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Introduction

One of the most important tools in monitoring the health 
of children is an assessment of how an individual child is 
growing relative to his/her peers. Linear growth monitoring 
of apparently healthy children can provide early indications 
of serious conditions (1), which may be identified through 

growth algorithms and the expertise of clinicians (2,3). If 

a child is noted to be particularly short, the cause should 

be determined and referral to a pediatric endocrinologist is 

likely, where a diagnosis can often be assigned from factors 

such as body proportions and clinical and family history 

(1,4). Although genetic abnormalities associated with short 
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accurate predictions. Determination and interpretation of insulin-like growth factor-1 (IGF-1) levels are becoming more standardized 
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deviation score is among the most important indicators of GH therapy response. While physicians involved in child growth and treatment 
of disorders resulting in growth failure need to be aware of, and keep abreast of, these latest developments, treatment decisions and 
management should continue to be based on clinical decisions. New digital technologies and advancements in the field should be aimed 
at improving clinical decisions, making greater standardization of assessment and facilitating patient-centered approaches.
Keywords: Short stature, height monitoring, bone age, cranial imaging, growth hormone treatment, prediction models

Abstract

1University of Zaragoza, Children’s Hospital Miguel Servet, Instituto de Investigación Sanitaria de Aragón, Unit of Endocrinology, Zaragoza, Spain
2University of Tübingen, Children’s Hospital, Clinic of Pediatric Endocrinology, Tübingen, Germany
3University of Genova, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Genova, Italy
4IRCCS Instituto Giannina Gaslini, Department of Pediatrics, Genova, Italy
5University of Witten/Herdecke and Tübingen University, Tübingen, Germany
6University of Milan, Luigi Sacco Hospital, Clinic of Pediatric, Milan, Italy
7University of Leipzig, Department of Pediatrics, Leipzig, Germany
8Global Medical Affairs, Merck KGaA, Darmstadt, Germany
9Leiden University Medical Centre, Department of Paediatrics, Leiden, Netherlands

 José I. Labarta1,  Michael B. Ranke2,  Mohamad Maghnie3,4,  David Martin5,  Laura Guazzarotti6,  Roland Pfäffle7, 
 Ekaterina Koledova8,  Jan M. Wit9

Important Tools for Use by Pediatric Endocrinologists in the 
Assessment of Short Stature

DOI: 10.4274/jcrpe.galenos.2020.2020.0206

https://orcid.org/0000-0003-2832-2266
https://orcid.org/0000-0002-3855-6157
https://orcid.org/0000-0002-7183-5238
https://orcid.org/0000-0002-4279-3032
https://orcid.org/0000-0002-5648-0109
https://orcid.org/0000-0001-6754-3681
https://orcid.org/0000-0003-2572-9052
https://orcid.org/0000-0002-1715-5020


125

Labarta JI et al.
Tools for Short Stature Assessment

J Clin Res Pediatr Endocrinol
2021;13(2):124-135

stature are continually being identified (5), a high percentage 
of cases remain idiopathic with no specified cause (6). While 
identified causes are often associated with defects in the 
growth hormone (GH)–insulin-like growth factor-1 (IGF-1) 
axis, a large proportion of cases do not involve GH or IGF-1 
abnormalities, but may involve factors such as growth plate 
abnormalities (3,5,7). 

GH therapy to improve linear growth is approved for a number 
of conditions associated with growth failure in children, 
although this varies to some extent by GH formulation 
and country (2,8,9,10,11). It is important for clinicians to 
identify ways of optimizing treatment; while starting GH 
treatment at a young age generally improves outcomes, 
for many indications, referral, diagnosis and GH initiation 
occur later than optimal (2,8). Artificial intelligence and 
machine-learning are revolutionizing diagnostic tools in all 
areas of medicine, including child growth and development. 
It remains important for pediatric endocrinologists to 
continually assess the innovative techniques that are 
becoming available with regard to identifying the nature of 
growth failure in children and how to tailor the management 
of the condition. 

The present report is based on a meeting held in Rome, 
Italy, funded by Merck KGaA, Darmstadt, Germany, which 
discussed important new tools being developed and used 
by pediatric endocrinologists. Accurately identifying which 
children should be defined as short, what is the cause of 
the short stature, problems relating to bone maturation and 
how a child with growth failure will respond to treatment 
can all be aided by digital technologies, leading to improved 
clinical decisions, greater standardization and patient-
centered approaches. 

Growth Monitoring and Algorithms

Among children referred for evaluation of short stature, the 
prevalence of pathological conditions is only approximately 
5%, with reported variation from 1.3% to 19.8% depending 
on the criteria considered (12,13,14). Thus, the majority of 
referrals show no pathology and diagnostic work-up may 
be carried out unnecessarily (3,15). Additionally, use of 
growth charts that are not population-specific can result 
in a large proportion of incorrect referrals for diagnostic 
work-up (14,16,17). Using appropriate growth references 
is of paramount importance when assessing a child’s 
height because of the impact on eligibility for therapy 
(17). Wide variations are reported in population height 
measurements and the choice of auxological criteria for 
referral for short stature (12,13,14,18). Current protocols for 
growth monitoring frequently result in delayed diagnosis, 
and a consequent delay in the treatment of growth failure 

(19,20,21). Appropriate referrals will avoid unnecessary 
procedures and enable earlier diagnosis of the cause 
of growth failure and prompt initiation of therapy, thus 
improving outcomes and diminishing complications. 
Therefore, it is important that clinical practice should be 
optimized by standardization of growth monitoring, with 
validated, evidence-based protocols (2,12,13).

There is currently a lack of consensus on criteria for 
definition of abnormal growth. Seven different algorithms 
have been published in the last 20 years, involving around 
eight auxological parameters to be evaluated (22). However, 
the level of validation is low for each of the algorithms, with 
widely varying sensitivities and specificities. While height 
standard deviation score (SDS) is used in all algorithms, 
there is no consensus concerning the cut-off. A study 
across 23 European countries found height SDS cut-off 
ranged from -1.64 to -2.67 SDS and growth deflection or 
height velocity cut-off ranged from -0.50 to -2.32 SDS (18). 
Distance to target height SDS is the second most frequently 
used parameter, but different formulae may be used for 
calculation and there may be inaccuracies in measurements 
of parental heights. Other parameters were based on 
dynamic growth indicators, such as height deflection and 
height velocity SDS. 

Comparison of children using the Dutch, Finnish and UK 
guidelines showed variations in sensitivity and specificity 
(14). Distance to target height provided the best specificity, 
particularly using the Dutch guidelines, and combination 
with height SDS provided effective growth monitoring. 
However, sensitivity was much lower and, even using 
combinations of up to four criteria, at least 20% of children 
with pathological growth failure may not be identified by 
these auxological measurements. Adding growth deflection 
may improve sensitivity and in the pre-pubertal period 
recent growth deflection should be considered a “red 
flag”, leading to referral to a specialist clinic (14). Strict 
application of guidelines and cut-offs may lead to excessive 
numbers of referrals and other parameters may need to be 
added (15). In children younger than three years height/
length measurements are often inaccurate; referral at this 
age should be based on extreme short stature or repeated 
measurements (23). 

In children over three years of age, it was shown that 
electronic monitoring of growth, together with algorithms 
for assessment of auxology, could identify patients for 
referral for specialist care, and resulted in increased 
detection of pathological conditions associated with growth 
failure (24). In order for electronic health records to be 
clinically advantageous, good infrastructure and databases 
are required. With increasingly widespread collection, 
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monitoring of height of individual children in relation 
to their peers should become automatic and improve 
accuracy of referrals. Despite this availability, few countries 
have currently adopted such use of electronic records and 
automated growth algorithms. Electronic monitoring of 
height and weight has been used to assess obesity in children 
in Canada (25,26), but not linear growth and it was noted 
that better documentation by physicians was required. 
Currently, only the Scandinavian countries of Norway, 
Sweden and Finland have fully developed centralized 
systems for electronic recording and only Finland has 
implemented automated height growth analysis. However, 
it should be noted that factors such as being born small for 
gestational age, dysmorphic features or disproportionate 
short stature should also be assessed and appropriate 
algorithms be applied, emphasizing the importance at 
present of clinical judgment in making a diagnosis of the 
cause of growth failure.

Categorization of Diagnoses

When growth monitoring has indicated that a child has 
growth failure, the cause is determined from auxology, 
clinical history and biochemical assessments, and a 
diagnosis is ascribed. In order to analyze data on diagnoses 
from large populations it is necessary to transform the 
reported medical conditions into code numbers. These 
codes can then be used by health researchers, healthcare 
providers, government health programs, health insurance 
companies and others, for a variety of applications. A 
number of different systems have been designed to classify 
the diagnoses. The classification should allow inclusion of 
all patients, enable new etiologies and pathogenic aspects to 
be accommodated, define diagnoses accurately to prevent 
misclassification, follow one general principle, be easy to 
use and, optimally, serve the designed purpose (27). The 
International Classification of Diseases (ICD) was started 
in 1948 by the World Health Organization, and is now 
in version ten (http://apps.who.int/classifications/icd10/
browse/2010/en). Its aim is to delineate all major disease 
groups, but diagnoses are not well defined, with too 
many conditions included together. For example, the term 
“endocrine, nutritional and metabolic disease” includes 
thyroid disorders, diabetes and disorders that are not really 
related to endocrinology, such as malnutrition and obesity. 
Thus, the system does not prevent misclassification. Online 
Mendelian Inheritance in Man (OMIM; https://www.omim.
org/) can only be used for genetic disorders. Also, unless 
phenotypic features or clinical history indicate what genes 
to examine, in most children with short stature there is no 
specific “candidate gene” for targeted analysis. 

The European Society of Pediatric Endocrinology 
Classification of Pediatric Endocrine Diagnoses aimed to 
define all pediatric endocrine disorders and included multiple 
specific sections, such as the one for all conditions involving 
short stature (27). This has now been superceded by the 
online International Classification of Pediatric Endocrine 
Disorders (ICPED), which is a comprehensive system of 
pediatric conditions developed by an international group 
of experts and endorsed by all pediatric endocrinology 
societies (28,29). The system incorporates the most 
recent versions of ICD-10 codes and OMIM numbering in 
order to be easily assimilated into hospital registries, and 
continues to be developed and added to. The online version 
is freely available (www.icped.org). While ICPED is used to 
a reasonable extent in the USA and Netherlands, its use in 
most other countries is limited. Worldwide standardization 
within pediatric endocrinology requires the use of ICPED 
for healthcare, economic and scientific purposes in order 
that electronic health records can be linked to diagnostic 
classification and coding systems. 

Cranial Imaging

As part of the work-up for assigning a diagnosis for the cause 
of growth failure, cranial imaging is frequently included. 
However, the only consensus specifying which patients 
require cranial imaging were published in 2000 and have 
not been updated (30). They stated that patients with known 
or suspected intracranial tumors, optic nerve hypoplasia, 
septo-optic dysplasia or other structural or developmental 
anomalies should be assessed by magnetic resonance 
imaging (MRI) or computed tomography of the central 
nervous system. In patients with confirmed GH deficiency, 
pituitary height and/or volume, anatomy of the stalk and 
position of the posterior pituitary should be determined. 
The guidelines noted though that further normative data 
were required to improve the quality of assessment.

Standard MRI protocols include sagittal and/or coronal 
sections of 2-3 mm, with or without contrast medium, and 
pituitary height and/or volume, stalk anatomy and posterior 
pituitary position should be determined. Knowledge of 
the normal shape and volume of the pituitary is required 
to interpret the images and identify abnormalities (31,32). 
It is also advised that a survey of the entire brain should 
be carried out, such as use of fluid attenuation inversion 
recovery or diffusion-weighted imaging (32,33). MRI signals 
for the anterior pituitary and posterior pituitary are similar 
in the first few months of life, becoming different thereafter. 
The size/height of the anterior pituitary is 2.6-5 mm in the 
first postnatal 6 weeks, decreasing to 3 mm by two years 
and then increasing over time until puberty at 6-8 mm; 
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however, it should be noted that pituitary height at puberty 
is greater in females than in males. The position of the 
pituitary gland and connection with surrounding tissue are 
also important because abnormal development or migration 
of the pituitary may constitute some of the features of 
congenital hypopituitarism, confirming the requirement for 
assessing the surrounding brain from the imaging, along 
with the pituitary features.

Different imaging studies of patients with a diagnosis of 
hypopituitarism have shown normal pituitary in 0 to 86% 
of patients, hypoplastic anterior pituitary in 0 to 84%, and 
ectopic posterior pituitary in 4% to 100% (34). However, 
ectopic posterior pituitary was observed more frequently 
when patients had multiple pituitary hormone deficiencies 
(>50% in 15 of 18 studies) rather than isolated GH 
deficiency (<50% in 13 of 18 studies) (34). Abnormal 
pituitary features may help to predict the development of 
pituitary hormone deficiencies and the most likely genes 
involved (34,35). Thus, genetic studies can be better targeted 
by using MRI data together with associated phenotypic 
features, such as abnormalities of the brain, eyes and 
palate and additional central nervous system anomalies. 
Pituitary abnormalities also help in determining long-term 
status of GH deficiency; ectopic posterior pituitary or stalk 
abnormalities are associated with permanent GH deficiency 
whereas patients with isolated GH deficiency and a normal 
or small pituitary may have sufficient GH secretion at near-
adult height and require re-testing (36,37). 

In order for such predictions of genetics and endocrine 
status to be accurate, the MRI techniques must be as 
sensitive as possible. To enhance the contrast of MRI 
scans, intravenous gadolinium-based agents have routinely 
been administered to patients for more than 20 years 
and were generally considered safe (38,39,40). However, 
studies have indicated that gadolinium may be retained in 
the body, particularly in the brain when administered for 
pituitary imaging, so that after multiple administrations the 
contrast agents remained and deposits could be identified 
(40,41). This raised questions as to whether such deposits 
have harmful effects and indicated that further research 
was needed. The studies prompted new evaluations by 
regulatory bodies and warnings have been added to the 
labels for gadolinium formulations (42,43). This has led to 
new computer-aided techniques being developed, such as 
T2-DRIVE (driven equilibrium), whereby enhanced contrast 
can be attained without gadolinium administration (44). T2-
DRIVE actually appears to be more accurate than gadolinium 
contrast and enables extremely reliable evaluation of 
pituitary size and identification of abnormalities. Thus, the 
technique can greatly improve the diagnosis and knowledge 

of the pathogenesis of non-tumoral hypothalamic-pituitary 
disorders.

Determination of Bone Age

Another part of the work-up for evaluation of growth failure 
is an accurate assessment of bone age, which is important 
because bone age delay or advancement is a useful 
diagnostic clue, and is used to predict adult height (45,46). 
Conventional assessments are known to be fraught with 
difficulties due to the many short-comings of the methods. 
There is no universally accepted method for manual 
assessment and great variability between individuals 
making the assessments. Healthcare personnel making the 
rating may differ in training, experience, motivation and 
alertness, and bias may be introduced if the rater knows the 
chronological age and clinical background of the patient. 
Variability can also occur due to ethnic differences, use of 
old/inappropriate reference data and lack of validation of 
methods; the original atlases were developed using data 
from particular ethnic and socio-economic groups (47).

It was recognized many years ago that computerized ratings 
could be better than conventional manual methods and a 
computer-assisted version of the Tanner-Whitehouse method 
was designed (48,49). However, it was not fully automatic, 
cumbersome and only ever used by a small number of 
research centers. Advances in computer technology allowed 
better methods to be developed and the first reports of the 
fully-automated BoneXpert method were published just 
over 10 years ago (50,51). The method uses X-radiographs 
of 15 bones in the wrist, hand and fingers, and originally 
did not use the carpals, which are considered to be less 
useful, although a new version does include carpals (52). 
The process interprets the shape, intensity and texture by 
principal component analysis and BoneXpert is currently 
the only medical device that has been certified for bone age 
determination. 

Other systems have also recently been developed that use 
computer learning with deep convolutional neural networks, 
which do not require prior identification of features and 
calculations because these are part of the machine-learning 
process (53,54,55). While not fully automated or validated, 
such techniques are improving the accuracy, shortening the 
time required and increasing the cost efficiency of bone 
age assessments (56,57). A recent report provided evidence 
that an artificial intelligence, deep-learning, neural network 
method could estimate bone age with at least similar accuracy 
to expert radiologists and other existing automated models 
(58). These data for 12,611 hand radiographs, plus a further 
1,425 validation data set, were used as part of a challenge 
issued by the Radiological Society of North America (RSNA) 
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to create new machine-learning techniques in medical 
imaging to accurately determine bone age (59). The ten 
best entries were considered to out-perform the model 
used originally in the data-set study, and the Toronto-based 
16Bit system (www.16bit.ai) achieved first place (59,60). At 
present, there is only very limited understanding or control 
of deep-learning algorithms, making such techniques 
difficult to validate. However, eHealth technology is 
incorporating pediatric endocrinology into novel processes, 
enabling communication between technology experts and 
clinicians and ensuring assessments become more efficient 
and precise. 

The BoneXpert system, which does not require deep-
learning techniques, came fourth in the RSNA challenge, 
with less than 0.5% difference in performance from the 
16Bit system. As BoneXpert is based on more traditional 
machine-learning techniques, it has some advantages over 
the novel deep-learning methods and is currently being 
used in over 150 clinics. It is validated for boys aged from 
2.5 to 19 years and girls 2 to 18 years, although a new 
version extends the range to new-borns. BoneXpert can be 
used across multiple ethnicities and is consistent with all 
prevailing bone age scales (52,61,62,63). Precision is ≤0.18 
years when comparing two concurrent X-radiographs, and 
accuracy is ≤0.72 years relative to experienced manual 
raters. It provides visual feedback on delineation of each 
bone and automatically rejects an image if the rating is 
at risk of being incorrect, giving the potential to replace 
manual rating, although radiologists may still check the 
image to look for findings such as skeletal dysplasias. It has 
been validated with an adult height prediction model, with 
root mean square deviation of predicted from observed of 
2.8 cm for boys and 3.1 cm for girls (63). The technique 
can also be used to provide an index of bone health from 
the relationship of the cortical thickness to the length 
and width of the bones (64,65). These developments that 
have occurred in recent years in bone age measurements 
using artificial intelligence systems now allow much more 
objective evaluation. The models continue to be refined and 
validated and are providing much greater accuracy that in 
turn provides increased precision in assessment of adult 
height prediction.

Prediction Models

One of the still unresolved problems of GH treatment of a 
short child is how much height growth should be expected, 
in the short-term and long-term. Growth response has 
commonly been expressed as either observed height 
velocity (cm/year) or change in height SDS, based on 
normal reference data. The characteristics of height and 

height velocity show specific average patterns and changing 
degree of variance around the mean with age (66). Therefore, 
specifying a set figure, e.g. height SDS gain >0.5 during the 
first GH-treatment year (67), as a “normal” growth response 
is inadequate for children of different sex or age. 

After it was recognized that the growth response to GH was 
correlated with several factors related to the treated children 
and the mode of treatment, the problem of a more complex 
response evaluation was approached by several groups in 
the early 1990s by means of growth prediction models 
(68,69). In principle, prediction models are mathematical 
algorithms based on empirical observations from large 
cohorts of GH-treated children with specific diagnoses (70). 
Prediction models aim to explain as much as possible of 
the growth response within a set period of time, with the 
least possible error. This requires taking into consideration a 
child’s characteristics, such as diagnosis, age and sex, and the 
chosen treatment modality (dose, injection frequency, time 
on treatment). The incorporation of laboratory parameters 
such as IGF-1 concentration, and factors such as genetic 
and proteomic markers (70), may also be considered, but 
this requires their standardization before implementation in 
models suitable for wider clinical use.

Data from the large KIGS (Pfizer International Growth Study) 
surveillance database provided the basis for development of 
various growth prediction models, in children at differing 
pubertal stages and diagnoses (71,72). These models have 
been independently validated and are accessible through 
freely available software (https://igro-gh.com). GH dose is 
a prediction variable of relevance for the utility of these 
models in clinical practice, since dose is the only parameter 
that can be modified. Incorporating multiple pre-pubertal 
factors in the prediction models identified GH dose as the 
most important factor for patients with Turner syndrome or 
born small for gestational age. However, prediction analyses 
showed that in children with GH deficiency, disease 
severity is the most important predictor of growth during 
the first pre-pubertal year of treatment (73). The extent 
of responsiveness to GH observed during the first year of 
therapy is an indicator of the overall response. 

Thus, early prediction of response to GH treatment of a 
child with growth failure potentially enables optimization 
and individualization of treatment in terms of efficacy and 
costs (70). Height velocity targets provide a simpler model 
to evaluate the appropriate response in children treated 
for the first two pre-pubertal years, by considering age, sex 
and diagnosis, but not the individual dose and other factors 
found relevant in prediction models (66,74). 
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The Gothenburg prediction model focused on children 
with idiopathic short stature or partial GH deficiency and 
assumed nothing about diagnosis (75). They compared a 
standard GH dose (43 µg/kg/day) with a dose adapted for 
predicted sensitivity (17-100 µg/kg/day) and, as expected, 
the variation in response was reduced by 32% with the 
individualized dose (76,77). The Cologne model uses both 
baseline and three-month data for prediction of subsequent 
response to GH, and includes baseline factors of IGF-1 
level, deoxypyridinoline (as a marker of bone resorption) 
and bone age retardation, and height velocity in the first 
three months of treatment (78). However, as the bone 
resorption marker is rarely measured, the model has only 
been used to a limited extent. However, the Cologne model 
was recently shown to effectively predict first year response 
to GH treatment in patients with short stature homeobox-
containing gene (SHOX) deficiency (79). 

Baseline IGF-1 SDS is used in the Cologne model, whereas 
values both at baseline and during treatment have been used 
in other prediction studies in children with growth failure 
due to GH deficiency and other conditions (70,80,81,82). 
These models use multivariate linear regression to identify 
factors associated with response for inclusion in the models. 
However, artificial intelligence techniques of machine-
learning and neural networks have been suggested to detect 
both linear and non-linear variables with no pre-conceived 
assumptions, and may prove more flexible and useful 
in clinical practice (83). Initial studies suggest that early 
growth response and IGF-1 concentration changes were 
among the most important predictors of long-term response 
(84). Accurate prediction of growth outcomes could help 
in educating patients and their families and managing 
their expectations. While applications (apps) designed for 
personal use that incorporate prediction models are being 
developed (85), accuracy and validation are so far unknown. 
Very few apps currently include education and links 
between patients, caregivers and healthcare professionals. 
A better understanding of how patients can use such apps is 
required and there remains an unmet need for assessment 
of quality and physician endorsement of such tools for use 
in clinical practice.

Interpretation of IGF-1 Data

Determination of IGF-1 level has many uses in children 
with growth failure because it has a long half-life in blood 
and a stable circadian concentration. Therefore, single daily 
measurements can be taken and a consensus guideline 
for measurement was developed (86). Current methods 
for measuring total IGF-1 concentration require separation 
from its binding proteins using two-step acidification and 

neutralization, with blocking of re-aggregation by adding 
an excess of IGF-2 (87). Nevertheless, different commercial 
assays are available and their reference intervals vary, so it 
is important to note which assay is used when comparing 
data (88,89). IGF-1 concentrations change with age and 
gender so that normative data have been determined 
from large numbers of healthy children and adolescents 
(87). This enables appropriate correction to provide SDS 
values, although the correct normative data should be 
used because diverse cohorts may give different reference 
measurements (90,91). Such differences may give clinically 
relevant variation when used to establish a diagnosis of GH 
deficiency (92). Clinical background of the patient should 
be considered when determining whether an IGF-1 assay is 
necessary and how the result should be interpreted; also the 
test may require repeating if clinical features and laboratory 
results are discrepant (93). Nutritional history should also 
be considered in evaluation of IGF-1 when assessing GH 
status as both short-term and chronic under-nutrition or 
over-nutrition can affect circulating concentration and body 
mass index should be considered when interpreting IGF-1 
level (94).

IGF-1 SDS is used not only to aid in identifying the cause of 
growth failure, but also to assess whether, and how well, a 
short child will benefit from GH treatment (95). In patients 
with GH deficiency, normalization of IGF-1 SDS is not 
always required for a good response, particularly in patients 
with severe deficiency. A greater response is generally seen 
in those with the lowest baseline values. Using artificial 
intelligence neural networks on data for patients with non-
acquired isolated GH deficiency, more severely reduced IGF-
1 SDS at baseline was shown to be a significant indicator 
of GH response, both in the first year and for adult height 
(84). In evaluating IGF-1 level, the cause of GH deficiency 
should be considered, because children with acquired GH 
deficiency have higher IGF-1 SDS than those with non-
acquired deficiency (96). In patients without obvious GH 
deficiency and who are classified as idiopathic short stature, 
IGF-1 SDS may be below normal for approximately 40% 
(87). During GH treatment, a low IGF-1 SDS may be due 
to low sensitivity, concomitant illness or malnutrition/
malabsorption, or poor adherence with the therapy (96,97). 
A normalized IGF-1 SDS with low response may also suggest 
poor adherence, with GH correctly administered only for a 
few days before evaluation; better evaluation of continuous 
adherence may then be necessary, and addressing issues 
of adherence could improve response (98,99). Maintaining 
a normalized IGF-1 SDS, without excessive values, is 
also required from a safety point of view (95,100). While 
guidelines recommend a decrease in GH dose when IGF-1 
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SDS is >+2 (101), this may not always occur in practice, 
particularly if response is only assessed from height velocity 
(102). Maintaining a set IGF-1 SDS has also been used to 
adjust GH dose in studies of children with GH deficiency 
or idiopathic short stature and was shown to enable a 
better growth response (103). However, non-approved high 
doses of GH were used in some children when IGF-1 was 
titrated to +2 SDS in that study, and titrating to 0 SDS was 
subsequently shown to achieve a better long-term height 
gain per dose and was potentially safer (104). 

Conclusion

Digital health and computer-based technologies are rapidly 
altering healthcare services to make medicine much more 
patient-centered and personalized. While there have been 
great advances in use of digital tools and use of artificial 
intelligence, the importance of this research is only 
just beginning to be recognized in the field of pediatric 
endocrinology and growth failure. Algorithms for height 
monitoring can now be integrated into electronic health 
records, which can increase the diagnostic yield and identify 
individual children who may have growth failure. However, 
the lack of accurate centralized health records in many 
countries is slowing this referral and diagnosis progress. At 
a more individual level, various digital health tools are being 
developed that can provide better identification of disorders 
and promote effective engagement between clinicians and 
patients. Growth monitoring applications for phones and 
tablet computers are being developed, based on longitudinal 
growth studies. Such technologies should form part of the 
overall clinical management of children with growth failure. 

When short stature is identified, standardizing the 
diagnoses associated with pediatric endocrinology requires 
a comprehensive classification system, in which the 
organization of diagnoses is well defined in order to prevent 
misclassification. Computerization of health records enables 
transformation of identified medical conditions into code 
numbers, which can then be used by multiple organizations 
to analyze population data on health and healthcare. Most 
systems currently in use are either complicated or diagnoses 
are insufficiently defined and, therefore, do not fit the needs 
of the scientific, governmental and healthcare communities. 
ICPED is an online classification system that is simple, 
comprehensive and fulfills the needs of such users, can 
be standardized worldwide and incorporated into hospital 
registries. This would allow wider access and better use of 
electronic health records.

Assessment of the cause of growth failure in a child 
frequently includes cranial imaging and new techniques are 

being devised. A recent development is the routine inclusion 
of T2-DRIVE into sellar MRI protocols. In light of recent 
safety concerns regarding gadolinium contrast agents, the 
computer-aided technique is considered a valid alternative 
for pituitary imaging without gadolinium in patients with 
pituitary hormone deficiencies. T2-DRIVE is advocated for 
more accurate diagnosis of pituitary gland abnormalities 
since it has been shown to provide better contrast than 
gadolinium agents. However, it should always be noted that 
knowledge of the normal pituitary dimensions is required for 
interpretation of any technique and good clinical expertise 
remains vital for accurate diagnosis.

New computerized techniques for measurement of bone 
age are using machine-learning to become much more 
accurate and precise. As these are objective, rather than 
previous subjective manual ratings, they are much less 
variable, can be used for both short and tall children, and 
are adaptable to various ethnicities. The BoneXpert system, 
which uses machine-learning though not deep-learning, is 
the only medically certified and systematically validated 
technique. As well as providing rapid and accurate bone 
age measurements and adult height predictions, it also 
provides a bone health index that can be used for multiple 
medical conditions. However, automated techniques such 
as BoneXpert, should continually be compared with manual 
ratings in order that clinicians do not become totally 
dependent on them. The techniques are still developing, with 
mistakes occasionally occurring, and at present syndromes 
and anomalies cannot be automatically detected. Therefore, 
clinical experience and judgment is still required.

A variety of models to predict the response to GH treatment 
in individual children with growth failure have been 
developed and validated over time. However, they are still 
largely underused in assessment of growth potential. Various 
factors are included in different models, such as patient 
characteristics and treatment modalities, but incorporating 
further laboratory, proteomic and genetic predictors could 
potentially improve accuracy. Until recently, the models 
relied on multivariate regression analysis. However, newer 
methods are beginning to be developed that use deep-neural 
networks and machine-learning techniques, which can 
analyze non-linear as well as linear relationships and do not 
require a priori assumptions about importance of various 
factors. Prediction models are now also being incorporated 
into apps, to educate and help patients understand their 
condition. However, these require clarity in the models being 
used, expert validation and assessment by endocrinologists.

Some prediction models use IGF-1 SDS as a factor and IGF-1 
SDS may also be used to evaluate response to GH treatment 
for short stature. Machine-learning techniques indicated that 
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baseline IGF-1 SDS is among the most important indicators 
of response to GH treatment. However, IGF-1 measurements 
should be considered with care because results can vary 
widely between different assays. Laboratories should ensure 
that appropriate normative data are used to determine SDS 
values, and pubertal stage of the child should be taken into 
consideration in addition to age, gender and nutritional 
history, when interpreting results. As there is imprecision 
in assays, borderline values for use in clinical diagnosis 
of short stature should be repeated using a second blood 
sample and clinical history assessed when evaluating IGF-1 
level. Titrating GH dose to IGF-1 helps to take into account 
the sensitivity of treatment due to diagnostic factors and 
has been reported to provide better clinical outcomes. 

Thus, rapid advances in computing and artificial intelligence 
technologies are providing many new tools for pediatric 
endocrinologists. Such tools are improving identification 
of short stature and enabling better diagnosis of causes of 
growth failure. Cranial imaging is becoming more accurate 
and sensitive, bone age and bone health can be evaluated 
more objectively, prediction of response to GH treatment 
is improving and use of IGF-1 measurement is becoming 
more consistent. However, this research has only really 
scratched the surface and development of new computer-
learning techniques could be further explored in terms of 
digitalization and development of patients-centric solutions. 
New eHealth tools can help pediatric endocrinologists by 
making their clinical assessment and patient management 
more efficient. Most tools are currently designed to be 
used by clinicians, although future directions may need 
to explore new ways in which patients can access the 
technologies more directly. While clinicians need to keep 
abreast of all these new techniques, clinical decisions should 
always be based on their experience. However, these new 
digital technologies should provide better communications 
between clinicians and patients. Treatment decisions based 
on these new techniques should always be patient-centered, 
in order to personalize and optimize assessment of child 
growth and management of growth failure. 
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