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CHAPTER 6

Improved Sample Type Identification

for Multi-Class Imbalanced

Classification

The idea of studying different types of samples was first proposed and evaluated

on binary imbalanced classification problems and then extended to multi-class

scenarios. However, simply extending the identification rule in binary scenarios

to multi-class scenarios results in several problems. In this chapter, we introduce

our proposed sample type identification for multi-class imbalanced classification.

First, Section 6.1 shows the motivation and briefly introduces on our work. After

that, in Section 6.2, the literature review and problems when extending to multi-

class scenarios are presented. In Section 6.3, detailed information on the new

identification rule is given. In Section 6.4, the information on the datasets,

the experimental setup as well as the experimental results and discussion are

introduced. In addition, a real-world application is described in Section 6.5.

Section 6.6 concludes the chapter and outlines the further work.

6.1 Introduction

Despite the progress for several years, learning from imbalanced data is still

a challenging problem in machine learning. Solving imbalanced classification

problems refers to the predictive modelling of data comprising a high or even

extreme imbalance in the sample distribution. Since machine learning models

assume that the sample distribution is relatively balanced, the nature of imbalanced

data violates this assumption, thus the class imbalance is commonly considered the
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determinant factor for the degradation of classification performance (Fernández,

García, Galar, Prati, Krawczyk, and Herrera, 2018; Ganganwar, 2012). However,

several studies in the literature have pointed out that the data characteristics

also play a crucial role in dealing with imbalanced problems (López, Fernández,

García, Palade, and Herrera, 2013; Napierała, Stefanowski, and Wilk, 2010; Prati,

Batista, and Monard, 2004). Here, Napierala and Stefanowski proposed to consider

samples from minority class consisting of four types of samples: safe, borderline,

rare samples and outliers (Napierala and Stefanowski, 2016). They studied the

influence of these four types of samples on binary imbalanced classification, where

the datasets are composed of two classes and one class significantly outnumbers

the other. Other researchers then extended this idea to develop new techniques to

improve imbalanced classification in both binary and multi-class scenarios (Kong,

Kowalczyk, Menzel, and Bäck, 2020; Lango and Stefanowski, 2018; B. Liu and

Tsoumakas, 2019). However, the relationships among classes are more complicated

in multi-class scenarios since there are more than two classes in the datasets.

Simply extending the idea of four types of samples from binary to multi-class

scenarios without changing the identification rule will cause several problems.

In this chapter, we first recall the identification rule for the four types of samples

as proposed in the literature (Napierala and Stefanowski, 2016). Then, we show

the drawbacks when applying this identification rule to multi-class scenarios and

emphasize the importance of proposing a new identification rule for multi-class

scenarios. We find mainly two drawbacks: (1) a higher percentage of unsafe

(borderline, rare and outliers) samples and (2) false identification of outliers.

As a consequence, we propose a new identification rule for the four types of

samples to handle the drawbacks mentioned above and validate the effectiveness

of the new rule with benchmark datasets. In these experiments, we consider

oversampling different types of samples before performing the classification, where

oversampling is a data-level approach to handle the imbalance in the datasets.

Experimental results on benchmark and real-world data show that the proposed

rule can significantly improve the classification performance on minority class(es)

when a high imbalance exists in the datasets.

Class imbalance is present in many real-world classification tasks, for instance,

medical diagnosis (Mazurowski, Habas, Zurada, Lo, Baker, and Tourassi, 2008),

email filtering (Bermejo, Gámez, and Puerta, 2011), fault diagnosis (Krawczyk,

Galar, Jeleń, and Herrera, 2016), etc. Most of class imbalance applications in the
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literature have been devoted to binary classification problems. Most of the multi-

class imbalanced benchmark datasets contain only a small number of attributes

and a limited number of samples (Alcalá-Fdez, Fernández, Luengo, Derrac, García,

Sánchez, and Herrera, 2011; D. Dua and Graff, 2017). Therefore, our work makes

an additional contribution by introducing a challenging industrial surface defects

dataset, with 172 attributes, 27 classes and 12496 samples. Experimental results on

this industrial dataset also confirm the effectiveness and usefulness of our proposed

rule for real-world applications.

6.2 Related Works

In this section, we first introduce the existing rule for identifying types of samples

in binary scenarios from the related literature (Section 6.2.1). Then, we show the

drawbacks when extending this idea from binary to multi-class scenarios (Section

6.2.2), which motivates our own research presented in Section 6.3.

6.2.1 Studies on Types of Samples in Binary Scenarios

It is essential to recall the identification of types of samples in binary scenarios.

Napierala and Stefanowski first proposed the idea of identifying minority class

samples in four categories: safe, borderline, rare samples and outliers (Napierala

and Stefanowski, 2016), the latter three are called unsafe samples. The majority

class samples can also be categorized into these four types. The general rule to

identify the four types is as follows.

• a sample is considered to be safe if the majority of the neighbours belongs to

the same class;

• a sample is considered to be borderline if the proportion of the neighbours

in both classes is approximately the same;

• a sample is considered to be rare if the majority of the neighbours belongs to

a different class;

• a sample is considered to be an outlier if all the neighbours belongs to a

different class.
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Since the idea was proposed, it has attracted widespread attention in the field

of imbalanced learning, and more than 200 papers have cited the original paper

so far. It appears in the citations of review papers as an important development

in the imbalanced learning domain, and also in the citations of papers proposing

new approaches as a source of inspiration. Various researchers confirmed the

occurrence of the different types of samples in real-world data. They studied

the influence of different types of minority class samples on binary imbalanced

classification (Fernández, García, Galar, Prati, Krawczyk, and Herrera, 2018), and

concluded that the unsafe samples are the actual source of difficulty when learning

from imbalanced problems (S. Wang, Minku, and Yao, 2018). Studies also focus

on investigating the influence of minority class samples on the performance of

SMOTE (Skryjomski and Krawczyk, 2017). This idea is also evaluated in real-

world applications. For example, authors in (García, Marqués, and Sánchez, 2019)

explored the effects of sample types on credit risk and corporate bankruptcy

prediction.

6.2.2 Problems When Extending to Multi-class Scenarios

As the importance of learning different types of samples has received more

and more attention, some studies extended this idea to multi-class imbalanced

classification without changing the identification rule for the four types of samples

(Lango and Stefanowski, 2018; Sáez, Krawczyk, and Woźniak, 2016; Sleeman IV

and Krawczyk, 2021). However, the relationships among classes in multi-class

imbalanced scenarios are more complicated than in binary scenarios, resulting in

two main drawbacks if we follow the identification rule for binary scenarios.

• A higher percentage of unsafe samples in minority classes. In the

identification rule in Table 2.3, the number of neighbours is set the same for

all the classes when considering the neighbourhood information. However,

this setting neglects the fact that, in multi-class imbalanced classification,

minority classes contain significantly fewer samples than in the majority

classes. Hence, choosing the same k for all classes in multi-class scenarios

will result in a higher percentage of unsafe samples (borderline, rare, outliers)

in minority classes, see orange triangles (4) in Figure 6.1. The methods we

propose to handle this problem are described later in Section 6.3.1.
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Figure 6.1: An artificial 2-dimensional dataset showing the drawbacks when
simply extending the identification rule in binary scenarios to multi-class scenarios.
Suppose k = 5, then according to the identification rule in Table 2.3, the orange
triangles (4) are all unsafe samples and the green diamond (�) marked with the
dotted circle is an outlier.

• False identification of outliers. In the identification rule in Table 2.3,

outliers refer to the isolated samples surrounded by different classes. For

example, following this rule, the blue circle at the bottom (Figure 6.1)

is classified as an outlier. However, the rule also distinguishes the green

diamond (�) marked with the dotted circle (Figure 6.1) as an outlier.

According to the geometric location of this sample, however, it is not an

isolated sample far away from other samples in the same class. This indicates

that the current rule leads to the false identification of some samples.

In the case of multi-class problems, the relationships among classes are

more complex, and our proposed idea to reduce the probability of false

identification is detailed in Section 6.3.2.

José et al. (Sáez, Krawczyk, and Woźniak, 2016) analyzed the oversampling

of different classes and types of samples with several benchmark multi-class

imbalanced datasets. They calculate the percentage of each type of sample

(safe/borderline/rare/outlier) using the identification rule for binary scenarios.
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Related information on selected datasets is given in Table 6.1. We can observe that

if there is a significant gap between the number of minority and majority class

samples, over 60% of the minority class samples are considered outliers (see C1

in Balance and C1 & C2 in Thyroid). Hence, we confirm that the drawbacks above

exist in multi-class benchmark datasets, and a new identification rule is required

for distinguishing the types of samples in multi-class imbalanced scenarios.

Table 6.1: The number of samples of each class in the three selected datasets
(detailed information on datasets shown in Table 6.5) and percentage of each type
of sample (safe/borderline/rare/outlier) within the class (taken from José’s work
(Sáez, Krawczyk, and Woźniak, 2016)). “Cj" indicates class j, percentages are
rounded to integer values.

Dataset C1 C2 C3

Balance
49 288 288

(0/0/4/96) (74/26/0/0) (73/27/0/0)

Thyroid
17 37 666

(0/12/6/82) (0/11/24/65) (97/3/0/0)

Wine
48 59 71

(98/2/0/0) (100/0/0/0) (85/14/1/0)

6.3 New Identification Rule for Multi-class

Scenarios

In Section 6.2.2, we pointed out two main drawbacks when extending the

identification rule from binary to multi-class scenarios. In this section, we propose

a new identification rule for multi-class scenarios to overcome these drawbacks.

6.3.1 Adjusting k according to Imbalance Ratio

In the literature, the same k is used when assigning the types for samples in

both majority classes and minority classes, where k is the k in k-NN within the

sampling methods. However, considering the enormous gap between the sample

size of minority and majority classes, choosing the same k will result in a higher

percentage of unsafe samples in the minority class (stated in Section 6.2.2). Hence,

to ensure a reasonable proportion of different types of samples in minority class(es),

a smaller k should be used when analysing the local characteristics of a minority
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class sample. Here, we propose to adjust k to kj according to the class distribution,

as follows:

kj =

⌈√
nj
N/C

× k
⌉
, (6.1)

where j = 1, . . . , C denotes the class index, nj is the number of samples in class

j, C is the number of classes and N =
∑C

j=1 nj is the total number of samples in

the dataset. The results of adjusting k as shown in Table 6.2 indicate that Equation

(6.1) meets our requirements for choosing a larger k for majority class(es) and a

smaller k for minority class(es).

Table 6.2: The number of samples of each class in the three selected datasets and
kj for each class. k is preset to 5 and “Cj" indicates class j.

Dataset C1 C2 C3

Balance
49 288 288

k1 = 3 k2 = 6 k3 = 6

Thyroid
17 37 666

k1 = 2 k2 = 2 k3 = 9

Wine
48 59 71

k1 = 5 k2 = 5 k3 = 6

6.3.2 Considering neighbourhood Information of the

neighbours

In Section 6.2.2, we illustrated that only considering neighbours of a sample is

insufficient to identify the type because the neighbourhood information might not

adequately reflect the geometric location. Increasing k is a straightforward solution

to expand neighbourhood information. However, this will also decrease the number

of safe samples for both minority and majority class samples. For example, taking

an extreme case, if k is large enough, all samples will be unsafe. Hence, we propose

to consider neighbourhood information of the neighbours additionally, i.e. we also

find the k nearest neighbours for the neighbours. In our proposed approach, the

importance of neighbourhood information usually is higher than of neighbourhood

information of the neighbours. A definition of “type score (TS)" of data sample x is
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given below,

TS(x) =

neighbourhood︷ ︸︸ ︷
α(x) · nx

kj
+ (1− α(x)) · Nx

(kj)2︸ ︷︷ ︸
neighbourhood of the neighbours

α(x) =

1− 1
kj

if kj > 1

0.8 if kj = 1

(6.2)

where x belongs to class j, kj is the number of nearest neighbours for sample x

(see Section 6.3.1), nx is the number of neighbours which share the same label

with sample x, Nx is the number of neighbours of x’s neighbours which share the

same label with sample x, α(x) is the weight for the neighbourhood information

of sample x. If kj = 1, we set α(x) = 0.8 (to avoid α(x) = 1− 1
kj

= 0) to ensure

the higher importance of neighbourhood information. Note that when considering

the neighbourhood information of the neighbours, we also use kj . The proposed

identification rule to assign the four types of samples in multi-class scenarios is

given in Table 6.3. Following the proposed identification rule, the percentage of

each type of sample is recalculated and shown in Table 6.4. For datasets with

a significant gap between minority and majority class sample sizes (Balance and

Thyroid), the percentage of outlier type decreases from over 60% to less than 30%

(compare with Table 6.1).

Table 6.3: Identification rule to assign types for samples in multi-class scenarios.
Note that the thresholds can be adjusted (hand-tuned) depending on the given
datasets.

Type Safe Borderline Rare Outlier

Rule TS>0.75 0.5<TS≤0.75 0.05<TS≤0.5 TS≤0.05

6.4 Experiments

In this section, we introduce the information on the datasets used in our

experiments. Then, the experimental setup is described. After that, the

experimental results and discussions are given.
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Table 6.4: The number of samples of each class in the three selected datasets and
percentage of each type of sample (safe/borderline/rare/outlier) within the class.
“Cj" indicates class j, percentages are rounded to integer values.

Dataset C1 C2 C3

Balance
49 288 288

(0/0/78/22) (70/24/6/0) (70/23/7/0)

Thyroid
17 37 666

(6/24/47/23) (8/13/49/30) (99/1/0/0)

Wine
48 59 71

(98/2/0/0) (100/0/0/0) (76/13/8/3)

6.4.1 Information on the Datasets

The experiments in this chapter are based on 6 selected benchmark multi-class

imbalanced datasets from the KEEL repository (Alcalá-Fdez, Fernández, Luengo,

Derrac, García, Sánchez, and Herrera, 2011). The descriptions of the datasets are

summarized in Table 6.5.

Table 6.5: Information on the benchmark datasets. AT, CL and NS indicate the
number of attributes, the number of classes and the number of samples respectively.

Dataset AT CL NS (in each class)

Balance 4 3
625

(49 / 288 / 288)

Contraceptive 9 3
1473

(333 / 511 / 629)

Glass 9 6
214

(9 / 13 / 17 / 29 / 70 / 76)

Thyroid 21 3
720

(17 / 37 / 666)

Wine 13 3
178

(48 / 59 / 71)

Winequality-red 11 6
1599

(10 / 18 / 53 / 199 / 638 / 681)

6.4.2 Experimental Setup

In this chapter, we (1) improve the rule for identifying the four types of samples

for multi-class imbalanced problems and (2) investigate how oversampling for
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different types of sample combinations affects the classification performance. Our

experimental setup is illustrated in Figure 6.2. We consider
(
4
4

)
+
(
4
3

)
+
(
4
2

)
+
(
4
1

)
= 15

(excluding None) combinations of the four types of samples and SMOTE (Chawla,

Bowyer, Hall, and Kegelmeyer, 2002) to oversample these combinations in our

experiments. To be specific,
(
4
4

)
means we choose all four types of samples to

be oversampled,
(
4
3

)
means we choose three out of four types of samples to

be oversampled,
(
4
2

)
means we choose two out of four types of samples to be

oversampled and
(
4
1

)
means we choose only one type of samples to be oversampled.

Three classifiers (C5.0, SVM and Nearest Neighbour) are used as classification

algorithms, and 5-fold stratified cross-validation is used to preserve the original

class distribution (M. S. Santos, Soares, Abreu, Araujo, and J. Santos, 2018).

Figure 6.2: Experimental setup to compare the effectiveness of the two different
identification rules (inspired by (Sáez, Krawczyk, and Woźniak, 2016)). The
comparison is done via changing the identification rule in step (2).

6.4.3 Experimental Results and Discussion

Experimental results of the decision tree C5.0 (average of 30 trials) on Balance

and Winequality-red are given in Table 6.6 and Table 6.7. Note that there is one
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minority class in Balance and three minority classes in Winequality-red. Three main

conclusions can be drawn from our experiments:

Table 6.6: Performance results of decision tree (C5.0) on the dataset Balance.
“1 0 1 0" represents “safe(1) borderline(0) rare(1) outlier(0)", i.e. only safe and
rare samples are oversampled. Rmin/all and TS indicate the different rules for
identifying types of samples. “–" means that there are not enough samples to
execute the k-nearest-neighbour algorithm in the oversampling step.

Combination
MinAcc MAUC

Rmin/all TS Rmin/all TS

1 1 1 1 0.0129 0.0129 0.7449 0.7449
1 1 1 0 – 0.1590 – 0.8179
1 1 0 1 0.1546 0.1374 0.8119 0.7712
1 0 1 1 0.1386 0.1600 0.8138 0.8216
0 1 1 1 0.0535 0.0676 0.7894 0.7934
1 1 0 0 0 0.0222 0.7534 0.7470
1 0 1 0 – 0.1907 – 0.8219
0 1 1 0 – 0.1301 – 0.8101
1 0 0 1 0.1151 0.1037 0.8092 0.7764
0 1 0 1 0.0474 0.0823 0.7825 0.7810
0 0 1 1 – 0 – 0.7348
1 0 0 0 0 0 0.7489 0.7537
0 0 1 0 – 0 – 0.7303
0 1 0 0 – 0 – 0.7481
0 0 0 1 – – – –

• Taking different types of sample combinations into account in the

oversampling technique can significantly improve the classification

performance on minority class(es). At the same time, improved or competitive

classification performance on the whole dataset can also be achieved. Please

refer to the bold numbers, the best performance in the 15 combinations, in

Table 6.6 and Table 6.7. This improvement can be explained by the fact that,

when considering different combinations, one or several types of samples

will be discarded. This can be regarded as an informed undersampling to

balance the class distribution.

• From the performance comparison between two identification rules (Rmin/all

and TS), it can be concluded that our proposed identification rule provide

significantly better performance on classifying minority class(es). Moreover,
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there are less “–" in the experiments using the proposed identification rule,

where “–" means that there are not enough samples to execute the k-nearest-

neighbour algorithm in the oversampling step. Both points confirm the

appropriateness of and improvement provided by the proposed rule.

• Only experimental results on the dataset Winequality are shown in this

chapter. Experimental results on other datasets can be found in Appendix A.

The relationship between imbalance ratio and MinAcc is shown in Figure 6.3.

The imbalance ratio (IR) for multi-class classification in this chapter is defined

as the average majority sample size to the average minority class sample size.

It is worth mentioning that if the imbalanced ratio is not significant (< 4),

oversampling different combinations of types of samples will not bring a

significant improvement on minority classification performance. However, no

linear relationship between the imbalance ratio and MinAcc can be concluded

(see linear regression equation and R2 in Figure 6.3). This is because the

improvement is not only determined by the imbalance ratio, but also depends

on the separability of classes.

Table 6.7: Performance results of C5.0 on the dataset Winequality-red. The huge
difference in the corresponding positions of the two columns in MinAcc is caused
by the significant difference between the four types of samples under the two
identification rules, i.e., data distribution in different combinations varies a lot.

Combination
MinAcc MAUC

Rmin/all TS Rmin/all TS

1 1 1 1 0.0819 0.0819 0.6751 0.6751
1 1 1 0 – 0.0771 – 0.6581
1 1 0 1 0.0281 0.1219 0.6571 0.6637
1 0 1 1 0.0520 0.0588 0.6600 0.6627
0 1 1 1 0.0466 0.1170 0.6541 0.6534
1 1 0 0 – – – –
1 0 1 0 – 0.0498 – 0.6576
0 1 1 0 – 0.0394 – 0.6548
1 0 0 1 0.1305 0.0444 0.6518 0.6584
0 1 0 1 0.0511 0.1140 0.6553 0.6601
0 0 1 1 0.0851 0.0680 0.6615 0.6637
1 0 0 0 – 0.0698 – 0.6782
0 0 1 0 – 0.0875 – 0.6616
0 1 0 0 – – – –
0 0 0 1 0.0563 0.1485 0.6461 0.6453
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Figure 6.3: Relationship between imbalance ratio and MinAcc. The imbalance ratio
(IR) for multi-class classification in this chapter is defined as the average majority
sample size to the average minority class sample size.

6.5 Applications on the Detection of Surface

Defects

In this section, we report our study on an imbalanced application for detecting

surface defects. We first introduce the industrial problem. Then, the information

on the surface defects dataset is given in Section 6.5.1. After that, the visualisation

and preprocessing step on this high-dimensional dataset is described in Section

6.5.2. In Section 6.5.3, we evaluate our proposed sample identification rule on the

surface defects dataset.

The surface of a steel product is one of the major quality aspects. Therefore,

surface anomalies should be avoided or at least known. A camera-based Surface

Inspection Systems (SIS) is used in various process lines to identify those anomalies

in the industry (Neogi, Mohanta, and Dutta, 2014). Grey value images taken from

the surface by the SIS contains information on the anomalies. These images of

various anomalies occurring in production are assessed and gathered in defined

classes within a defect library. Figure 6.4 shows a diagram of how to capture the

defects images. The defect library is used to train and test classifiers (classification

algorithms), and these classifiers are finally used to identify the new surface
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anomalies from production. Thus, a stable, accurate and high classification

performance is a must in the quality check procedure. However, the imbalance

in the number of various defect types makes it challenging to obtain a stable and

accurate classification performance.

Figure 6.4: A diagram of how to capture the defects images. Defects images are
from TATA steel official website1, for example purpose.

6.5.1 Information on Surface Defects Dataset

The images captured by the SIS cameras will be processed in the feature extraction

module. Relevant defect features, e.g. geometrical, textural and moment features,

are extracted for the purpose of classification. Both the images and information

after extraction will be stored in the defect library. The surface defects dataset

used in this chapter is taken from a defect library after a certain selection (for

privacy reasons). The dataset is after extraction and contains 12496 samples along

with 173 attributes. After removing samples with missing values, there are 12456

1https://automation.tatasteel.com/products/rolling-mills/squins-surface-quality-inspection-
system/

98



6.5. Applications on the Detection of Surface Defects

samples in total. The information on surface defects data for experiments is given

in Table 6.8.

Table 6.8: Dimension of each record in the surface defects dataset after
preprocessing. NS and “class" indicate the number of samples and class label
respectively. There are 25 classes and 12456 samples in total

class NS class NS class NS class NS

25 2012 1 385 11 282 20 134
17 1666 10 382 19 255 23 121
24 1211 12 379 22 243 6 71
15 1205 16 357 9 215 4 39
18 937 7 354 21 201
3 623 5 312 27 165 Total
2 457 13 296 8 154 25 12456

6.5.2 Visualisation and Preprocessing

Visualisation is an important step when dealing with real-world applications. It

can provide some general information on the datasets, e.g. clusters. In the data-

preprocessing step, missing values and redundant attributes are usually removed

to provide high-quality data for future experiments.

Visualisation with t-SNE

Before experimenting with this real-world application dataset, we visualise the data

to get some general information on the data. T-distributed Stochastic neighbourhood

Embedding (t-SNE) (Van der Maaten and G. Hinton, 2008), a variation of Stochastic

neighbourhood Embedding (SNE) (G. E. Hinton and Roweis, 2002), is a statistical

technique for visualising high-dimensional data. It first converts high-dimensional

Euclidean distance into conditional probability to characterise similarity among

data points. Then, t-SNE models the similarity distribution among data points in

the low-dimensional map. After that, it minimises the Kullback-Leibler divergence

(KL divergence) between the joint distributions in high-dimensional and low-

dimensional space.

t-SNE has been used for visualisation in various applications, consisting of

medical research (Esteva, Kuprel, Novoa, Ko, Swetter, Blau, and Thrun, 2017),

music analysis (Van den Oord, Dieleman, and Schrauwen, 2013), bioinformatics
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(Baxevanis, Bader, and Wishart, 2020), etc. In this chapter, we use t-SNE to

visualise the surface defects data from industry. As we discussed in Section 6.2.2,

the relationships among classes in multi-class scenarios are more complicated than

in binary scenarios. It is very intuitive from Figure 6.5 that as the number of classes

increases, it gets more and more difficult to visualise the boundaries of different

classes.

Figure 6.5: Visualisation on surface defects dataset with 2/3/5/all classes (top-
left/top-right/bottom-left/bottom-right).

Data Preprocessing

As we mentioned in Section 6.5.1, we have already deleted the missing values.

Therefore, in this chapter, we focus on reducing dimensionality via feature
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correlation analysis, i.e. feature selection. Correlation is a statistical term to

describe the linear relationship between two or more variables. When correlation

happens in features (attributes), we call this feature correlation. In other words,

if two features have a high correlation, we can predict one from the other. When

training a predictive model based on a certain dataset, correlated features are

considered redundant and we can delete one of them for simplification. As per

the Occam’s razor, “entities should not be multiplied beyond necessity” (Schaffer,

2015). (In Latin, Entia non sunt multiplicanda praeter necessitatem (Bauer, 2007).)

According to the information from the industry (which provides the surface

defects data), the first 20 attributes in the surface defects dataset are only for

internal recording, such as image number, date, top camera or bottom camera,

etc. These features provide no information on the defects and can be directly

deleted. After that, we calculate the feature correlation through Pearson correlation.

From Figure 6.6, we can observe that many features are highly correlated. For our

surface defects dataset, if the correlation between two features is higher than 0.7

(this number is suggested by the industrial expert in TATA company), one of them

will be deleted. After removing the redundant features, there are 62 features left

for future experiments.

6.5.3 Experiments on Surface Defects Dataset

Experimental results on the industrial surface defects dataset are given in

Table 6.9. This real-world dataset is a multi-class imbalanced dataset with an

extreme imbalance ratio. Significant improvements on both minority and overall

classification performance can be observed in Table 6.9. This is consistent with

our conclusions from the experiments on benchmark datasets in Section 6.4.3.

Furthermore, the best performances out of 15 combinations are contributed mainly

by “no outliers (1 1 1 0)", which also shows that the outlier type has a significant

influence on the classification performance in real-world imbalanced problems.

In addition, the proposed identification rule (TS) outperforms the other one on

classifying minority class samples. This confirms that the proposed rule can better

recognise the outliers in this real-world problem.
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Figure 6.6: Visualisation of correlation matrix on 31 selected features. Positive
correlations are displayed in blue and negative correlations in red color. Color
intensity and the size of the circle are proportional to the correlation coefficients.

6.6 Conclusions and Future Work

The idea of introducing four types of samples (safe, borderline, rare and outlier)

in binary imbalanced literature has been done already. This chapter introduces

the drawbacks of extending this idea to multi-class imbalanced scenarios. We

proposed a new identification rule to deal with these drawbacks and evaluated

the effectiveness of this proposed rule on six benchmark datasets and a real-world

application. According to our experimental results, the following conclusions can

be derived:

• Oversampling different combinations of types of samples can provide better

or competitive performance in classifying minority class(es) while not losing

too much classification performance on majority class samples.

• The proposed identification rule for types of samples makes the percentage of
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Table 6.9: Performance results of C5.0 in surface defects dataset.“1 0 1 0" represents
“safe(1) borderline(0) rare(1) outlier(0)", i.e. only safe and rare samples are
oversampled. Rmin/all and TS indicate the different rules for identifying types of
samples. “–" means that there are not enough samples to execute the k-nearest-
neighbour algorithm in the oversampling step.

Combination
MinAcc MAUC

Rmin/all TS Rmin/all TS

1 1 1 1 0.5256 0.5256 0.8748 0.8748
1 1 1 0 0.5361 0.5468 0.8900 0.8917
1 1 0 1 0.4927 0.4780 0.8924 0.8881
1 0 1 1 0.5022 0.4994 0.8879 0.8880
0 1 1 1 0.5040 0.4923 0.8759 0.8746
1 1 0 0 – – – –
1 0 1 0 – 0.5430 – 0.8914
0 1 1 0 0.5190 0.5301 0.8796 0.8794
1 0 0 1 0.4806 0.4754 0.8871 0.8857
0 1 0 1 0.4903 0.4671 0.8803 0.8758
0 0 1 1 0.4891 0.4944 0.8668 0.8679
1 0 0 0 – – – –
0 0 1 0 – – – –
0 1 0 0 – – – –
0 0 0 1 – – – –

each type of sample within the class more reasonable (avoiding all samples

in the minority class considered as outliers).

• Our experimental results do not show significant improvement on datasets

that are not highly imbalanced. Therefore, it is recommended to analyse the

types of samples only when the dataset is highly imbalanced.

• The proposed identification rule can be applied to real-world multi-class

imbalanced datasets and significantly improve the classification performance.

When dealing with real-world problems, much attention should be paid to

the sample type “outlier".

In future work, it is worth studying the relationship between imbalance ratio,

separability of classes and performance improvement while analysing the four

types of samples in the imbalanced learning domain. In addition, further study

on applying the proposed identification rule to more real-world applications

is encouraged. However, real-world data available in the machine learning

community is rare due to confidentiality and the time-consuming generation.
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We also would like to explore how these four types of samples can be used for

interacting with and benefiting from the feedback of human experts in real-world

applications. One scenario is, for example, the rule identifies some outlier samples

and plans to delete these samples in future analysis. Then, the human experts check

whether these are real outliers and provide feedback to the algorithm training

process.
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