a set of the most anomalous metrics as explanations. Furthermore, Assaf et al. [14] develop a
Convolutional AutoEncoders (ConvAE)-based anomaly detection method and an explainabil-
ity framework to detect and explain anomalies in data storage systems, respectively. Particularly,
for each anomaly, they attempt to use cosine similarity over the embedding space to find similar
historical anomalies, thereby explaining the anomaly through association.

Discussion: AEs are the most widely used deep learning method to detect anomalies in tabular
data, sequence data, image data, video data and graph data. As a result, a plethora of methods are
also proposed to explain AEs. Concretely, XAD techniques such as reconstruction error-based fea-
ture contribution, Kernel SHAP, GradientExplainer, LIME, rule extraction and feature map visuali-
sation are often leveraged to obtain explanations. Importantly, most of these explanation methods
only provide weak interpretability, as they only explain a single anomaly at a time by exploring
some important properties of AE-based detection models.

7.2 Explaining Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a specific type of neural network that is capable of
learning features and long-term dependencies in sequential data [183]. Specifically, sequential
data refers to any data that is ordered into sequences, including time series, text streams, DNA se-
quences, audio clips, video clips, and so on. To address the different challenges of modelling sequen-
tial data, various RNN architectures have been proposed. More concretely, frequently used RNNs
include deep RNNs with MLP, Bidirectional RNN (BiRNN), Recurrent Convolutional Neu-

ral Networks (RCNN), Multi-Dimensional Recurrent Neural Networks (MDRNN), LSTM,
Gated Recurrent Unit (GRU), Memory Networks, Structurally Constrained Recurrent Neu-

ral Network (SCRNN), Unitary Recurrent Neural Networks (Unitary RNN), and so on. Par-
ticularly, by assuming normal instances are temporally more predictable than anomalous instances,
RNNs are extensively used to identify anomalies in sequential data because of their ability to model
temporal dependencies.

First of all, Shapley values-based techniques such as SHAP are the most typical method used to
obtain feature contributions, aiming to explain anomalies identified by RNNs. For instance, Zou
and Petrosian [210] utilise Decision Trees [42] and DeepLog [63] to detect anomalies in system
logs, and then explain the results using the Shapley value approach. To explain an anomaly, they
treat each event in the logs as a player without examining the model structure to generate Shapley
values. Moreover, Hwang & Lee [87] propose a bidirectional stackable LSTM-based anomaly de-
tection model for industrial control system anomaly detection. For each identified anomaly, they
employ SHAP values to obtain a contribution score of each feature as an explanation. Similarly,
Jakubowski et al. [92] examine the issue of anomaly detection when hot rolling slabs into coils.
They utilise LSTM to construct a modified AutoEncoder architecture in order to find anomalies.
Importantly, they are able to pinpoint the origin of the majority of the abnormalities identified by
the deep learning model through analysis of the SHAP interpretation. Furthermore, Nor et al. [152]
present a probabilistic LSTM-based model combined with SHAP to detect and interpret anomalies
in gas turbines. More importantly, they evaluate the quality of post-hoc explanations from two
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aspects, viz. local accuracy and consistency. Specifically, local accuracy describes the relationship
between feature contributions and predictions, while consistency checks whether the interpreta-
tion is consistent with changes in the input features.

Second, some researchers attempt to utilise surrogate models such as LIME to explain RNN. For
example, Herskind Sejr et al. [84] create a predictive neural network-based unsupervised system
by training an LSTM model and using reconstruction errors to assess data abnormalities. Impor-
tantly, the system offers two layers of anomaly interpretation: deviations from model predictions,
and interpretations of model predictions, in order to make the process transparent to developers
and users. They employ Mean Absolute Error to illustrate how observations diverge from assump-
tions at the first level. For the second level, they simulate a black-box model to provide an expla-
nation using LIME. Additionally, Mathonsi & van Zyl [136] present Multivariate Exponential

Smoothing Long Short-Term Memory (MES-LSTM) that combines statistics and deep learn-
ing. Particularly, they integrate SHAP and LIME and introduce a metric—called Mean Discovery
Score—that aims at showing which predictors are most strongly associated with the anomalies.

Third, other methods such as Layer-wise Relevance Propagation (LRP), Integrated Gradi-
ents, and Attention Mechanism, are also leveraged to explain RNN-based anomaly detection. For
instance, due to the complexity of log systems and the unstructured nature of the resulting logs,
Patil et al. [166] use LSTM to detect anomalies in such systems. To generate explanations for each
identified anomaly, they utilise LRP to generate relevance scores for every feature at every timestep.
Moreover, Han et al. [80] present InterpretableSAD, a Negative Sampling based method for de-
tecting and interpreting anomalies in sequential log data. First, due to the scarcity of anomalous
instances, they adapt a data augmentation strategy via negative sampling to generate a dataset
that contains sufficient anomalous samples. Second, they train an LSTM model based on this aug-
mented labelled dataset. Third, they apply Integrated Gradients to identify anomalous events that
lead to the outlyingness. Furthermore, to detect anomalies in system logs, Brown et al. [28] im-
plement four attention mechanisms in LSTM and prove that compared to Bidirectional LSTM, the
attention mechanism augmented LSTM not only retains high performance but also provides in-
formation about feature importance and relationship mapping between features, which provides
explainability.

Discussion: RNNs are primarily employed to detect anomalies in sequence data. Typical XAD
techniques for interpreting anomalies identified by RNN-based models include Shapley-value-
based methods, surrogate models, and other versatile techniques such as LRP, Integrated Gradi-
ents, and Attention Mechanism. These post-hoc explanation methods are usually computationally
expensive, making it difficult to provide real-time explanations.

7.3 Explaining Convolutional Neural Networks

A CNN is a specific type of neural network inspired by the visual cortex of animals. CNNs are
widely used in the computer vision field because of their strong ability to extract features from
image data with convolution structures. Moreover, CNNs have also been shown to be useful for
extracting complex hidden features in sequential data [74]. Accordingly, a variety of CNN architec-
tures have been proposed, including LeNet, AlexNet, GoogleNet, VGGNet, Inception V4, ResNet,
and so on. Some studies have attempted to utilize CNNs for anomaly detection, especially in the
fields of intrusion detection, image anomaly detection, and so on.

First, one line of research attempts to utilise surrogate models such as LIME and rule learners
to explain CNN. For example, Cheong et al. [47] set up a SpatioTemporal Convolutional Neu-

ral Network–based Relational Network (STCNN-RN) to detect anomalous events in financial
markets. For each anomaly, they apply LIME to provide a local explanation by indicating the con-
tribution of each feature. Besides, Levy et al. [114] propose an end-to-end anomaly detection model
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named AnoMili, which can also provide real-time explanations. Specifically, AnoMili consists of
four stages. First, they introduce a physical intrusion detection mechanism by using AE. Second, if
no anomalous device is discovered, they train a CNN-based classifier on voltage signals of each de-
vice, aiming to detect spoofing attacks. Third, they utilise LSTM to build a context-based anomaly
detection mechanism, which detects anomalous messages based on their context. Finally, to inter-
pret an anomalous message, they leverage decision tree to locally approximate the detection result
and also apply SHAP TreeExplainer [128] to identify the most important features in real-time.

Second, visualisation techniques are often combined with other techniques such as Gradient
Backpropagation and LRP to explain CNN-based anomaly detection. For instance, Saeki et al. [182]
present a CNN-based method to detect and explain machinery faults based on vibration data. For
each detected anomaly, they utilize grad-CAM [190], which is a gradient-based localization ap-
proach, to obtain an importance map in the feature space. Fourth, they combine the results of
grad-CAM with a visualization approach called Guided Backpropagation [204]. Concretely, this
method can visualize the predictions via backpropagation from the output space to the input
space, generating explanations for the anomaly. Moreover, Chong et al. [48] introduce a CNN-
based Teacher–Student Network-based model combined with LRP technique to detect and explain
anomalies. To interpret an anomaly, they provide an example-based explanation by showing its
top prototypes (namely, top nearest neighbours). Importantly, they apply LRP to show a pixel-level
similarity between the anomaly and each of its top prototypes. Additionally, Szymanowicz et al.
[207] introduce a model to detect and explain anomalies in videos. Specifically, they implement
R-CNN to detect objects in video, and then employ Dual Relation Graph for human-object interac-
tion recognition. The video is encoded with a collection of human-object interaction vectors

(HOI vectors) for each frame. When the likelihood of the HOI vector in a scenario is less than a
threshold, an anomaly is proclaimed. After using PCA to reduce the dimension of non-anomalies,
they train a Gaussian Mixture Model (GMM). A video frame is deemed abnormal if any of its
HOI vectors are lower than the threshold probability under the GMM. The distance between the
anomalous HOI vector and the usual HOI vector is then weighted and visualized as a 2D heatmap
to help understand abnormalities.

Third, some researchers attempt to directly utilise the semantic anomaly scores as explanations.
For instance, Hinami et al. [85] utilise a general CNN model and context-sensitive anomaly detec-
tors to identify and explain abnormal events in films. Specifically, they set up a Fast R-CNN-based
model to learn multiple concepts in videos and then extract semantic features. On this basis, they
apply a context-sensitive anomaly detector to obtain semantic anomaly scores, which can be seen
as explanations for anomalies.

Discussion: CNN-based anomaly detection models are mainly leveraged to detect anomalies in
image data. To explain anomalies identified by CNNs, XAD techniques such as surrogate models
(LIME and rule learners), Gradient Backpropagation, LRP, and visualisations are commonly used.
However, some post-hoc explanation methods, especially surrogate models, may suffer from poor
explanation fidelity. In other words, the generated explanations may not reflect the actual anomaly
detection process of CNNs.

7.4 Explaining Other Deep Neural Networks

In addition to AEs, RNNs and CNNs, other DNNs—such as GANs, Deep OCSVM, and Deviation

Network (DevNet)—can also be used for anomaly detection. Therefore, the interpretation of these
types of networks is also relevant.

First, some studies propose explanation methods for general DNNs. For instance, Amarasinghe
et al. [8] propose a framework for explainable DNN-based anomaly detection. Specifically,
they assume the anomaly detection is performed in a supervised setting and leverage LRP
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to obtain the input feature relevance for making a decision. Besides, Sipple [196] trains an
anomaly detector using Neural Network with negative sampling to detect device failures in the
Internet of Things. For each identified anomaly, they leverage Integrated Gradients techniques to
attribute the anomaly score to each feature and provide a contrastive nearest normal instance as
explanations.

Second, some researchers utilise techniques such as self-attention learning-based feature selec-
tion or gradient back propagation-based feature contribution to explain a DevNet. For instance,
Xu et al. [221] propose Attention-guided Triplet deviation network for Outlier interpre-

tatioN (ATON) to explain anomalies in a post-hoc fashion. Specifically, ATON is composed of
two main modules, viz. the feature embedding module and the customized self-attention learning
module. The feature embedding module transforms the original feature space into an embedding
space with extended high-level information. Meanwhile, given an anomaly, the customized self-
attention learning module can obtain the contribution of each learned feature to its separability.
Based on the embedding module and the corresponding attention coefficients, they distil a subset
of the original features that lead to the separability of the anomalous instance. Meanwhile, Pang
et al. [160] put forward FASD, a weakly-supervised framework to detect anomalies when a few la-
beled anomalies of interest are available. Specifically, they instantiate this framework as a DevNet
model, which assumes that the anomaly scores of normal instances are drawn from a Gaussian
prior distribution and the anomaly scores of anomalies come from the upper tail of the prior. To
interpret an anomaly, they compute the contribution of each input feature to the final anomaly
score through gradient-based back propagation.

Third, deep Taylor decomposition [144] is leveraged to explain models such as OCSVM, KDE,
and so on. For example, Kauffmann et al. [96] first convert the OCSVM models to neural networks,
and then they modify the deep Taylor decomposition method to be applicable to these neural
networks. In addition, they show its superiority to other explanation methods such as Distance
Decomposition, Gradient-Based Method, SHAP Values, and Edge Detection, which are commonly
used in deep learning to produce pixel-wise explanations of decisions. However, this method
itself has many parameters to tune when applied to different methods or datasets, sometimes
rendering the explanation method itself not explainable. Moreover, it also makes many strong
assumptions and approximations. Similarly, Kauffmann et al. [97] reveal the widespread occur-
rence of Clever Hans phenomena in unsupervised anomaly detection models. Concretely, they
propose an XAI procedure based on Deep Taylor Decomposition to highlight relevant features
for detecting anomalies and apply it on models including AutoEncoder reconstruction-based
detectors, Deep One-Class and KDE-based detectors, generating pixel-wise explanations of
outlyingness.

Finally, visualisation techniques can be leveraged to help explain anomalies. For instance, Liu
et al. [125] create the deep temporal clustering framework seq2cluster, which can cluster and
detect anomalies in time series with varying lengths. The Temporal Segmentation, Temporal Com-
pression network, and GMM Estimation modules make up seq2cluster. In particular, each sequence
is divided into non-overlapping temporal segments via the Temporal Segmentation module. A
low-dimensional representation of each time segment is what the Temporal Compression network
aims at achieving. Moreover, the Estimation Network for GMMs utilises the latent space represen-
tation to perform density estimation. Therefore, data instances can be clustered in latent space to
find anomalies based on the likelihood of each segment sample. The results of anomaly detection
can also be more easily interpreted when anomalies found in the latent space are adequately
visualized.

Discussion: In addition to the above-mentioned DNNs, namely, AEs, RNNs, CNNs, GANs, Deep
OCSVM, and DevNet, other DNNs such as Graph Neural Networks [39] and Transformers [119]
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have become prevalent in anomaly detection. Therefore, the interpretation methods of these DNNs
are also relevant.

7.5 Summary

To wrap up our review of post-model XAD techniques for DNNs, Table 4 gives an overview of all
techniques discussed and we have several high-level observations.

First, most deep post-model XAD techniques are model-specific in the sense that they are only
applicable to a family of specific neural networks or all neural networks. This is in stark con-
trast with most shallow post-model XAD techniques, which are typically model-agnostic. This is
because these deep post-model XAD techniques provide explanations by exploring the internal
structure of the neural network. By doing so, although these explanation methods cannot be gen-
eralized to other anomaly detection models, the resulting explanations are usually faithful as the
Explanation-Definition is in compliance with the Detection-Definition. However, techniques such
as SHAP, LIME, and some rule learners are model-agnostic and are, therefore, more likely to suffer
from poor fidelity.

Second, nearly all deep post-model XAD techniques provide only feature-based explanations;
the only exceptions are References [14, 48, 72], which also produce sample-based explanations.
Regarding the techniques used, the Shapley values-based approach is the most popular one. More
importantly, one can see that most deep post-model XAD techniques are proposed to explain anom-
alies detected in sequential data such as time series and system logs.

Third, nearly all deep post-model XAD techniques can only provide local explanations. In other
words, they can only explain a single anomaly at a time. Due to the complexity of neural networks,
it is extremely challenging, if possible, to understand the entire decision-making process. To help
end-users understand why an instance is reported as anomalous, deep post-model XAD techniques
often inspect some important properties of the neural networks, such as feature contribution to
reconstruction errors, thereby providing weak interpretability.

8 CONCLUSION AND FUTURE OPPORTUNITIES

We reviewed more than 150 articles that harness XAD techniques to explain anomalies. Specifi-
cally, we first introduced three different definitions of anomaly and then clarified what XAD is and
why it is needed. On this basis, and inspired by existing surveys on XAI, we proposed a taxonomy
consisting of six main criteria, enabling the categorization of the increasingly rich field of XAD.
For purposes of brevity and organisation, we structured the review into four high-level categories
(corresponding to Sections S4–7) and twelve fine-grained categories (corresponding to the subsec-
tions of S4–7). Throughout the survey, we identified a number of research challenges that may
offer opportunities for future research, which we will summarize next.

8.1 Definition of Anomaly and XAD

A long-standing problem in anomaly analysis is the lack of a uniform definition of an anomaly,
leading to a wide range of anomaly detection methods. The diversity of anomaly definitions and
anomaly detection methods leads to the need for a large variety of anomaly explanation methods.
Although is not necessarily problematic in itself (and maybe unavoidable), the lack of uniform
definitions for anomaly detection and XAD hampers communication of researchers between dif-
ferent (sub)fields, such as computer vision, natural language processing, data mining, and social
science. This makes it hard to find related work and leads to the re-invention of methods, caus-
ing unnecessary delays in scientific progress. More importantly, the evaluation and comparison of
XAD methods becomes difficult and subjective, due to the lack of a uniform, objective, and precise
definition of XAD.
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8.2 Evaluation of XAD

Despite the clearly stated needs for XAD in various domains, and especially those domains in-
volving high-stakes decisions, the question of how XAD techniques should be evaluated remains
unanswered. Over the past few years, the long-standing problem of measuring and assessing ma-
chine learning explainability has received certain attention [34]. However, most of these methods
are specifically designed for classification or clustering problems, and extending these methods to
anomaly detection problems is non-trivial.

Particularly, the fidelity of post-hoc explanations merits close scrutiny when evaluating XAD
techniques. Inconsistency between the Oracle-Definition and Detection-Definition of an anomaly
may lead to the identification of anomalies that are not of interest to the end-users. Moreover, in-
consistency between the Detection-Definition (if available) and Explanation-Definition of an anom-
aly may lead to poor explanation fidelity. In other words, the explanations do not reflect the actual
decision-making process of an anomaly detection model. In general, pre-model and in-model XAD
techniques do not suffer from this problem, while most post-hoc XAD techniques—that only corre-
late inputs with outputs, without exploring the internal structure of detection models—are afflicted
with this problem. For this reason, some researchers [180] appeal not to use opaque models and
then explain them in a post-hoc manner for high-stakes decisions. Instead, an intrinsically ex-
plainable model should be used. We emphasize that the same argument also applies to anomaly
detection and explanation.

8.3 XAD with Prior Knowledge

Most XAD techniques attempt to provide explanations solely based on information contained in
existing data instances (anomalous or not) and/or anomaly detection models. However, sometimes
additional knowledge about data instances or anomaly detection models may be acquired, in the
form of algebraic equations, simulation results, logic rules, knowledge graphs, human feedback,
and so on. Importantly, this prior knowledge can be integrated to augment training data, choose a
network architecture, initialize parameters or validate model outputs. This paradigm of integrat-
ing prior knowledge into machine learning is called Informed Machine Learning [218], which has
received increasing attention over the past few years. Particularly, Beckh et al. [19] have performed
a survey on methods that integrate prior knowledge into machine learning for improving explain-
ability, wherein they subdivide these methods into three categories, including the integration of
knowledge into machine learning problems such as classification, regression, clustering, or anom-
aly detection, the integration of knowledge into explanation method, and deriving knowledge from
the explanation results and then integrating it into the machine learning pipeline. Therefore, repur-
posing these methods for anomaly detection is undoubtedly beneficial to improve interpretability,
and thus is a promising future direction.

8.4 Adversarial Attacks in XAD

Belle & Papantonis [20] point out that some widely used XAI techniques are vulnerable to adversar-
ial attacks. In particular, post-hoc XAI techniques such as LIME and SHAP are easily manipulated
[198]. From the reviewed results, we can see that most of these methods in XAI have been repur-
posed for XAD. As a result, anomaly explanations obtained by using these techniques have the
possibility of being manipulated or attacked. To circumvent this problem, attention should be paid
when selecting an XAD method. In particular, more efforts should be made to develop interpreta-
tion methods that take into account adversarial attacks in the future.

8.5 Scalability of XAD

Last but not least, the scalability of XAD plays an important role in some applications. For example,
large internet companies often develop an anomaly detection system to monitor a large number of
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key performance indicators, aiming to ensure the reliability of their service platform [118]. How-
ever, after identifying anomalies, they have to find the root causes and then take remedial actions
as soon as possible. To achieve this in an automated manner, an anomaly interpretation method
that can process large amounts of data and provide near real-time interpretation is required. How-
ever, most existing XAD techniques—such as subspace anomaly detection and Shapley value-based
methods—have a high computational cost. Therefore, the development of scalable XAD techniques
(with high fidelity) is an important direction for future research.
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