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CHAPTER 2

Preliminaries

In this chapter, a gentle introduction to class imbalanced problems is presented.

This chapter is structured as follows. First, in Section 2.1 we give an example of

a binary class imbalance problem and introduce the existing approaches and the

performance metrics in the binary class imbalance domain. Next, in Section 2.2

the methods and performance metrics in multi-class scenarios are presented. Then,

in Section 2.3 we address the importance of data complexity in the imbalanced

datasets and present the data complexity measures. Finally, in Section 2.4 the

benchmark datasets for learning from imbalanced problems and several imbalanced

applications are discussed.

2.1 Binary Class Imbalance Learning

Most studies in the imbalanced learning domain are devoted to the binary scenario,

where the number of samples in one class is significantly higher than in the other.

An example of a binary class imbalance problem is shown in Figure 2.1, where

the Imbalance Ratio (IR) is the ratio of the number of majority class samples to

the number of minority class samples (Orriols-Puig and Bernadó-Mansilla, 2009).

The figure clearly illustrates that the minority class is underrepresented due to the

lack of samples, and in real-world applications, the minority class is usually the

class of interest. For instance, if we consider Figure 2.1 as an example from the

car industry, we need to perform quality control, i.e. differentiate the qualified

and unqualified cars. In this case, it is much more critical to identify unqualified

cars correctly. The consequence of undetected unqualified cars could be severe

accidents, whereas a false classification of qualified cars only requires a double

check. The ideal case is to get a 100% accuracy on both classes. However, the
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Chapter 2. Preliminaries

current classification techniques are not perfect, and in order to ensure the overall

accuracy, they tend to bias toward the majority class and produce poor accuracy

or even neglect the accuracy of the minority class (0% accuracy). Class imbalance

is not the only reason leading to performance degradation. Data complexity also

significantly influences the imbalanced classification; detailed information on this

will be given in Section 2.3. This section reviews the existing approaches and

performance metrics for binary imbalanced learning.
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Figure 2.1: An example of a binary class imbalance problem with IR = 200.

2.1.1 Existing Approaches

Many techniques have been developed to improve the minority class accuracy

in class imbalance problems. These techniques can be grouped into four broad

categories based on how they deal with the problem.
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2.1. Binary Class Imbalance Learning

Data-level approaches

Data-level approaches, also known as resampling techniques, adjust the data

space directly in order to produce relatively balanced data distribution for

standard classifiers. Resampling techniques consist of three groups, oversampling,

undersampling and hybrid methods. For a clear description, the following notations

are used in this section. For a training dataset S with N samples, i.e. |S| = N and

S = {(xn, yn)}, n = 1, 2, ..., N , where xn belongs to an instance space X and yi
belongs to a label set associated with xn.

Oversampling balances the class distribution by replicating existing samples

in the minority class or generating new artificial samples for the minority class.

One of the most representative oversampling approaches is the Synthetic Minority

Oversampling TEchnique (SMOTE). SMOTE works by creating artificial minority

class samples to produce balanced data. The artificial samples are generated based

on the randomly chosen minority class samples and their K-Nearest Neighbours.

A new synthetic sample xs can be generated according to the following equation

(H. He and E. A. Garcia, 2009):

xs = xi + δ · (x̂i − xi); (2.1)

where xi is the minority class sample to oversample, x̂i is a randomly selected

neighbour from its K-nearest minority class neighbours and δ is a random

number, where δ ∈ [0, 1], as described in (Chawla, Bowyer, Hall, and Kegelmeyer,

2002). Figure 2.2 illustrates how the synthetic samples are created in the SMOTE

technique.

Undersampling eliminates the samples in the majority class to equalize

the number of samples in each class. The majority class samples can be

removed randomly or according to the preset strategies. Hybrid methods are

the hybridization of oversampling and undersampling. There are various ways to

perform these three groups of techniques (oversampling, undersampling and hybrid

methods). Figure 2.3 shows examples of two resampling techniques, Synthetic

Minority Oversampling TEchnique (SMOTE) and Random Undersampling (RUS),

where RUS adjusts the data distribution by randomly deleting samples from the

majority class. Detailed descriptions of various resampling techniques will be given

in the following chapters.
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Chapter 2. Preliminaries

Figure 2.2: An illustration of how to generate synthetic samples through SMOTE.
Example of K-nearest minority class neighbours for minority class sample xi (K=5)
(left) and new synthetic samples generated through SMOTE (right).

Algorithm-level approaches

Algorithm-level approaches do not deal with the data distribution. Instead, they

modify the classical classification algorithms to alleviate the bias towards the

majority class caused by the significant imbalanced data distribution. An in-depth

understanding of the classification algorithms is required to perform appropriate

modifications since one needs to precisely identify which part in the algorithm

hinders the classification performance on imbalanced datasets (Fernández, García,

Galar, Prati, Krawczyk, and Herrera, 2018). An example of modifying Support

Vector Machines (SVMs) is to emphasise more weight on support vectors belonging

to minority class so that the decision boundary shift towards minority class (Imam,

Ting, and Kamruzzaman, 2006). Another example of adapting Decision Trees

is to use Hellinger distance as the split function instead of Gini index (Cieslak,

Hoens, Chawla, and Kegelmeyer, 2012). The main idea is to avoid the selecting

criteria in favour of the majority class. An exhaustive review of the algorithm-level

approaches on class imbalance problems can be found in (Fernández, García, Galar,

Prati, Krawczyk, and Herrera, 2018).

Cost-sensitive learning

Most standard machine learning classification algorithms assume symmetric

misclassification costs for each class (Thai-Nghe, Gantner, and Schmidt-Thieme,
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2.1. Binary Class Imbalance Learning

2010). However, this assumption is violated in class imbalance problems since

the cost of misclassifying samples in the minority class is much higher than that

in the majority class. Cost-sensitive methods handle class imbalance problems via

considering the costs associated with misclassifying samples (Elkan, 2001; H. He

and E. A. Garcia, 2009). This learning framework can be combined with data-level

approaches by adding costs to specific samples and can also be combined with

algorithm-level approaches by adapting the misclassification cost in the learning

process (Fernández, García, Galar, Prati, Krawczyk, and Herrera, 2018).

Ensemble learning

Ensemble-based classifiers, a combination of multiple classification algorithms,

are known to produce better classification performance compared to a single

classification algorithm (Rokach, 2010). Standard ensemble-based classifiers are

not very effective to deal with skewed class distributions; however, they can be

easily adapted to handle class imbalance problems. In the imbalanced learning

domain, the most straightforward approach for adapting the ensemble-based

classifiers is to include a resampling technique as a preprocessing step before

learning base classifiers (Błaszczyński, Deckert, Stefanowski, and Wilk, 2010), e.g.

SMOTEBoost (Chawla, Lazarevic, Hall, and Bowyer, 2003) and SMOTEBagging

(S. Wang and Yao, 2009). Ensemble-based classifiers can also be combined with

cost sensitive learning mainly in two ways in the literature, cost-sensitive Boosting

(Sun, Kamel, A. K. Wong, and Y. Wang, 2007) and ensembles with cost-sensitive

base classifiers (B. X. Wang and Japkowicz, 2010).

2.1.2 Performance Metrics

When dealing with classification tasks, accuracy and error rate are the most

frequently used performance metrics (H. He and E. A. Garcia, 2009). In a

binary classification problem, the confusion matrix (see Table 2.1) can provide

classification results.

According to the confusion matrix (see Table 2.1), accuracy and error rate can

be computed as

accuracy =
TP + TN

TP + FN + FP + TN
,

error rate = 1− accuracy.

(2.2)
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(a) An example of oversampling technique SMOTE.
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(b) An example of undersampling technique RUS.

Figure 2.3: Examples of two resampling techniques with (a) SMOTE and (b) RUS.
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2.1. Binary Class Imbalance Learning

Table 2.1: Confusion matrix for a binary classification problem

Positive prediction Negative prediction
Positive class True Positives (TP) False Negatives (FN)
Negative class False Positives (FP) True Negatives (TN)

However, the two metrics have some drawbacks when dealing with imbalanced

datasets. Firstly, they may give a deceptive evaluation in imbalanced scenarios.

For example, let us assume in a binary class-imbalance classification problem, the

majority-class and minority-class samples take 95% and 5% of the total samples

respectively. Even if the classifier predicts all the samples as majority class, the

accuracy is still 95%, which makes the classifier seems extremely efficient but

neglects the minority class. Moreover, the two metrics above assume the cost

of misclassifying different class samples is the same. However, in imbalanced

classification, the cost of misclassifying minority class samples are generally higher.

In bank transactions, for instance, failing to detect a fraud case will result in a

massive loss of money, while classifying a safe transaction into a fraud will require

a double check. Considering the facts above, the accuracy does not reflect the

actual effectiveness of an algorithm in imbalanced domains.

In lieu of accuracy, recall, precision, F-Measure (FM) and G-Mean (GM) are

frequently adopted to assess the classification performance in imbalanced scenarios.

These measures are computed by

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

FM =
(1 + β)2 × Recall× Precision
β2 × Precision + Recall

,

GM =

√
TP

TP + FN
× TN

FP + TN
,

(2.3)

where β is a coefficient which controls the relative importance of precision and

recall. It is a positive real coefficient indicating the importance of recall is β times

as precision. β is normally set to 1, indicating the same importance of precision and
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recall.

In the literature, precision and recall are also referred as positive predictive

value and true positive rate, reflecting the exactness and completeness respectively

(H. He and E. A. Garcia, 2009). Precision measures the proportion of correctly

classified positive samples to all positive predictions, whereas recall measures the

proportion of correctly classified positive samples to all positive samples. F-Measure

achieves the trade-off between precision and recall via adjusting the coefficient

β (Baeza-Yates, Ribeiro-Neto, et al., 1999). G-Mean is the geometric mean of

positive accuracy and negative accuracy (Kubat, Matwin, et al., 1997), it considers

performances on both majority and minority classes.

The Receiver Operating Characteristic (ROC) curve (Fawcett, 2004; Fawcett,

2006) is a graphical evaluation technique which assesses the classification ability

of a binary classifier. It is a graphical plot depicting all possible trade-offs between

true positive rate (TPR) and false positive rate (FPR) (S. Wang, 2011a), which

are defined as

TPR =
TP

TP + FN
;

FPR =
FP

FP + TN
.

(2.4)

The ROC space is illustrated in Figure 2.4. According to the definition, a perfect

classifier can be represented as TPR = 1 and FPR = 0, see broken line OAC.

The worst classifier corresponds to broken line OBC with TPR = 0 and FPR = 1,

indicating the classifier always makes wrong predictions. The diagonal from left

bottom to the right top corner corresponds to a random-guessing classifier with

TPR = FPR. The ROC space is divided into two parts by this diagonal, where the

upper half indicates good classification results (better than random) and the lower

half indicates bad classification results (worse than random). L1 and L2 represent

two ROC curves, and the classifier corresponding to L2 outperforms the classifier

corresponding to L1.

Associated with the ROC curve, the Area Under the ROC Curve (AUC) can be

computed by estimating the area using quadrature, i.e. the AUC value varying

in [0, 1]. It is used as an evaluation criterion for comparing the performance

of different classifiers (Fawcett, 2004; Fawcett, 2006). If we rank the samples

according to the predicted score produced by the classifier, AUC can be understood

as the probability that the classifier will rank a randomly selected positive sample
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Figure 2.4: ROC space representation.

higher than a randomly selected negative sample (Hand and Till, 2001). The AUC

of the random classifier is 0.5 and is highlighted in gray in Figure 2.4. The AUC

value of a perfect classifier is equal to 1.

2.2 Multi-Class Imbalance Learning

Most studies in the imbalanced learning domain devote to the binary imbalanced

scenario. However, a significant number of imbalanced real-world applications

contain more than two classes, for instance, image classification, protein

classification and medical diagnosis. The increasing number of classes poses new

challenges for learning from multi-class imbalanced problems. First of all, more

decision boundaries need to be defined during the multi-class classification process.

Another challenging issue is that the imbalance among classes becomes more

complicated as there will be multi-majority and multi-minority classes (S. Wang,

Minku, and Yao, 2016). The data complexity, an important cause of the degradation

in binary case (López, Fernández, García, Palade, and Herrera, 2013), is more
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sophisticated. Several solutions designed for binary imbalanced classification are

extended to multi-class scenarios. In this section, we review the existing approaches

and performance metrics for multi-class imbalanced learning.

2.2.1 Existing Approaches

In this section, we first introduce the decomposition strategies for handling

the multi-class imbalanced problems. After that, other methods, including

preprocessing techniques and classification algorithms designed for multi-class

scenarios, are described.

Decomposition Strategies

Class decomposition is an intuitive method to deal with multi-class imbalanced

problems (Galar, Fernández, Barrenechea, Bustince, and Herrera, 2011). After

transforming the multi-class problem into multiple subsets, the existing approaches

for handling the binary scenarios can be applied directly. Among several

decomposition strategies, One-vs-Rest (OVR) and One-vs-One (OVO) are the most

commonly used in the literature.

Suppose there are C classes in the multi-class imbalanced problem. In the

OVR decomposition, each of the C classes is trained against the remaining (C − 1)

classes (Rifkin and Klautau, 2004). In other words, a C-class imbalanced problem is

decomposed into C binary classification problems. When predicting the final label

for a test sample, each binary classifier provides a prediction with confidence, and

the prediction with the highest confidence is usually determined as the final label for

this test sample. An illustration of the OVR scheme for a 3-class problem is shown in

Figure 2.5a. While OVR provides the convenience of treating multi-class scenarios

as binary scenarios, it also brings further imbalance into the binary subsets. In

addition, all the individual classifiers are trained with the complete dataset; this

ensures that no information is dropped in the training procedure. However, this

also preserves the overlapping regions, a factor leading to the degradation of the

classification performance (López, Fernández, García, Palade, and Herrera, 2013).

In the OVO decomposition, each of the C classes is trained against one of

the remaining classes (Fürnkranz, 2002). Thus, a C-class imbalanced problem is

decomposed into C(C − 1)/2 binary problems. The final predictions are usually

determined via the majority voting strategy. An illustration of the OVO scheme for
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2.2. Multi-Class Imbalance Learning

(a) Illustrations of OVR scheme for a 3-class problem.

(b) Illustrations of OVO scheme for a 3-class problem.

Figure 2.5: Illustrations of OVR and OVO scheme for a 3-class problem (Fernández,
García, Galar, Prati, Krawczyk, and Herrera, 2018).
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a 3-class problem is shown in Figure 2.5b. Each binary classifier is only trained

with pairs of classes; this makes the decision boundaries much simpler and properly

addresses the overlapping issue. However, when pairing the classes, the number of

binary classifiers increases in a quadratic rate of C (Tan, Gilbert, and Deville, 2003;

S. Wang, 2011b). The training time can be long if C is large.

Approaches for Handling Multi-class Imbalanced Problems

The decomposition strategies are prevalent in addressing multi-class problems due

to their straightforward idea and simple implementation. With the advantages of

the decomposition strategies, many binary imbalanced approaches are extended to

deal with multi-class imbalanced problems. Liao applied OVR and resampling

techniques on the weld flaw classification problem specifically (Liao, 2008).

Fernandez et al. reported a thorough experimental analysis on the combination of

decomposition strategies and popular resampling techniques (Fernández, López,

Galar, Del Jesus, and Herrera, 2013). They concluded that OVO and oversampling

showed the best robustness in their experiments. Krawczyk proposed to embed

a cost-sensitive Artificial Neural Networks (ANN) into OVO scheme for handling

multi-class imbalanced data (Krawczyk, 2016). A classification framework has

been proposed in (Sen, Islam, Murase, and Yao, 2015) to efficiently handle multi-

class imbalanced problems. The framework is based on the OVR strategy and

the boosting technique focuses on hard-to-learn samples in each base classifier.

Meanwhile, oversampling techniques are applied to increase the sample weight in

minority classes.

Despite applying a decomposition strategy, there are also ad-hoc approaches

for multi-class imbalanced problems. The Static-SMOTE resampling technique

(Fernández-Navarro, Hervás-Martínez, and Gutiérrez, 2011), inspired by SMOTE

(Chawla, Bowyer, Hall, and Kegelmeyer, 2002), is proposed to handle multi-class

imbalanced datasets. In Static-SMOTE, the oversampling procedure is performed

in m steps, and m is the number of classes (Fernández, López, Galar, Del Jesus, and

Herrera, 2013). The number of samples in the minimum size class is duplicated

using SMOTE in each iteration. The Mahalanobis Distance-Based Oversampling

Technique (MDO) (Abdi and Hashemi, 2015) is also proposed to oversample the

minority classes in multi-class scenarios. Instead of randomly oversampling the

samples, MDO guarantees that the artificial samples have the same Mahalanobis

distance (Mahalanobis, 1936) from the considered class mean as other samples
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from the considered class. Considering the excellent ability of ensemble algorithms,

Sun et al. (Sun, Kamel, and Y. Wang, 2006) proposed a cost-sensitive boosting

algorithm to handle multi-class imbalanced problems. The core ideas are first

to find an appropriate cost matrix, then to apply a Genetic Algorithm to search

the optimum cost setup of each class. AdaBoost.NC (S. Wang, H. Chen, and

Yao, 2010), a negative correlation learning algorithm, was proposed to address

binary classification by introducing diversity among base classifiers. This work was

extended to multi-class scenarios (S. Wang and Yao, 2012). Their experimental

results reveal that combining AdaBoost.NC and oversampling techniques have a

better ability to recognise samples from minority classes and achieve a high G-mean

among classes even without decomposition strategies.

2.2.2 Performance Metrics

When choosing the performance metrics for multi-class imbalanced problems, both

the performance for each class and the overall performance must be taken into

account. The single-class performance metrics introduced in Section 2.1.2 are

still suitable for multi-class scenarios. There is no standard performance metric to

measure the overall classifier performance in the multi-class imbalanced learning

domain. We consider two overall performance metrics in this thesis.

The average accuracy is commonly used to evaluate the multi-class imbalanced

classification performance (Ferri, Hernández-Orallo, and Modroiu, 2009). It is

computed by

MAcc =
1

C

C∑
i=1

TPRi. (2.5)

The Multi-class Area Under the Curve (MAUC), an extension of AUC, is another

commonly used to measure the multi-class classification performance of the whole

dataset (Hand and Till, 2001). It is the average pairwise AUC values of all paired

classes and is defined as

MAUC =
2

C · (C − 1)

∑
j<k

Â(j, k), (2.6)

where Â(j, k) = [Â(j|k) + Â(k|j)]/2 is the measure of separability between

classes j and k. Â(j|k) indicates the probability that a sample randomly selected

from class k has a lower probability for class j than randomly selected from class j,
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and Â(k|j) is defined correspondingly. A detailed equation to compute Â(j, k) can

be found in (Hand and Till, 2001).

Apart from overall performance, one main aim of studying the imbalanced

problem is to improve the classification accuracy on minority class(es) while not

losing too much accuracy on majority class(es). In this thesis, we use MinAcc, the

average accuracy on minority class(es), to measure the performance on minority

class(es). It is computed by

MinAcc =
∑

i∈Cminority

TPRi/nminority, (2.7)

where Cminority denotes the set of minority class indices, TPRi is the true positive

rate in class i, nminority denotes the number of minority classes. If there is more

than one class being underrepresented in multi-class imbalanced classification, one

should manually define the value of nminority.

2.3 Data Complexity for Imbalanced Datasets

The class imbalance was widely considered as the main reason for performance

degradation. However, there are highly imbalanced problems with good

classification performance. This situation caught the attention of various

researchers and they addressed the importance of data complexity in the

imbalanced datasets (López, Fernández, García, Palade, and Herrera, 2013; Prati,

Batista, and Monard, 2004). Weng et al. performed an analysis of the data

complexity to gain some insights on their imbalanced datasets (Weng and Poon,

2006). In (Luengo, Fernández, García, and Herrera, 2011), authors concluded that,

according to their experimental results, the imbalance ratio by itself cannot be

considered as a determinant factor for degradation in performance. Researchers in

(M. S. Santos, Soares, Abreu, Araujo, and J. Santos, 2018) analyzed the relationship

between data complexity measures and the classification performance with and

without applying the resampling techniques. They confirmed that the performance

with oversampling techniques is related to the data complexity in a quasi-linear.

This section first introduces two types of data complexity measures: feature

overlapping measures and measures of separability of classes. After that, four

types of samples in the imbalanced domain are described.
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2.3.1 Overlapping and Class Separability

When studying the data complexity measures in binary classification problems,

feature overlapping measures and measures of the separability of classes are commonly

considered (Ho and Basu, 2002), where the former characterize how informative

the features classify the classes and the latter try to quantify the linear separability

of the classes (Lorena, L. P. Garcia, Lehmann, Souto, and Ho, 2019). A summary of

the two types of measures is shown in Table 2.2.

Table 2.2: Summary of the data complexity measures. “Positive" and “Negative"
indicate the positive and negative relation between measure value and data
complexity respectively.

Measure Description Relation

F1 Maximum Fisher’s Discriminant Ratio Negative

F1v The Directional-vector Maximum Fisher’s Discriminant Ratio Negative

F2 Volume of Overlapping Region Positive

F3 Maximum Individual Feature Efficiency Negative

L1 Sum of the Error Distance by Linear Programming Positive

L2 Error Rate of Linear Classifier Positive

L3 Non-Linearity of a Linear Classifier Positive

Feature Overlapping Measures

The maximum Fisher’s discriminant ratio, denoted by F1, measures the overlap

between the feature values of different classes and is given by (Lorena, L. P. Garcia,

Lehmann, Souto, and Ho, 2019):

F1 =
m

max
i=1

rfi , (2.8)

where m is the number of features, rfi is the discriminant ratio for each feature

fi. In a binary classification problem, rfi can be calculated as follows (Kong,

Kowalczyk, D. A. Nguyen, Menzel, and Bäck, 2019; Lorena, L. P. Garcia, Lehmann,

Souto, and Ho, 2019):

rfi =

∑2
c=1 nc(µ

fi
c − µfi)2∑2

c=1

∑nc

j=1(xcj − µ
fi
c )2

, (2.9)
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where nc is the number of examples in class c, µfi
c is the mean value of feature

fi across class c, µfi is the mean value of feature fi across all classes, and xcj

represents the value of feature fi for a sample from class c (Lorena, L. P. Garcia,

Lehmann, Souto, and Ho, 2019). An example of F1 computation is given in Figure

2.6.

Figure 2.6: Example of F1 computation for a binary dataset (Lorena, L. P. Garcia,
Lehmann, Souto, and Ho, 2019).

The directional-vector maximum Fisher’s discriminant ratio, F1v, is a complement of

F1 and a higher value of F1v indicates that there exists a vector which can separate

different class samples after these samples are projected on it (Lorena, L. P. Garcia,

Lehmann, Souto, and Ho, 2019; Orriols-Puig, Macia, and Ho, 2010). It computes

the two-class Fisher’s criterion defined in (Malina, 2001) as:

F1v =
dtBd

dtWd
, (2.10)

where

• d is the directional vector on which the data are projected;

• B = (µ1 − µ2)(µ1 − µ2)t is the between-class scatter matrix and µ1, µ2 are

the mean vector of the two classes;

• W = pΣ1 + (1 − p)Σ2 and p is the proportion of samples in one class and

Σ1 is the scatter matrix of the same class, and Σ2 is the scatter matrix of the

other class.
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2.3. Data Complexity for Imbalanced Datasets

The directional vector d is calculated (Orriols-Puig, Macia, and Ho, 2010) by

d = W−1(µ1 − µ2), (2.11)

where the W−1 is the pseudo-inverse of W (Lorena, L. P. Garcia, Lehmann, Souto,

and Ho, 2019; Orriols-Puig, Macia, and Ho, 2010).

The volume of overlapping region, denoted by F2, calculates the overlap ratio of all

features (the width of the overlap interval in relation to the width of the entire

interval) and returns the product of the ratios of all features (Orriols-Puig, Macia,

and Ho, 2010), as shown below.

F2 =

m∏
i

overlap(fi)

range(fi)

=

m∏
i

max{0,min max(fi)−max min(fi)}
max max(fi)−min min(fi)

,

(2.12)

where
min max(fi) = min(max(f c1i ),max(f c2i )),

max min(fi) = max(min(f c1i ),min(f c2i )),

max max(fi) = max(max(f c1i ),max(f c2i )),

min min(fi) = min(min(f c1i ),min(f c2i )),

(2.13)

where (f c1i ) and (f c2i ) are the values of the feature i for the two classes.

The maximum individual feature efficiency (F3) computes the individual feature

efficiency and returns the maximum value among all features (Lorena, L. P. Garcia,

Lehmann, Souto, and Ho, 2019; Orriols-Puig, Macia, and Ho, 2010). For each

feature, the overlapping region is taken into account, and the ratio of the number of

examples not in the overlapping region to the total number of examples is returned

as F3.

Linearity Measures

L1 and L2 measure to what extent the classes can be linearly separated using an

SVM with a linear kernel (Orriols-Puig, Macia, and Ho, 2010), where L1 returns

the sum of the distances of the misclassified samples to the linear boundary and L2

returns the error rate of the linear classifier. An example of L1 and L2 computation
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is given in Figure 2.7. L3 returns the error rate of an SVM with linear kernel on a

test set, where the SVM is trained on training samples and the test set is manually

created by performing linear interpolation on the two randomly chosen samples

from the same class.

Figure 2.7: Example of L1 and L2 computation for a binary dataset (Lorena, L. P.
Garcia, Lehmann, Souto, and Ho, 2019).

2.3.2 Types of Sample in Imbalanced Domain

Napierala and Stefanowski proposed to analyse the local characteristics of minority

class samples by dividing them into four different types: safe, borderline, rare

samples and outliers (Napierala and Stefanowski, 2016), the latter three are called

unsafe samples. The identification of the type of an example can be done through

modeling its k-neighbourhood. Considering that many applications involve both

nominal and continuous attributes, the HVDM metric is applied to calculate the

distance between different examples.

Heterogeneous Value Difference Metric (HVDM)

HVDM is a heterogeneous distance function that returns the distance between

two vectors x and y (D. R. Wilson and Martinez, 1997), where the vectors can

involve both nominal and numerical attributes. The HVDM distance is defined by
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(D. R. Wilson and Martinez, 1997):

HVDM(x,y) =

√√√√ n∑
a=1

da
2(xa, ya), (2.14)

where n is the number of attributes. The function da(·) returns the distance between

xa and ya, where xa, ya indicate the ath attribute of vector x and y respectively. It

is defined as follows:

da(x, y) =


1, if x or y is unknown, i.e. NA

norm_vdma(x, y), if ath attribute is nominal

norm_diffa(x, y), if ath attribute is continuous

(2.15)

where

norm_vdma(x, y) =

√√√√ C∑
c=1

∣∣∣∣Na,x,c

Na,x
− Na,y,c

Na,y

∣∣∣∣2, norm_diffa(x, y) =
|x− y|

4σa
,

(2.16)

where

• C is the number of total output classes,

• Na,x,c is the number of instances which have value x for the ath attribute

and output class c and Na,x =
∑C

c=1Na,x,c,

• σa is the standard deviation of values of the ath attribute.

Identification Rule to Assign Types of Sample

The four types of samples in binary scenario are determined by the neighbourhood

information, taking a sample from minority class as an example:

• a sample is considered to be safe if the majority of the neighbours belongs to

the same class;

• a sample is considered to be borderline if the proportion of the neighbours

in both classes is approximately the same;

• a sample is considered to be rare if the majority of the neighbours belongs to

a different class;
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• a sample is considered to be an outlier if all the neighbours belongs to a

different class.

Given the number of neighbours k, the label to a sample from minority class can

be assigned through the ratio of the number of its neighbours from minority class

to the total number of neighbours (Rmin
all

) according to Table 2.3. The label for a

sample from majority class can be assigned in a similar way. Given the number of

neighbours k, the label to a sample from majority class can be assigned through

the ratio of the number of its neighbours from majority class to the total number of

neighbours (Rmaj
all

).

Table 2.3: Identification rule to assign types for samples from minority class. Rmin
all

is the ratio of the number of its neighbours from minority class to the total number
of neighbours.

Type Rule Rule (k = 5)

Safe k+1
2k < Rmin

all
6 1 3

5 < Rmin
all

6 1

Borderline k−1
2k 6 Rmin

all
6 k+1

2k
2
5 6 Rmin

all
6 3

5

Rare 0 < Rmin
all

< k−1
2k 0 < Rmin

all
< 2

5

Outlier Rmin
all

= 0 Rmin
all

= 0

2.4 Imbalanced Benchmark Datasets and

Applications

This section first introduces one of the dataset repositories for learning from

imbalanced benchmark datasets. After that, a gentle introduction to imbalanced

applications is given.

2.4.1 KEEL-Dataset Repository

KEEL (Knowledge Extraction based on Evolutionary Learning) is an open-source

software 1 which was initially developed to implement evolutionary algorithms

and deal with some standard data mining tasks (Alcalá-Fdez, Fernández, Luengo,

1http://www.keel.es
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Derrac, García, Sánchez, and Herrera, 2011), e.g. classification and regression. A

dataset repository is also provided in KEEL 2, it provides a set of quality benchmark

datasets, allowing comparative studies for various researchers.

Regarding imbalanced classification, there are various binary benchmark

datasets with imbalanced ratios varying from 1.5 to 130. Most of the datasets

can also be found in the UCI repository 3; however, the datasets in UCI always

require some preprocessing step, i.e. one has to deal with the missing values by

himself/herself. Datasets in KEEL are in good structure and can be used in the

experiments directly. Please note that many binary datasets in KEEL are artificially

derived from multi-class classification problems using decomposition strategies.

There are also 15 multi-class imbalanced benchmark datasets available. Most

experiments in this thesis are based on the datasets in KEEL. Several experiments

use the datasets from our industrial partners. Information on these datasets can be

found in our Marie-Curie ITN project GitHub repository 4.

2.4.2 Imbalanced Applications

The imbalanced problems widely exist in many real-world scenarios. This

section briefly reviews several imbalanced applications in engineering, information

technology, bioinformatics, and medicine.

Back to the end of the 1990s, Kubat et al. (Kubat, R. Holte, and Matwin, 1997;

Kubat, R. C. Holte, and Matwin, 1998; Kubat, Matwin, et al., 1997) dealt with the

detection of oil spills in satellite radar images. It is very challenging to detect oil

spills in satellites’ radar images since they reflect less light. The class imbalance in

the problem (41 oil spills and 896 images without oil spills) makes the problem

even more challenging. These challenges drove them to propose one-side selection

(OSS) to sample the data points. OSS will be introduced later in this thesis. The

class imbalance applications are also widely studied in various engineering sub-

domains, such as fault detection in semiconductors (T. Lee, K. B. Lee, and Kim,

2016), short-term voltage stability assessment (Zhu, Lu, Dong, and Hong, 2017),

fault diagnosis in wind turbines (Wu, Lin, and Ji, 2018) and etc.

In information technology, software defect prediction is necessary for quality

control in order to detect possible failures. Rodriguez et al. (Rodriguez, Herraiz,

2http://www.keel.es/datasets.php
3https://archive.ics.uci.edu/ml/index.php
4https://github.com/ECOLE-ITN
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Harrison, Dolado, and Riquelme, 2014) compared the effectiveness of different

approaches for handling the class imbalance in the problem. They concluded that

combining the ensemble methods and feature selection scheme is robust in dealing

with the proposed problem. Due to the current advances, applications network

analysis and computer vision are also proposed, for instance, mobile malware

detection (Z. Chen, Yan, Han, S. Wang, Peng, L. Wang, and B. Yang, 2018) and

object recognition in images (X. Zhang, Zhuang, W. Wang, and Pedrycz, 2016).

One well-known application in Bioinformatics is protein identification. The

detection of Micro RNAs is crucial due to their high importance in post-

transcriptional regulation of gene expression of plants and animals (Lertampaiporn,

Thammarongtham, Nukoolkit, Kaewkamnerdpong, and Ruengjitchatchawalya,

2013). The authors proposed a modified-SMOTEbagging for pre-miRNA

classification. The imbalanced applications in medicine contain medicine quality

(Zięba, Tomczak, Lubicz, and Świątek, 2014), lung nodule detection (Cao, J. Yang,

W. Li, D. Zhao, and Zaiane, 2014), diagnosis of diabetes mellitus (Z. Chen, Yan,

Han, S. Wang, Peng, L. Wang, and B. Yang, 2018), microaneurysm (Ren, Cao, W. Li,

D. Zhao, and Zaiane, 2017) and other diseases.

30


