
Learning class-imbalanced problems from the perspective
of data intrinsic characteristics
Kong, J.

Citation
Kong, J. (2023, September 27). Learning class-imbalanced problems from the
perspective of data intrinsic characteristics. Retrieved from
https://hdl.handle.net/1887/3642254
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3642254
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3642254


CHAPTER 3

An Empirical Investigation

Comparing Several Oversampling

Techniques

Many resampling approaches have been developed in the imbalance learning

domain, most empirical studies and application work are still based on the

“classical" resampling techniques and do not take newly developed resampling

techniques into account. In this chapter, we investigate the effectiveness of six

oversampling techniques (both “classical" and new ones) and study the relationship

between data complexity measures and the choice of oversampling techniques.

This chapter is structured as follows. First, Section 3.1 briefly introduces our work

in this chapter. Then, in Section 3.2, the research related to our work is presented

including the relevant background knowledge on six resampling approaches and

data complexity measures. In Section 3.3, the experiments, including introduction

on the datasets, cross-validation and experimental setup are introduced. Section 3.3

also contains the results and discussions of our experiments. Further exploration

through data from a real-world inspired digital vehicle model is presented in

Section 3.4. Section 3.5 concludes the chapter and outlines further research.

3.1 Introduction

The classification problem under class imbalance has caught growing attention

from both, academic and industrial field. Due to recent advances, the progress in

technical assets for data storage and management as well as in data science enables

31



Chapter 3. An Empirical Investigation Comparing Several Oversampling
Techniques

practitioners from industry and engineering to collect a large amount of data with

the purpose of extracting knowledge and acquire hidden insights. An example may

be illustrated from the field of computational design optimization where product

parameters are modified to generate digital prototypes which performances are

evaluated by numerical simulations, or based on equations that express human

heuristics and preferences. Here, many parameter variations usually result in valid

and producible geometries but in the final steps of the optimization, i.e. in the area

where the design parameters converge to a local/global optimum, some geometries

are generated which violate given constraints. Under this circumstance, a database

would contain a large number of designs which are according to specifications

(even if some may be of low performance) and a smaller number of designs

which eventually violate pre-defined product requirements. By far, the resampling

techniques have proven to be effective in handling imbalanced benchmark datasets

(López, Fernández, García, Palade, and Herrera, 2013). However, the empirical

study and application work in the imbalanced learning domain are mostly focusing

on “classical" resampling techniques like SMOTE, ADASYN, and MWMOTE etc (J.

Li, L.-s. Liu, Fong, R. K. Wong, Mohammed, Fiaidhi, Sung, and K. K. Wong, 2017;

Luengo, Fernández, García, and Herrera, 2011; M. S. Santos, Soares, Abreu, Araujo,

and J. Santos, 2018), although there are many recently developed resampling

techniques.

In this chapter, we set up several experiments on 19 benchmark datasets to study

the effectiveness of six oversampling techniques (Kong, Rios, Kowalczyk, Menzel,

and Bäck, 2020b), including SMOTE, ADASYN, MWMOTE, RACOG, wRACOG

and RWO-Sampling. For each data set, we also compute seven data complexity

measures to investigate the relationship between data complexity measures and

the choice of resampling techniques, since researchers have pointed out that

studying the data complexity of imbalanced datasets is of vital importance (Luengo,

Fernández, García, and Herrera, 2011) and it may affect the choice of resampling

techniques (M. S. Santos, Soares, Abreu, Araujo, and J. Santos, 2018). We also

perform experiments on a real-world inspired vehicle dataset. Results of our

experiments demonstrate that in most cases oversampling techniques that take

into account the minority class distribution (RACOG, wRACOG, RWO-Sampling)

perform better and RACOG exhibits the best performance among the six reviewed

approaches. Results on our real-world inspired vehicle dataset further validate this

conclusion. No obvious relationship between data complexity measures and the

32



3.2. Related Work

choice of resampling techniques is found in our experiments. However, we find that

the F1v value, a measure for evaluating the overlap between classes which most

researchers ignore (Luengo, Fernández, García, and Herrera, 2011; M. S. Santos,

Soares, Abreu, Araujo, and J. Santos, 2018), has a strong negative correlation with

the potential after-sampled Area Under curve (AUC) value.

3.2 Related Work

Many effective sampling approaches have been developed in the imbalanced

learning domain and the synthetic minority oversampling technique (SMOTE)

is the most famous one among all. Currently, more than 90 SMOTE extensions

have been published in scientific journals and conferences (Fernández, García,

Galar, Prati, Krawczyk, and Herrera, 2018). Most of the review papers and

applications are based on the “classical" resampling techniques and do not take

new oversampling techniques into account. In this chapter, we briefly review

six oversampling approaches, including both, “classical" ones (SMOTE, ADASYN,

MWMOTE) and new ones (RACOG, wRACOG, RWO-Sampling) (Barua, Islam, Yao,

and Murase, 2012; Chawla, Bowyer, Hall, and Kegelmeyer, 2002; Das, Krishnan,

and Cook, 2014; H. He, Bai, E. A. Garcia, and S. Li, 2008; H. Zhang and M. Li,

2014). The six reviewed oversampling techniques can be divided into two groups

according to whether they consider the overall minority class distribution. Among

the six approaches, RACOG, wRACOG, and RWO-Sampling take into account

the overall minority class distribution while the other three do not. Apart from

developing new approaches to solve the class-imbalance problem, various studies

have pointed out that it is important to study the characteristics of the imbalanced

dataset (López, Fernández, García, Palade, and Herrera, 2013; M. S. Santos, Soares,

Abreu, Araujo, and J. Santos, 2018). In (López, Fernández, García, Palade, and

Herrera, 2013), authors emphasize the importance of studying the overlap between

the two-class samples. In (M. S. Santos, Soares, Abreu, Araujo, and J. Santos,

2018), authors set up several experiments with the KEEL benchmark datasets

(Alcalá-Fdez, Fernández, Luengo, Derrac, García, Sánchez, and Herrera, 2011) to

study the relationship between various data complexity measures and the potential

AUC value. It is also pointed out in (M. S. Santos, Soares, Abreu, Araujo, and

J. Santos, 2018) that the distinctive inner procedures of oversampling approaches

are suitable for particular characteristics of the data. Hence, apart from evaluating

33



Chapter 3. An Empirical Investigation Comparing Several Oversampling
Techniques

the effectiveness of the six reviewed oversampling approaches, we also aim to

investigate the relationship between data complexity measures and the choice of

resampling techniques.

3.2.1 Oversampling Techniques

As mentioned above, we investigate six oversampling techniques in two groups:

“classical" ones (SMOTE, ADASYN, MWMOTE) and “new" ones (RACOG, wRACOG,

RWO-sampling), depending on whether they consider the overall minority class

distribution. SMOTE has been introduced in Section 2 and in the following, the

remaining five oversampling techniques are introduced.

ADASYN

The adaptive synthetic (ADASYN) sampling technique aims to adaptively generate

minority class samples according to their distributions (H. He, Bai, E. A. Garcia, and

S. Li, 2008). The samples which are harder to learn are given higher importance

and will be oversampled more often in the data generation process. The key point

is to determine a weight/sampling importance (r̂i) for each minority class sample.

Weight r̂i of a minority class sample xi is defined as (H. He, Bai, E. A. Garcia, and

S. Li, 2008)

r̂i =
ri∑ms

i=1 ri
, ri =

∆i

K
, i = 1, ...,ms, (3.1)

where ms is the number of minority class samples, ∆i is the number of samples

in the K Nearest Neighbours (K-NN) of xi that belong to the majority class. For a

specific minority class sample, a higher value of ri corresponds to a higher difficulty

to learn. The number of synthetic samples that will be generated for different

minority class samples are proportional to their sampling importance (H. He, Bai,

E. A. Garcia, and S. Li, 2008)

gi = r̂i ·G, (3.2)

where G is the total number of synthetic minority class samples that need to be

produced. Figure 3.1 shows an example of the sampling importance for different

minority class samples.

Compared to SMOTE, the only difference in ADASYN oversampling procedure

is that more synthetic samples will be generated for harder minority class samples.

34



3.2. Related Work

Figure 3.1: Example of sampling importance for different minority class samples.
According to definition, r1 = r2 = 1, r3 = r4 = 0.8 and r̂1 = r̂2 > r̂3 = r̂4,
indicating the sampling importance of sample x1,x2 is higher than x3,x4 and
more synthetic samples will be produced for x1 and x2.

In this way, the ADASYN not only provides less learning bias but puts more focus

on the difficulty to learn minority class samples.

MWMOTE

Compared to other oversampling techniques, the majority weighted minority

oversampling technique (MWMOTE) improves the sample selection scheme and

the synthetic sample generation scheme (Barua, Islam, Yao, and Murase, 2012).

MWMOTE first finds the informative minority class samples (Simin) by removing

the “noise” minority class samples and finding the borderline majority class samples.

Then, every sample in Simin is given a selection weight (Sw), according to the

distance to the decision boundary, the sparsity of the located minority class cluster

and the sparsity of the nearest majority class cluster. These weights are converted

into the selection probability (Sp), which will be used in the synthetic sample

generation stage. Different from the K-NN-based approach, MWMOTE adopts a

clustering algorithm to generate the synthetic samples. The cluster-based synthetic

sample generation process proposed in MWMOTE can be described as, 1) cluster

all minority class samples into M clusters; 2) select a minority class sample x from

Simin according to Sp and randomly select another sample y from the same cluster

of x; 3) use the same equation (Eq. 2.1.1) employed in the K-NN-based approach

to generate the synthetic sample; 4) repeat 1) – 3) until the required number of

35



Chapter 3. An Empirical Investigation Comparing Several Oversampling
Techniques

synthetic samples is generated.

RACOG and wRACOG

The oversampling approaches can effectively increase the number of minority

class samples and achieve a balanced training dataset for classifiers. However, the

oversampling approaches introduced above heavily rely on local information of

the minority class samples and do not take the overall distribution of the minority

class into account. Hence, the global information of the minority class samples

cannot be guaranteed. In order to tackle this problem, Das et al. (Das, Krishnan,

and Cook, 2014) proposed RACOG (RApidly COnverging Gibbs) and wRACOG

(Wrapper-based RApidly COnverging Gibbs).

In both algorithms, the n-dimensional probability distribution of the minority

class is optimally approximated by Chow-Liu’s dependence tree algorithm and

the synthetic samples are generated from the approximated distribution using

Gibbs sampling (Das, Krishnan, and Cook, 2014). The minority class data points

are chosen as initial values to start the Gibbs sampler. Instead of running an

“exhausting” long Markov chain, the two algorithms produce multiple relatively

short Markov chains, each starting with a different minority class sample. RACOG

selects the new minority class samples from the Gibbs sampler using a predefined

lag and this selection procedure does not take the usefulness of the generated

samples into account. On the other hand, wRACOG considers the usefulness of the

generated samples and selects those samples which have the highest probability

of being misclassified by the existing learning model (Das, Krishnan, and Cook,

2014).

RWO-Sampling

Inspired by the central limit theorem, Zhang et al. (H. Zhang and M. Li, 2014)

proposed the random walk oversampling (RWO-Sampling) approach to generate

the synthetic minority class samples which follows the same distribution as the

original training data. Given an imbalanced dataset with multiple attributes, the

mean and the standard deviation for the ith attribute ai (i ∈ {1, 2, 3, ...,m}) in

minority class data can be calculated and denoted by µi and σi. Under the central

limit theorem, as the number of the minority class samples approaches infinity, the

36



3.2. Related Work

following formula holds:

µi − µ′i
σ′i/
√
n
→ N(0, 1), (3.3)

where µ′i and σ′i are the real mean and standard deviation for attribute ai.

In order to add m synthetic samples to the n original minority class samples,

we first select at random m examples from the minority class and then for each

of the selected examples x = (x1, ..., xm) we generate its synthetic counterpart

by replacing ai(j) (the ith attribute in xj , j ∈ {1, 2, ...,m}) with µi − ri · σi/
√
n,

where µi and σi denote the mean and the standard deviation of the ith feature

restricted to the original minority class, and ri is a random value drawn from the

standard Gaussian distribution. We can repeat the above process until we reach

the required mount of synthetic examples. Since the synthetic sample is achieved

by randomly walking from one real sample, this oversampling is called random

walk oversampling.

3.2.2 Data Complexity

The motivation for studying the data complexity in imbalanced data is that some

researchers (Luengo, Fernández, García, and Herrera, 2011; M. S. Santos, Soares,

Abreu, Araujo, and J. Santos, 2018) find no clear relationship between imbalance

ratio (IR) and the classification performance obtained via resampling. From their

empirical studies, they conclude that IR is not a sufficient measure to identify

the potential performance improvement of the data-level approaches (Luengo,

Fernández, García, and Herrera, 2011). Therefore, they analyse the resampling

techniques through data complexity measures (detailed introduced in Section 2.3)

in further studies. One of the main results is that the Fisher discriminant ratio

(F1) is informative in characterising the imbalanced classification performance.

Following the idea of studying the data complexity in the context of class imbalance,

Chen et al. (L. Chen, Fang, Shang, and Tang, 2018) studied the relationship

between class overlap and class imbalance in software defect prediction problems.

In (M. S. Santos, Soares, Abreu, Araujo, and J. Santos, 2018), authors conduct

detailed experiments to study the relationship between data complexity measures

and imbalanced classification performance. In their regression analysis across a

range of datasets, the obtained regression model can predict the AUC performance

based on complexity measures with an average R2 = 0.72.

37



Chapter 3. An Empirical Investigation Comparing Several Oversampling
Techniques

3.3 Experiments

In this section, we introduce the information on the datasets used in our

experiments. Then, the cross-validation in imbalanced learning is described. After

that, the experimental setup and results are given.

3.3.1 Information on the Datasets

The experiments reported in this chapter are based on 19 two-class imbalanced

datasets from the KEEL-collection (Alcalá-Fdez, Fernández, Luengo, Derrac, García,

Sánchez, and Herrera, 2011). The 19 collected binary datasets are manually

decomposed from four multi-class datasets: ecoli, glass, vehicle and yeast. Detailed

information on the datasets are given in Table 3.1 & Table 3.2.

Table 3.1: Information on datasets divided into 4 groups.

Datasets #Attributes #Samples Imbalance Ratio (IR)

ecoli{1,2,3,4} 7 336 { 3.36, 5.46, 8.6, 15.8 }

glass{0,1,2,4,5,6} 9 214 { 2.06, 1.82, 11.59, 15.47, 22.78, 6.38 }

vehicle{0,1,2,3} 18 846 { 3.25, 2.9, 2.88, 2.99 }

yeast{1,3,4,5,6} 8 1484 { 2.46, 8.1, 28.1, 32.73, 41.4 }

Table 3.2: Further description of the datasets (Alcalá-Fdez, Fernández, Luengo,
Derrac, García, Sánchez, and Herrera, 2011)

Datasets Description

ecoli
This is a protein localization sites classification dataset, which contains

8 classes. It is artificially modified into 4 binary datasets, where the sample
proportions are { 77:259 ; 52:284 ; 35:301 ; 20:316 }.

glass
This is a glass identification dataset, which contains 6 classes. It is

artificially modified into 6 binary datasets, where the sample proportions
are { 70:144 ; 76:138 ; 17:197 ; 13:201 ; 9:205 ; 29:185 }.

vehicle
This is a vehicle silhouettes dataset, which contains 4 classes. It is

artificially modified into 4 binary datasets, where the sample proportions
are { 199:647 ; 217:629 ; 218:628 ; 212:634 }.

yeast
This is a protein localization sites classification dataset, which contains

10 classes. It is artificially modified into 5 binary datasets, where the sample
proportions are { 429:1055 ; 163:1321 ; 51:1433 ; 44:1440 ; 35:1449 }.

38



3.3. Experiments

3.3.2 Cross-Validation in Imbalanced Learning

Cross-validation (CV) is an effective technique to assess classification performance.

It allows different portions of the data for training and testing a model (Bishop

and Nasrabadi, 2006). In traditional k-fold CV, the original dataset is randomly

partitioned into k folds, where k-1 folds are used to train the model and the left

one is retained as a validation fold to test the model performance. Then, every

fold iterates to be the validation fold to ensure that all folds are used for training

and testing the model. After k iterations, the final performance can be estimated

by averaging the k results. One significant advantage of this procedure is that

the validation fold is unseen in the training process. In the imbalanced learning

domain, data-level approaches are commonly used to deal with the imbalance in the

datasets. Some researchers emphasize the importance of correctly understanding

the joint use of CV and data-level approaches. They point out that a poorly designed

CV procedure for imbalanced datasets will result in overfitting and overoptimism

problems (Lusa et al., 2015; M. S. Santos, Soares, Abreu, Araujo, and J. Santos,

2018).

According to Oxford English Dictionary 1, overfitting is a statistical term with

definition “the production of an analysis which corresponds too closely or exactly

to a particular set of data, and may therefore fail to fit additional data or predict

future observations reliably". This term is then extended to machine learning,

which means the learning model is highly fitted to the training data and, therefore,

has poor ability to generalise on unseen data. The CV technique can alleviate the

overfitting problem in most cases. However, when learning from imbalanced data,

some oversampling techniques produce exact replicas of some samples (Lusa et al.,

2015). Too many same patterns in the training set will result in overfitting of the

model even with CV technique.

Overoptimism occurs when the training and test sets contain exact or similar

replicas of some patterns (M. S. Santos, Soares, Abreu, Araujo, and J. Santos, 2018).

For example, suppose we first obtain a balanced dataset through oversampling

approaches and then perform cross-validation when dealing with imbalanced

datasets. In this way, since the synthetic samples share similar patterns with the

original sample, samples with similar patterns may appear in both training and test

set, which will lead to the overoptimism problem. In our experiments, we perform

k-fold stratified CV before applying the six introduced oversampling techniques.

1https://www.oed.com/

39



Chapter 3. An Empirical Investigation Comparing Several Oversampling
Techniques

The stratified folds ensure that the imbalance ratio in the training set is consistent

with the original dataset.

3.3.3 Experimental Setup

In this chapter, six oversampling approaches (using the R package imbalance

(Cordón, García, Fernández, and Herrera, 2018)), which have been reviewed in

Section 3.2.1, are applied to the 19 two-class imbalanced datasets in Table 3.1.

Every collected dataset is divided into 5 stratified folds for cross-validation and

only the training set is oversampled, where the stratified fold ensures that the

imbalance ratio in the training set is consistent with the original dataset and only

oversampling the training set avoids the over-optimism problem (Lorena, L. P.

Garcia, Lehmann, Souto, and Ho, 2019).

In this chapter, we aim to study the effectiveness of different oversampling

approaches and investigate the relationship between data complexity measures

and the choice of oversampling techniques. Therefore, we calculate the 7 data

complexity measures (Table 2.2) for each dataset. In our 30 experiments for each

dataset, we calculate the 7 data complexity measures for every training set using

the R package ECoL (Lorena, L. P. Garcia, Lehmann, Souto, and Ho, 2019) (Table

3.3). Since we use 5 stratified cross-validations, we average each data complexity

measure for these 5 training sets and define it to be the data complexity measure

for the dataset.

In a binary classification problem, the confusion matrix can provide intuitive

classification results. In the class imbalance domain, it is widely admitted that

Accuracy tends to result in a deceptive evaluation of the performance. Instead of

Accuracy, the Area Under the ROC Curve (AUC) and geometric mean (GM) are

used to evaluate the performance (details can be checked in Section 2.1).

40



3.3. Experiments

Table 3.3: Data complexity for 19 collected datasets.

Dataset F1 F1v F2 F3 L1 L2 L3

ecoli1 0.8785 0.1248 0.0229 0.5814 0.0523 0.0955 0.0586

ecoli2 0.9154 0.1323 0.0000 0.7175 0.0514 0.0806 0.0588

ecoli3 0.9248 0.1557 0.0058 0.4257 0.0516 0.0771 0.0629

ecoli4 0.9291 0.0614 0.0005 0.3584 0.0088 0.0163 0.0152

glass0 0.9525 0.3728 0.0000 0.7002 0.1181 0.2232 0.1873

glass1 0.9808 0.5749 0.0068 0.8896 0.2046 0.3409 0.3378

glass2 0.9913 0.3540 0.0000 0.5279 0.0732 0.0794 0.0778

glass4 0.9497 0.0956 0.0027 0.2784 0.0312 0.0441 0.0378

glass5 0.9753 0.1312 0.0000 0.1402 0.0061 0.0186 0.0154

glass6 0.8373 0.0435 0.0095 0.3775 0.0252 0.0260 0.0185

vehicle0 0.9156 0.0812 0.0001 0.5425 0.0103 0.0261 0.0082

vehicle1 0.9720 0.2606 0.0003 0.9362 0.0929 0.1758 0.1397

vehicle2 0.9735 0.0760 0.0024 0.7702 0.0172 0.0300 0.0142

vehicle3 0.9730 0.3075 0.0006 0.9595 0.1041 0.1818 0.1595

yeast1 0.9638 0.4407 0.0000 0.9587 0.1553 0.2496 0.2418

yeast3 0.9554 0.1343 0.0000 0.4588 0.0433 0.0510 0.0365

yeast4 0.9802 0.2013 0.0000 0.8734 0.0332 0.0344 0.0338

yeast5 0.9580 0.1049 0.0000 0.1139 0.0142 0.0224 0.0182

yeast6 0.9791 0.1468 0.0000 0.6514 0.0225 0.0232 0.0238

41



Chapter 3. An Empirical Investigation Comparing Several Oversampling
Techniques

3.3.4 Experimental Results and Discussion

The AUC results for C5.0 decision tree and SVM in our experiments are presented

in Table 3.4 and Table 3.5. Geometric mean results can be found in Table 3.6

and Table 3.7. In the experimental results of the decision tree, we observe that

RACOG outperforms the other 5 oversampling techniques in 8 out of 19 datasets.

The same conclusion can also be drawn from the experimental results of SVM. It

is worth mentioning that RACOG costs more time than the other five considered

oversampling techniques due to the execution of the Markov chain in its data

generation process. From our experimental results, we conclude that, in most cases,

oversampling approaches which consider the minority class distribution (RACOG,

wRACOG and RWO-Sampling) perform better.

It was expected that data complexity can provide some guidance for choosing

the oversampling technique, however, from our experimental results, no obvious

relationship between data complexity and the choice of oversampling approaches

can be concluded. This is because the 6 introduced oversampling approaches are

designed for common datasets and do not take a specific data characteristic into

account.

According to our experimental results, although the data complexity measures

cannot provide guidance for choosing the most promising oversampling approaches,

we find that there is a strong correlation between the potential best AUC (after

oversampling) and some of the data complexity measures. From Figure 3.2

and Table 3.8, it can be concluded that the potentially best AUC value that

can be achieved through C5.0 decision tree and oversampling techniques has

an extreme negative correlation with the F1v value and the linearity measures.

In the imbalanced learning domain, many researchers focus on studying data

complexity measures. In (Lorena, L. P. Garcia, Lehmann, Souto, and Ho, 2019),

the authors propose that the potentially best AUC value after resampling can

be predicted through various data complexity measures. However, they did not

consider the F1v measure, which has the strongest correlation with AUC value

according to our findings. Hence, we recommend using F1v to evaluate the overlap

in imbalanced datasets.

42



3.3. Experiments

Table 3.4: AUC results for C5.0 decision tree.

Dataset Baseline SMOTE ADASYN MWMOTE RACOG wRACOG RWO

ecoli1 0.9408 0.9428 0.9342 0.9414 0.9453 0.9384 0.9432

ecoli2 0.8736 0.9190 0.9102 0.9112 0.9133 0.8987 0.9143

ecoli3 0.7765 0.9170 0.9013 0.9049 0.9204 0.8648 0.9126

ecoli4 0.8403 0.9271 0.8832 0.9235 0.9244 0.8896 0.9020

glass0 0.8179 0.8328 0.8254 0.8345 0.8470 0.8391 0.8364

glass1 0.6995 0.7391 0.7440 0.7473 0.7588 0.7493 0.6944

glass2 0.7309 0.8189 0.8201 0.7995 0.8159 0.7960 0.7125

glass4 0.8461 0.9227 0.9203 0.9126 0.9216 0.8542 0.9252

glass5 0.9950 0.9927 0.9931 0.9935 0.9940 0.9952 0.9932

glass6 0.9341 0.9357 0.9306 0.9385 0.9388 0.9386 0.9354

vehicle0 0.9722 0.9730 0.9736 0.9723 0.9737 0.9739 0.9679

vehicle1 0.7430 0.7993 0.7916 0.7977 0.7970 0.8000 0.7738

vehicle2 0.9735 0.9722 0.9748 0.9757 0.9803 0.9815 0.9766

vehicle3 0.7858 0.8001 0.7954 0.8115 0.8158 0.8117 0.7907

yeast1 0.7318 0.7380 0.7282 0.7473 0.7536 0.6766 0.7279

yeast3 0.9335 0.9594 0.9580 0.9602 0.9642 0.9551 0.9422

yeast4 0.7769 0.9020 0.8989 0.8884 0.8549 0.8142 0.8367

yeast5 0.9555 0.9769 0.9773 0.9773 0.9761 0.9688 0.9772

yeast6 0.7307 0.8792 0.8850 0.8789 0.8806 0.7815 0.8868

43



Chapter 3. An Empirical Investigation Comparing Several Oversampling
Techniques

Table 3.5: AUC results for SVM.

Dataset Baseline SMOTE ADASYN MWMOTE RACOG wRACOG RWO

ecoli1 0.9518 0.9483 0.9435 0.9471 0.9458 0.9513 0.9455

ecoli2 0.9580 0.9563 0.9590 0.9564 0.9958 0.9602 0.9552

ecoli3 0.9459 0.9508 0.9462 0.9502 0.9518 0.9512 0.9485

ecoli4 0.9949 0.9922 0.9905 0.9908 0.9907 0.9948 0.9900

glass0 0.8390 0.8515 0.8475 0.8489 0.8535 0.8461 0.8527

glass1 0.7741 0.7765 0.7764 0.7749 0.7802 0.7777 0.7770

glass2 0.8206 0.8483 0.8471 0.8414 0.8609 0.8296 0.8626

glass4 0.9863 0.9855 0.9862 0.9853 0.9836 0.9862 0.9856

glass5 0.9698 0.9807 0.9806 0.9797 0.9785 0.9708 0.9776

glass6 0.9800 0.9773 0.9744 0.9739 0.9766 0.9809 0.9755

vehicle0 0.9956 0.9959 0.9954 0.9948 0.9950 0.9951 0.9906

vehicle1 0.8609 0.8889 0.8886 0.8913 0.8822 0.8812 0.8487

vehicle2 0.9952 0.9953 0.9960 0.9949 0.9948 0.9955 0.9943

vehicle3 0.8492 0.8724 0.8717 0.8709 0.8676 0.8611 0.8492

yeast1 0.7803 0.7874 0.7875 0.7826 0.7959 0.7768 0.7911

yeast3 0.9730 0.9685 0.9678 0.9689 0.9716 0.9727 0.9686

yeast4 0.8416 0.8843 0.8838 0.8878 0.8990 0.8703 0.8853

yeast5 0.9804 0.9867 0.9871 0.9868 0.9837 0.9827 0.9865

yeast6 0.8334 0.9264 0.9158 0.9272 0.9295 0.8709 0.9191

44



3.3. Experiments

Table 3.6: Geometric mean results for C5.0 decision tree.

Dataset Baseline SMOTE ADASYN MWMOTE RACOG wRACOG RWO

ecoli1 0.8319 0.8851 0.8769 0.8861 0.8865 0.8727 0.8562

ecoli2 0.8519 0.8829 0.8742 0.8784 0.8854 0.8701 0.8720

ecoli3 0.7173 0.8281 0.8100 0.8173 0.7762 0.7527 0.7458

ecoli4 0.8276 0.8617 0.8415 0.8610 0.8681 0.8442 0.8540

glass0 0.7691 0.7799 0.7727 0.7846 0.7879 0.7773 0.7829

glass1 0.7082 0.7179 0.7181 0.7193 0.7205 0.7233 0.6879

glass2 0.3966 0.6083 0.6194 0.5702 0.4938 0.5286 0.4399

glass4 0.6838 0.8513 0.8427 0.8344 0.8047 0.6930 0.8388

glass5 0.8868 0.9121 0.9030 0.9087 0.8850 0.9199 0.9076

glass6 0.8828 0.9069 0.8853 0.9078 0.8969 0.8792 0.8947

vehicle0 0.9158 0.9155 0.9201 0.9240 0.9249 0.9215 0.9228

vehicle1 0.6271 0.7104 0.7031 0.7089 0.7054 0.7119 0.6475

vehicle2 0.9455 0.9534 0.9587 0.9569 0.9491 0.9509 0.9596

vehicle3 0.6439 0.7119 0.7084 0.7113 0.7121 0.7059 0.6454

yeast1 0.6335 0.6893 0.6917 0.6925 0.7024 0.6461 0.6307

yeast3 0.8668 0.9106 0.9156 0.9067 0.9184 0.8959 0.8853

yeast4 0.5011 0.7006 0.6879 0.7390 0.6466 0.5725 0.5000

yeast5 0.8394 0.9305 0.9399 0.9288 0.9058 0.8669 0.8629

yeast6 0.6224 0.7688 0.7831 0.7880 0.7501 0.7076 0.7060

45



Chapter 3. An Empirical Investigation Comparing Several Oversampling
Techniques

Table 3.7: Geometric mean results for SVM. “—" means that TP+FN=0 or
TP+FP=0 and the performance metric cannot be computed.

Dataset Baseline SMOTE ADASYN MWMOTE RACOG wRACOG RWO

ecoli1 0.8292 0.8810 0.8844 0.8782 0.8845 0.8622 0.8801

ecoli2 0.7278 0.9326 0.9179 0.9324 0.9297 0.7399 0.9306

ecoli3 0.6108 0.8722 0.8668 0.8748 0.8764 0.6615 0.8729

ecoli4 0.7132 0.9079 0.8987 0.9017 0.9191 0.7158 0.8992

glass0 0.7234 0.7900 0.7909 0.7850 0.7866 0.7741 0.7881

glass1 0.6419 0.6908 0.6883 0.6894 0.6951 0.6942 0.6861

glass2 — 0.7138 0.7080 0.7207 0.7592 — 0.7664

glass4 0.7079 0.8606 0.8692 0.8603 0.8658 0.7181 0.8776

glass5 0.0283 0.6663 0.6664 0.6644 0.6899 0.0679 0.7630

glass6 0.8374 0.8862 0.8926 0.8799 0.8889 0.8459 0.8818

vehicle0 0.9525 0.9731 0.9730 0.9682 0.9693 0.9677 0.9599

vehicle1 0.5668 0.8176 0.8199 0.8183 0.8073 0.8020 0.6520

vehicle2 0.9621 0.9728 0.9754 0.9727 0.9657 0.9687 0.9591

vehicle3 0.5115 0.8017 0.8048 0.8056 0.7986 0.7943 0.6347

yeast1 0.5888 0.7123 0.7123 0.7107 0.7193 0.6864 0.7162

yeast3 0.8428 0.8978 0.9023 0.8956 0.9141 0.8658 0.9020

yeast4 0.0084 0.7484 0.7527 0.7560 0.8021 0.3774 0.7525

yeast5 0.6463 0.9255 0.9278 0.9245 0.9342 0.7618 0.9377

yeast6 0.3701 0.8257 0.8063 0.8279 0.8541 0.5605 0.8310

46



3.3. Experiments

Figure 3.2: Correlation matrix. (Lorena, L. P. Garcia, Lehmann, Souto, and Ho,
2019).

Table 3.8: Results of Hypothesis Test.

Measure
Correlation
Coefficient P-value

Correlation
Level

F1 -0.3872 0.1014 medium

F1v -0.8928 2.736×10−7 extreme

F2 0.1156 0.6374 none

F3 -0.7138 0.0006 high

L1 -0.8876 4.013×10−7 extreme

L2 -0.8523 3.611×10−6 extreme

L3 -0.8699 1.304×10−6 extreme

47



Chapter 3. An Empirical Investigation Comparing Several Oversampling
Techniques

3.4 Efficient Oversampling for Engineering Vehicle

Mesh Dataset

In this section, we propose the application of the reviewed methods on the quality

prediction of geometric computer aided engineering (CAE) models. For some CAE

applications, like e.g. aerodynamic performance evaluation, engineers discretize

the geometric models using surface meshes (undirected graphs). Each mesh

consists of a set of nodes (vertices), and a set of edges connecting the nodes to form

faces and volumes (elements). In computer simulations, equations describing the

physical phenomena are solved with respect to the vertices allowing to approximate

the solution between nodes and calculate performance features of a design, e.g.

drag values as aerodynamic design quality. The meshes are generated from an

initial geometric representation, e.g. non-uniform rational B-Splines (NURBS)

or stereolithography (STL) representations, using numerical algorithms, such as

sweep-hull for Delaunay triangulation (Sinclair, 2016), polycube (Livesu, Vining,

Sheffer, Gregson, and Scateni, 2013) etc.

In most cases, the quality of the mesh plays an important role concerning the

accuracy and fidelity of the results (Knupp, 2008). Engineers use different types of

metrics to infer the quality of the mesh, but it is common sense that increasing the

number and uniformity of the elements in the mesh improves the accuracy of the

simulation results. However, the computational effort associated with meshing is

proportional to the target level of refinement. Therefore, a match between accuracy

and available computational resources is often required, especially for cases that

demand iterative geometric modifications, such as shape optimization.

Shape morphing techniques address this issue by operating on the mesh nodes

through a polynomial-based lower-dimensional representation. Such techniques

avoid re-meshing of the simulation domain, thus, speeding up the optimization

process. Several cases of optimization using morphing techniques are published in

the literature (Menzel, Olhofer, and Sendhoff, 2005; Menzel and Sendhoff, 2008;

Olhofer, Bihrer, Menzel, Fischer, and Sendhoff, 2009; Sieger, Menzel, and Botsch,

2015). For our experiments, we implemented the free form deformation (FFD)

method presented in (Sederberg and Parry, 1986). To prepare design deformations

based on FFD, the geometry of interest is embedded in a uniform parallelepiped

lattice, where a trivariate Bernstein polynomial maps the position of the control

points of the lattice to the nodes of the mesh, as an IR3 → IR3 function. Therefore,

48



3.4. Efficient Oversampling for Engineering Vehicle Mesh Dataset

Figure 3.3: Example of free form deformation applied to a configuration of the
TUM DrivAer model (Heft, Indinger, and Adams, 2012) using a lattice with four
planes in each direction.

Figure 3.4: Free form deformation lattice used to generate the data set for the
experiments.

by deforming the lattice, the nodes of the mesh are moved accordingly (Figure

3.3).

In order to embed the geometry in the lattice, a local coordinate system is

defined taking as vector basis the unitary vectors (~s,~t, ~u), normal to the faces of

the parallelepiped and origin in v0. Then, the coordinates of the mesh nodes are

described according to the new basis, using the following linear transformation:

v = v0 + S~s+ T~t+ U~u (3.4)

where v is the mesh node described in global coordinate system and the new

coordinates S, T and U belong to the interval [0, 1]. Given the set that contains

the points pijk defined by the intersection of the planes that form the lattice, the

coordinates of any mesh node can be calculated using the trivariate Bernstein

49



Chapter 3. An Empirical Investigation Comparing Several Oversampling
Techniques

polynomial, defined as

vFFD =

l∑
i=0

(
l

i

)
(1− S)l−iSi

{
m∑
j=0

(
m

j

)
(1− T )m−jT j

[
n∑

k=0

(
n

k

)
(1− U)n−kUkpijk

]} (3.5)

where vFFD is the deformed point; l,m, n are respectively the number of control

planes in the ~s-, ~t- and ~u-direction.

The continuity of the surfaces is ensured by the mathematical formulation of

the FFD up to the order of k − 1, where k is the number of planes in the direction

of interest, but the mesh quality is not necessarily maintained. The designer

can either avoid models with ill-defined elements by applying constraints to the

deformations, which might be unintuitive, or eliminate them by performing regular

quality assessments. Addressing this issue, we propose the classification of the

deformation parameters with respect to the quality of the output meshes, based on

a data set of labeled meshes. Further than reducing the risk of generating infeasible

meshes for CAE applications, our approach avoids unnecessary computation to

generate the deformed meshes, which is aligned with the objective of increasing

the efficiency of shape optimization tasks.

3.4.1 Generation of a Synthetic Data Set

For the experiments we adopted the computational fluid dynamics (CFD) simulation

of a configuration of the TUM DrivAer model (Heft, Indinger, and Adams, 2012).

The simulation model is deformed using the discussed FFD algorithm, realized as a

lattice with 7 planes in x- and z-directions, and 10 in y-direction (Fig. 3.4). The

planes closer to the boundaries of the control volume are not displaced in order

to enable a smooth transition from the region affected by the deformations to the

original domain. Assuming symmetry of the shape with respect to the vertical plane

(xz) and deformations caused by the displacement of entire control planes only in

the direction of their normal vectors, it yields a design space with 9 parameters. To

generate the data set, the displacements xi were sampled from a random uniform

distribution and constrained to the volume of the lattice, allowing the overlap of

planes.

50



3.4. Efficient Oversampling for Engineering Vehicle Mesh Dataset

The initial mesh was generated using the algorithms blockMesh and

snappyHexMesh of OpenFOAM®2. We automatically generated 994 valid meshes

based on the FFD algorithm implemented in Python and evaluated them using

the OpenFOAM checkMesh algorithm. The metrics used to define the quality

of the meshes were the number of warnings raised by the checkMesh algorithm,

the maximum skewness and maximum aspect ratio. We manually labeled the

feasible meshes according to the rules shown in Table 3.9. The imbalance ratios

after manually labelling are also given in Table 3.9. Please note that the input

attributes are exactly the same for all three sets of datasets, only the “class" labels

are different. In this way, the values of data complexity measures (Table 3.10) for

the three datasets vary from each other.

3.4.2 Experimental Results and Discussion

The experimental results on the digital vehicle dataset are given in Table 3.11. In

line with our conclusions for the KEEL-dataset experiments (Section 3.3.4), we find

that RACOG outperforms the other 5 oversampling techniques in 2 out of 3 datasets.

Therefore, combining our experimental results on both benchmark and real-world

inspired datasets, we conclude that RACOG performs the best out of the considered

6 oversampling approaches. Moreover, we find that applying the oversampling

techniques can improve the performance by around 10% for our digital vehicle

datasets. We also calculate the data complexity measures for our digital vehicle

datasets and our findings on the correlation between the potential AUC value and

the data complexity measures remain consistent with the conclusions in Section.

Table 3.9: Feasible meshes labeling rule.

Dataset #Attribute #Sample #Warnings Max skewness Max aspect ratio IR
set1 9 994 <4 <6 <10 3.76
set2 9 994 <2 <5.8 <10.3 6.83
set3 9 994 <4 <5.6 <10.3 12.43

Table 3.10: Data complexity HRI.

Dataset F1 F1v F2 F3 L1 L2 L3
set1 0.9809 0.4360 0.3123 0.9072 0.1737 0.2103 0.2115
set2 0.9950 0.7030 0.1619 0.8900 0.1133 0.1278 0.1325
set3 0.9840 0.2854 0.0962 0.7953 0.0693 0.0744 0.0709

2https://www.openfoam.com

51



Chapter 3. An Empirical Investigation Comparing Several Oversampling
Techniques

Table 3.11: Experimental Results (AUC) on Digital Vehicle Dataset.

Dataset Baseline SMOTE ADASYN MWMOTE RACOG wRACOG RWO
set1 0.7927 0.8332 0.8279 0.8458 0.8512 0.8436 0.8240
set2 0.5864 0.7619 0.7517 0.7590 0.7633 0.7437 0.7583
set3 0.6511 0.8215 0.8169 0.8341 0.8246 0.8114 0.8065

Table 3.12: Experimental Results (Geometric mean) on Digital Vehicle Dataset.

Dataset Baseline SMOTE ADASYN MWMOTE RACOG wRACOG RWO
set1 0.6975 0.7557 0.7492 0.7577 0.7612 0.7530 0.7295
set2 0.2685 0.6685 0.6622 0.6670 0.6781 0.6520 0.6414
set3 0.3373 0.6657 0.6683 0.6878 0.6725 0.6573 0.5952

3.5 Conclusions

In this work, we reviewed six oversampling techniques, including “classical" ones

(SMOTE, ADASYN and MWMOTE) and new ones (RACOG, wRACOG and RWO-

Sampling), in which the new ones consider the minority class distribution while the

“classical" ones do not. The six reviewed oversampling approaches were applied to

19 benchmark imbalanced datasets and an imbalanced real-world inspired vehicle

dataset to investigate their effectiveness. Seven data complexity measures were

considered in order to find the relationship between data complexity measures and

the choice of resampling techniques. According to our experimental results, two

main conclusions can be derived:

• In our experiment, in most cases, oversampling approaches which consider

the minority class distribution (RACOG, wRACOG and RWO-Sampling)

perform better. For both benchmark datasets and our real-world inspired

dataset, RACOG performs best. However, the trade-off between performance

improvement and the time cost should be considered while using RACOG.

• No obvious relationship between data complexity measures and the choice

of resampling techniques can be derived from our experimental results.

However, we find that the F1v value has a strong correlation with the

potential best AUC value (after resampling) while only rarely researchers in

52



3.5. Conclusions

the imbalance learning domain consider F1v value for evaluating the overlap

between classes.

In this chapter, we applied the oversampling techniques for benchmark datasets

and our digital vehicle dataset and evaluated their effectiveness. In the next chapter,

we will study hyperparameter optimisation on class-imbalance problems.

53





CHAPTER 4

Hyperparameter Optimisation on

Class-Imbalance Problems

Although the class-imbalance classification problem has caught a huge amount

of attention, hyperparameter optimisation has not been studied in detail in this

field. Both classification algorithms and resampling techniques involve some

hyperparameters that can be tuned. In this chapter, we study hyperparameter

optimisation on class-imbalance problems and investigate the relation between

the degree of class overlap and the improvement yielded via hyperparameter

tuning. This chapter is divided as follows. First, Section 4.1 shows the motivation

and provides a brief introduction on our work. After that, in Section 4.2, the

resampling techniques used in this chapter and the background knowledge on

hyperparameter optimisation are presented. In Section 4.3, the information on the

datasets, the experimental setup as well as the experimental results and discussion

are introduced. Section 4.4 concludes the chapter and outlines the further work.

4.1 Introduction

Over years of development, many techniques have proven to be efficient in handling

imbalanced datasets. These methods can be divided into data-level approaches

and algorithmic-level approaches (Bhowan, Johnston, M. Zhang, and Yao, 2012;

Ganganwar, 2012; M. S. Santos, Soares, Abreu, Araujo, and J. Santos, 2018), where

the data-level approaches aim to produce balanced datasets and the algorithmic-

level approaches aim to adjust classical classification algorithms in order to make

them appropriate for handling imbalanced datasets.

By far, the most commonly used approach for handling imbalanced data

55



Chapter 4. Hyperparameter Optimisation on Class-Imbalance Problems

is a combination of resampling techniques and machine learning classification

algorithms (López, Fernández, Moreno-Torres, and Herrera, 2012). Research works

also focused on these two separate parts, developing new resampling techniques

and adjusting machine learning algorithms to be more appropriate for imbalanced

datasets. Both resampling techniques and machine learning algorithms involve

some hyperparameters that are set to some default values and could be tuned.

A minor variation of these hyperparameters might influence the performance

significantly. However, hyperparameter optimisation has not been studied yet in

detail in the context of learning from imbalanced data, where both components

could be tuned simultaneously.

Previous research has considered the hyperparameters for the classifiers for

class-imbalance problems (Thai-Nghe, Busche, and Schmidt-Thieme, 2009), but

the hyperparameters in resampling techniques are not included. Agrawal et al.

(Agrawal and Menzies, 2018) take the hyperparameters in SMOTE into account

and propose an auto-tuning version of SMOTE. In this chapter, we explore the

potential of applying hyperparameter optimisation for the automatic construction of

high-quality classifiers for imbalanced data. In our research, we experiment with a

small collection of imbalanced datasets and two classification algorithms: Random

Forest and SVM. In each experiment we consider six scenarios for hyperparameter

optimisation (see Table 4.1). For classification algorithms, we consider two

conditions, algorithms with default hyperparameters (Ad) and algorithms with

optimised hyperparameters (Ao). For resampling approaches, we consider

three conditions, no resampling applied (Rn), resampling applied with default

hyperparameters (Rd) and resampling applied with optimised hyperparameters

(Ro).

Table 4.1: Six scenarios in our experiments.

Scenario Classification Algorithms Resampling Approaches
(1) Ad +Rn Default hyperparameters No
(2) Ao +Rn Optimised hyperparameters No
(3) Ad +Rd Default hyperparameters Default hyperparameters
(4) Ao +Rd Optimised hyperparameters Default hyperparameters
(5) Ad +Ro Default hyperparameters Optimised hyperparameters
(6) Ao +Ro Optimised hyperparameters Optimised hyperparameters

56



4.2. Related Works

Apart from developing new techniques to deal with imbalanced datasets, the

data complexity in the dataset itself has caught an increasing attention in recent

studies of class-imbalance problems. As we stated in Chapter 3.2.2, it has been

shown that the degradation of machine learning algorithms for imbalanced datasets

is not directly caused by class imbalance, but is also related to the degree of class

overlapping (Prati, Batista, and Monard, 2004), and the classification algorithms

are more sensitive to noise than to class imbalance (López, Fernández, García,

Palade, and Herrera, 2013). It is also concluded that data complexity may influence

the choice of resampling methods (M. S. Santos, Soares, Abreu, Araujo, and J.

Santos, 2018). Hence, in this chapter, we consider the hyperparameter optimisation

for both resampling techniques and classification algorithms. Furthermore, the

relation between the degree of class overlap and the improvement achieved via

hyperparameter tuning is investigated.

The results of our experiments demonstrate that an improvement can be

obtained by applying hyperparameter tuning. In the six scenarios, optimising

the hyperparameters for both classification algorithms and resampling approaches

gives the best performance for all six datasets. Further study shows that the data

complexity of the original data, especially the overlap between classes, influences

whether a significant improvement can be achieved through hyperparameter

optimisation. Compared to imbalanced datasets with high class overlap,

hyperparameter optimisation works more efficiently for imbalanced datasets with

low class overlap. In addition, we point out that resampling techniques are

not effective for all datasets, and their effectiveness is also affected by data

complexity in the original datasets. Hence, we recommend studying the data

complexity of imbalanced datasets before resampling the samples and optimising

the hyperparameters. Our work in this chapter has received more than 20 citations

from other researchers till the end of 2022, which indicates our contributions to

this topic.

4.2 Related Works

This section first introduces the resampling techniques used in this chapter. Then,

the definition of hyperparameter optimisation and the related literature in the

class-imbalance domain are given in Section 4.2.2.

57



Chapter 4. Hyperparameter Optimisation on Class-Imbalance Problems

4.2.1 Resampling Techniques

This section describes four resampling techniques in our experiments, two

oversampling and two hybrid approaches. The two oversampling techniques,

SMOTE and ADASYN, have been introduced in detail in the previous chapters.

Therefore, we only provide details on the two hybrid approaches, SMOTETL and

SMOTEENN.

SMOTETL

In a classification problem, a Tomek link is defined as follows (Tomek, 1976): given

two samples xi and xj from different classes, d(xi,xj) the distance between xi
and xj , and xl is a random sample in the dataset. The pair (xi,xj) is defined as a

Tomek link if the following requirements hold,

∀xl, d(xi,xj) < d(xi,xl) and d(xi,xj) < d(xj ,xl). (4.1)

From the definition, a Tomek link is a pair of samples from different classes

that are the nearest neighbours for each other, and the samples in Tomek links are

either noise or borderline (Batista, Prati, and Monard, 2004).

Oversampling techniques aim to balance the class distribution via expanding

the minority class space. However, some synthetic minority class samples may

invade the majority class space, making the decision boundary blur. To alleviate this

problem, Batista et al. (Batista, Prati, and Monard, 2004) proposed to apply Tomek

links as an additional data cleaning method after SMOTE, and named the new

technique SMOTETL. In the SMOTETL technique, the first step is (1) to oversample

the minority classes using SMOTE and then (2) to identify the Tomek links. After

that, (3) the Tomek links for the oversampled samples are removed. In this way,

the SMOTETL technique provides a more clear decision boundary by removing part

of the samples in the overlapping region. Figure 4.1 gives an example of clearing

Tomek links for oversampled samples.

SMOTEENN

Similar to SMOTETL, SMOTEENN is also a hybrid method that combines

oversampling and data cleaning techniques. SMOTEENN uses Wilson’s Edited

Nearest Neighbours (ENN) (D. L. Wilson, 1972) to remove any sample that has

a different class from at least two of its three nearest neighbours (Lorena, L. P.

58



4.2. Related Works

Figure 4.1: Example of clearing Tomek links for oversampled samples. © and the
black 4 indicate the majority and minority class samples respectively. The star
indicates the synthetic samples and each blue circle indicates a Tomek link.

Garcia, Lehmann, Souto, and Ho, 2018). For a binary class-imbalance problem,

SMOTEENN is implemented as follows: (1) the training set is oversampled via

SMOTE, then (2) for each sample in the training set, its three nearest neighbours

are found. After that, (3) any sample whose label contradicts the label of at least

two of its three nearest neighbours is removed. According to the ENN procedure,

more samples are removed than the Tomek links, i.e. ENN provides a deeper data

cleaning (Lorena, L. P. Garcia, Lehmann, Souto, and Ho, 2018).

4.2.2 Hyperparameter Optimisation

Most machine learning algorithms involve several hyperparameters, which have

to be set before the training process. Compared with randomly selecting the

hyperparameters in a learning algorithm, choosing a set of optimal hyperparameters

can improve the performance of the algorithm. For instance, in Random Forest,

the choice of the depth of a decision tree and the number of trees in a forest will

have an influence on the performance. To determine the optimal combination of

hyperparameters for a given problem/dataset naturally leads to the well-established

hyperparameter optimisation (or hyperparameter tuning) task.

Let A denote a typical machine learning algorithm with n hyperparameters, λ

denote a vector of hyperparameters and Λ denote the hyperparameter configuration

space, i.e. λ ∈ Λ. A learning algorithm with hyperparameters λ is represented by

59



Chapter 4. Hyperparameter Optimisation on Class-Imbalance Problems

Aλ (Feurer and Hutter, 2019). Given a dataset X, the goal to find the optimal set

of hyperparameters λ∗ so as to minimize the predefined loss function L(·) can be

represented by (Bergstra, Bardenet, Bengio, and Kégl, 2011; Claesen and De Moor,

2015)

λ∗ = arg min
λ∈Λ

L(X(te);Aλ(X(tr)), (4.2)

where X(tr) and X(te) are the training set and validation set, which are given.

There are many approaches for performing hyperparameter optimisation. Grid

search is a traditional way of tuning hyperparameters. It starts with dividing the

search space into a discrete grid. Then, grid search performs an exhaustive search

on every combination of the hyperparameters, which always requires much time.

Random search is similar to grid search but replaces the exhaustive searching on

every combination with randomly selecting the combinations to test. Bayesian

hyperparameter optimisation approaches provide a less expensive way to optimise

the hyperparameters. Its strategy keeps tracking previously evaluated results

and uses the obtained information to form a surrogate probabilistic model of the

objective function (Bergstra, Bardenet, Bengio, and Kégl, 2011; Bergstra, Yamins,

and Cox, 2013). The hyperparameters for evaluation by the objective function

are selected by applying a criterion to the surrogate function, and this criterion

is defined by a selection function, e.g. Expected Improvement. The optimisation

procedure is described below.

• Form a surrogate probabilistic model of the objective function;

• Optimise the selection function over the surrogate model;

• Find the hyperparameter values which maximise the Expected Improvement;

• Evaluate these hyperparameters on the objective function;

• Update the surrogate according to the new performance;

• Iterate the 2nd - 5th step until time or other constraint is met.

Compared to the original objective function, the surrogate model is less

expensive to optimise because it chooses the next candidate hyperparameters

worth evaluating instead of wasting time on unworthy hyperparameters. In practice,

there are many software packages based on Bayesian hyperparameter optimisation,

60


