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CHAPTER 4

Hyperparameter Optimisation on
Class-Imbalance Problems

Although the class-imbalance classification problem has caught a huge amount
of attention, hyperparameter optimisation has not been studied in detail in this
field. Both classification algorithms and resampling techniques involve some
hyperparameters that can be tuned. In this chapter, we study hyperparameter
optimisation on class-imbalance problems and investigate the relation between
the degree of class overlap and the improvement yielded via hyperparameter
tuning. This chapter is divided as follows. First, Sectionshows the motivation
and provides a brief introduction on our work. After that, in Section the
resampling techniques used in this chapter and the background knowledge on
hyperparameter optimisation are presented. In Section [4.3] the information on the
datasets, the experimental setup as well as the experimental results and discussion

are introduced. Section [4.4] concludes the chapter and outlines the further work.

4.1 Introduction

Over years of development, many techniques have proven to be efficient in handling
imbalanced datasets. These methods can be divided into data-level approaches
and algorithmic-level approaches (Bhowan, Johnston, M. Zhang, and Yao,
Ganganwar, M. S. Santos, Soares, Abreu, Araujo, and J. Santos, [2018]), where
the data-level approaches aim to produce balanced datasets and the algorithmic-
level approaches aim to adjust classical classification algorithms in order to make
them appropriate for handling imbalanced datasets.

By far, the most commonly used approach for handling imbalanced data

55



Chapter 4. Hyperparameter Optimisation on Class-Imbalance Problems

is a combination of resampling techniques and machine learning classification
algorithms (Lépez, Fernandez, Moreno-Torres, and Herrera, . Research works
also focused on these two separate parts, developing new resampling techniques
and adjusting machine learning algorithms to be more appropriate for imbalanced
datasets. Both resampling techniques and machine learning algorithms involve
some hyperparameters that are set to some default values and could be tuned.
A minor variation of these hyperparameters might influence the performance
significantly. However, hyperparameter optimisation has not been studied yet in
detail in the context of learning from imbalanced data, where both components
could be tuned simultaneously.

Previous research has considered the hyperparameters for the classifiers for
class-imbalance problems (Thai-Nghe, Busche, and Schmidt-Thieme, 2009), but
the hyperparameters in resampling techniques are not included. Agrawal et al.
(Agrawal and Menzies, take the hyperparameters in SMOTE into account
and propose an auto-tuning version of SMOTE. In this chapter, we explore the
potential of applying hyperparameter optimisation for the automatic construction of
high-quality classifiers for imbalanced data. In our research, we experiment with a
small collection of imbalanced datasets and two classification algorithms: Random
Forest and SVM. In each experiment we consider six scenarios for hyperparameter
optimisation (see Table [4.1).
conditions, algorithms with default hyperparameters (A,) and algorithms with

For classification algorithms, we consider two
optimised hyperparameters (A,). For resampling approaches, we consider
three conditions, no resampling applied (R,,), resampling applied with default
hyperparameters (R;) and resampling applied with optimised hyperparameters
(R,).

Table 4.1: Six scenarios in our experiments.

Scenario Classification Algorithms | Resampling Approaches
() A;+ R, Default hyperparameters No

(2) A, + R, Optimised hyperparameters | No

(3) Ag+ Ry Default hyperparameters Default hyperparameters
4) A, + Ry Optimised hyperparameters | Default hyperparameters
5) Ag+ R, Default hyperparameters Optimised hyperparameters
(6) A, + R, Optimised hyperparameters | Optimised hyperparameters
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4.2. Related Works

Apart from developing new techniques to deal with imbalanced datasets, the
data complexity in the dataset itself has caught an increasing attention in recent
studies of class-imbalance problems. As we stated in Chapter [3.2.2] it has been
shown that the degradation of machine learning algorithms for imbalanced datasets
is not directly caused by class imbalance, but is also related to the degree of class
overlapping (Prati, Batista, and Monard, [2004), and the classification algorithms
are more sensitive to noise than to class imbalance (Lopez, Fernandez, Garcia,
Palade, and Herrera,[2013). It is also concluded that data complexity may influence
the choice of resampling methods (M. S. Santos, Soares, Abreu, Araujo, and J.
Santos, [2018). Hence, in this chapter, we consider the hyperparameter optimisation
for both resampling techniques and classification algorithms. Furthermore, the
relation between the degree of class overlap and the improvement achieved via
hyperparameter tuning is investigated.

The results of our experiments demonstrate that an improvement can be
obtained by applying hyperparameter tuning. In the six scenarios, optimising
the hyperparameters for both classification algorithms and resampling approaches
gives the best performance for all six datasets. Further study shows that the data
complexity of the original data, especially the overlap between classes, influences
whether a significant improvement can be achieved through hyperparameter
optimisation. Compared to imbalanced datasets with high class overlap,
hyperparameter optimisation works more efficiently for imbalanced datasets with
low class overlap. In addition, we point out that resampling techniques are
not effective for all datasets, and their effectiveness is also affected by data
complexity in the original datasets. Hence, we recommend studying the data
complexity of imbalanced datasets before resampling the samples and optimising
the hyperparameters. Our work in this chapter has received more than 20 citations
from other researchers till the end of 2022, which indicates our contributions to
this topic.

4.2 Related Works

This section first introduces the resampling techniques used in this chapter. Then,
the definition of hyperparameter optimisation and the related literature in the

class-imbalance domain are given in Section [4.2.2
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4.2.1 Resampling Techniques

This section describes four resampling techniques in our experiments, two
oversampling and two hybrid approaches. The two oversampling techniques,
SMOTE and ADASYN, have been introduced in detail in the previous chapters.
Therefore, we only provide details on the two hybrid approaches, SMOTETL and
SMOTEENN.

SMOTETL

In a classification problem, a Tomek link is defined as follows (Tomek, [1976)): given
two samples x; and x; from different classes, d(x;, «;) the distance between x;
and z;, and «; is a random sample in the dataset. The pair (z;, x;) is defined as a
Tomek link if the following requirements hold,

Vay, d(iL‘i, scj) < d(il:i, ZB[) and d(a:i, :Bj) < d(iL‘j, :Bl). 4.1)

From the definition, a Tomek link is a pair of samples from different classes
that are the nearest neighbours for each other, and the samples in Tomek links are
either noise or borderline (Batista, Prati, and Monard, 2004).

Oversampling techniques aim to balance the class distribution via expanding
the minority class space. However, some synthetic minority class samples may
invade the majority class space, making the decision boundary blur. To alleviate this
problem, Batista et al. (Batista, Prati, and Monard, proposed to apply Tomek
links as an additional data cleaning method after SMOTE, and named the new
technique SMOTETL. In the SMOTETL technique, the first step is (1) to oversample
the minority classes using SMOTE and then (2) to identify the Tomek links. After
that, (3) the Tomek links for the oversampled samples are removed. In this way,
the SMOTETL technique provides a more clear decision boundary by removing part
of the samples in the overlapping region. Figure gives an example of clearing
Tomek links for oversampled samples.

SMOTEENN

Similar to SMOTETL, SMOTEENN is also a hybrid method that combines
oversampling and data cleaning techniques. SMOTEENN uses Wilson’s Edited
Nearest Neighbours (ENN) (D. L. Wilson, to remove any sample that has
a different class from at least two of its three nearest neighbours (Lorena, L. P.
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f2 fa

Figure 4.1: Example of clearing Tomek links for oversampled samples. () and the
black A indicate the majority and minority class samples respectively. The star
indicates the synthetic samples and each blue circle indicates a Tomek link.

Garcia, Lehmann, Souto, and Ho, [2018). For a binary class-imbalance problem,
SMOTEENN is implemented as follows: (1) the training set is oversampled via
SMOTE, then (2) for each sample in the training set, its three nearest neighbours
are found. After that, (3) any sample whose label contradicts the label of at least
two of its three nearest neighbours is removed. According to the ENN procedure,
more samples are removed than the Tomek links, i.e. ENN provides a deeper data
cleaning (Lorena, L. P. Garcia, Lehmann, Souto, and Ho, .

4.2.2 Hyperparameter Optimisation

Most machine learning algorithms involve several hyperparameters, which have
to be set before the training process. Compared with randomly selecting the
hyperparameters in a learning algorithm, choosing a set of optimal hyperparameters
can improve the performance of the algorithm. For instance, in Random Forest,
the choice of the depth of a decision tree and the number of trees in a forest will
have an influence on the performance. To determine the optimal combination of
hyperparameters for a given problem/dataset naturally leads to the well-established
hyperparameter optimisation (or hyperparameter tuning) task.

Let A denote a typical machine learning algorithm with n hyperparameters, A
denote a vector of hyperparameters and A denote the hyperparameter configuration
space, i.e. XA € A. A learning algorithm with hyperparameters A is represented by
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A (Feurer and Hutter, [2019). Given a dataset X, the goal to find the optimal set
of hyperparameters A* so as to minimize the predefined loss function £(-) can be
represented by (Bergstra, Bardenet, Bengio, and Kégl, Claesen and De Moor,
2015)

A* = argmin £(X ), Ay (X)), (4.2)
AEA

where X ") and X *¢) are the training set and validation set, which are given.

There are many approaches for performing hyperparameter optimisation. Grid
search is a traditional way of tuning hyperparameters. It starts with dividing the
search space into a discrete grid. Then, grid search performs an exhaustive search
on every combination of the hyperparameters, which always requires much time.
Random search is similar to grid search but replaces the exhaustive searching on
every combination with randomly selecting the combinations to test. Bayesian
hyperparameter optimisation approaches provide a less expensive way to optimise
the hyperparameters. Its strategy keeps tracking previously evaluated results
and uses the obtained information to form a surrogate probabilistic model of the
objective function (Bergstra, Bardenet, Bengio, and Kégl, Bergstra, Yamins,
and Cox, 2013). The hyperparameters for evaluation by the objective function
are selected by applying a criterion to the surrogate function, and this criterion
is defined by a selection function, e.g. Expected Improvement. The optimisation
procedure is described below.

* Form a surrogate probabilistic model of the objective function;

Optimise the selection function over the surrogate model;

Find the hyperparameter values which maximise the Expected Improvement;

Evaluate these hyperparameters on the objective function;

Update the surrogate according to the new performance;

Iterate the 2nd - 5th step until time or other constraint is met.

Compared to the original objective function, the surrogate model is less
expensive to optimise because it chooses the next candidate hyperparameters
worth evaluating instead of wasting time on unworthy hyperparameters. In practice,
there are many software packages based on Bayesian hyperparameter optimisation,
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e.g. Spearmint, SMAC, HyperOpt, SPOT, etc. In this chapter, a python libraryﬂ
HyperOpt (Bergstra, Komer, Eliasmith, Yamins, and Cox, , is used to perform
the hyperparameter optimisation for classification algorithms.

In the field of imbalanced learning, the most basic methods are combining the
resampling techniques and machine learning classification algorithms; both involve
some hyperparameters that could be tuned. Hyperparameters in classifiers are
widely considered in classification tasks and this is also true in the imbalanced
learning domain. For example, (Thai-Nghe, Busche, and Schmidt-Thieme, |2009)
searches the best hyperparameters for their classifiers when improving academic
performance prediction by dealing with class imbalance. In (Shekar and Dagnew,
2019), researchers perform a grid search-based hyperparameter tuning on Random
Forest classifier when their imbalanced microarray cancer data. Some studies
also take the hyperparameters in resampling techniques into account. In (Douzas,
Bacao, and F. Last, [2018), authors tune the k nearest neighbours in SMOTE-related
resampling techniques. A representative study on hyperparameters in oversampling
techniques is (Agrawal and Menzies, [2018), They take the hyperparameters in
SMOTE into account and propose SMOTUNED, an auto-tuning version of SMOTE.
In their experiments, SMOTUNED improved the performance dramatically, e.g.
improvements in AUC up to 60% compared to SMOTE. In this chapter, we perform
a detailed study on hyperparameter optimisation for class imbalance problems, i.e.
considering six combinations of hyperparameters in both classification algorithm
and resampling techniques (see Table in Section |4.1)).

4.3 Experiments

In this section, we introduce the information on the datasets used in our
experiments. Then, the experimental setup is described. After that, the

experimental results and discussions are given.

4.3.1 Information on the Datasets

The experiments reported in this chapter are based on six imbalanced datasets from
the KEEL-collection (Alcala-Fdez, Sdnchez, S. Garcia, Jesus, Ventura, Garrell, Otero,
Romero, Bacardit, Rivas, et al., 2009). Detailed information on the datasets are

Lavailable at: http://hyperopt.github.io/hyperopt/
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shown in Table The overlap between classes is calculated by the Directional-
vector Maximum Fisher’s Discriminant Ratio (F1v). Lower F1v value indicates
higher overlap between classes (M. S. Santos, Soares, Abreu, Araujo, and J. Santos,

2018).

Table 4.2: Information on the datasets.

Dataset | #Attributes | #Examples | #Classes | IR | F1v value
glassl | 9 | 214 | 2 | 182 | 057
glass6 | 9 | 214 | 2 | 638 | 004
yeast3 | 8 | 1484 | 2 | 81 | 013
yeast4 | 8 | 1484 | 2 | 281 | 020
ecoli3 | 7 | 336 | 2 | 86 | 0.16

abalonel9 | 8 | 4174 | 2 | 12944| 031

4.3.2 Experimental Setup

As mentioned in Section [4.1} we experiment with six imbalanced datasets, two
algorithms and four resampling techniques. Thus, in our experiment, we have
6-2-5 = 60 settings tested on each data set, with 6 scenarios, 2 classifiers,
and 5 resampling approaches (including none). My co-authored work (D. A.
Nguyen, Kong, H. Wang, Menzel, Sendhoff, Kononova, and Bick, studies
hyperparameter optimisation on class-imbalance problems more extensively, it
includes experiments with more imbalanced datasets.

The hyperparameter optimisation for the classification algorithm is done
through HyperOpt. Hyperparameters in resampling approaches includes the
number of neighbours, imbalance ratio after resampling and etc. In our experiment,
hyperparameter optimisation for resampling approaches is done through grid
search. Whenever we optimise hyperparameters with “HyperOpt”, the AUC loss
(1-AUQ) is set as the objective function to minimise and the number of iterations is
set to 500. For each experiment, we repeated 30 times with different random seeds.
After that, the paired t-tests were performed on each 30 AUC values to test if there
is significant difference between the results of each scenario on a 5% significance
level.
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4.3.3 Experimental Results and Discussions

The experimental results are presented in Table[4.3]to investigate the importance of
hyperparameter optimisation for imbalanced datasets. For all the six datasets in our
experiment, we observe that optimising the hyperparameters for both classifiers
and resampling approaches gives the best performance. The statistical hypothesis
tests mentioned in Section are performed on the AUC values of scenario
(Ag+ Ry) and (A, + R,). The test results indicate that there is enough statistical
evidence showing the performance improvements are significant for datasets
“glass1", “yeast4" and “abalone19". In other words, applying the hyperparameter
optimisation does not bring significant improvement for datasets “glass6", “yeast3"
and “ecoli3". This experimental result demonstrates that significant improvement
can be achieved by performing hyperparameter optimisation for datasets with
high F1v values. That is to say, hyperparameter optimisation works efficiently for
datasets with low overlap between classes.

Furthermore, comparing the AUC values of scenario (44 + R,) and (44 + Ry),
for datasets “glass6", “yeast3" and “ecoli3, resampling techniques does not improve
the classification performance. Thus, we can conclude that oversampling techniques
are not effective for datasets with high overlap. The generated synthetic samples
might bring additional noise and make the class overlap even higher. Another point
worth mentioning is that, compared to datasets with high overlap, we expected
the classification algorithms would perform better on datasets with low overlap.
However, the experimental results are contrary to our presupposition. This is
because the complexity of a classification problem is not only determined by the
overlap between classes but also related to other types of complexity, such as
linearity measures.

In the end, we can also observe that there is no specific combination of classifiers
and resampling techniques that can provide the best performance for all datasets.
For a given dataset, the best combination of classifiers and resampling approaches
might depend on the data complexity itself.

4.4 Conclusions and Future Work

In this chapter we considered six scenarios of hyperparameter optimisation for
classification algorithms and resampling approaches. Two main conclusions can be
derived according to our experimental results:
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1. In our experiment, the results of scenario (A, + R,) outperform the other
five scenarios. Especially for imbalanced datasets with low class overlap,
applying hyperparameter optimisation for both classification algorithms
and resampling approaches can significantly improve the performance.
Nevertheless, the time consumption caused by hyperparameter optimisation
is not negligible. Therefore, we recommend studying the data complexity
and considering the trade-off between time cost and potential improvement

before optimising the hyperparameters.

2. Based on our experimental results, we find oversampling techniques does
not give performance improvement for imbalanced datasets with high class
overlap. This further emphasizes the importance of learning the data
complexity before dealing with the imbalanced datasets.

In future work, more data complexity measures will be considered in order to
study the relation between hyperparameter optimisation and data complexity in
detail. Additionally, more attention should be put on developing techniques which
can efficiently handle complex imbalanced datasets. Finally, we observe the best
choice of classifiers and oversampling techniques depends on the dataset itself.
Therefore, another study worth exploring would be to produce a semi-automatic
approach which can help choosing the best combination of resampling approaches,

machine learning algorithms and hyperparameter optimisation strategies.
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