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CHAPTER 5

Improving Imbalanced Classification

via Adding Additional Attributes

The anomaly detection problem can be considered as an extreme case of class

imbalance problem, however, very few studies consider improving class imbalance

classification with anomaly detection ideas. Most data-level approaches in the

imbalanced learning domain aim to introduce more information to the original

dataset by generating synthetic samples. In this chapter, we introduce our proposed

idea on improving imbalanced classification via adding additional attributes. First,

Section 5.1 shows the motivation and provides a brief introduction on our work.

After that, in Section 5.2, the background knowledge on anomaly detection and

four types of samples in imbalanced datasets are presented. In Section 5.3, the

information on the datasets, the experimental setup as well as the experimental

results and discussion are introduced. Section 5.4 concludes the chapter and

outlines the further work.

5.1 Introduction

The imbalanced classification problem has caught growing attention from many

fields. In the field of computational design optimization, product parameters are

modified to generate digital prototypes and the performances are usually evaluated

by numerical simulations which often require minutes to hours of computation

time. Here, some parameter variations (minority number of designs) would result

in valid and producible geometries but violate given constraints in the final steps

of the optimization. Under this circumstance, performing proper imbalanced
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Chapter 5. Improving Imbalanced Classification via Adding Additional Attributes

classification algorithms on the design parameters could save computation time. In

the imbalanced learning domain, many techniques have proven to be efficient in

handling imbalanced datasets, including resampling techniques and algorithmic-

level approaches (Ganganwar, 2012; Kong, Kowalczyk, D. A. Nguyen, Bäck,

and Menzel, 2019; M. S. Santos, Soares, Abreu, Araujo, and J. Santos, 2018),

where the former aims to produce balanced datasets and the latter aims to make

classical classification algorithms appropriate for handling imbalanced datasets.

The resampling techniques are standard techniques in imbalance learning since

they are simple and easily configurable and can be used in synergy with other

learning algorithms (Fernández, García, Galar, Prati, Krawczyk, and Herrera, 2018).

The main idea of most oversampling approaches is to introduce more information

to the original dataset by creating synthetic samples. However, very few studies

consider the idea of introducing additional attributes to the imbalanced dataset.

The anomaly detection problem can be considered as an extreme case of the

class imbalance problem. In this chapter, we propose to improve the imbalanced

classification with some anomaly detection techniques. We propose to introduce the

outlier score, which is an important indicator to evaluate whether a sample is an

outlier (Breunig, Kriegel, R. T. Ng, and Sander, 2000), as an additional attribute of

the original imbalanced datasets. Apart from this, we also introduce the four types

of samples (safe, borderline, rare and outlier), which have been emphasized in

many studies (Napierala and Stefanowski, 2016; Skryjomski and Krawczyk, 2017),

as another additional attribute. The paper contributed to this chapter has been

published in Parallel Problem Solving from Nature–PPSN XVI: 16th International

Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings,

Part I 2020 Aug 31 (pp. 512-523), titled "Improving imbalanced classification by

anomaly detection". In our experiments, we consider four scenarios, i.e. four

different combinations using the additional attributes and performing resampling

techniques. The results of our experiments demonstrate that introducing the

two proposed additional attributes can improve the imbalanced classification

performance in most cases. Further study shows that this performance improvement

is mainly contributed by a more accurate classification in the overlapping region of

the two classes (majority and minority classes).
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5.2 Related Works

This section first introduces the resampling techniques used in this chapter. Then,

the anomaly detection problem is introduced.

5.2.1 Resampling Techniques

This work is based on five resampling techniques in our experiments, one

oversampling, two undersampling and two hybrid approaches. The oversampling

technique SMOTE and the two hybrid approaches, SMOTETL and SMOTEENN;

have been introduced in detail in the previous chapters. Therefore, we only provide

details on the two undersampling approaches, OSS and NCL.

OSS

One-Sided Selection (OSS) (Kubat, Matwin, et al., 1997) is an undersampling

technique which combines Tomek Links and the Condensed Nearest Neighbour

(CNN) Rule. Detailed information on Tomek Links is given in 4.2.1. CNN was first

introduced by Hart in 1968 (Hart, 1968) together with the concept of a consistent

subset. By definition, a subset Ê is consistent with E (Ê ⊆ E), if the 1-NN rule

(K-NN rule, where K = 1) built with samples in Ê can correctly classify samples

in E. In OSS, the following three groups of samples are removed (Kubat, Matwin,

et al., 1997):

• Majority class samples which suffer from class-label noise.

• Majority class samples which are close to the decision boundary. They

are susceptible to variations, and even a tiny variation in training data or

classification model can make them fall on the wrong side of the decision

boundary.

• Majority class samples which have limited contribution for building the

decision boundary. Although they are harmless but they increase the

classification costs.

The first two groups of samples are removed with so-called Tomek links. The

third group of samples are removed with CNN. The remainder of the majority class

samples and all the minority class samples are used to construct the classifiers.

Algorithm 1 summarizes the OSS procedure.
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Algorithm 1: One-Side Selection (OSS) (Kubat, Matwin, et al., 1997)
Input :S - Original training set
Output :T - Undersampled training set

1 Select a subset C (C ⊆ S), which contains all minority class samples and
one randomly selected majority class sample;

2 Classify S using the 1-NN rule built with C. Add all misclassified samples in
S to subset C and now C is a consistent subset of S;

3 Remove from C all majority class samples belonging to Tomek links. The
remaining set is referred to as T .

NCL

Neighbourhood Cleaning Rule (NCL) (Laurikkala, 2001) emphasizes the quality of

the retained samples after data cleaning and can be used for multi-class problems.

Suppose C are the classes of interest, and the rest of the data are referred as R.

The cleaning process is first performed by removing any ambiguous sample in R

whose label differs from the class of at least two of its three neighbours through

the Wilson’s Edited Nearest Neighbours (ENN, introduced in 4.2.1) (D. L. Wilson,

1972). In addition, NCL performs a deeper cleaning in the neighbourhoods of

samples in C. For a sample in C, if its label differs from the classification given by

its three nearest neighbours, the neighbours belonging to R are removed. In this

step, special considerations are paid to small-size classes (details in Algorithm 2).

In the binary scenario, NCL can be described as follows: if a majority class sample

has a different label from the classification given by its three nearest neighbours,

this majority class sample is removed. Additionally, if the label of a minority class

sample contradicts the classification given by its three nearest neighbours, then the

neighbours belonging to the majority class are removed.

5.2.2 Anomaly Detection

Anomaly detection, also referred to as outlier detection, is the process of identifying

irregular patterns in the datasets (Chandola, Banerjee, and Kumar, 2009). The

behaviours of these patterns deviate significantly from the majority of the data.

Such examples can be found in various applications, including fraud detection in

credit cards, medical diagnosis in health care, quality control in the manufacturing

field, etc.

Many algorithms have been developed to deal with anomaly detection problems
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Algorithm 2: Neighbourhood Cleaning Rule (NCL) (Laurikkala, 2001)
Input :S - Original training set
Output :T - Undersampled training set

1 Split training set S into the classes of interest C and the rest R;
2 Identify the noisy data D1 in R with ENN;
3 Identify the samples in C which are misclassified by their 3 nearest

neighbours and referred to as Cm;
4 for each class Ri ∈ R do
5 if x ∈ Ri ∩ Cm and |Ri| > 1

2 × |C| then
6 move x into D1;
7 end
8 Remove D1 from S and the undersampled training set is T = S −D1.

and the experiments in this chapter are mainly performed with the nearest-

neighbour based local outlier score (LOF). Local outlier factor (LOF), which

indicates the degree of a sample being an outlier, was first introduced in (Breunig,

Kriegel, R. T. Ng, and Sander, 2000). The LOF of an object depends on its relative

degree of isolation from its surrounding neighbours. Several definitions are needed

to calculate the LOF and are summarized in the following Algorithm 3.

According to the definition of LOF, a value of approximately 1 indicates that the

local density of data point xi is similar to its neighbours. A value below 1 indicates

that data point xi locates in a relatively denser area and does not seem to be an

anomaly, while a value significantly larger than 1 indicates that data point xi is

alienated from other points, which is most likely an outlier.

5.2.3 Four Types of Samples in Imbalanced Datasets

Napierala and Stefanowski proposed to analyse the local characteristics of minority

class samples by dividing them into four different types: safe, borderline, rare

samples and outliers (Napierala and Stefanowski, 2016). The idea has been

introduced in detail in Section 2.3.2.
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Algorithm 3: Local Outlier Factor (LOF) algorithm (Breunig, Kriegel, R. T.
Ng, and Sander, 2000)

Input :x - input data x = (x1, ..., xn)
n - the number of input examples
k - the number of neighbours

Output :LOF score of every xi

1 initialization;
2 calculate the distance d(·) between every two data points;
3 for i = 1 to n do
4 calculate k-distance(xi): the distance between xi and its kth neighbour;
5 find out k-distance neighbourhood Nk(xi): the set of data points whose

distance from xi is not greater than k-distance(xi);
6 for j = 1 to n do
7 calculate reachability distance:

reach-distk(xi, xj) = max{k-distance(xj), d(xi, xj)};

8 calculate local reachability density:

lrdk(xi) = 1/avg-reach-distk(xi)

= 1/

(∑
o∈Nk(xi)

reach-distk(xi, xj)

|Nk(xi)|

)
;

intuitively, the local reachability density of xi is the inverse of the
average reachability distance based on the k-nearest neighbours of
xi;

9 calculate LOF:

LOFk(xi) =

∑
o∈Nk(xi)

lrdk(xj)

|Nk(xi)| · lrdk(xi)

=

∑
o∈Nk(xi)

lrdk(xj)
lrdk(xi)

|Nk(xi)|

the LOF of xi is the average local reachability density of xi’s
k-nearest neighbours divided by the local reachability density of xi.

10 end
11 end
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5.3 Experiments

5.3.1 Information on the Datasets

The experiments reported in this chapter are based on 7 two-class imbalanced

datasets, including 6 imbalanced benchmark datasets (given in Table 5.1) and a 2D

imbalanced chess dataset, which is commonly used for visualising the effectiveness

of the selected techniques in the imbalanced learning domain (Fernández, García,

Galar, Prati, Krawczyk, and Herrera, 2018). Figure 5.1 shows the 2D imbalanced

chess dataset.

Table 5.1: Information on benchmark datasets (Alcalá-Fdez, Fernández, Luengo,
Derrac, García, Sánchez, and Herrera, 2011).

Datasets #Attributes #Samples Imbalance Ratio (IR)

glass1 9 214 1.82

ecoli4 7 336 15.8

vehicle1 18 846 2.9

yeast4 8 1484 28.1

wine quality 11 1599 29.17

page block 10 5472 8.79

5.3.2 Experimental Setup

In this chapter, we propose introducing the outlier score and the four types of samples

as additional attributes of the original imbalanced dataset. The LOF algorithm

is an unsupervised anomaly detection method which computes the local density

deviation of a given data point relative to its neighbours. Hence, calculating the

outlier score does not require the information of class labels on either training or test

samples. In our experiments, we calculate the LOF values for all samples (before

splitting the training and test set). The Python library PyOD (Y. Zhao, Nasrullah,

and Z. Li, 2019) is used directly to calculate the LOF values. Unlike computing LOF

values, computing different types of samples requires the information of class labels,

see Table 2.3. However, the labels of test samples should be assumed unknown in
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Figure 5.1: Original imbalanced 2D chess dataset. Black points indicate the majority
class samples and white points indicate minority class samples.

the training process. Therefore, we use the steps below to add four types of samples

as an additional attribute “type”.

1. Split the data into training and test set.

2. Compute the types for samples in training set. We use positive numbers

(Rmin
all

) to indicate the types of minority class samples, and negative numbers

(−Rmaj
all

) for types of majority class samples. For example, for a safe minority

class sample with Rmin
all

= 1, we add “1” as the “type” value. For a borderline

majority class sample with Rmaj
all

= 3
5 , we add “− 3

5” as the “type” value.

3. Treat training set and test set as a whole. Then, given the number of

neighbours k, for each sample in the test set, find the k nearest neighbours

belonging to the training set.

4. For a sample in the test set, average the “type” values of its k nearest

neighbours belonging to the training set. The average is the “type” value for

this sample.

Each dataset was experimented with five resampling techniques and our

proposed method. For each method of each dataset, we repeat the experiments 30

times with different random seeds. After that, the paired t-tests were performed on
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each of the 30 performance metric values to test if there is significant difference

between the results of each scenario on a 5% significance level. We perform 5-fold

stratified cross validation in our experiments.

5.3.3 Experimental Results and Discussion

Like other studies (H. He, Bai, E. A. Garcia, and S. Li, 2008; López, Fernández,

García, Palade, and Herrera, 2013), we also use SVM and Decision Tree as the

base classifiers in our experiments to compare the performance of the proposed

method and the existing methods. Our purpose in this chapter is not to achieve the

best performance of a certain method under fine hyperparameter tuning. Hence,

we did not tune the hyperparameters for the classification algorithms and the

resampling techniques (Kong, Kowalczyk, D. A. Nguyen, Bäck, and Menzel, 2019).

The experimental results with the two additional attributes (four types of samples

and LOF score) are presented in Table 5.2, 5.3, 5.4 and 5.5. Before discussing the

experimental results, it is worth mentioning that NCL will not be effective if no

samples meet the removal conditions. In this case, NCL will produce the same

results as dealing with the original dataset, i.e. row “None" and row “NCL" can be

exactly the same in the tables. The tables contain much information, and we will

discuss them separately below.

• Scenarios where adding additional attributes performs significantly better

than resampling techniques:

– 2D chess dataset with SVM;

– glass1 dataset with SVM;

– ecoli4 dataset with Decision Tree.

• Scenarios where adding additional attributes produces competitive

performances to resampling techniques:

– vehicle1 dataset with SVM;

– yeast4 dataset with Decision Tree and SVM;

– wine quality dataset with Decision Tree and SVM.

• Scenarios where both resampling techniques and our proposed method do

not improve the imbalanced classification performances:
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– glass1 dataset with Decision Tree;

– ecoli4 dataset with SVM;

– page block dataset with Decision Tree and SVM.

• Scenarios where adding additional attributes degrades the imbalanced

classification performance:

– 2D chess dataset with Decision Tree;

– vehicle1 dataset with Decision Tree.

We conclude that in most cases, adding additional attributes produces

significantly better or competitive classification performance, except for two

scenarios 2D chess dataset with Decision Tree and vehicle1 dataset with

Decision Tree. Further feature importance analysis shows that due to the high

correlation between the added “type" attribute and class labels, Decision Tree

uses only the added “type" attribute for classification when dealing with these

two datasets. This results in the degradation of these two scenarios. Hence,

it is recommended to implement the proposed method with feature-insensitive

classifiers.

According to our experimental setup, we notice that introducing the local outlier

factor focuses on dealing with the minority samples since the local outlier factor

indicates the degree of a sample being an outlier. Meanwhile, introducing four

types of samples (safe, borderline, rare and outlier) puts emphasis on separating

the overlapping region and safe region. The visualisation of different scenarios for

the 2D chess dataset with SVM is given in Figure 5.2 in order to further study the

reason for the performance improvement.

From both the experimental results and the visualisation in Figure 5.2, we can

conclude that, for the 2D chess dataset, the experiment with the two additional

attributes outperforms the experiment with the classical resampling technique

SMOTE. The figure also illustrates that the proposed method has a better ability to

handle samples in the overlapping region.

5.4 Conclusions and Future Work

In this chapter, we propose to introduce additional attributes to the original

imbalanced datasets in order to improve the classification performance. Two
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5.4. Conclusions and Future Work

(a) Classification performance for original chess dataset with SVM.

(b) Classification performance for SMOTE-sampled chess dataset with SVM.
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(c) Classification performance for chess dataset with additional attributes with SVM.

Figure 5.2: Classification performance for chess dataset under different scenarios.
The red-circled points indicate the misclassified points.

additional attributes, namely four types of samples and outlier score, and the

resampling techniques (SMOTE, NCL, OSS, SMOTEENN and SMOTETL) are

considered and experimentally tested on seven imbalanced datasets. According to

our experimental results, two main conclusions can be derived:

1. In most cases, introducing these two additional attributes can improve or

produce competitive class imbalance classification performance. For some

datasets, only introducing additional attributes gives better classification

results than only performing resampling techniques.

2. The proposed additional attribute “type" is highly correlated with class labels

in some datasets. Hence, it is recommended to implement the proposed

method with feature-insensitive classifiers.

3. An analysis of the experimental results also illustrates that the proposed

method has a better ability to handle samples in the overlapping region.

In this chapter, we only validate our newly proposed method with five

resampling techniques and seven benchmark datasets. As future work, other
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5.4. Conclusions and Future Work

anomaly detection techniques, such as the clustering-based local outlier score

(CBLOF) (Z. He, Xu, and Deng, 2003) and histogram-based outlier score (HBOS)

(Goldstein and Dengel, 2012) could be included in the analysis. Future work could

also consider an extension of this research for engineering datasets (Kong, Rios,

Kowalczyk, Menzel, and Bäck, 2020a), especially for the design optimization

problems mentioned in our Introduction. Detailed analysis of the feature

importance and how the proposed method affects the classification performance in

the overlapping region would also be worth studying.
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