
Anthropometric, biochemical and hormonal profiles of the partially
admixed pygmoid group in Rampasasa (Flores, Indonesia)
Pulungan, A.; Andarie, A.A.; Soesanti, F.; Yassien, M.R.; Bruin, C. de; Wijaya, A.; ... ; Wit,
J.M.

Citation
Pulungan, A., Andarie, A. A., Soesanti, F., Yassien, M. R., Bruin, C. de, Wijaya, A., … Wit, J.
M. (2021). Anthropometric, biochemical and hormonal profiles of the partially admixed
pygmoid group in Rampasasa (Flores, Indonesia). Journal Of Pediatric Endocrinology And
Metabolism, 34(5), 547-557. doi:10.1515/jpem-2020-0526
 
Version: Publisher's Version
License: Creative Commons CC BY-NC-ND 4.0 license
Downloaded from: https://hdl.handle.net/1887/3575997
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://hdl.handle.net/1887/3575997


Aman Pulungan*, Attika A. Andarie, Frida Soesanti, Muhammad Ramdhani Yassien,
Christiaan de Bruin, Andi Wijaya, Agus Firmansyah and Jan M. Wit

Anthropometric, biochemical and hormonal
profiles of the partially admixed pygmoid group in
Rampasasa (Flores, Indonesia)
https://doi.org/10.1515/jpem-2020-0526
Received September 11, 2020; accepted November 22, 2020;
published online April 13, 2021

Abstract

Objectives: We performed a cross-sectional study on
anthropometric and laboratory characteristics of in-
habitants of Rampasasa (Flores, Indonesia). Adults were
categorised according to ancestry into three groups: pyg-
moid (P/P, offspring of pygmoid parents, n=8), mixed
pygmoid (P/N, offspring of pygmoid and non-pygmoid
parents, n=12) and non-pygmoid (N/N, n=10). Children
(n=28) were P/N.
Methods: Measurements included height, weight, sitting
height, arm span, head circumference, haematological
analysis and serum albumin, calcium, vitamin D, insulin-
like growth factor-I (IGF-I) and IGF binding protein 3
(IGFBP-3). Pubertal stage and bone age was assessed in
children. Anthropometric data were expressed as standard
deviation score (SDS) for age. IGF-I, IGFBP-3 and IGF-I/
IGFBP-3 ratio were expressed as SDS for age, bone age and
pubertal stage.

Results: Mean height SDS showed a gradient from P/P
(−4.0) via P/N (−3.2) to N/N (−2.3) (−3.4, −3.1 and −2.2
adjusted for age-associated shrinking). Sitting height and
head circumference showed similar gradients. Serum IGF-I
SDS was similar among groups (approximately −1 SDS).
IGFBP-3 SDS tended toward a gradient from P/P (−1.9) via
P/N (−1.5) toN/N (−1.1), but IGF-I/IGFBP-3 ratiowas normal
in all groups. In P/P and P/N, mean head circumference
SDS was >2 SD greater than mean height SDS. Children
showed a progressive growth failure and bone age delay,
delayed female pubertal onset and an initial low serum
IGF-I, normal IGFBP-3 and low IGF-I/IGFBP-3 ratio.
Conclusions: P/P showed proportionate short stature
with relative macrocephaly and relatively low IGFBP-3;
P/N presented an intermediate pattern. P/N children
were progressively short, showed delayed skeletal
maturation, delayed puberty in girls and low IGF-I and
IGF-I/IGFBP-3.

Keywords: growth; head circumference; IGF-I; IGFBP-3;
negritos; pygmies; short stature; vitamin D deficiency.

Introduction

In several parts of the world, small isolated human pop-
ulations can be found in which all members are short
compared to mean stature in the remaining part of the
region, using various cut-offs for average male height
(<150, <155 or <160 cm) [1–3]. Some investigators use the
term “pygmies” for all such tribes irrespective of the
geographical location [4, 5]. Others prefer to restrict this
term to short tribes in Africa [6], and use the term
“negritos” for short populations in Asia (e.g. the Andaman
Islands, the Philippines, Malaysia and Papua New Guinea)
[7, 8]. Negritos are thought to be descendants of the earliest
migrants to the Southeast Asian region, along with Pap-
uans and Australian Aboriginals [7]. The more generic
terms like “pygmoid phenotype” [8, 9] or “pygmoid group”
[5, 10] have also been suggested for an isolated short
population anywhere in the world, and we decided to use
the latter term in this paper.

*Corresponding author: Dr. Aman Pulungan, Department of Child
Health, Faculty of Medicine Universitas Indonesia, Cipto
Mangunkusumo Hospital, Jl. Diponegoro No. 71, Jakarta 10430,
Indonesia, Phone: +62 21 3100669, Fax: +62 21 3907743,
E-mail: amanpulungan@mac.com. https://orcid.org/0000-0003-
4895-4105
Attika A. Andarie, Faculty of Medicine, Universitas Indonesia, Jakarta,
Indonesia. https://orcid.org/0000-0002-0114-0676
Frida Soesanti, Muhammad Ramdhani Yassien and Agus Firmansyah,
Department of Child Health, Faculty of Medicine Universitas
Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
https://orcid.org/0000-0002-4319-5528 (F. Soesanti). https://
orcid.org/0000-0001-8765-7352 (M.R. Yassien). https://orcid.org/
0000-0002-3236-0014 (A. Firmansyah)
Christiaan de Bruin and Jan M. Wit, Department of Pediatrics, Leiden
University Medical Center, Leiden, Netherlands. https://orcid.org/
0000-0003-1478-2261 (C. de Bruin). https://orcid.org/0000-0002-
1715-5020 (J.M. Wit)
Andi Wijaya, Faculty of Pharmacy, Universitas Padjadjaran, Bandung,
Indonesia. https://orcid.org/0000-0003-3986-6285

J Pediatr Endocrinol Metab 2021; 34(5): 547–557

https://doi.org/10.1515/jpem-2020-0526
mailto:amanpulungan@mac.com
https://orcid.org/0000-0003-4895-4105
https://orcid.org/0000-0003-4895-4105
https://orcid.org/0000-0002-0114-0676
https://orcid.org/0000-0002-4319-5528
https://orcid.org/0000-0001-8765-7352
https://orcid.org/0000-0001-8765-7352
https://orcid.org/0000-0002-3236-0014
https://orcid.org/0000-0002-3236-0014
https://orcid.org/0000-0003-1478-2261
https://orcid.org/0000-0003-1478-2261
https://orcid.org/0000-0002-1715-5020
https://orcid.org/0000-0002-1715-5020
https://orcid.org/0000-0003-3986-6285


Hypotheses about the underlying mechanism of the
short stature observed in pygmoid groups can be divided
into evolutionary and genetic origins. None of the evolu-
tionary hypotheses (e.g. adaptation to food scarcity, hot
and humid climate, density of the environment) have
proven valid, so most investigators agree that phenotypic
plasticity alone cannot be the explanation, and that (epi)
genetic factors are likely involved [11–13]. However, social
differences between pygmoid groups and their neighbours
may also play a role [14].

The phenotypic, hormonal and genetic characteristics
of several pygmy tribes have been studied in some detail.
Virtually all pygmies have normal body proportions [15]. In
several pygmy tribes the biochemical evaluation of the
growth hormone (GH) – Insulin-like growth factor-I (IGF-I)
axis was suggestive for an impaired function of the GH
receptor (GHR), in view of a normal GH secretion, low
circulating IGF-I and GH binding protein (GHBP),
decreased expression of the GH receptor (GHR) and normal
circulating IGF-II [15–24]. However, in some other pygmy
tribes serum IGF-I was not decreased [15, 25, 26] and so far
genome-wide studies have not identified functional aber-
rations in the coding and non-coding regions of the gene
encoding GHR (GHR) [12, 21] or other genomic regions
related to GH sensitivity [4].

In Indonesia, a small pygmoid group lives in the rural
village of Rampasasa, located in the Manggarai district,
Flores, East Nusa Tenggara, located 12 km from the closest
town. At the time of this study, Rampasasa had no elec-
tricity, water sources were scarce, and there were no local
schools and community religious or health centres. In
the past, the pygmoid group in Rampasasa practiced
endogamy in order to preserve family assets (so their farm
and crops were kept within their clan only). When they
started practicing religion (mostly Christianity), mixed
marriages started to become common. Consequently, the
present population of Rampasasa consists of a combina-
tion of three groups: a pygmoid group (offspring of parents
who both belong to the five pygmoid families), a mixed
pygmoid group (offspring of one parent belonging to a
pygmoid family and one parent originating from a neigh-
bouring village [“non-pygmoid”]), and a non-pygmoid
group. These groupswill further be abbreviated to P/P, P/N
and N/N.

Remarkably, this Rampasasa pygmoid community is
located in the immediate neighbourhood of the cave Liang
Bua where the remains of Homo floresiensis were discov-
ered [27, 28]. However, there is no sign of any association
between the phenotype of the pygmoid group and the
archaeological findings. A recent study on the evolutionary
history and adaptation of this pygmoid community

through single nucleotide polymorphism (SNP)-array
analysis and whole genome sequencing provided evi-
dence that polygenic selection acting on standing genetic
variation was an important determinant of short stature in
Rampasasa [29].

The first purpose of the present paper was to provide
an extensive description of the anthropometric, haemato-
logical, biochemical and endocrine characteristics of the
three groups living in Rampasasa. Secondly, the same
characteristics plus bone maturation and pubertal devel-
opment were investigated in children, all belonging to the
P/N group.

Methods

Study design

This cross-sectional study, conducted from December 2011 to April
2014, was approved by the Health Research Ethics Committee of the
Faculty of Medicine, Universitas Indonesia – Cipto Mangunkusumo
Hospital (Approval Letter no. 472/PT02.FK/ETIK/2012). RutengDistrict
GeneralHospital, located 1,212mabove sea level,was used as research
centre during the study. Subjects or their parents were informed about
the purpose and design of the study and provided informed consent.

Study population

The study population consisted of all available inhabitants of Ram-
pasasa during the study period. The subjects’ pedigrees were docu-
mented up to three generations.

Study procedures

From subjects who met the inclusion criteria we collected information
on date of birth, sex, birth weight and length, family history and
pedigree. Physical examination was performed to obtain data on body
height, weight, sitting height, arm span, head circumference and any
dysmorphic features. Laboratory investigations were performed
regarding haematological status and serum levels of albumin, cal-
cium, vitamin D, IGF-I and IGFBP-3. The choice of reference data for
auxological parameters was based on the authors’ estimations about
their applicability for the Indonesian population; reference data for
laboratory parameters were primarily based on the availability of the
respective assays. In children, bone age was also determined and
pubertal status was assessed in most adolescents.

Standing height (Ht) was measured with a stadiometer (GEA,
Indonesia) against the wall, with footwear taken off and expressed as
Standard Deviation Score (SDS) for age and sex according to the
Centers for Disease Control and Prevention (CDC) reference data [30].
For illustrative purposes, height SDS (HtSDS) was also calculated
based on the recent Indonesian growth reference [31]. In children
below 2 years, supine length was measured with an appropriate de-
vice. Sitting height (SH) was measured with a stadiometer (GEA,
Indonesia), with subjects sitting straight on a 40 cm-tall wooden chair.
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Sitting height/height ratio (SH/Ht) was calculated and expressed as
SDS for age and sex, based on Turkish reference data [32]. Arm span
wasmeasuredusing awoodenmeasuring stick. In children, arm span/
height ratio was expressed as SDS for age based on a Dutch reference
[33]. Mean arm span/height in adults was compared with the mean for
age in Asian populations [34]. Head circumference (HC) wasmeasured
with a tapemeasure and expressed as SDS for age and sex [35]. Weight
was measured with a scale for adults and children who were able to
stand up, andwith a table-top baby scale for infants. Bodymass index
(BMI, weight [kg]/height [m2]) of adults was compared with age ref-
erences fromWHOWestern Pacific Region – International Association
for The Study of Obesity (IASO) – International Obesity Taskforce
(IOT)’s Asian adults classification in order to calculate SDS. Under-
weight and overweight were defined as <18.5 and ≥23 kg/m2, respec-
tively. For children, BMI was plotted on CDC reference charts
according to age and sex, expressed as SDS, and classified as normal
(P5–P85), underweight (<P5) or overweight/obesity (>P85) [30]. Bone
age was determined according to Greulich and Pyle and delayed bone
age was defined as <−2 SDS [36].

Haematological and biochemical analyses were carried out in the
Prodia laboratories in Jakarta and Bali, Indonesia, and comparedwith in-
house reference data. Serum albumin was measured with the bromoc-
resol green assay (reference range 2.8–4.4 g/dL). Serum calcium was
measured with the O-cresolphthalein complexone assay (reference range
8.3–10.6 mg/dL for adults, cut-off for hypocalcaemia <9.4 mg/dL for 1–4
years and <9.2 mg/dL for 5–20 years). Serum vitamin D was measured
using chemiluminescent immunoassay and cut-off limits for vitamin D
deficiency and insufficiency were <10 and 10–30 ng/dL, respectively.
Serum IGF-I was measured using the chemiluminescent immunoassay
(Immulite-2000) (Prodia Laboratories, Kupang, Indonesia). Results for
adults were expressed as SDS for sex and age based on Chinese reference
data [37]. IGF-I results for childrenwere expressed for sex andage or bone
age, using an in-house lambda, mu, and sigma (LMS) transformation of
German references [38]. Furthermore, for children from 9 years of age we
also calculated SDS for sex and pubertal stage [38]. Serum IGF binding
protein 3 (IGFBP-3) was measured using Immulite-2000 by Quest Di-
agnostics Laboratory (California, USA) and expressed as SDS for sex and
age or bone age, as well as for sex and pubertal stage in children ≥9 years
[38]. Serum IGF-I/IGFBP-3 ratio (µg/mg)was expressed as SDS for sex and
age or bone age [38].

Data analysis

Before statistical analysis, patient data first underwent a quality
control step, including double data entry, manual checking of data
transfer to excel files, and checks for outliers. One female subject in the
P/N group (C.IV.3) was 39 weeks pregnant, and one non-pygmy sub-
ject as well (B.III.1), so their data regarding weight, BMI, IGF-I,
IGFBP-3, IGF-I/IGFBP-3 ratio and haematological status were
excluded from group analysis. One individual (E.IV.2) had severe
bowing of the legs, so his height, SH/Ht, arm span/height ratio and
BMI were excluded from group analysis.

In the general population, adult height shows a gradual decline
by age, presumably due to progressive osteoporosis. Age is therefore a
potential confounder if height is compared among groups with a
different mean age. To adjust for this confounder we used the math-
ematical equations to estimate height at 21 years of age for both sexes
based on current height and age, in order to adjust for age-associated
shrinking [39].

All analyses were conducted using SPSS software. Mean (SD)
values were calculated for anthropometric and laboratory data in the
three groups. Comparison between groups was analysed using t-tests
or one-way analysis of variance (ANOVAs), which were univariate,
bivariate, or multivariate with bootstrapping analysis.

Results

After exclusionof three subjects because of incomplete data,
58 remained for analysis. The 30 adults were divided into
8 P/P, 12 P/N and 10 N/N according to information on their
ancestry. There were 28 children, all P/N. The pedigrees
of the five families (A–E) are shown in Supplementary
Figures 1–5.

Table 1 shows the mean data for anthropometry,
nutritional status and serum IGF-I, IGFBP-3 and IGF-I/
IGFBP-3 ratio SDS for the three adult groups and children.
Sexes were distributed nearly equally.

Anthropometry

Birth size

Information on birth weight could be collected for six
children (two males) with an age range from 1 day to 5.3
years, but no reliable information could be obtained about
gestational age. Mean birth weight was 2.75 kg (range 2.0–
3.5 kg). Birth length was measured in two female new-
borns (45.8 and 46.5 cm, equivalent with−1.5 and −1.2 SDS,
assuming term deliveries) [30].

Height

Mean HtSDS of P/P and P/N were significantly lower than
that of N/N (p<0.001) (Table 1), with a gradient from P/P
(−4.0 SDS) via P/N (−3.2 SDS) to N/N (−2.3 SDS) [30].
Because the mean age of P/P individuals was higher than
of the other groups, we estimated height at 21 years of age
for all adults based on a mathematical formula for
shrinking by age [39], which showed that the difference
between the mean adjusted height of P/P (−3.4 SDS) and
P/N (−3.1 SDS) did not reach statistical significance
(Table 1).

Using recent Indonesian references [31], mean (SD)
unadjusted HtSDS was −2.7 (0.4), −2.0 (1.1) and −0.9 (0.7)
and the adjusted HtSDS was −2.1 (0.5), −1.6 (0.7) and −0.7
(0.7) in P/P, P/N and N/N, respectively. This illustrates a
1.3 SD difference between height of the Indonesian and US
reference populations. The average (SD) height of male
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adult N/N [159.2 (4.0) cm] is close to themean height of 18.5
year old males living in Papua and Nusa Tenggara Timur
(159.6–160.2), the provinces with the shortest mean height
in Indonesia [31].

Table 2 shows data on growth and endocrine status for
males and females separately. In both sexes a similarly
increasing gradient of HtSDS was noticed. In males, the
difference among P/P and N/N was statistically significant
(ANOVA, p<0.05) with significant differences between P/P
vs. P/N (p=0.04) and vs. N/N (p=0.005). Also in females,
statistically significant differences among the three groups
were observed (ANOVA, p<0.05), with a statistically sig-
nificant difference between P/P and N/N (p=0.005). When
height was adjusted for age-associated shrinking, the dif-
ference between the P/P and P/N groups remained statis-
tically significant, but height SDS in females in the P/P and
P/N groups was similar (Table 2).

The difference between mean height of the three male
and five female P/P (5.4 cmunadjusted, 6.0 cmadjusted for
shrinking) was smaller than in P/N and N/N (unadjusted
9.1 and 10.9 cm; adjusted 9.9 and 11.8 cm, respectively), but

the low numbers did not allow for a meaningful statistical
analysis. This low sex-related height differencewas caused
by a relatively lowmale HtSDS (unadjusted −4.4 vs. −3.7 in
females, p=0.03, adjusted −3.9 vs. −3.1, respectively). In
the other two groups mean HtSDS was similar for males
and females (Table 2).

Individual HtSDS data of P/P and N/N adults are
shown in Figure 1. In P/P (Figure 1a), HtSDS ranges for
males and females were −4.7 to −4.3 and −4.3 to −3.3,
respectively, without a significant correlation with age. In
N/N (Figure 1b), HtSDS for adult males and females ranged
from −2.9 to −1.8 and −3.4 to −1.6, respectively, with a
negative correlation with age (Pearson correlation test,
p=0.038). Subjects >35 years were substantially shorter
than 20–35 year olds (p<0.0001). After adjustment for age-
associated shrinking, the negative correlation lost statis-
tical significance (p=0.15).

Individual data of all P/N subjects (adults and chil-
dren) are shown in Figure 2a. In the 28 children, linear
regression of HtSDS by age showed a statistically signifi-
cant inverse correlation (p=0.010 in boys, p=0.014 in girls).

Table: Mean (SD)findings on anthropometry, nutritional status and IGF-I, IGFBP-SDSand their ratio for adults in the three groups (P/P, P/N
and N/N) and children (all P/N).

Parameter Adults Children Total p-Value (Adults)

P/P P/N N/N P/N

Number     

Age, yrs  ()  ()  () . (.)  ()
Sex: n (%) males  (%)  (%)  (%)  (%)  (%)
Height SDS −. (.) −. (.)c −. (.) −. (.) −. (.) <.d

Adjusted height SDSa −. (.) −. (.)c −. (.) – −. (.) <.e

SHSDS −. (.) −. (.)c −. (.) −. (.) −. (.) <.f

SH/height SDS . (.) . (.)c . (.) . (.) . (.) .g

Arm span/height . (.) . (.)c . (.) . (.) . (.) .g

Head circ SDS −. (.) −. (.) −. (.) −. (.) −. (.) .g

BMIb . (.) . (.)c . (.) . (.) . (.) .g

BMI SDSb −. (.) −. (.)c −. (.) −. (.) −. (.) .g

n (%) underweight  (%)  (%)  (%)  (%)  (%)
n (%) overweight  (%)  (%)  (%)  (%)  (%)
IGF-I SDS −. (.) −. (.) −. (.) −. (.) −. (.) .h

IGFBP- SDS −. (.) −. (.) −. (.) −. (.) −. (.) .h

IGF-/IGFBP- ratio SDS −. (.) . (.) . (.) −. (.) −. (.) .i

BMI, body mass index; circ, circumference; IGF-I, insulin-like growth factor-I; IGFBP-, insulin-like growth factor binding protein-; SH, sitting
height. aHeight SDS based on estimated height SDS at  years of age, thus adjusted for age-associated shrinking (Niewenweg et al. []).
bNutritional statuswas assessed according to Asian adults classification of weight by BMI (WHO/WPR/IASO/IOT) in adults and according to CDC
in children. Nutritional status was not assessed in pregnant women, nor in two children below  years of age. cOne subject was excluded from
height SDS calculation due to extremely bowed legs (rickets). dOne-way ANOVA test; post hoc analysis (Tukey’smultiple comparisons test) show
significant differences for P/P vs. P/N (p=.), P/P vs. N/N (p<.), and P/N vs. N/N (p=.). eOne-way ANOVA test; post hoc analysis
(Tukey’s multiple comparisons test) show significant differences for P/P vs. N/N (p<.), and P/N vs. N/N (p<.). fOne-way ANOVA test;
post hoc analysis (Tukey’smultiple comparisons test) show significant differences for P/P vs. P/N (p=.) and P/P vs. N/N (p=.). gOne-
way ANOVA test. hKruskal-Wallis test. Two pregnant subjects were excluded because of the reported effect of pregnancy. iOne-way ANOVA test.
Two pregnant subjects were excluded because of the reported effect of pregnancy.
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MeanHtSDS of children (−4.0 SDS) tended to be lower than
in adults (−3.2 SDS) (p=0.069).

One female adolescent (B-III-4), aged 14.3 years,
caught our special attention because of an extremely short
stature (117.8 cm, −6.7 SDS) and prepubertal status (thus
severe pubertal delay). At re-examination at 20.7 years the

medical history revealed developmental delay and an
extremely late menarche (at 19 years), compared with a
mean age at menarche of 11.9 (0.8) years in the Indonesian
population [40]. Her height was 137 cm (−4.0 SDS), weight
32 kg (−5.8 SDS) and BMI 17 kg/m2 (−2.2 SDS). Laboratory
investigations including indicators of pituitary function

Table : Comparison of mean (SD) height and serum IGF-I and IGFBP- in male and female adult subjects in the three groups (P/P, P/N and
N/N).

Males Females

P/P P/N N/N p-Value P/P P/N N/N p-Value

n      

Height, cm . (.) . (.)a . (.) .d
. (.) . (.) . (.) .e

Height SDS −. (.) −. (.)a −. (.) .f −. (.) −. (.) −. (.) .g

Estimated height at  years . (.) . (.) . (.) . . (.) . (.) . (.) .
Adjusted height SDSc −. (.) −. (.) −. (.) . −. (.) −. (.) −. (.) .
IGF-I, ng/mLb . (.) . (.) . (.) .h

 ()  ()  () .h

IGF-I SDSb −. (.) −. (.) −. (.) .h −. (.) −. (.) −. (.) .i

IGFBP-, mg/Lb . (.) . (.) . (.) .h
. (.) . (.) . (.) .h

IGFBP- SDSb −. (.) −. (.) −. (.) .h −. (.) −. (.) −. (.) .i

IGF-I/IGFBP- ratio SDSb
. (.) −. (.) . (.) .i −. (.) . (.) −. (.) .i

aOne subject was excluded from height analysis due to extremely bowed legs (rickets). bTwo subjects were excluded from calculation due to
pregnancy. cHeight SDS based on estimated height SDS at  years of age, thus adjusted for age-associated shrinking (Niewenweg et al. []).
dOne-way ANOVA test. Post hoc analysis (Tukey’s multiple comparisons test) showed significant difference between P/P vs. P/N (p=.) and
P/P vs. N/N (p=.). eOne-way ANOVA test. Post hoc analysis (Tukey’smultiple comparisons test) showed significant difference between P/P
andN/N (p=.). fOne-wayANOVA test. Post hoc analysis (Tukey’smultiple comparisons test) showedsignificant differencebetweenP/P vs.
P/N (p=.) and P/P vs. N/N (p=.). gOne-way ANOVA test. Post hoc analysis (Tukey’s multiple comparisons test) showed significant
difference between P/P vs. P/N (p=.). hKruskal-Wallis test. iOne-way ANOVA test.

Figure 1: Individual HtSDS data in the
pygmoid group (panel a) and non-pymoid
group (panel b) plotted against age.
In both panels regression lines are shown
for males and females, as well as the
pertinent equations. When height SDS in
N/N (panel b) was adjusted for age-
associated shrinking, mean (SD) was −2.16
(0.56), and regression equations changed
to height SDS = −1.627 − 0.01307 × age for
males (p=0.705) and height
SDS = −0.6429 − 0.04361 × age for females
(p=0.153).
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showed no abnormalities (Supplementary Table 1). Serum
IGF-I results at 14.3 and 20.7 years were 105 (−3.2 SDS for
age, −1.0 for pubertal stage) and 249 ng/mL (−0.4 SDS).
IGFBP-3 increased from 3.0 (−2.4 SDS for age, −1.7 SDS for
pubertal stage) to 4.8 mg/L (0.2 SDS). IGF-I/IGFBP-3
increased from −2.6 to −1.2 SDS (Supplementary Table 2).

Indicators of body proportions

SHSDS showedasimilar increasinggradientbetween the three
groups asHtSDS (Table 1). SH/Ht in subjects older than 6 years
(n=45) was consistent with the reference range for Turkish in-
dividuals (Table 1), taking into account that in the general
population mean SH/Ht SDS is >0 in short individuals [41].

Arm span/height ratio in adults was not significantly
different between groups (p=0.82) (Table 1) and the mean
valueswere slightly higher than reported for Asian adults [34].
In children, mean (SD) arm span/height ratio SDS compared
withDutch children [33]was 0.667 (1.088), significantly higher
than 0 SDS (p=0.0045, one sample t-test).

Head circumference

In adults, there was a similar tendency for a gradient of
HCSDS between groups as observed for HtSDS, though not
reaching statistical significance (Table 1). Mean HCSDS
was >2 SD larger than mean HtSDS in P/P and P/N groups,

indicating relative macrocephaly. In P/N individuals,
HCSDS tended to be lower in children than in adults (−1.7
vs. −1.1 SDS, p=0.29).

Bone age, pubertal development and body
mass index

Bone age was assessed in 26 of the 28 children (two sub-
jects of 3 and 6 months were excluded) (Supplementary
Table 2). In 62% of subjects bone age was <−2 SDS for age.
Bone age showed a progressive delay up to 10 years and
then stabilised (Figure 3). Delayed bone age was more
evident in children older than 5 years (2.9 ± 1.1 years,
n=18) than in younger children (0.45 ± 026, n=8, p=0.001,
unpaired test).

Tanner stages were assessed in all five female teen-
agers above 9 years of age and in three out of five males
(Supplementary Table 2). Breast stage and pubic hair were
at Tanner stage 1 in girls of 10.8, 10.9, 11.3 and 14.3 years,
and at stage 2 in a 14.2 years old girl, suggesting delayed
puberty. Tanner stage 1 was observed in two nine year old
boys and stage 2 in one 12.1 year old boy; it was not
assessed in two other 12–13 year old boys.

Body mass index (BMI) and percentages of under- and
overweight subjects are presented in Table 1. Mean BMI
SDS was approximately −1 SDS for all groups [30].

Figure 2: Individual data of individuals belonging to the P/N group plotted by age.
Panel a: Height SDS for age plotted by age. Separate regression lines are shown for boys (p=0.01) and girls (p=0.01) (<18 years). Panel b:
Serum IGF-I SDS for age plotted by age,with regression lines for boys (p=0.02) and girls (=0.53). Panel c: Serum IGFBP-3 SDS for age plotted by
age,with regression lines for boys (p=0.002) andgirls (0.022). Panel d: IGF-I/IGFBP-3 ratio SDS for age plotted by age,with regression lines for
boys (p=0.045) and girls (0.002).
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Haematological and biochemical findings

Haematological data showed no significant differences
between the three adult groups (Table 3). Less than 10% of
adult subjects were anaemic, compared to 50% in children.
No between-group differences were observed for serum
albumin, calcium or 25-OH vitamin D level. Low serum
calcium was observed in one subject (P/N). No vitamin D
deficiency (<10 ng/mL) was observed, but vitamin D
insufficiency (10–30 ng/mL) was found in ≈60%, without
statistically significant between-group differences.

Serum IGF-I, IGFBP-3 and IGF-I/IGFBP-3 ratio

Adults

For adults, mean circulating IGF-I in P/P and P/N was −1.1
and −1.2 SDS, not significantly lower than in N/N (−0.7
SDS) (Table 1). IGF-I in ng/mL was lowest in P/P compared
with the other two groups (Table 2), but this could be
explained by an effect of age. Serum IGFBP-3 SDS showed a
similar tendency as observed for HtSDS, with a gradual
increase from P/P to P/N and N/N, though not statistically
significantly (p=0.39). IGF-I/IGFBP-3 ratio SDSwas close to
zero in all groups. There was no statistically significant
correlation between height SDS vs. serum IGF-I or IGF-I/
IGFBP-3 ratio SDS (data not shown).

Children

Children (all P/N) had a significantly lowermean IGF-I SDS
for age than P/N adults (−2.6 vs. −1.2, p<0.0001), a

tendency to a higher IGFBP-3 SDS (−0.9 vs. −1.5, p=0.18)
andmuch lower IGF-I/IGFBP-3 SDS (−2.9 vs. 0.2, p≤0.0001)
(Table 1). Individual data for the two measurements and
their ratio as SDS for age, bone age and pubertal stage are
shown in Supplementary Table 2. Mean IGF-I SDS for age
and bone age were −2.6 and −2.2, respectively. IGF-I SDS
for age in children <9 years was −2.7 (0.9) and IGF-I SDS for
pubertal status in children of ≥9 years mean (SD) was −1.7
(0.7) (assuming Tanner stage 2 in the two undocumented
teenage boys) compared with −2.4 (0.5) for age. Mean (SD)
IGFBP-3 SDS for age and bone age was −0.9 (1.2) and −0.4
(1.1), respectively. Mean (SD) IGFBP-3 SDS for age in chil-
dren <9 years was −0.5 (1.2) and for pubertal stage in
children of ≥9 years −1.2 (0.8). Mean (SD) IGF-I/IGFBP-3
SDS was −2.9 (1.0) for age and −2.6 (1.3) SDS for bone age.

Scatterplots of serum IGF-I, IGFBP-3 and IGF-I/
IGFBP-3 ratio SDS by age are shown in Figure 2b–d. While
serum IGF-I SDS was very low in children below 5 years of
age, it plateaued at about −2 SDS in later childhood and
adolescence. IGFBP-3 SDS was normal in infancy followed
by a steady and statistically significant decrease. Corre-
spondingly, IGF-I/IGFBP-3 SDS was extremely low in the
first 5 years of life, followed by a steady increase in later
childhood and adolescence and a normal mean value in
adulthood. There was no statistically significant correla-
tion between height SDS vs. serum IGF-I or IGF-I/IGFBP-3
ratio SDS (data not shown).

Discussion

This is the first detailed report on the anthropometric,
haematological, biochemical and endocrine status in the
small pygmoid population living in the village of Rampa-
sasa. In P/P, mean (SD) male height was 144.7 (2.0) cm,
only 5.4 cm taller than female height [139.3 (2.6) cm], in
contrast to a difference of 9.1 and 10.9 cm in P/N and N/N,
respectively. Similarly low differences between male and
female adult height have been observed in African pygmies
[42, 43]. We speculate that this may be associated by a
delayed puberty in females, as we demonstrated for female
P/N adolescents, resulting in low circulating oestrogen
concentrations for a longer time period. The concomitant
delay of skeletal maturationwould be expected to allow for
more pubertal height gain. A similar effect of sex on pu-
bertal height gain was observed in a study on the effect of
delaying puberty with a GnRH analogue in combination
with growth hormone, which only had a positive effect in
girls [44].

There is an apparently progressive admixture between
members of the five pygmoid families and individuals from

Figure 3: Bone age vs. chronological age in P/N subjects aged <18
years.
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neighbouring villages. P/N adults had a mean height, SH
and HCSDS about halfway those of P/P and N/N groups, as
previously observed for height in other pygmoid pop-
ulations [4, 8, 9, 15, 45]. However, if height SDS was
adjusted for potential age-associated shrinking, this
pattern was only seen in males, while P/P and P/N females
had a similar adjusted height SDS. Mean body proportions
as assessed by SH/Ht ratio and arm span/height ratio were
normal in all adult groups and slightly increased in chil-
dren. Mean IGF-I SDS was similar in P/P and P/N groups
(close to −1.0), and not significantly lower than in N/N
(−0.7). In contrast, mean serum IGFBP-3 SDS was close the
lower limit of the reference range in P/P and showed a
similar (though not statistically significant) between-group
gradient as HtSDS, SHSDS and HCSDS. IGF-I/IGFBP-3 ratio
SDS was normal in the three adult groups.

Regarding the low IGF-I concentrations presented in
previous reports [12, 16–20] (for review, see [13]) it is
noteworthy that these were not adjusted for age and sex.
Furthermore, in the interpretation of serum IGF-I in sub-
jects living in low-middle income countries, one has to
consider that in such countries BMI is substantially lower
than in western countries [31], which may explain the
relatively low mean serum IGF-I SDS (−0.7) in N/N in-
dividuals in our study.

The gradient of height, SH andHCSDS among the three
adult groups, as well as the absence of differences in BMI
and haematological and biochemical parameters, is

consistent with the hypothesis that the short stature in the
adult P/P and P/N groups is caused by one or more genetic
variants with a gene-dose effect, a dominant inheritance or
epigenetic variant. Interestingly, a similar gradient was
observed in serum IGFBP-3 SDS. A decreased serum
IGFBP-3 has previously been reported in pygmy children in
the Ituri Forest in Congo [46]. The proportionate short
stature, relative macrocephaly and bone age retardation
are consistent with a downregulation of the GH-IGF-I axis
in childhood, with an apparent discrepancy with the ob-
servations of a normal IGF-I/IGFBP-3 ratio in adulthood.
The absence of a statistical difference of serum IGF-I SDS
between groups (also observed in three previous studies
[15, 25, 26]) and equal IGF-I/IGFBP-3 ratio argues against a
direct role of IGF-I deficiency in adults.

Children in the villagewere all offspring of a P/P or P/N
parent and N/N parent, so that no comparisons could be
made with children belonging to the other two groups. The
limited data on birth weight suggest that the growth failure
started prenatally, as observed in various pygmy tribes [13,
47, 48]. The cross-sectional design of our study did not
allow for any data on the shape of the adolescent growth
spurt, so that previous speculations on a weak or absent
growth spurt in Baka or Aka pygmies [43, 49] could not be
tested.

In our study, 96.4% children were short compared to
CDC references [30]. The only exception was a three
months’ old infant with a length of 57 cm (−1.7 SDS). As

Table : Mean (SD) findings on haematological and biochemistry parameters for adults in the three groups (P/N, P/N and N/N) and children
(all P/N).

Parameter Adults Children Total p-Value (Adults)

P/P P/N N/N P/N

n     

RBC, /La . (.) . (.) . (.) . (.) . (.) .d

MCV, %a
. (.) . (.) . (.) . (.) . (.) .e

MCH, %a
. (.) . (.) . (.) . (.) . (.) .e

MCHC, %a
. (.) . (.) . (.) . (.) . (.) .e

Platelets, /La . (.) . (.) . (.) . (.) . (.) .d

Hb, g/dLa . (.) . (.) . (.) . (.) . (.) .e

n (%) anaemiaa,b  (%)  (%)  (%)  (.%)  (%)
WBC, /La . (.) . (.) . (.) . (.) . (.) .d

HCT, %a
. (.) . (.) . (.) . (.) . (.) .e

Calcium, ng/dL . (.) . (.) . (.) . (.) . (.) .d

Albumin, g/dL . (.) . (.) . (.) . (.) .d

Vitamin D, ng/mL . (.) . (.) . (.) . (.) . (.) .d

n (%) vitamin D insufficiencyc  (.%)  (%)  (%)  (%)  (%)

RBC, red blood cells; MCV, mean corpuscular volume; MCH, mean corpuscular haemoglobin; MCHC, mean corpuscular haemoglobin
concentration; Hb, haemoglobin; WBC, white blood cells; HCT, haematocrits. aSubjects who were pregnant (one from the P/N group and one
from the N/N group) were excluded from haematological parameter analysis. bAnaemia is defined as haemoglobin below . g/dL. cVitamin D
insufficiency is defined as vitamin D levels of – ng/mL. dOne-way ANOVA test. eKruskal-Wallis test.
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illustrated in Figure 2a, HtSDS significantly decreased with
age in children and adolescents, and adult HtSDS was 0.8
SDS taller than HtSDS in children and adolescents. Such
phenomenon is compatible with delayed bone age and
pubertal development. The available data onTanner stages
in female adolescents suggest indeed that pubertal delay is
common in girls in Rampasasa, and clearly different from
population data even if adjusted for BMI SDS (a mean
menarcheal age 12.4 years for a BMI of −0.9 SDS) [40].
Delayed bone age has been observed in several pygmy
populations [6, 13, 43, 48].

It is tempting to analyse the cross-sectionally collected
data of subjects in the P/N group in a longitudinal fashion.
If doing so, there appears to be change with age in P/N
individuals with regards to height, bone age and endocrine
parameters. While HtSDS progressively decreases and
bone age delay increases from birth to 10 years, IGF-I SDS
for age is very low in the first 5 years and subsequently
stabilises. Female adolescents have a delayed puberty, and
when IGF-I is expressed as SDS for bone age or Tanner
stage in both sexes, there is slight increase by age. Height
SDS of P/N adults is higher than that of P/N adolescents,
compatible with a late pubertal growth spurt, and they
have a serum IGF-I similar to N/N subjects.

In contrast, serum IGFBP-3 SDS in young children is
normal and decreases with age to approximately −1.5 SDS,
and remains so in adulthood. As a result, the IGF-I/IGFBP-3
ratio SDS in infants and toddlers is extremely low, subse-
quently increases to −2 SDS in adolescence, and reaches
the mean of the reference population in adulthood. These
observations suggest that there is a disbalance between
hepatic IGF-I vs. IGFBP-3 secretion in young children,
which is apparently restored in adults. Such discrepancy
between serum IGF-I and IGFBP-3 restricted to childhood
and adolescence cannot be explained by classical growth
hormone deficiency or insensitivity. We speculate that the
low IGF-I/IGFBP-3 ratio SDS in childhood and adolescence
plays a causative role in the progressive growth failure and
delayed skeletal and pubertal maturation in P/N children,
but acknowledge that further studies are needed to confirm
this.

In a recent study on the evolutionary history and
adaptation of the pygmoid population in Rampasasa, their
genomes revealed a complex history of admixture with
Denisovans and Neanderthals, but no evidence for gene
flow with other archaic hominins [29]. The authors also
noticed that the genomes bear the signatures of recent
positive selection encompassing the FADS (fatty acid
desaturase) gene cluster, likely related to diet, and poly-
genic selection acting on standing variation that contrib-
uted to their short stature phenotype [29]. Also in other

pygmoid populations such increased percentage of archaic
introgression has been documented [50, 51]. In this
context, it is noteworthy to refer to the paper on Mapping
Human Genetic Diversity in Asia [52] which showed that
genetically, people from Manggarai (the regency in East
Nusa Tenggara where Rampasasa is located) have a high
genetic similarity to Melanesians (e.g. people in Papua).

Conclusion

P/P and P/N individuals are proportionally short. The
gradient of HtSDS, SHSDS and HCSDS from P/P to P/N and
N/N adults is consistent with a genetic or epigenetic effect.
Indicators of nutritional status (BMI, serum albumin, cal-
cium and vitamin D) were not different from N/N controls,
which make an environmental cause of short stature un-
likely. The low serum vitamin D concentrations are in line
with a previous report on South East Asian Nutrition Sur-
veys on South Asian populations including Indonesia [53].
All children included in our study belong to the P/N group
and show a so far unique and unexplained age-dependent
pattern of progressive growth failure and bone age delay,
increasing serum IGF-I SDS from −4 to −2 SDS in contrast
with a decreasing IGFBP-3 SDS from 0 to −1.5 SDS. We
speculate that the initially extremely low IGF-I/IGFBP-3
SDS plays a role in the growth pattern of P/N children, and
is suggestive for a novel kind of transient dysregulation of
the GH-IGF-I axis in childhood. The increasing percentage
of admixture with people from neighbouring villages is
expected to lead to a less typical phenotype in the future, as
noticed in several African pygmy populations [54].
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