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CHAPTER 4

Hyperparameter Optimisation on

Class-Imbalance Problems

Although the class-imbalance classification problem has caught a huge amount

of attention, hyperparameter optimisation has not been studied in detail in this

field. Both classification algorithms and resampling techniques involve some

hyperparameters that can be tuned. In this chapter, we study hyperparameter

optimisation on class-imbalance problems and investigate the relation between

the degree of class overlap and the improvement yielded via hyperparameter

tuning. This chapter is divided as follows. First, Section 4.1 shows the motivation

and provides a brief introduction on our work. After that, in Section 4.2, the

resampling techniques used in this chapter and the background knowledge on

hyperparameter optimisation are presented. In Section 4.3, the information on the

datasets, the experimental setup as well as the experimental results and discussion

are introduced. Section 4.4 concludes the chapter and outlines the further work.

4.1 Introduction

Over years of development, many techniques have proven to be efficient in handling

imbalanced datasets. These methods can be divided into data-level approaches

and algorithmic-level approaches (Bhowan, Johnston, M. Zhang, and Yao, 2012;

Ganganwar, 2012; M. S. Santos, Soares, Abreu, Araujo, and J. Santos, 2018), where

the data-level approaches aim to produce balanced datasets and the algorithmic-

level approaches aim to adjust classical classification algorithms in order to make

them appropriate for handling imbalanced datasets.

By far, the most commonly used approach for handling imbalanced data
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Chapter 4. Hyperparameter Optimisation on Class-Imbalance Problems

is a combination of resampling techniques and machine learning classification

algorithms (López, Fernández, Moreno-Torres, and Herrera, 2012). Research works

also focused on these two separate parts, developing new resampling techniques

and adjusting machine learning algorithms to be more appropriate for imbalanced

datasets. Both resampling techniques and machine learning algorithms involve

some hyperparameters that are set to some default values and could be tuned.

A minor variation of these hyperparameters might influence the performance

significantly. However, hyperparameter optimisation has not been studied yet in

detail in the context of learning from imbalanced data, where both components

could be tuned simultaneously.

Previous research has considered the hyperparameters for the classifiers for

class-imbalance problems (Thai-Nghe, Busche, and Schmidt-Thieme, 2009), but

the hyperparameters in resampling techniques are not included. Agrawal et al.

(Agrawal and Menzies, 2018) take the hyperparameters in SMOTE into account

and propose an auto-tuning version of SMOTE. In this chapter, we explore the

potential of applying hyperparameter optimisation for the automatic construction of

high-quality classifiers for imbalanced data. In our research, we experiment with a

small collection of imbalanced datasets and two classification algorithms: Random

Forest and SVM. In each experiment we consider six scenarios for hyperparameter

optimisation (see Table 4.1). For classification algorithms, we consider two

conditions, algorithms with default hyperparameters (Ad) and algorithms with

optimised hyperparameters (Ao). For resampling approaches, we consider

three conditions, no resampling applied (Rn), resampling applied with default

hyperparameters (Rd) and resampling applied with optimised hyperparameters

(Ro).

Table 4.1: Six scenarios in our experiments.

Scenario Classification Algorithms Resampling Approaches
(1) Ad +Rn Default hyperparameters No
(2) Ao +Rn Optimised hyperparameters No
(3) Ad +Rd Default hyperparameters Default hyperparameters
(4) Ao +Rd Optimised hyperparameters Default hyperparameters
(5) Ad +Ro Default hyperparameters Optimised hyperparameters
(6) Ao +Ro Optimised hyperparameters Optimised hyperparameters
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4.2. Related Works

Apart from developing new techniques to deal with imbalanced datasets, the

data complexity in the dataset itself has caught an increasing attention in recent

studies of class-imbalance problems. As we stated in Chapter 3.2.2, it has been

shown that the degradation of machine learning algorithms for imbalanced datasets

is not directly caused by class imbalance, but is also related to the degree of class

overlapping (Prati, Batista, and Monard, 2004), and the classification algorithms

are more sensitive to noise than to class imbalance (López, Fernández, García,

Palade, and Herrera, 2013). It is also concluded that data complexity may influence

the choice of resampling methods (M. S. Santos, Soares, Abreu, Araujo, and J.

Santos, 2018). Hence, in this chapter, we consider the hyperparameter optimisation

for both resampling techniques and classification algorithms. Furthermore, the

relation between the degree of class overlap and the improvement achieved via

hyperparameter tuning is investigated.

The results of our experiments demonstrate that an improvement can be

obtained by applying hyperparameter tuning. In the six scenarios, optimising

the hyperparameters for both classification algorithms and resampling approaches

gives the best performance for all six datasets. Further study shows that the data

complexity of the original data, especially the overlap between classes, influences

whether a significant improvement can be achieved through hyperparameter

optimisation. Compared to imbalanced datasets with high class overlap,

hyperparameter optimisation works more efficiently for imbalanced datasets with

low class overlap. In addition, we point out that resampling techniques are

not effective for all datasets, and their effectiveness is also affected by data

complexity in the original datasets. Hence, we recommend studying the data

complexity of imbalanced datasets before resampling the samples and optimising

the hyperparameters. Our work in this chapter has received more than 20 citations

from other researchers till the end of 2022, which indicates our contributions to

this topic.

4.2 Related Works

This section first introduces the resampling techniques used in this chapter. Then,

the definition of hyperparameter optimisation and the related literature in the

class-imbalance domain are given in Section 4.2.2.
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Chapter 4. Hyperparameter Optimisation on Class-Imbalance Problems

4.2.1 Resampling Techniques

This section describes four resampling techniques in our experiments, two

oversampling and two hybrid approaches. The two oversampling techniques,

SMOTE and ADASYN, have been introduced in detail in the previous chapters.

Therefore, we only provide details on the two hybrid approaches, SMOTETL and

SMOTEENN.

SMOTETL

In a classification problem, a Tomek link is defined as follows (Tomek, 1976): given

two samples xi and xj from different classes, d(xi,xj) the distance between xi
and xj , and xl is a random sample in the dataset. The pair (xi,xj) is defined as a

Tomek link if the following requirements hold,

∀xl, d(xi,xj) < d(xi,xl) and d(xi,xj) < d(xj ,xl). (4.1)

From the definition, a Tomek link is a pair of samples from different classes

that are the nearest neighbours for each other, and the samples in Tomek links are

either noise or borderline (Batista, Prati, and Monard, 2004).

Oversampling techniques aim to balance the class distribution via expanding

the minority class space. However, some synthetic minority class samples may

invade the majority class space, making the decision boundary blur. To alleviate this

problem, Batista et al. (Batista, Prati, and Monard, 2004) proposed to apply Tomek

links as an additional data cleaning method after SMOTE, and named the new

technique SMOTETL. In the SMOTETL technique, the first step is (1) to oversample

the minority classes using SMOTE and then (2) to identify the Tomek links. After

that, (3) the Tomek links for the oversampled samples are removed. In this way,

the SMOTETL technique provides a more clear decision boundary by removing part

of the samples in the overlapping region. Figure 4.1 gives an example of clearing

Tomek links for oversampled samples.

SMOTEENN

Similar to SMOTETL, SMOTEENN is also a hybrid method that combines

oversampling and data cleaning techniques. SMOTEENN uses Wilson’s Edited

Nearest Neighbours (ENN) (D. L. Wilson, 1972) to remove any sample that has

a different class from at least two of its three nearest neighbours (Lorena, L. P.
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4.2. Related Works

Figure 4.1: Example of clearing Tomek links for oversampled samples. © and the
black 4 indicate the majority and minority class samples respectively. The star
indicates the synthetic samples and each blue circle indicates a Tomek link.

Garcia, Lehmann, Souto, and Ho, 2018). For a binary class-imbalance problem,

SMOTEENN is implemented as follows: (1) the training set is oversampled via

SMOTE, then (2) for each sample in the training set, its three nearest neighbours

are found. After that, (3) any sample whose label contradicts the label of at least

two of its three nearest neighbours is removed. According to the ENN procedure,

more samples are removed than the Tomek links, i.e. ENN provides a deeper data

cleaning (Lorena, L. P. Garcia, Lehmann, Souto, and Ho, 2018).

4.2.2 Hyperparameter Optimisation

Most machine learning algorithms involve several hyperparameters, which have

to be set before the training process. Compared with randomly selecting the

hyperparameters in a learning algorithm, choosing a set of optimal hyperparameters

can improve the performance of the algorithm. For instance, in Random Forest,

the choice of the depth of a decision tree and the number of trees in a forest will

have an influence on the performance. To determine the optimal combination of

hyperparameters for a given problem/dataset naturally leads to the well-established

hyperparameter optimisation (or hyperparameter tuning) task.

Let A denote a typical machine learning algorithm with n hyperparameters, λ

denote a vector of hyperparameters and Λ denote the hyperparameter configuration

space, i.e. λ ∈ Λ. A learning algorithm with hyperparameters λ is represented by
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Chapter 4. Hyperparameter Optimisation on Class-Imbalance Problems

Aλ (Feurer and Hutter, 2019). Given a dataset X, the goal to find the optimal set

of hyperparameters λ∗ so as to minimize the predefined loss function L(·) can be

represented by (Bergstra, Bardenet, Bengio, and Kégl, 2011; Claesen and De Moor,

2015)

λ∗ = arg min
λ∈Λ

L(X(te);Aλ(X(tr)), (4.2)

where X(tr) and X(te) are the training set and validation set, which are given.

There are many approaches for performing hyperparameter optimisation. Grid

search is a traditional way of tuning hyperparameters. It starts with dividing the

search space into a discrete grid. Then, grid search performs an exhaustive search

on every combination of the hyperparameters, which always requires much time.

Random search is similar to grid search but replaces the exhaustive searching on

every combination with randomly selecting the combinations to test. Bayesian

hyperparameter optimisation approaches provide a less expensive way to optimise

the hyperparameters. Its strategy keeps tracking previously evaluated results

and uses the obtained information to form a surrogate probabilistic model of the

objective function (Bergstra, Bardenet, Bengio, and Kégl, 2011; Bergstra, Yamins,

and Cox, 2013). The hyperparameters for evaluation by the objective function

are selected by applying a criterion to the surrogate function, and this criterion

is defined by a selection function, e.g. Expected Improvement. The optimisation

procedure is described below.

• Form a surrogate probabilistic model of the objective function;

• Optimise the selection function over the surrogate model;

• Find the hyperparameter values which maximise the Expected Improvement;

• Evaluate these hyperparameters on the objective function;

• Update the surrogate according to the new performance;

• Iterate the 2nd - 5th step until time or other constraint is met.

Compared to the original objective function, the surrogate model is less

expensive to optimise because it chooses the next candidate hyperparameters

worth evaluating instead of wasting time on unworthy hyperparameters. In practice,

there are many software packages based on Bayesian hyperparameter optimisation,
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4.3. Experiments

e.g. Spearmint, SMAC, HyperOpt, SPOT, etc. In this chapter, a python library1,

HyperOpt (Bergstra, Komer, Eliasmith, Yamins, and Cox, 2015), is used to perform

the hyperparameter optimisation for classification algorithms.

In the field of imbalanced learning, the most basic methods are combining the

resampling techniques and machine learning classification algorithms; both involve

some hyperparameters that could be tuned. Hyperparameters in classifiers are

widely considered in classification tasks and this is also true in the imbalanced

learning domain. For example, (Thai-Nghe, Busche, and Schmidt-Thieme, 2009)

searches the best hyperparameters for their classifiers when improving academic

performance prediction by dealing with class imbalance. In (Shekar and Dagnew,

2019), researchers perform a grid search-based hyperparameter tuning on Random

Forest classifier when their imbalanced microarray cancer data. Some studies

also take the hyperparameters in resampling techniques into account. In (Douzas,

Bacao, and F. Last, 2018), authors tune the k nearest neighbours in SMOTE-related

resampling techniques. A representative study on hyperparameters in oversampling

techniques is (Agrawal and Menzies, 2018), They take the hyperparameters in

SMOTE into account and propose SMOTUNED, an auto-tuning version of SMOTE.

In their experiments, SMOTUNED improved the performance dramatically, e.g.

improvements in AUC up to 60% compared to SMOTE. In this chapter, we perform

a detailed study on hyperparameter optimisation for class imbalance problems, i.e.

considering six combinations of hyperparameters in both classification algorithm

and resampling techniques (see Table 4.1 in Section 4.1).

4.3 Experiments

In this section, we introduce the information on the datasets used in our

experiments. Then, the experimental setup is described. After that, the

experimental results and discussions are given.

4.3.1 Information on the Datasets

The experiments reported in this chapter are based on six imbalanced datasets from

the KEEL-collection (Alcalá-Fdez, Sánchez, S. Garcia, Jesus, Ventura, Garrell, Otero,

Romero, Bacardit, Rivas, et al., 2009). Detailed information on the datasets are

1available at: http://hyperopt.github.io/hyperopt/
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Chapter 4. Hyperparameter Optimisation on Class-Imbalance Problems

shown in Table 4.2. The overlap between classes is calculated by the Directional-

vector Maximum Fisher’s Discriminant Ratio (F1v). Lower F1v value indicates

higher overlap between classes (M. S. Santos, Soares, Abreu, Araujo, and J. Santos,

2018).

Table 4.2: Information on the datasets.

Dataset #Attributes #Examples #Classes IR F1v value

glass1 9 214 2 1.82 0.57

glass6 9 214 2 6.38 0.04

yeast3 8 1484 2 8.1 0.13

yeast4 8 1484 2 28.1 0.20

ecoli3 7 336 2 8.6 0.16

abalone19 8 4174 2 129.44 0.31

4.3.2 Experimental Setup

As mentioned in Section 4.1, we experiment with six imbalanced datasets, two

algorithms and four resampling techniques. Thus, in our experiment, we have

6 · 2 · 5 = 60 settings tested on each data set, with 6 scenarios, 2 classifiers,

and 5 resampling approaches (including none). My co-authored work (D. A.

Nguyen, Kong, H. Wang, Menzel, Sendhoff, Kononova, and Bäck, 2021) studies

hyperparameter optimisation on class-imbalance problems more extensively, it

includes experiments with more imbalanced datasets.

The hyperparameter optimisation for the classification algorithm is done

through HyperOpt. Hyperparameters in resampling approaches includes the

number of neighbours, imbalance ratio after resampling and etc. In our experiment,

hyperparameter optimisation for resampling approaches is done through grid

search. Whenever we optimise hyperparameters with “HyperOpt”, the AUC loss

(1-AUC) is set as the objective function to minimise and the number of iterations is

set to 500. For each experiment, we repeated 30 times with different random seeds.

After that, the paired t-tests were performed on each 30 AUC values to test if there

is significant difference between the results of each scenario on a 5% significance

level.
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4.4. Conclusions and Future Work

4.3.3 Experimental Results and Discussions

The experimental results are presented in Table 4.3 to investigate the importance of

hyperparameter optimisation for imbalanced datasets. For all the six datasets in our

experiment, we observe that optimising the hyperparameters for both classifiers

and resampling approaches gives the best performance. The statistical hypothesis

tests mentioned in Section 4.3.2 are performed on the AUC values of scenario

(Ad +Rd) and (Ao +Ro). The test results indicate that there is enough statistical

evidence showing the performance improvements are significant for datasets

“glass1", “yeast4" and “abalone19". In other words, applying the hyperparameter

optimisation does not bring significant improvement for datasets “glass6", “yeast3"

and “ecoli3". This experimental result demonstrates that significant improvement

can be achieved by performing hyperparameter optimisation for datasets with

high F1v values. That is to say, hyperparameter optimisation works efficiently for

datasets with low overlap between classes.

Furthermore, comparing the AUC values of scenario (Ad +Rn) and (Ad +Rd),

for datasets “glass6", “yeast3" and “ecoli3, resampling techniques does not improve

the classification performance. Thus, we can conclude that oversampling techniques

are not effective for datasets with high overlap. The generated synthetic samples

might bring additional noise and make the class overlap even higher. Another point

worth mentioning is that, compared to datasets with high overlap, we expected

the classification algorithms would perform better on datasets with low overlap.

However, the experimental results are contrary to our presupposition. This is

because the complexity of a classification problem is not only determined by the

overlap between classes but also related to other types of complexity, such as

linearity measures.

In the end, we can also observe that there is no specific combination of classifiers

and resampling techniques that can provide the best performance for all datasets.

For a given dataset, the best combination of classifiers and resampling approaches

might depend on the data complexity itself.

4.4 Conclusions and Future Work

In this chapter we considered six scenarios of hyperparameter optimisation for

classification algorithms and resampling approaches. Two main conclusions can be

derived according to our experimental results:
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Chapter 4. Hyperparameter Optimisation on Class-Imbalance Problems

1. In our experiment, the results of scenario (Ao + Ro) outperform the other

five scenarios. Especially for imbalanced datasets with low class overlap,

applying hyperparameter optimisation for both classification algorithms

and resampling approaches can significantly improve the performance.

Nevertheless, the time consumption caused by hyperparameter optimisation

is not negligible. Therefore, we recommend studying the data complexity

and considering the trade-off between time cost and potential improvement

before optimising the hyperparameters.

2. Based on our experimental results, we find oversampling techniques does

not give performance improvement for imbalanced datasets with high class

overlap. This further emphasizes the importance of learning the data

complexity before dealing with the imbalanced datasets.

In future work, more data complexity measures will be considered in order to

study the relation between hyperparameter optimisation and data complexity in

detail. Additionally, more attention should be put on developing techniques which

can efficiently handle complex imbalanced datasets. Finally, we observe the best

choice of classifiers and oversampling techniques depends on the dataset itself.

Therefore, another study worth exploring would be to produce a semi-automatic

approach which can help choosing the best combination of resampling approaches,

machine learning algorithms and hyperparameter optimisation strategies.
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