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CHAPTER 1

Introduction

1.1 Background

Machine learning is a broad multidisciplinary research area which is based on

many different branches of mathematics and science, including computer science,

statistics, cognitive psychology, engineering, and optimisation theory (Soofi and

Awan, 2017). Machine learning algorithms aim to learn from the data and build

the models in order to make predictions on unseen samples. These algorithms have

numerous applications, for instance, medical diagnosis (Acharya, Chowriappa,

Fujita, Bhat, S. Dua, Koh, Eugene, Kongmebhol, and K. Ng, 2016), product

recommendations (Misra, Wan, and McAuley, 2018), defect detection (Haddad,

S. Yang, Karam, Ye, Patel, and Braun, 2018), video surveillance (Radtke, Granger,

Sabourin, and Gorodnichy, 2014), computer vision (X. Zhang, Zhuang, W. Wang,

and Pedrycz, 2018) and self-driving cars (Carranza-García, Lara-Benítez, García-

Gutiérrez, and Riquelme, 2021).

Supervised and unsupervised learning are the two main sub-categories of

machine learning algorithms. Supervised learning algorithms are trained with

a given set of samples with input attributes and outputs, and the goal is to find

the relationship between the input attributes and the output responses. On the

other hand, no output responses are given when training the unsupervised learning

algorithms, and the goal is to discover the structure of the data itself, for example

clustering the data points.

Classification and regression problems are the two essential branches of

supervised learning. Classification is an important research area in the field of

machine learning and data mining. Classification predictive modelling refers to

the task of estimating the mapping function from input attributes to discrete class
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Chapter 1. Introduction

labels. In other words, training a classification model is to predict the class labels

of samples with given input attributes. For example, spam email filtering can be

regarded as a two-class classification task, where the two class labels are spam

and not spam. Regression predictive modelling refers to the task of estimating the

mapping function from input attributes to continuous outputs, i.e. a regression

predictive model returns a quantity. For example, predicting the house price based

on the size, location, age, and other aspects of the house is a regression task, where

these aspects of the house are the input attributes, and the house price is the

continuous output.

Several machine learning algorithms have been proposed in the literature to

handle classification tasks, for instance, logistic regression, decision tree, random

forest, support vector machine, and k-Nearest Neighbour (KNN). Most of the

proposed algorithms are designed under two main assumptions:

• The classes are equally distributed;

• The cost of classification errors, so-called misclassification costs, are equal.

However, both assumptions do not always hold in real-world applications. Many

real-world classification problems suffer from significant differences in the number

of samples in each class. Moreover, the classification costs in these real-world

classification problems cannot be treated equally. Taking an example of cancer

diagnosis, a cancer case is much less likely to occur than healthy cases, i.e. samples

in the cancer class and healthy class are not equally frequent. In this problem,

the rare samples (cancer) are more important, and their classification costs are

higher. Failure to identify a cancer case will lead to a person’s life loss. Such

problems where one or more classes are underrepresented are known as class-

imbalance problems. Standard classifiers aim to maximise the overall accuracy,

i.e. the proportion of all correctly classified validation samples in percentage, and

always perform poorly on such problems. For example, if a standard classifier is

used to handle a cancer diagnosis task with 95 healthy cases and 5 cancer cases,

even if it would classify all samples into healthy class and still achieve 95% accuracy

overall. However, the classification accuracy on cancer class is 0%, which makes

the classifier useless in practice.
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1.1. Background

Class-Imbalance Learning Strictly speaking, any dataset with an unequal class

distribution can be considered imbalanced. However, in the imbalanced domain, a

dataset is defined as imbalanced only when the samples in different classes have

a significant or even extreme gap in the number of samples (Fernández, García,

Galar, Prati, Krawczyk, and Herrera, 2018). In other words, one or more classes

significantly outnumber the other class(es) in an imbalanced dataset. The classes

with more samples are called majority classes, while the underrepresented classes

are called minority classes. The skewed distribution in the dataset will make the

classifiers biased toward the majority class(es) and the minority class(es) to be

overlooked. However, from the application point of view, the underrepresented

(minority) class is usually the class of interest and has higher misclassification

costs in the problem. For example, it is more important to correctly identify the

minority class samples in medical diagnosis, email filtering, and fault detection.

The price of misclassifying the minority samples would be a massive loss of money

in fault diagnosis, an unqualified product in anomaly detection and a person’s life in

medical diagnosis. In contrast, the misclassification cost on majority class samples

is only a double check. Hence, it is of vital importance to study class-imbalance

problems.

Class-imbalance problems have caught growing attention from both academic

and industrial fields. Many techniques have been developed to alleviate the

influence of class imbalance and can be categorized into four broad groups.

1. Data-level approaches rebalance the class distribution directly via resampling

the data space. These approaches manipulate the data directly and are easy

to implement in real-world applications as a preprocessing step.

2. Algorithm-level approaches adapt the classification algorithms to force the

learning bias toward the minority class. However, the adjustments always

require a deep understanding of the corresponding algorithms, i.e. the

adjustments are algorithm-specific.

3. Cost-sensitive learning techniques handle the class-imbalance problems by

considering the unequal misclassification costs. This technique can be

combined with data-level and algorithm-level approaches.

4. Ensemble-based methods in imbalanced learning domain usually combine an

ensemble learning algorithm and one of the approaches above.

3



Chapter 1. Introduction

Data Complexity in Imbalanced Learning Domain The class imbalance was

widely considered as the determinant for performance degradation. However,

researchers have observed that in some cases, good classification performances

can be achieved even in the presence of significant class imbalance for problems

with low complexity, such as a linearly separable problem. This suggests that

the class imbalance itself cannot be considered as the main reason for the

performance degradation, and naturally extends the research direction to the

study of data complexity. The difficulty of a supervised classification problem can

be characterized by several data complexity measures in the literature, including

(i) feature overlapping measures; (ii) measures of the separability classes; and (iii)

measures of geometry, topology and density of manifolds. These measures are used

to gain insights into the performance of data-level approaches in (Weng and

Poon, 2006). The relationship between data complexity measures and imbalanced

classification performance is studied in (M. S. Santos, Soares, Abreu, Araujo, and

J. Santos, 2018). Small disjuncts are problematic under class-imbalance situations

because they are difficult to distinguish from noise (Jo and Japkowicz, 2004; López,

Fernández, García, Palade, and Herrera, 2013). It is also interesting to study the

samples as different types: safe, borderline, rare samples and outliers according to

their local characteristics (Napierala and Stefanowski, 2016) or their distances to

the decision boundary (Kubat, Matwin, et al., 1997).

Motivated by the studies on Data Complexity in Imbalanced Learning Domain (López,

Fernández, García, Palade, and Herrera, 2013; Luengo, Fernández, García, and

Herrera, 2011; Prati, Batista, and Monard, 2004; M. S. Santos, Soares, Abreu,

Araujo, and J. Santos, 2018; Weng and Poon, 2006), as well as the study showing

that "Better Data" is Better than "Better Data Miners" (Agrawal and Menzies, 2018),

this thesis mainly conducts the research on Learning Class-Imbalanced Problems

from the Perspective of Data Intrinsic Characteristics.

1.2 Research Questions

In this thesis we focus on learning class-imbalanced problems from the perspective

of data intrinsic characteristics. To achieve our objective, the following research

questions are considered.
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1.2. Research Questions

RQ1: What is the difference between the effectiveness of “classical” and

“new” resampling techniques?

Resampling techniques have been proven effective in handling class-

imbalance problems, and many resampling techniques have been proposed

in the literature. However, most empirical studies and application work still

focus on “classical" resampling techniques and do not take newly developed

ones into account. Distinguishing the oversampling techniques into “classical"

and “new" and studying their effectiveness will provide researchers with

insights on choosing appropriate techniques.

RQ2: What is the relationship between data complexity measures and the

choice of oversampling techniques?

Researchers in the imbalanced learning domain not only focus on developing

novel approaches but also emphasize the importance of understanding

the problem at a deeper level. The more complex the data, the more

difficult the classification is. Imbalance is not the unique factor hindering

the classification. It is also of vital importance to understand how other

data characteristics influence the imbalanced classification performance and

investigate the relationship between data complexity measures and the choice

of oversampling techniques.

RQ3: What is the relationship between the degree of class overlap and the

classification improvement obtained via hyperparameter tuning?

Hyperparameter optimisation has shown great effectiveness for many

machine learning algorithms. When dealing with class-imbalance problems,

hyperparameters in both resampling and classification algorithms should be

considered in the experiments. A minor variation of these hyperparameters

might influence the performance significantly. Nevertheless, this topic has

not been studied in detail in the context of learning from imbalanced data.

Therefore, we explore the potential of applying hyperparameter optimisation

to construct high-quality classifiers for imbalanced data automatically. From

RQ2, we already mentioned that data complexity influenced classification

performance. Our question in this part becomes, will data complexity affect

the classification improvement yielded via hyperparameter tuning?

5
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RQ4: Can we take advantage of anomaly detection techniques to improve

imbalanced classification?

The anomaly detection problem can be considered as a class-imbalance

problem with an extreme imbalance in terms of class distribution. There are

many techniques available in the literature to detect anomalies. Considering

the similarity between the two problems, it is very interesting to study if

we can improve performance for class-imbalance problems with anomaly

detection ideas.

RQ5: How can the idea of four types of samples be effectively extended to

multi-class imbalanced scenarios?

The idea of studying different types of samples (safe, borderline, rare

samples and outliers) was first proposed and evaluated on binary imbalanced

classification problems (Napierala and Stefanowski, 2016). Since the idea

was proposed, it has attracted widespread attention in the field of imbalanced

learning, and more than 200 papers have cited the original paper so far. Some

studies then extended this idea to multi-class scenarios without considering

the more complicated relationships among classes in multi-class imbalanced

scenarios. Therefore, proposing improved sample type identification for

multi-class imbalanced classification is worth studying.

RQ6: How applicable are the developed approaches to real-world problems?

The performances of the developed approaches are typically tested on

benchmark problems. However, given that real-world problems are more

complex, these approaches may fail in real-world situations. Therefore, it

is important to validate the performance of the approaches on real-world

applications.

1.3 Outline of the Thesis

This thesis is organised as follows.

Chapter 2 presents a gentle introduction to class imbalanced problems. It starts

with the literature review on binary and multi-class class imbalance problems,

including problem illustration, existing approaches and performance metrics.

Moreover, it presents the data complexity measures and introduces studies on

6
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the data complexity in the imbalanced learning domain. Finally, it shows the

benchmark datasets for learning from imbalanced problems and imbalanced

applications in real-world scenarios.

Chapter 3 introduces an empirical investigation comparing several oversampling

techniques. Apart from experimenting with imbalanced benchmark datasets,

further exploration through data from a real-world inspired digital vehicle

model is presented.

Chapter 4 presents our study on hyperparameter optimisation on class-imbalance

problems. We consider optimising the hyperparameters in both resampling

techniques and classification algorithms. Furthermore, we investigate the

relationship between the degree of class overlap and the improvement yielded

via hyperparameter tuning.

Chapter 5 introduces our idea of improving imbalanced classification via adding

additional attributes. We propose introducing the outlier score, an important

indicator to evaluate whether a sample is an outlier, as an additional attribute

of the original imbalanced datasets. Apart from this, we also introduce the

four types of samples (safe, borderline, rare samples and outliers) as another

additional attribute.

Chapter 6 introduces our proposed improved sample type identification for multi-

class imbalanced classification. We first show the drawbacks when applying

the existing identification rule directly to multi-class scenarios. After that,

we emphasize the importance of proposing a new identification rule for

multi-class scenarios and introduce the improved type identification rule.

Chapter 7 presents the main conclusions of this thesis and the potential future

research directions.

1.4 Publications

The main contributions of this thesis are based on the following publications:

• Kong, J., Kowalczyk, W., Nguyen, D.A., Bäck, T. and Menzel, S., 2019,

December. Hyperparameter optimisation for improving classification under

class imbalance. In 2019 IEEE symposium series on computational

intelligence (SSCI) (pp. 3072-3078). IEEE.
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• Kong, J., Rios, T., Kowalczyk, W., Menzel, S. and Bäck, T., 2020, May. On

the performance of oversampling techniques for class imbalance problems.

In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp.

84-96). Springer, Cham.

• Kong, J., Kowalczyk, W., Menzel, S. and Bäck, T., 2020, September.

Improving imbalanced classification by anomaly detection. In International

Conference on Parallel Problem Solving from Nature (pp. 512-523). Springer,

Cham.

• Kong, J., Kowalczyk, W., Jonker, K., Menzel, S. and Bäck, T., 2022,

July. Improved Sample Type Identification for Multi-Class Imbalanced

Classification with Real-World Applications. In International Conference

on Data Science. (Accepted, publication in process)

Other work by the author:

• Rios, T., Kong, J., van Stein, B., Bäck, T., Wollstadt, P., Sendhoff, B. and

Menzel, S., 2020, December. Back to meshes: Optimal simulation-ready

mesh prototypes for autoencoder-based 3D car point clouds. In 2020 IEEE

Symposium Series on Computational Intelligence (SSCI) (pp. 942-949).

IEEE.

• Nguyen, D.A., Kong, J., Wang, H., Menzel, S., Sendhoff, B., Kononova, A.V.

and Bäck, T., 2021, October. Improved automated cash optimization with

tree parzen estimators for class imbalance problems. In 2021 IEEE 8th

international conference on data science and advanced analytics (DSAA) (pp.

1-9). IEEE.
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CHAPTER 2

Preliminaries

In this chapter, a gentle introduction to class imbalanced problems is presented.

This chapter is structured as follows. First, in Section 2.1 we give an example of

a binary class imbalance problem and introduce the existing approaches and the

performance metrics in the binary class imbalance domain. Next, in Section 2.2

the methods and performance metrics in multi-class scenarios are presented. Then,

in Section 2.3 we address the importance of data complexity in the imbalanced

datasets and present the data complexity measures. Finally, in Section 2.4 the

benchmark datasets for learning from imbalanced problems and several imbalanced

applications are discussed.

2.1 Binary Class Imbalance Learning

Most studies in the imbalanced learning domain are devoted to the binary scenario,

where the number of samples in one class is significantly higher than in the other.

An example of a binary class imbalance problem is shown in Figure 2.1, where

the Imbalance Ratio (IR) is the ratio of the number of majority class samples to

the number of minority class samples (Orriols-Puig and Bernadó-Mansilla, 2009).

The figure clearly illustrates that the minority class is underrepresented due to the

lack of samples, and in real-world applications, the minority class is usually the

class of interest. For instance, if we consider Figure 2.1 as an example from the

car industry, we need to perform quality control, i.e. differentiate the qualified

and unqualified cars. In this case, it is much more critical to identify unqualified

cars correctly. The consequence of undetected unqualified cars could be severe

accidents, whereas a false classification of qualified cars only requires a double

check. The ideal case is to get a 100% accuracy on both classes. However, the

9
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current classification techniques are not perfect, and in order to ensure the overall

accuracy, they tend to bias toward the majority class and produce poor accuracy

or even neglect the accuracy of the minority class (0% accuracy). Class imbalance

is not the only reason leading to performance degradation. Data complexity also

significantly influences the imbalanced classification; detailed information on this

will be given in Section 2.3. This section reviews the existing approaches and

performance metrics for binary imbalanced learning.

−4

0

4

−6 −3 0 3 6
Feature 1

F
ea

tu
re

 2

majority class

minority class

Figure 2.1: An example of a binary class imbalance problem with IR = 200.

2.1.1 Existing Approaches

Many techniques have been developed to improve the minority class accuracy

in class imbalance problems. These techniques can be grouped into four broad

categories based on how they deal with the problem.

10



2.1. Binary Class Imbalance Learning

Data-level approaches

Data-level approaches, also known as resampling techniques, adjust the data

space directly in order to produce relatively balanced data distribution for

standard classifiers. Resampling techniques consist of three groups, oversampling,

undersampling and hybrid methods. For a clear description, the following notations

are used in this section. For a training dataset S with N samples, i.e. |S| = N and

S = {(xn, yn)}, n = 1, 2, ..., N , where xn belongs to an instance space X and yi
belongs to a label set associated with xn.

Oversampling balances the class distribution by replicating existing samples

in the minority class or generating new artificial samples for the minority class.

One of the most representative oversampling approaches is the Synthetic Minority

Oversampling TEchnique (SMOTE). SMOTE works by creating artificial minority

class samples to produce balanced data. The artificial samples are generated based

on the randomly chosen minority class samples and their K-Nearest Neighbours.

A new synthetic sample xs can be generated according to the following equation

(H. He and E. A. Garcia, 2009):

xs = xi + δ · (x̂i − xi); (2.1)

where xi is the minority class sample to oversample, x̂i is a randomly selected

neighbour from its K-nearest minority class neighbours and δ is a random

number, where δ ∈ [0, 1], as described in (Chawla, Bowyer, Hall, and Kegelmeyer,

2002). Figure 2.2 illustrates how the synthetic samples are created in the SMOTE

technique.

Undersampling eliminates the samples in the majority class to equalize

the number of samples in each class. The majority class samples can be

removed randomly or according to the preset strategies. Hybrid methods are

the hybridization of oversampling and undersampling. There are various ways to

perform these three groups of techniques (oversampling, undersampling and hybrid

methods). Figure 2.3 shows examples of two resampling techniques, Synthetic

Minority Oversampling TEchnique (SMOTE) and Random Undersampling (RUS),

where RUS adjusts the data distribution by randomly deleting samples from the

majority class. Detailed descriptions of various resampling techniques will be given

in the following chapters.

11



Chapter 2. Preliminaries

Figure 2.2: An illustration of how to generate synthetic samples through SMOTE.
Example of K-nearest minority class neighbours for minority class sample xi (K=5)
(left) and new synthetic samples generated through SMOTE (right).

Algorithm-level approaches

Algorithm-level approaches do not deal with the data distribution. Instead, they

modify the classical classification algorithms to alleviate the bias towards the

majority class caused by the significant imbalanced data distribution. An in-depth

understanding of the classification algorithms is required to perform appropriate

modifications since one needs to precisely identify which part in the algorithm

hinders the classification performance on imbalanced datasets (Fernández, García,

Galar, Prati, Krawczyk, and Herrera, 2018). An example of modifying Support

Vector Machines (SVMs) is to emphasise more weight on support vectors belonging

to minority class so that the decision boundary shift towards minority class (Imam,

Ting, and Kamruzzaman, 2006). Another example of adapting Decision Trees

is to use Hellinger distance as the split function instead of Gini index (Cieslak,

Hoens, Chawla, and Kegelmeyer, 2012). The main idea is to avoid the selecting

criteria in favour of the majority class. An exhaustive review of the algorithm-level

approaches on class imbalance problems can be found in (Fernández, García, Galar,

Prati, Krawczyk, and Herrera, 2018).

Cost-sensitive learning

Most standard machine learning classification algorithms assume symmetric

misclassification costs for each class (Thai-Nghe, Gantner, and Schmidt-Thieme,
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2.1. Binary Class Imbalance Learning

2010). However, this assumption is violated in class imbalance problems since

the cost of misclassifying samples in the minority class is much higher than that

in the majority class. Cost-sensitive methods handle class imbalance problems via

considering the costs associated with misclassifying samples (Elkan, 2001; H. He

and E. A. Garcia, 2009). This learning framework can be combined with data-level

approaches by adding costs to specific samples and can also be combined with

algorithm-level approaches by adapting the misclassification cost in the learning

process (Fernández, García, Galar, Prati, Krawczyk, and Herrera, 2018).

Ensemble learning

Ensemble-based classifiers, a combination of multiple classification algorithms,

are known to produce better classification performance compared to a single

classification algorithm (Rokach, 2010). Standard ensemble-based classifiers are

not very effective to deal with skewed class distributions; however, they can be

easily adapted to handle class imbalance problems. In the imbalanced learning

domain, the most straightforward approach for adapting the ensemble-based

classifiers is to include a resampling technique as a preprocessing step before

learning base classifiers (Błaszczyński, Deckert, Stefanowski, and Wilk, 2010), e.g.

SMOTEBoost (Chawla, Lazarevic, Hall, and Bowyer, 2003) and SMOTEBagging

(S. Wang and Yao, 2009). Ensemble-based classifiers can also be combined with

cost sensitive learning mainly in two ways in the literature, cost-sensitive Boosting

(Sun, Kamel, A. K. Wong, and Y. Wang, 2007) and ensembles with cost-sensitive

base classifiers (B. X. Wang and Japkowicz, 2010).

2.1.2 Performance Metrics

When dealing with classification tasks, accuracy and error rate are the most

frequently used performance metrics (H. He and E. A. Garcia, 2009). In a

binary classification problem, the confusion matrix (see Table 2.1) can provide

classification results.

According to the confusion matrix (see Table 2.1), accuracy and error rate can

be computed as

accuracy =
TP + TN

TP + FN + FP + TN
,

error rate = 1− accuracy.

(2.2)
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Figure 2.3: Examples of two resampling techniques with (a) SMOTE and (b) RUS.
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Table 2.1: Confusion matrix for a binary classification problem

Positive prediction Negative prediction
Positive class True Positives (TP) False Negatives (FN)
Negative class False Positives (FP) True Negatives (TN)

However, the two metrics have some drawbacks when dealing with imbalanced

datasets. Firstly, they may give a deceptive evaluation in imbalanced scenarios.

For example, let us assume in a binary class-imbalance classification problem, the

majority-class and minority-class samples take 95% and 5% of the total samples

respectively. Even if the classifier predicts all the samples as majority class, the

accuracy is still 95%, which makes the classifier seems extremely efficient but

neglects the minority class. Moreover, the two metrics above assume the cost

of misclassifying different class samples is the same. However, in imbalanced

classification, the cost of misclassifying minority class samples are generally higher.

In bank transactions, for instance, failing to detect a fraud case will result in a

massive loss of money, while classifying a safe transaction into a fraud will require

a double check. Considering the facts above, the accuracy does not reflect the

actual effectiveness of an algorithm in imbalanced domains.

In lieu of accuracy, recall, precision, F-Measure (FM) and G-Mean (GM) are

frequently adopted to assess the classification performance in imbalanced scenarios.

These measures are computed by

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

FM =
(1 + β)2 × Recall× Precision
β2 × Precision + Recall

,

GM =

√
TP

TP + FN
× TN

FP + TN
,

(2.3)

where β is a coefficient which controls the relative importance of precision and

recall. It is a positive real coefficient indicating the importance of recall is β times

as precision. β is normally set to 1, indicating the same importance of precision and
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recall.

In the literature, precision and recall are also referred as positive predictive

value and true positive rate, reflecting the exactness and completeness respectively

(H. He and E. A. Garcia, 2009). Precision measures the proportion of correctly

classified positive samples to all positive predictions, whereas recall measures the

proportion of correctly classified positive samples to all positive samples. F-Measure

achieves the trade-off between precision and recall via adjusting the coefficient

β (Baeza-Yates, Ribeiro-Neto, et al., 1999). G-Mean is the geometric mean of

positive accuracy and negative accuracy (Kubat, Matwin, et al., 1997), it considers

performances on both majority and minority classes.

The Receiver Operating Characteristic (ROC) curve (Fawcett, 2004; Fawcett,

2006) is a graphical evaluation technique which assesses the classification ability

of a binary classifier. It is a graphical plot depicting all possible trade-offs between

true positive rate (TPR) and false positive rate (FPR) (S. Wang, 2011a), which

are defined as

TPR =
TP

TP + FN
;

FPR =
FP

FP + TN
.

(2.4)

The ROC space is illustrated in Figure 2.4. According to the definition, a perfect

classifier can be represented as TPR = 1 and FPR = 0, see broken line OAC.

The worst classifier corresponds to broken line OBC with TPR = 0 and FPR = 1,

indicating the classifier always makes wrong predictions. The diagonal from left

bottom to the right top corner corresponds to a random-guessing classifier with

TPR = FPR. The ROC space is divided into two parts by this diagonal, where the

upper half indicates good classification results (better than random) and the lower

half indicates bad classification results (worse than random). L1 and L2 represent

two ROC curves, and the classifier corresponding to L2 outperforms the classifier

corresponding to L1.

Associated with the ROC curve, the Area Under the ROC Curve (AUC) can be

computed by estimating the area using quadrature, i.e. the AUC value varying

in [0, 1]. It is used as an evaluation criterion for comparing the performance

of different classifiers (Fawcett, 2004; Fawcett, 2006). If we rank the samples

according to the predicted score produced by the classifier, AUC can be understood

as the probability that the classifier will rank a randomly selected positive sample
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Figure 2.4: ROC space representation.

higher than a randomly selected negative sample (Hand and Till, 2001). The AUC

of the random classifier is 0.5 and is highlighted in gray in Figure 2.4. The AUC

value of a perfect classifier is equal to 1.

2.2 Multi-Class Imbalance Learning

Most studies in the imbalanced learning domain devote to the binary imbalanced

scenario. However, a significant number of imbalanced real-world applications

contain more than two classes, for instance, image classification, protein

classification and medical diagnosis. The increasing number of classes poses new

challenges for learning from multi-class imbalanced problems. First of all, more

decision boundaries need to be defined during the multi-class classification process.

Another challenging issue is that the imbalance among classes becomes more

complicated as there will be multi-majority and multi-minority classes (S. Wang,

Minku, and Yao, 2016). The data complexity, an important cause of the degradation

in binary case (López, Fernández, García, Palade, and Herrera, 2013), is more
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sophisticated. Several solutions designed for binary imbalanced classification are

extended to multi-class scenarios. In this section, we review the existing approaches

and performance metrics for multi-class imbalanced learning.

2.2.1 Existing Approaches

In this section, we first introduce the decomposition strategies for handling

the multi-class imbalanced problems. After that, other methods, including

preprocessing techniques and classification algorithms designed for multi-class

scenarios, are described.

Decomposition Strategies

Class decomposition is an intuitive method to deal with multi-class imbalanced

problems (Galar, Fernández, Barrenechea, Bustince, and Herrera, 2011). After

transforming the multi-class problem into multiple subsets, the existing approaches

for handling the binary scenarios can be applied directly. Among several

decomposition strategies, One-vs-Rest (OVR) and One-vs-One (OVO) are the most

commonly used in the literature.

Suppose there are C classes in the multi-class imbalanced problem. In the

OVR decomposition, each of the C classes is trained against the remaining (C − 1)

classes (Rifkin and Klautau, 2004). In other words, a C-class imbalanced problem is

decomposed into C binary classification problems. When predicting the final label

for a test sample, each binary classifier provides a prediction with confidence, and

the prediction with the highest confidence is usually determined as the final label for

this test sample. An illustration of the OVR scheme for a 3-class problem is shown in

Figure 2.5a. While OVR provides the convenience of treating multi-class scenarios

as binary scenarios, it also brings further imbalance into the binary subsets. In

addition, all the individual classifiers are trained with the complete dataset; this

ensures that no information is dropped in the training procedure. However, this

also preserves the overlapping regions, a factor leading to the degradation of the

classification performance (López, Fernández, García, Palade, and Herrera, 2013).

In the OVO decomposition, each of the C classes is trained against one of

the remaining classes (Fürnkranz, 2002). Thus, a C-class imbalanced problem is

decomposed into C(C − 1)/2 binary problems. The final predictions are usually

determined via the majority voting strategy. An illustration of the OVO scheme for
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(a) Illustrations of OVR scheme for a 3-class problem.

(b) Illustrations of OVO scheme for a 3-class problem.

Figure 2.5: Illustrations of OVR and OVO scheme for a 3-class problem (Fernández,
García, Galar, Prati, Krawczyk, and Herrera, 2018).
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a 3-class problem is shown in Figure 2.5b. Each binary classifier is only trained

with pairs of classes; this makes the decision boundaries much simpler and properly

addresses the overlapping issue. However, when pairing the classes, the number of

binary classifiers increases in a quadratic rate of C (Tan, Gilbert, and Deville, 2003;

S. Wang, 2011b). The training time can be long if C is large.

Approaches for Handling Multi-class Imbalanced Problems

The decomposition strategies are prevalent in addressing multi-class problems due

to their straightforward idea and simple implementation. With the advantages of

the decomposition strategies, many binary imbalanced approaches are extended to

deal with multi-class imbalanced problems. Liao applied OVR and resampling

techniques on the weld flaw classification problem specifically (Liao, 2008).

Fernandez et al. reported a thorough experimental analysis on the combination of

decomposition strategies and popular resampling techniques (Fernández, López,

Galar, Del Jesus, and Herrera, 2013). They concluded that OVO and oversampling

showed the best robustness in their experiments. Krawczyk proposed to embed

a cost-sensitive Artificial Neural Networks (ANN) into OVO scheme for handling

multi-class imbalanced data (Krawczyk, 2016). A classification framework has

been proposed in (Sen, Islam, Murase, and Yao, 2015) to efficiently handle multi-

class imbalanced problems. The framework is based on the OVR strategy and

the boosting technique focuses on hard-to-learn samples in each base classifier.

Meanwhile, oversampling techniques are applied to increase the sample weight in

minority classes.

Despite applying a decomposition strategy, there are also ad-hoc approaches

for multi-class imbalanced problems. The Static-SMOTE resampling technique

(Fernández-Navarro, Hervás-Martínez, and Gutiérrez, 2011), inspired by SMOTE

(Chawla, Bowyer, Hall, and Kegelmeyer, 2002), is proposed to handle multi-class

imbalanced datasets. In Static-SMOTE, the oversampling procedure is performed

in m steps, and m is the number of classes (Fernández, López, Galar, Del Jesus, and

Herrera, 2013). The number of samples in the minimum size class is duplicated

using SMOTE in each iteration. The Mahalanobis Distance-Based Oversampling

Technique (MDO) (Abdi and Hashemi, 2015) is also proposed to oversample the

minority classes in multi-class scenarios. Instead of randomly oversampling the

samples, MDO guarantees that the artificial samples have the same Mahalanobis

distance (Mahalanobis, 1936) from the considered class mean as other samples
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from the considered class. Considering the excellent ability of ensemble algorithms,

Sun et al. (Sun, Kamel, and Y. Wang, 2006) proposed a cost-sensitive boosting

algorithm to handle multi-class imbalanced problems. The core ideas are first

to find an appropriate cost matrix, then to apply a Genetic Algorithm to search

the optimum cost setup of each class. AdaBoost.NC (S. Wang, H. Chen, and

Yao, 2010), a negative correlation learning algorithm, was proposed to address

binary classification by introducing diversity among base classifiers. This work was

extended to multi-class scenarios (S. Wang and Yao, 2012). Their experimental

results reveal that combining AdaBoost.NC and oversampling techniques have a

better ability to recognise samples from minority classes and achieve a high G-mean

among classes even without decomposition strategies.

2.2.2 Performance Metrics

When choosing the performance metrics for multi-class imbalanced problems, both

the performance for each class and the overall performance must be taken into

account. The single-class performance metrics introduced in Section 2.1.2 are

still suitable for multi-class scenarios. There is no standard performance metric to

measure the overall classifier performance in the multi-class imbalanced learning

domain. We consider two overall performance metrics in this thesis.

The average accuracy is commonly used to evaluate the multi-class imbalanced

classification performance (Ferri, Hernández-Orallo, and Modroiu, 2009). It is

computed by

MAcc =
1

C

C∑
i=1

TPRi. (2.5)

The Multi-class Area Under the Curve (MAUC), an extension of AUC, is another

commonly used to measure the multi-class classification performance of the whole

dataset (Hand and Till, 2001). It is the average pairwise AUC values of all paired

classes and is defined as

MAUC =
2

C · (C − 1)

∑
j<k

Â(j, k), (2.6)

where Â(j, k) = [Â(j|k) + Â(k|j)]/2 is the measure of separability between

classes j and k. Â(j|k) indicates the probability that a sample randomly selected

from class k has a lower probability for class j than randomly selected from class j,
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and Â(k|j) is defined correspondingly. A detailed equation to compute Â(j, k) can

be found in (Hand and Till, 2001).

Apart from overall performance, one main aim of studying the imbalanced

problem is to improve the classification accuracy on minority class(es) while not

losing too much accuracy on majority class(es). In this thesis, we use MinAcc, the

average accuracy on minority class(es), to measure the performance on minority

class(es). It is computed by

MinAcc =
∑

i∈Cminority

TPRi/nminority, (2.7)

where Cminority denotes the set of minority class indices, TPRi is the true positive

rate in class i, nminority denotes the number of minority classes. If there is more

than one class being underrepresented in multi-class imbalanced classification, one

should manually define the value of nminority.

2.3 Data Complexity for Imbalanced Datasets

The class imbalance was widely considered as the main reason for performance

degradation. However, there are highly imbalanced problems with good

classification performance. This situation caught the attention of various

researchers and they addressed the importance of data complexity in the

imbalanced datasets (López, Fernández, García, Palade, and Herrera, 2013; Prati,

Batista, and Monard, 2004). Weng et al. performed an analysis of the data

complexity to gain some insights on their imbalanced datasets (Weng and Poon,

2006). In (Luengo, Fernández, García, and Herrera, 2011), authors concluded that,

according to their experimental results, the imbalance ratio by itself cannot be

considered as a determinant factor for degradation in performance. Researchers in

(M. S. Santos, Soares, Abreu, Araujo, and J. Santos, 2018) analyzed the relationship

between data complexity measures and the classification performance with and

without applying the resampling techniques. They confirmed that the performance

with oversampling techniques is related to the data complexity in a quasi-linear.

This section first introduces two types of data complexity measures: feature

overlapping measures and measures of separability of classes. After that, four

types of samples in the imbalanced domain are described.
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2.3.1 Overlapping and Class Separability

When studying the data complexity measures in binary classification problems,

feature overlapping measures and measures of the separability of classes are commonly

considered (Ho and Basu, 2002), where the former characterize how informative

the features classify the classes and the latter try to quantify the linear separability

of the classes (Lorena, L. P. Garcia, Lehmann, Souto, and Ho, 2019). A summary of

the two types of measures is shown in Table 2.2.

Table 2.2: Summary of the data complexity measures. “Positive" and “Negative"
indicate the positive and negative relation between measure value and data
complexity respectively.

Measure Description Relation

F1 Maximum Fisher’s Discriminant Ratio Negative

F1v The Directional-vector Maximum Fisher’s Discriminant Ratio Negative

F2 Volume of Overlapping Region Positive

F3 Maximum Individual Feature Efficiency Negative

L1 Sum of the Error Distance by Linear Programming Positive

L2 Error Rate of Linear Classifier Positive

L3 Non-Linearity of a Linear Classifier Positive

Feature Overlapping Measures

The maximum Fisher’s discriminant ratio, denoted by F1, measures the overlap

between the feature values of different classes and is given by (Lorena, L. P. Garcia,

Lehmann, Souto, and Ho, 2019):

F1 =
m

max
i=1

rfi , (2.8)

where m is the number of features, rfi is the discriminant ratio for each feature

fi. In a binary classification problem, rfi can be calculated as follows (Kong,

Kowalczyk, D. A. Nguyen, Menzel, and Bäck, 2019; Lorena, L. P. Garcia, Lehmann,

Souto, and Ho, 2019):

rfi =

∑2
c=1 nc(µ

fi
c − µfi)2∑2

c=1

∑nc

j=1(xcj − µ
fi
c )2

, (2.9)
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where nc is the number of examples in class c, µfi
c is the mean value of feature

fi across class c, µfi is the mean value of feature fi across all classes, and xcj

represents the value of feature fi for a sample from class c (Lorena, L. P. Garcia,

Lehmann, Souto, and Ho, 2019). An example of F1 computation is given in Figure

2.6.

Figure 2.6: Example of F1 computation for a binary dataset (Lorena, L. P. Garcia,
Lehmann, Souto, and Ho, 2019).

The directional-vector maximum Fisher’s discriminant ratio, F1v, is a complement of

F1 and a higher value of F1v indicates that there exists a vector which can separate

different class samples after these samples are projected on it (Lorena, L. P. Garcia,

Lehmann, Souto, and Ho, 2019; Orriols-Puig, Macia, and Ho, 2010). It computes

the two-class Fisher’s criterion defined in (Malina, 2001) as:

F1v =
dtBd

dtWd
, (2.10)

where

• d is the directional vector on which the data are projected;

• B = (µ1 − µ2)(µ1 − µ2)t is the between-class scatter matrix and µ1, µ2 are

the mean vector of the two classes;

• W = pΣ1 + (1 − p)Σ2 and p is the proportion of samples in one class and

Σ1 is the scatter matrix of the same class, and Σ2 is the scatter matrix of the

other class.
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The directional vector d is calculated (Orriols-Puig, Macia, and Ho, 2010) by

d = W−1(µ1 − µ2), (2.11)

where the W−1 is the pseudo-inverse of W (Lorena, L. P. Garcia, Lehmann, Souto,

and Ho, 2019; Orriols-Puig, Macia, and Ho, 2010).

The volume of overlapping region, denoted by F2, calculates the overlap ratio of all

features (the width of the overlap interval in relation to the width of the entire

interval) and returns the product of the ratios of all features (Orriols-Puig, Macia,

and Ho, 2010), as shown below.

F2 =

m∏
i

overlap(fi)

range(fi)

=

m∏
i

max{0,min max(fi)−max min(fi)}
max max(fi)−min min(fi)

,

(2.12)

where
min max(fi) = min(max(f c1i ),max(f c2i )),

max min(fi) = max(min(f c1i ),min(f c2i )),

max max(fi) = max(max(f c1i ),max(f c2i )),

min min(fi) = min(min(f c1i ),min(f c2i )),

(2.13)

where (f c1i ) and (f c2i ) are the values of the feature i for the two classes.

The maximum individual feature efficiency (F3) computes the individual feature

efficiency and returns the maximum value among all features (Lorena, L. P. Garcia,

Lehmann, Souto, and Ho, 2019; Orriols-Puig, Macia, and Ho, 2010). For each

feature, the overlapping region is taken into account, and the ratio of the number of

examples not in the overlapping region to the total number of examples is returned

as F3.

Linearity Measures

L1 and L2 measure to what extent the classes can be linearly separated using an

SVM with a linear kernel (Orriols-Puig, Macia, and Ho, 2010), where L1 returns

the sum of the distances of the misclassified samples to the linear boundary and L2

returns the error rate of the linear classifier. An example of L1 and L2 computation
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is given in Figure 2.7. L3 returns the error rate of an SVM with linear kernel on a

test set, where the SVM is trained on training samples and the test set is manually

created by performing linear interpolation on the two randomly chosen samples

from the same class.

Figure 2.7: Example of L1 and L2 computation for a binary dataset (Lorena, L. P.
Garcia, Lehmann, Souto, and Ho, 2019).

2.3.2 Types of Sample in Imbalanced Domain

Napierala and Stefanowski proposed to analyse the local characteristics of minority

class samples by dividing them into four different types: safe, borderline, rare

samples and outliers (Napierala and Stefanowski, 2016), the latter three are called

unsafe samples. The identification of the type of an example can be done through

modeling its k-neighbourhood. Considering that many applications involve both

nominal and continuous attributes, the HVDM metric is applied to calculate the

distance between different examples.

Heterogeneous Value Difference Metric (HVDM)

HVDM is a heterogeneous distance function that returns the distance between

two vectors x and y (D. R. Wilson and Martinez, 1997), where the vectors can

involve both nominal and numerical attributes. The HVDM distance is defined by
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(D. R. Wilson and Martinez, 1997):

HVDM(x,y) =

√√√√ n∑
a=1

da
2(xa, ya), (2.14)

where n is the number of attributes. The function da(·) returns the distance between

xa and ya, where xa, ya indicate the ath attribute of vector x and y respectively. It

is defined as follows:

da(x, y) =


1, if x or y is unknown, i.e. NA

norm_vdma(x, y), if ath attribute is nominal

norm_diffa(x, y), if ath attribute is continuous

(2.15)

where

norm_vdma(x, y) =

√√√√ C∑
c=1

∣∣∣∣Na,x,c

Na,x
− Na,y,c

Na,y

∣∣∣∣2, norm_diffa(x, y) =
|x− y|

4σa
,

(2.16)

where

• C is the number of total output classes,

• Na,x,c is the number of instances which have value x for the ath attribute

and output class c and Na,x =
∑C

c=1Na,x,c,

• σa is the standard deviation of values of the ath attribute.

Identification Rule to Assign Types of Sample

The four types of samples in binary scenario are determined by the neighbourhood

information, taking a sample from minority class as an example:

• a sample is considered to be safe if the majority of the neighbours belongs to

the same class;

• a sample is considered to be borderline if the proportion of the neighbours

in both classes is approximately the same;

• a sample is considered to be rare if the majority of the neighbours belongs to

a different class;
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• a sample is considered to be an outlier if all the neighbours belongs to a

different class.

Given the number of neighbours k, the label to a sample from minority class can

be assigned through the ratio of the number of its neighbours from minority class

to the total number of neighbours (Rmin
all

) according to Table 2.3. The label for a

sample from majority class can be assigned in a similar way. Given the number of

neighbours k, the label to a sample from majority class can be assigned through

the ratio of the number of its neighbours from majority class to the total number of

neighbours (Rmaj
all

).

Table 2.3: Identification rule to assign types for samples from minority class. Rmin
all

is the ratio of the number of its neighbours from minority class to the total number
of neighbours.

Type Rule Rule (k = 5)

Safe k+1
2k < Rmin

all
6 1 3

5 < Rmin
all

6 1

Borderline k−1
2k 6 Rmin

all
6 k+1

2k
2
5 6 Rmin

all
6 3

5

Rare 0 < Rmin
all

< k−1
2k 0 < Rmin

all
< 2

5

Outlier Rmin
all

= 0 Rmin
all

= 0

2.4 Imbalanced Benchmark Datasets and

Applications

This section first introduces one of the dataset repositories for learning from

imbalanced benchmark datasets. After that, a gentle introduction to imbalanced

applications is given.

2.4.1 KEEL-Dataset Repository

KEEL (Knowledge Extraction based on Evolutionary Learning) is an open-source

software 1 which was initially developed to implement evolutionary algorithms

and deal with some standard data mining tasks (Alcalá-Fdez, Fernández, Luengo,

1http://www.keel.es
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Derrac, García, Sánchez, and Herrera, 2011), e.g. classification and regression. A

dataset repository is also provided in KEEL 2, it provides a set of quality benchmark

datasets, allowing comparative studies for various researchers.

Regarding imbalanced classification, there are various binary benchmark

datasets with imbalanced ratios varying from 1.5 to 130. Most of the datasets

can also be found in the UCI repository 3; however, the datasets in UCI always

require some preprocessing step, i.e. one has to deal with the missing values by

himself/herself. Datasets in KEEL are in good structure and can be used in the

experiments directly. Please note that many binary datasets in KEEL are artificially

derived from multi-class classification problems using decomposition strategies.

There are also 15 multi-class imbalanced benchmark datasets available. Most

experiments in this thesis are based on the datasets in KEEL. Several experiments

use the datasets from our industrial partners. Information on these datasets can be

found in our Marie-Curie ITN project GitHub repository 4.

2.4.2 Imbalanced Applications

The imbalanced problems widely exist in many real-world scenarios. This

section briefly reviews several imbalanced applications in engineering, information

technology, bioinformatics, and medicine.

Back to the end of the 1990s, Kubat et al. (Kubat, R. Holte, and Matwin, 1997;

Kubat, R. C. Holte, and Matwin, 1998; Kubat, Matwin, et al., 1997) dealt with the

detection of oil spills in satellite radar images. It is very challenging to detect oil

spills in satellites’ radar images since they reflect less light. The class imbalance in

the problem (41 oil spills and 896 images without oil spills) makes the problem

even more challenging. These challenges drove them to propose one-side selection

(OSS) to sample the data points. OSS will be introduced later in this thesis. The

class imbalance applications are also widely studied in various engineering sub-

domains, such as fault detection in semiconductors (T. Lee, K. B. Lee, and Kim,

2016), short-term voltage stability assessment (Zhu, Lu, Dong, and Hong, 2017),

fault diagnosis in wind turbines (Wu, Lin, and Ji, 2018) and etc.

In information technology, software defect prediction is necessary for quality

control in order to detect possible failures. Rodriguez et al. (Rodriguez, Herraiz,

2http://www.keel.es/datasets.php
3https://archive.ics.uci.edu/ml/index.php
4https://github.com/ECOLE-ITN

29



Chapter 2. Preliminaries

Harrison, Dolado, and Riquelme, 2014) compared the effectiveness of different

approaches for handling the class imbalance in the problem. They concluded that

combining the ensemble methods and feature selection scheme is robust in dealing

with the proposed problem. Due to the current advances, applications network

analysis and computer vision are also proposed, for instance, mobile malware

detection (Z. Chen, Yan, Han, S. Wang, Peng, L. Wang, and B. Yang, 2018) and

object recognition in images (X. Zhang, Zhuang, W. Wang, and Pedrycz, 2016).

One well-known application in Bioinformatics is protein identification. The

detection of Micro RNAs is crucial due to their high importance in post-

transcriptional regulation of gene expression of plants and animals (Lertampaiporn,

Thammarongtham, Nukoolkit, Kaewkamnerdpong, and Ruengjitchatchawalya,

2013). The authors proposed a modified-SMOTEbagging for pre-miRNA

classification. The imbalanced applications in medicine contain medicine quality

(Zięba, Tomczak, Lubicz, and Świątek, 2014), lung nodule detection (Cao, J. Yang,

W. Li, D. Zhao, and Zaiane, 2014), diagnosis of diabetes mellitus (Z. Chen, Yan,

Han, S. Wang, Peng, L. Wang, and B. Yang, 2018), microaneurysm (Ren, Cao, W. Li,

D. Zhao, and Zaiane, 2017) and other diseases.
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CHAPTER 3

An Empirical Investigation

Comparing Several Oversampling

Techniques

Many resampling approaches have been developed in the imbalance learning

domain, most empirical studies and application work are still based on the

“classical" resampling techniques and do not take newly developed resampling

techniques into account. In this chapter, we investigate the effectiveness of six

oversampling techniques (both “classical" and new ones) and study the relationship

between data complexity measures and the choice of oversampling techniques.

This chapter is structured as follows. First, Section 3.1 briefly introduces our work

in this chapter. Then, in Section 3.2, the research related to our work is presented

including the relevant background knowledge on six resampling approaches and

data complexity measures. In Section 3.3, the experiments, including introduction

on the datasets, cross-validation and experimental setup are introduced. Section 3.3

also contains the results and discussions of our experiments. Further exploration

through data from a real-world inspired digital vehicle model is presented in

Section 3.4. Section 3.5 concludes the chapter and outlines further research.

3.1 Introduction

The classification problem under class imbalance has caught growing attention

from both, academic and industrial field. Due to recent advances, the progress in

technical assets for data storage and management as well as in data science enables
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practitioners from industry and engineering to collect a large amount of data with

the purpose of extracting knowledge and acquire hidden insights. An example may

be illustrated from the field of computational design optimization where product

parameters are modified to generate digital prototypes which performances are

evaluated by numerical simulations, or based on equations that express human

heuristics and preferences. Here, many parameter variations usually result in valid

and producible geometries but in the final steps of the optimization, i.e. in the area

where the design parameters converge to a local/global optimum, some geometries

are generated which violate given constraints. Under this circumstance, a database

would contain a large number of designs which are according to specifications

(even if some may be of low performance) and a smaller number of designs

which eventually violate pre-defined product requirements. By far, the resampling

techniques have proven to be effective in handling imbalanced benchmark datasets

(López, Fernández, García, Palade, and Herrera, 2013). However, the empirical

study and application work in the imbalanced learning domain are mostly focusing

on “classical" resampling techniques like SMOTE, ADASYN, and MWMOTE etc (J.

Li, L.-s. Liu, Fong, R. K. Wong, Mohammed, Fiaidhi, Sung, and K. K. Wong, 2017;

Luengo, Fernández, García, and Herrera, 2011; M. S. Santos, Soares, Abreu, Araujo,

and J. Santos, 2018), although there are many recently developed resampling

techniques.

In this chapter, we set up several experiments on 19 benchmark datasets to study

the effectiveness of six oversampling techniques (Kong, Rios, Kowalczyk, Menzel,

and Bäck, 2020b), including SMOTE, ADASYN, MWMOTE, RACOG, wRACOG

and RWO-Sampling. For each data set, we also compute seven data complexity

measures to investigate the relationship between data complexity measures and

the choice of resampling techniques, since researchers have pointed out that

studying the data complexity of imbalanced datasets is of vital importance (Luengo,

Fernández, García, and Herrera, 2011) and it may affect the choice of resampling

techniques (M. S. Santos, Soares, Abreu, Araujo, and J. Santos, 2018). We also

perform experiments on a real-world inspired vehicle dataset. Results of our

experiments demonstrate that in most cases oversampling techniques that take

into account the minority class distribution (RACOG, wRACOG, RWO-Sampling)

perform better and RACOG exhibits the best performance among the six reviewed

approaches. Results on our real-world inspired vehicle dataset further validate this

conclusion. No obvious relationship between data complexity measures and the
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choice of resampling techniques is found in our experiments. However, we find that

the F1v value, a measure for evaluating the overlap between classes which most

researchers ignore (Luengo, Fernández, García, and Herrera, 2011; M. S. Santos,

Soares, Abreu, Araujo, and J. Santos, 2018), has a strong negative correlation with

the potential after-sampled Area Under curve (AUC) value.

3.2 Related Work

Many effective sampling approaches have been developed in the imbalanced

learning domain and the synthetic minority oversampling technique (SMOTE)

is the most famous one among all. Currently, more than 90 SMOTE extensions

have been published in scientific journals and conferences (Fernández, García,

Galar, Prati, Krawczyk, and Herrera, 2018). Most of the review papers and

applications are based on the “classical" resampling techniques and do not take

new oversampling techniques into account. In this chapter, we briefly review

six oversampling approaches, including both, “classical" ones (SMOTE, ADASYN,

MWMOTE) and new ones (RACOG, wRACOG, RWO-Sampling) (Barua, Islam, Yao,

and Murase, 2012; Chawla, Bowyer, Hall, and Kegelmeyer, 2002; Das, Krishnan,

and Cook, 2014; H. He, Bai, E. A. Garcia, and S. Li, 2008; H. Zhang and M. Li,

2014). The six reviewed oversampling techniques can be divided into two groups

according to whether they consider the overall minority class distribution. Among

the six approaches, RACOG, wRACOG, and RWO-Sampling take into account

the overall minority class distribution while the other three do not. Apart from

developing new approaches to solve the class-imbalance problem, various studies

have pointed out that it is important to study the characteristics of the imbalanced

dataset (López, Fernández, García, Palade, and Herrera, 2013; M. S. Santos, Soares,

Abreu, Araujo, and J. Santos, 2018). In (López, Fernández, García, Palade, and

Herrera, 2013), authors emphasize the importance of studying the overlap between

the two-class samples. In (M. S. Santos, Soares, Abreu, Araujo, and J. Santos,

2018), authors set up several experiments with the KEEL benchmark datasets

(Alcalá-Fdez, Fernández, Luengo, Derrac, García, Sánchez, and Herrera, 2011) to

study the relationship between various data complexity measures and the potential

AUC value. It is also pointed out in (M. S. Santos, Soares, Abreu, Araujo, and

J. Santos, 2018) that the distinctive inner procedures of oversampling approaches

are suitable for particular characteristics of the data. Hence, apart from evaluating
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the effectiveness of the six reviewed oversampling approaches, we also aim to

investigate the relationship between data complexity measures and the choice of

resampling techniques.

3.2.1 Oversampling Techniques

As mentioned above, we investigate six oversampling techniques in two groups:

“classical" ones (SMOTE, ADASYN, MWMOTE) and “new" ones (RACOG, wRACOG,

RWO-sampling), depending on whether they consider the overall minority class

distribution. SMOTE has been introduced in Section 2 and in the following, the

remaining five oversampling techniques are introduced.

ADASYN

The adaptive synthetic (ADASYN) sampling technique aims to adaptively generate

minority class samples according to their distributions (H. He, Bai, E. A. Garcia, and

S. Li, 2008). The samples which are harder to learn are given higher importance

and will be oversampled more often in the data generation process. The key point

is to determine a weight/sampling importance (r̂i) for each minority class sample.

Weight r̂i of a minority class sample xi is defined as (H. He, Bai, E. A. Garcia, and

S. Li, 2008)

r̂i =
ri∑ms

i=1 ri
, ri =

∆i

K
, i = 1, ...,ms, (3.1)

where ms is the number of minority class samples, ∆i is the number of samples

in the K Nearest Neighbours (K-NN) of xi that belong to the majority class. For a

specific minority class sample, a higher value of ri corresponds to a higher difficulty

to learn. The number of synthetic samples that will be generated for different

minority class samples are proportional to their sampling importance (H. He, Bai,

E. A. Garcia, and S. Li, 2008)

gi = r̂i ·G, (3.2)

where G is the total number of synthetic minority class samples that need to be

produced. Figure 3.1 shows an example of the sampling importance for different

minority class samples.

Compared to SMOTE, the only difference in ADASYN oversampling procedure

is that more synthetic samples will be generated for harder minority class samples.
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Figure 3.1: Example of sampling importance for different minority class samples.
According to definition, r1 = r2 = 1, r3 = r4 = 0.8 and r̂1 = r̂2 > r̂3 = r̂4,
indicating the sampling importance of sample x1,x2 is higher than x3,x4 and
more synthetic samples will be produced for x1 and x2.

In this way, the ADASYN not only provides less learning bias but puts more focus

on the difficulty to learn minority class samples.

MWMOTE

Compared to other oversampling techniques, the majority weighted minority

oversampling technique (MWMOTE) improves the sample selection scheme and

the synthetic sample generation scheme (Barua, Islam, Yao, and Murase, 2012).

MWMOTE first finds the informative minority class samples (Simin) by removing

the “noise” minority class samples and finding the borderline majority class samples.

Then, every sample in Simin is given a selection weight (Sw), according to the

distance to the decision boundary, the sparsity of the located minority class cluster

and the sparsity of the nearest majority class cluster. These weights are converted

into the selection probability (Sp), which will be used in the synthetic sample

generation stage. Different from the K-NN-based approach, MWMOTE adopts a

clustering algorithm to generate the synthetic samples. The cluster-based synthetic

sample generation process proposed in MWMOTE can be described as, 1) cluster

all minority class samples into M clusters; 2) select a minority class sample x from

Simin according to Sp and randomly select another sample y from the same cluster

of x; 3) use the same equation (Eq. 2.1.1) employed in the K-NN-based approach

to generate the synthetic sample; 4) repeat 1) – 3) until the required number of
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synthetic samples is generated.

RACOG and wRACOG

The oversampling approaches can effectively increase the number of minority

class samples and achieve a balanced training dataset for classifiers. However, the

oversampling approaches introduced above heavily rely on local information of

the minority class samples and do not take the overall distribution of the minority

class into account. Hence, the global information of the minority class samples

cannot be guaranteed. In order to tackle this problem, Das et al. (Das, Krishnan,

and Cook, 2014) proposed RACOG (RApidly COnverging Gibbs) and wRACOG

(Wrapper-based RApidly COnverging Gibbs).

In both algorithms, the n-dimensional probability distribution of the minority

class is optimally approximated by Chow-Liu’s dependence tree algorithm and

the synthetic samples are generated from the approximated distribution using

Gibbs sampling (Das, Krishnan, and Cook, 2014). The minority class data points

are chosen as initial values to start the Gibbs sampler. Instead of running an

“exhausting” long Markov chain, the two algorithms produce multiple relatively

short Markov chains, each starting with a different minority class sample. RACOG

selects the new minority class samples from the Gibbs sampler using a predefined

lag and this selection procedure does not take the usefulness of the generated

samples into account. On the other hand, wRACOG considers the usefulness of the

generated samples and selects those samples which have the highest probability

of being misclassified by the existing learning model (Das, Krishnan, and Cook,

2014).

RWO-Sampling

Inspired by the central limit theorem, Zhang et al. (H. Zhang and M. Li, 2014)

proposed the random walk oversampling (RWO-Sampling) approach to generate

the synthetic minority class samples which follows the same distribution as the

original training data. Given an imbalanced dataset with multiple attributes, the

mean and the standard deviation for the ith attribute ai (i ∈ {1, 2, 3, ...,m}) in

minority class data can be calculated and denoted by µi and σi. Under the central

limit theorem, as the number of the minority class samples approaches infinity, the
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following formula holds:

µi − µ′i
σ′i/
√
n
→ N(0, 1), (3.3)

where µ′i and σ′i are the real mean and standard deviation for attribute ai.

In order to add m synthetic samples to the n original minority class samples,

we first select at random m examples from the minority class and then for each

of the selected examples x = (x1, ..., xm) we generate its synthetic counterpart

by replacing ai(j) (the ith attribute in xj , j ∈ {1, 2, ...,m}) with µi − ri · σi/
√
n,

where µi and σi denote the mean and the standard deviation of the ith feature

restricted to the original minority class, and ri is a random value drawn from the

standard Gaussian distribution. We can repeat the above process until we reach

the required mount of synthetic examples. Since the synthetic sample is achieved

by randomly walking from one real sample, this oversampling is called random

walk oversampling.

3.2.2 Data Complexity

The motivation for studying the data complexity in imbalanced data is that some

researchers (Luengo, Fernández, García, and Herrera, 2011; M. S. Santos, Soares,

Abreu, Araujo, and J. Santos, 2018) find no clear relationship between imbalance

ratio (IR) and the classification performance obtained via resampling. From their

empirical studies, they conclude that IR is not a sufficient measure to identify

the potential performance improvement of the data-level approaches (Luengo,

Fernández, García, and Herrera, 2011). Therefore, they analyse the resampling

techniques through data complexity measures (detailed introduced in Section 2.3)

in further studies. One of the main results is that the Fisher discriminant ratio

(F1) is informative in characterising the imbalanced classification performance.

Following the idea of studying the data complexity in the context of class imbalance,

Chen et al. (L. Chen, Fang, Shang, and Tang, 2018) studied the relationship

between class overlap and class imbalance in software defect prediction problems.

In (M. S. Santos, Soares, Abreu, Araujo, and J. Santos, 2018), authors conduct

detailed experiments to study the relationship between data complexity measures

and imbalanced classification performance. In their regression analysis across a

range of datasets, the obtained regression model can predict the AUC performance

based on complexity measures with an average R2 = 0.72.
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3.3 Experiments

In this section, we introduce the information on the datasets used in our

experiments. Then, the cross-validation in imbalanced learning is described. After

that, the experimental setup and results are given.

3.3.1 Information on the Datasets

The experiments reported in this chapter are based on 19 two-class imbalanced

datasets from the KEEL-collection (Alcalá-Fdez, Fernández, Luengo, Derrac, García,

Sánchez, and Herrera, 2011). The 19 collected binary datasets are manually

decomposed from four multi-class datasets: ecoli, glass, vehicle and yeast. Detailed

information on the datasets are given in Table 3.1 & Table 3.2.

Table 3.1: Information on datasets divided into 4 groups.

Datasets #Attributes #Samples Imbalance Ratio (IR)

ecoli{1,2,3,4} 7 336 { 3.36, 5.46, 8.6, 15.8 }

glass{0,1,2,4,5,6} 9 214 { 2.06, 1.82, 11.59, 15.47, 22.78, 6.38 }

vehicle{0,1,2,3} 18 846 { 3.25, 2.9, 2.88, 2.99 }

yeast{1,3,4,5,6} 8 1484 { 2.46, 8.1, 28.1, 32.73, 41.4 }

Table 3.2: Further description of the datasets (Alcalá-Fdez, Fernández, Luengo,
Derrac, García, Sánchez, and Herrera, 2011)

Datasets Description

ecoli
This is a protein localization sites classification dataset, which contains

8 classes. It is artificially modified into 4 binary datasets, where the sample
proportions are { 77:259 ; 52:284 ; 35:301 ; 20:316 }.

glass
This is a glass identification dataset, which contains 6 classes. It is

artificially modified into 6 binary datasets, where the sample proportions
are { 70:144 ; 76:138 ; 17:197 ; 13:201 ; 9:205 ; 29:185 }.

vehicle
This is a vehicle silhouettes dataset, which contains 4 classes. It is

artificially modified into 4 binary datasets, where the sample proportions
are { 199:647 ; 217:629 ; 218:628 ; 212:634 }.

yeast
This is a protein localization sites classification dataset, which contains

10 classes. It is artificially modified into 5 binary datasets, where the sample
proportions are { 429:1055 ; 163:1321 ; 51:1433 ; 44:1440 ; 35:1449 }.
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3.3.2 Cross-Validation in Imbalanced Learning

Cross-validation (CV) is an effective technique to assess classification performance.

It allows different portions of the data for training and testing a model (Bishop

and Nasrabadi, 2006). In traditional k-fold CV, the original dataset is randomly

partitioned into k folds, where k-1 folds are used to train the model and the left

one is retained as a validation fold to test the model performance. Then, every

fold iterates to be the validation fold to ensure that all folds are used for training

and testing the model. After k iterations, the final performance can be estimated

by averaging the k results. One significant advantage of this procedure is that

the validation fold is unseen in the training process. In the imbalanced learning

domain, data-level approaches are commonly used to deal with the imbalance in the

datasets. Some researchers emphasize the importance of correctly understanding

the joint use of CV and data-level approaches. They point out that a poorly designed

CV procedure for imbalanced datasets will result in overfitting and overoptimism

problems (Lusa et al., 2015; M. S. Santos, Soares, Abreu, Araujo, and J. Santos,

2018).

According to Oxford English Dictionary 1, overfitting is a statistical term with

definition “the production of an analysis which corresponds too closely or exactly

to a particular set of data, and may therefore fail to fit additional data or predict

future observations reliably". This term is then extended to machine learning,

which means the learning model is highly fitted to the training data and, therefore,

has poor ability to generalise on unseen data. The CV technique can alleviate the

overfitting problem in most cases. However, when learning from imbalanced data,

some oversampling techniques produce exact replicas of some samples (Lusa et al.,

2015). Too many same patterns in the training set will result in overfitting of the

model even with CV technique.

Overoptimism occurs when the training and test sets contain exact or similar

replicas of some patterns (M. S. Santos, Soares, Abreu, Araujo, and J. Santos, 2018).

For example, suppose we first obtain a balanced dataset through oversampling

approaches and then perform cross-validation when dealing with imbalanced

datasets. In this way, since the synthetic samples share similar patterns with the

original sample, samples with similar patterns may appear in both training and test

set, which will lead to the overoptimism problem. In our experiments, we perform

k-fold stratified CV before applying the six introduced oversampling techniques.

1https://www.oed.com/
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The stratified folds ensure that the imbalance ratio in the training set is consistent

with the original dataset.

3.3.3 Experimental Setup

In this chapter, six oversampling approaches (using the R package imbalance

(Cordón, García, Fernández, and Herrera, 2018)), which have been reviewed in

Section 3.2.1, are applied to the 19 two-class imbalanced datasets in Table 3.1.

Every collected dataset is divided into 5 stratified folds for cross-validation and

only the training set is oversampled, where the stratified fold ensures that the

imbalance ratio in the training set is consistent with the original dataset and only

oversampling the training set avoids the over-optimism problem (Lorena, L. P.

Garcia, Lehmann, Souto, and Ho, 2019).

In this chapter, we aim to study the effectiveness of different oversampling

approaches and investigate the relationship between data complexity measures

and the choice of oversampling techniques. Therefore, we calculate the 7 data

complexity measures (Table 2.2) for each dataset. In our 30 experiments for each

dataset, we calculate the 7 data complexity measures for every training set using

the R package ECoL (Lorena, L. P. Garcia, Lehmann, Souto, and Ho, 2019) (Table

3.3). Since we use 5 stratified cross-validations, we average each data complexity

measure for these 5 training sets and define it to be the data complexity measure

for the dataset.

In a binary classification problem, the confusion matrix can provide intuitive

classification results. In the class imbalance domain, it is widely admitted that

Accuracy tends to result in a deceptive evaluation of the performance. Instead of

Accuracy, the Area Under the ROC Curve (AUC) and geometric mean (GM) are

used to evaluate the performance (details can be checked in Section 2.1).
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Table 3.3: Data complexity for 19 collected datasets.

Dataset F1 F1v F2 F3 L1 L2 L3

ecoli1 0.8785 0.1248 0.0229 0.5814 0.0523 0.0955 0.0586

ecoli2 0.9154 0.1323 0.0000 0.7175 0.0514 0.0806 0.0588

ecoli3 0.9248 0.1557 0.0058 0.4257 0.0516 0.0771 0.0629

ecoli4 0.9291 0.0614 0.0005 0.3584 0.0088 0.0163 0.0152

glass0 0.9525 0.3728 0.0000 0.7002 0.1181 0.2232 0.1873

glass1 0.9808 0.5749 0.0068 0.8896 0.2046 0.3409 0.3378

glass2 0.9913 0.3540 0.0000 0.5279 0.0732 0.0794 0.0778

glass4 0.9497 0.0956 0.0027 0.2784 0.0312 0.0441 0.0378

glass5 0.9753 0.1312 0.0000 0.1402 0.0061 0.0186 0.0154

glass6 0.8373 0.0435 0.0095 0.3775 0.0252 0.0260 0.0185

vehicle0 0.9156 0.0812 0.0001 0.5425 0.0103 0.0261 0.0082

vehicle1 0.9720 0.2606 0.0003 0.9362 0.0929 0.1758 0.1397

vehicle2 0.9735 0.0760 0.0024 0.7702 0.0172 0.0300 0.0142

vehicle3 0.9730 0.3075 0.0006 0.9595 0.1041 0.1818 0.1595

yeast1 0.9638 0.4407 0.0000 0.9587 0.1553 0.2496 0.2418

yeast3 0.9554 0.1343 0.0000 0.4588 0.0433 0.0510 0.0365

yeast4 0.9802 0.2013 0.0000 0.8734 0.0332 0.0344 0.0338

yeast5 0.9580 0.1049 0.0000 0.1139 0.0142 0.0224 0.0182

yeast6 0.9791 0.1468 0.0000 0.6514 0.0225 0.0232 0.0238
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3.3.4 Experimental Results and Discussion

The AUC results for C5.0 decision tree and SVM in our experiments are presented

in Table 3.4 and Table 3.5. Geometric mean results can be found in Table 3.6

and Table 3.7. In the experimental results of the decision tree, we observe that

RACOG outperforms the other 5 oversampling techniques in 8 out of 19 datasets.

The same conclusion can also be drawn from the experimental results of SVM. It

is worth mentioning that RACOG costs more time than the other five considered

oversampling techniques due to the execution of the Markov chain in its data

generation process. From our experimental results, we conclude that, in most cases,

oversampling approaches which consider the minority class distribution (RACOG,

wRACOG and RWO-Sampling) perform better.

It was expected that data complexity can provide some guidance for choosing

the oversampling technique, however, from our experimental results, no obvious

relationship between data complexity and the choice of oversampling approaches

can be concluded. This is because the 6 introduced oversampling approaches are

designed for common datasets and do not take a specific data characteristic into

account.

According to our experimental results, although the data complexity measures

cannot provide guidance for choosing the most promising oversampling approaches,

we find that there is a strong correlation between the potential best AUC (after

oversampling) and some of the data complexity measures. From Figure 3.2

and Table 3.8, it can be concluded that the potentially best AUC value that

can be achieved through C5.0 decision tree and oversampling techniques has

an extreme negative correlation with the F1v value and the linearity measures.

In the imbalanced learning domain, many researchers focus on studying data

complexity measures. In (Lorena, L. P. Garcia, Lehmann, Souto, and Ho, 2019),

the authors propose that the potentially best AUC value after resampling can

be predicted through various data complexity measures. However, they did not

consider the F1v measure, which has the strongest correlation with AUC value

according to our findings. Hence, we recommend using F1v to evaluate the overlap

in imbalanced datasets.

42



3.3. Experiments

Table 3.4: AUC results for C5.0 decision tree.

Dataset Baseline SMOTE ADASYN MWMOTE RACOG wRACOG RWO

ecoli1 0.9408 0.9428 0.9342 0.9414 0.9453 0.9384 0.9432

ecoli2 0.8736 0.9190 0.9102 0.9112 0.9133 0.8987 0.9143

ecoli3 0.7765 0.9170 0.9013 0.9049 0.9204 0.8648 0.9126

ecoli4 0.8403 0.9271 0.8832 0.9235 0.9244 0.8896 0.9020

glass0 0.8179 0.8328 0.8254 0.8345 0.8470 0.8391 0.8364

glass1 0.6995 0.7391 0.7440 0.7473 0.7588 0.7493 0.6944

glass2 0.7309 0.8189 0.8201 0.7995 0.8159 0.7960 0.7125

glass4 0.8461 0.9227 0.9203 0.9126 0.9216 0.8542 0.9252

glass5 0.9950 0.9927 0.9931 0.9935 0.9940 0.9952 0.9932

glass6 0.9341 0.9357 0.9306 0.9385 0.9388 0.9386 0.9354

vehicle0 0.9722 0.9730 0.9736 0.9723 0.9737 0.9739 0.9679

vehicle1 0.7430 0.7993 0.7916 0.7977 0.7970 0.8000 0.7738

vehicle2 0.9735 0.9722 0.9748 0.9757 0.9803 0.9815 0.9766

vehicle3 0.7858 0.8001 0.7954 0.8115 0.8158 0.8117 0.7907

yeast1 0.7318 0.7380 0.7282 0.7473 0.7536 0.6766 0.7279

yeast3 0.9335 0.9594 0.9580 0.9602 0.9642 0.9551 0.9422

yeast4 0.7769 0.9020 0.8989 0.8884 0.8549 0.8142 0.8367

yeast5 0.9555 0.9769 0.9773 0.9773 0.9761 0.9688 0.9772

yeast6 0.7307 0.8792 0.8850 0.8789 0.8806 0.7815 0.8868
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Table 3.5: AUC results for SVM.

Dataset Baseline SMOTE ADASYN MWMOTE RACOG wRACOG RWO

ecoli1 0.9518 0.9483 0.9435 0.9471 0.9458 0.9513 0.9455

ecoli2 0.9580 0.9563 0.9590 0.9564 0.9958 0.9602 0.9552

ecoli3 0.9459 0.9508 0.9462 0.9502 0.9518 0.9512 0.9485

ecoli4 0.9949 0.9922 0.9905 0.9908 0.9907 0.9948 0.9900

glass0 0.8390 0.8515 0.8475 0.8489 0.8535 0.8461 0.8527

glass1 0.7741 0.7765 0.7764 0.7749 0.7802 0.7777 0.7770

glass2 0.8206 0.8483 0.8471 0.8414 0.8609 0.8296 0.8626

glass4 0.9863 0.9855 0.9862 0.9853 0.9836 0.9862 0.9856

glass5 0.9698 0.9807 0.9806 0.9797 0.9785 0.9708 0.9776

glass6 0.9800 0.9773 0.9744 0.9739 0.9766 0.9809 0.9755

vehicle0 0.9956 0.9959 0.9954 0.9948 0.9950 0.9951 0.9906

vehicle1 0.8609 0.8889 0.8886 0.8913 0.8822 0.8812 0.8487

vehicle2 0.9952 0.9953 0.9960 0.9949 0.9948 0.9955 0.9943

vehicle3 0.8492 0.8724 0.8717 0.8709 0.8676 0.8611 0.8492

yeast1 0.7803 0.7874 0.7875 0.7826 0.7959 0.7768 0.7911

yeast3 0.9730 0.9685 0.9678 0.9689 0.9716 0.9727 0.9686

yeast4 0.8416 0.8843 0.8838 0.8878 0.8990 0.8703 0.8853

yeast5 0.9804 0.9867 0.9871 0.9868 0.9837 0.9827 0.9865

yeast6 0.8334 0.9264 0.9158 0.9272 0.9295 0.8709 0.9191
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Table 3.6: Geometric mean results for C5.0 decision tree.

Dataset Baseline SMOTE ADASYN MWMOTE RACOG wRACOG RWO

ecoli1 0.8319 0.8851 0.8769 0.8861 0.8865 0.8727 0.8562

ecoli2 0.8519 0.8829 0.8742 0.8784 0.8854 0.8701 0.8720

ecoli3 0.7173 0.8281 0.8100 0.8173 0.7762 0.7527 0.7458

ecoli4 0.8276 0.8617 0.8415 0.8610 0.8681 0.8442 0.8540

glass0 0.7691 0.7799 0.7727 0.7846 0.7879 0.7773 0.7829

glass1 0.7082 0.7179 0.7181 0.7193 0.7205 0.7233 0.6879

glass2 0.3966 0.6083 0.6194 0.5702 0.4938 0.5286 0.4399

glass4 0.6838 0.8513 0.8427 0.8344 0.8047 0.6930 0.8388

glass5 0.8868 0.9121 0.9030 0.9087 0.8850 0.9199 0.9076

glass6 0.8828 0.9069 0.8853 0.9078 0.8969 0.8792 0.8947

vehicle0 0.9158 0.9155 0.9201 0.9240 0.9249 0.9215 0.9228

vehicle1 0.6271 0.7104 0.7031 0.7089 0.7054 0.7119 0.6475

vehicle2 0.9455 0.9534 0.9587 0.9569 0.9491 0.9509 0.9596

vehicle3 0.6439 0.7119 0.7084 0.7113 0.7121 0.7059 0.6454

yeast1 0.6335 0.6893 0.6917 0.6925 0.7024 0.6461 0.6307

yeast3 0.8668 0.9106 0.9156 0.9067 0.9184 0.8959 0.8853

yeast4 0.5011 0.7006 0.6879 0.7390 0.6466 0.5725 0.5000

yeast5 0.8394 0.9305 0.9399 0.9288 0.9058 0.8669 0.8629

yeast6 0.6224 0.7688 0.7831 0.7880 0.7501 0.7076 0.7060
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Table 3.7: Geometric mean results for SVM. “—" means that TP+FN=0 or
TP+FP=0 and the performance metric cannot be computed.

Dataset Baseline SMOTE ADASYN MWMOTE RACOG wRACOG RWO

ecoli1 0.8292 0.8810 0.8844 0.8782 0.8845 0.8622 0.8801

ecoli2 0.7278 0.9326 0.9179 0.9324 0.9297 0.7399 0.9306

ecoli3 0.6108 0.8722 0.8668 0.8748 0.8764 0.6615 0.8729

ecoli4 0.7132 0.9079 0.8987 0.9017 0.9191 0.7158 0.8992

glass0 0.7234 0.7900 0.7909 0.7850 0.7866 0.7741 0.7881

glass1 0.6419 0.6908 0.6883 0.6894 0.6951 0.6942 0.6861

glass2 — 0.7138 0.7080 0.7207 0.7592 — 0.7664

glass4 0.7079 0.8606 0.8692 0.8603 0.8658 0.7181 0.8776

glass5 0.0283 0.6663 0.6664 0.6644 0.6899 0.0679 0.7630

glass6 0.8374 0.8862 0.8926 0.8799 0.8889 0.8459 0.8818

vehicle0 0.9525 0.9731 0.9730 0.9682 0.9693 0.9677 0.9599

vehicle1 0.5668 0.8176 0.8199 0.8183 0.8073 0.8020 0.6520

vehicle2 0.9621 0.9728 0.9754 0.9727 0.9657 0.9687 0.9591

vehicle3 0.5115 0.8017 0.8048 0.8056 0.7986 0.7943 0.6347

yeast1 0.5888 0.7123 0.7123 0.7107 0.7193 0.6864 0.7162

yeast3 0.8428 0.8978 0.9023 0.8956 0.9141 0.8658 0.9020

yeast4 0.0084 0.7484 0.7527 0.7560 0.8021 0.3774 0.7525

yeast5 0.6463 0.9255 0.9278 0.9245 0.9342 0.7618 0.9377

yeast6 0.3701 0.8257 0.8063 0.8279 0.8541 0.5605 0.8310
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Figure 3.2: Correlation matrix. (Lorena, L. P. Garcia, Lehmann, Souto, and Ho,
2019).

Table 3.8: Results of Hypothesis Test.

Measure
Correlation
Coefficient P-value

Correlation
Level

F1 -0.3872 0.1014 medium

F1v -0.8928 2.736×10−7 extreme

F2 0.1156 0.6374 none

F3 -0.7138 0.0006 high

L1 -0.8876 4.013×10−7 extreme

L2 -0.8523 3.611×10−6 extreme

L3 -0.8699 1.304×10−6 extreme
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3.4 Efficient Oversampling for Engineering Vehicle

Mesh Dataset

In this section, we propose the application of the reviewed methods on the quality

prediction of geometric computer aided engineering (CAE) models. For some CAE

applications, like e.g. aerodynamic performance evaluation, engineers discretize

the geometric models using surface meshes (undirected graphs). Each mesh

consists of a set of nodes (vertices), and a set of edges connecting the nodes to form

faces and volumes (elements). In computer simulations, equations describing the

physical phenomena are solved with respect to the vertices allowing to approximate

the solution between nodes and calculate performance features of a design, e.g.

drag values as aerodynamic design quality. The meshes are generated from an

initial geometric representation, e.g. non-uniform rational B-Splines (NURBS)

or stereolithography (STL) representations, using numerical algorithms, such as

sweep-hull for Delaunay triangulation (Sinclair, 2016), polycube (Livesu, Vining,

Sheffer, Gregson, and Scateni, 2013) etc.

In most cases, the quality of the mesh plays an important role concerning the

accuracy and fidelity of the results (Knupp, 2008). Engineers use different types of

metrics to infer the quality of the mesh, but it is common sense that increasing the

number and uniformity of the elements in the mesh improves the accuracy of the

simulation results. However, the computational effort associated with meshing is

proportional to the target level of refinement. Therefore, a match between accuracy

and available computational resources is often required, especially for cases that

demand iterative geometric modifications, such as shape optimization.

Shape morphing techniques address this issue by operating on the mesh nodes

through a polynomial-based lower-dimensional representation. Such techniques

avoid re-meshing of the simulation domain, thus, speeding up the optimization

process. Several cases of optimization using morphing techniques are published in

the literature (Menzel, Olhofer, and Sendhoff, 2005; Menzel and Sendhoff, 2008;

Olhofer, Bihrer, Menzel, Fischer, and Sendhoff, 2009; Sieger, Menzel, and Botsch,

2015). For our experiments, we implemented the free form deformation (FFD)

method presented in (Sederberg and Parry, 1986). To prepare design deformations

based on FFD, the geometry of interest is embedded in a uniform parallelepiped

lattice, where a trivariate Bernstein polynomial maps the position of the control

points of the lattice to the nodes of the mesh, as an IR3 → IR3 function. Therefore,
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Figure 3.3: Example of free form deformation applied to a configuration of the
TUM DrivAer model (Heft, Indinger, and Adams, 2012) using a lattice with four
planes in each direction.

Figure 3.4: Free form deformation lattice used to generate the data set for the
experiments.

by deforming the lattice, the nodes of the mesh are moved accordingly (Figure

3.3).

In order to embed the geometry in the lattice, a local coordinate system is

defined taking as vector basis the unitary vectors (~s,~t, ~u), normal to the faces of

the parallelepiped and origin in v0. Then, the coordinates of the mesh nodes are

described according to the new basis, using the following linear transformation:

v = v0 + S~s+ T~t+ U~u (3.4)

where v is the mesh node described in global coordinate system and the new

coordinates S, T and U belong to the interval [0, 1]. Given the set that contains

the points pijk defined by the intersection of the planes that form the lattice, the

coordinates of any mesh node can be calculated using the trivariate Bernstein

49



Chapter 3. An Empirical Investigation Comparing Several Oversampling
Techniques

polynomial, defined as

vFFD =

l∑
i=0

(
l

i

)
(1− S)l−iSi

{
m∑
j=0

(
m

j

)
(1− T )m−jT j

[
n∑

k=0

(
n

k

)
(1− U)n−kUkpijk

]} (3.5)

where vFFD is the deformed point; l,m, n are respectively the number of control

planes in the ~s-, ~t- and ~u-direction.

The continuity of the surfaces is ensured by the mathematical formulation of

the FFD up to the order of k − 1, where k is the number of planes in the direction

of interest, but the mesh quality is not necessarily maintained. The designer

can either avoid models with ill-defined elements by applying constraints to the

deformations, which might be unintuitive, or eliminate them by performing regular

quality assessments. Addressing this issue, we propose the classification of the

deformation parameters with respect to the quality of the output meshes, based on

a data set of labeled meshes. Further than reducing the risk of generating infeasible

meshes for CAE applications, our approach avoids unnecessary computation to

generate the deformed meshes, which is aligned with the objective of increasing

the efficiency of shape optimization tasks.

3.4.1 Generation of a Synthetic Data Set

For the experiments we adopted the computational fluid dynamics (CFD) simulation

of a configuration of the TUM DrivAer model (Heft, Indinger, and Adams, 2012).

The simulation model is deformed using the discussed FFD algorithm, realized as a

lattice with 7 planes in x- and z-directions, and 10 in y-direction (Fig. 3.4). The

planes closer to the boundaries of the control volume are not displaced in order

to enable a smooth transition from the region affected by the deformations to the

original domain. Assuming symmetry of the shape with respect to the vertical plane

(xz) and deformations caused by the displacement of entire control planes only in

the direction of their normal vectors, it yields a design space with 9 parameters. To

generate the data set, the displacements xi were sampled from a random uniform

distribution and constrained to the volume of the lattice, allowing the overlap of

planes.
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The initial mesh was generated using the algorithms blockMesh and

snappyHexMesh of OpenFOAM®2. We automatically generated 994 valid meshes

based on the FFD algorithm implemented in Python and evaluated them using

the OpenFOAM checkMesh algorithm. The metrics used to define the quality

of the meshes were the number of warnings raised by the checkMesh algorithm,

the maximum skewness and maximum aspect ratio. We manually labeled the

feasible meshes according to the rules shown in Table 3.9. The imbalance ratios

after manually labelling are also given in Table 3.9. Please note that the input

attributes are exactly the same for all three sets of datasets, only the “class" labels

are different. In this way, the values of data complexity measures (Table 3.10) for

the three datasets vary from each other.

3.4.2 Experimental Results and Discussion

The experimental results on the digital vehicle dataset are given in Table 3.11. In

line with our conclusions for the KEEL-dataset experiments (Section 3.3.4), we find

that RACOG outperforms the other 5 oversampling techniques in 2 out of 3 datasets.

Therefore, combining our experimental results on both benchmark and real-world

inspired datasets, we conclude that RACOG performs the best out of the considered

6 oversampling approaches. Moreover, we find that applying the oversampling

techniques can improve the performance by around 10% for our digital vehicle

datasets. We also calculate the data complexity measures for our digital vehicle

datasets and our findings on the correlation between the potential AUC value and

the data complexity measures remain consistent with the conclusions in Section.

Table 3.9: Feasible meshes labeling rule.

Dataset #Attribute #Sample #Warnings Max skewness Max aspect ratio IR
set1 9 994 <4 <6 <10 3.76
set2 9 994 <2 <5.8 <10.3 6.83
set3 9 994 <4 <5.6 <10.3 12.43

Table 3.10: Data complexity HRI.

Dataset F1 F1v F2 F3 L1 L2 L3
set1 0.9809 0.4360 0.3123 0.9072 0.1737 0.2103 0.2115
set2 0.9950 0.7030 0.1619 0.8900 0.1133 0.1278 0.1325
set3 0.9840 0.2854 0.0962 0.7953 0.0693 0.0744 0.0709

2https://www.openfoam.com
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Table 3.11: Experimental Results (AUC) on Digital Vehicle Dataset.

Dataset Baseline SMOTE ADASYN MWMOTE RACOG wRACOG RWO
set1 0.7927 0.8332 0.8279 0.8458 0.8512 0.8436 0.8240
set2 0.5864 0.7619 0.7517 0.7590 0.7633 0.7437 0.7583
set3 0.6511 0.8215 0.8169 0.8341 0.8246 0.8114 0.8065

Table 3.12: Experimental Results (Geometric mean) on Digital Vehicle Dataset.

Dataset Baseline SMOTE ADASYN MWMOTE RACOG wRACOG RWO
set1 0.6975 0.7557 0.7492 0.7577 0.7612 0.7530 0.7295
set2 0.2685 0.6685 0.6622 0.6670 0.6781 0.6520 0.6414
set3 0.3373 0.6657 0.6683 0.6878 0.6725 0.6573 0.5952

3.5 Conclusions

In this work, we reviewed six oversampling techniques, including “classical" ones

(SMOTE, ADASYN and MWMOTE) and new ones (RACOG, wRACOG and RWO-

Sampling), in which the new ones consider the minority class distribution while the

“classical" ones do not. The six reviewed oversampling approaches were applied to

19 benchmark imbalanced datasets and an imbalanced real-world inspired vehicle

dataset to investigate their effectiveness. Seven data complexity measures were

considered in order to find the relationship between data complexity measures and

the choice of resampling techniques. According to our experimental results, two

main conclusions can be derived:

• In our experiment, in most cases, oversampling approaches which consider

the minority class distribution (RACOG, wRACOG and RWO-Sampling)

perform better. For both benchmark datasets and our real-world inspired

dataset, RACOG performs best. However, the trade-off between performance

improvement and the time cost should be considered while using RACOG.

• No obvious relationship between data complexity measures and the choice

of resampling techniques can be derived from our experimental results.

However, we find that the F1v value has a strong correlation with the

potential best AUC value (after resampling) while only rarely researchers in
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the imbalance learning domain consider F1v value for evaluating the overlap

between classes.

In this chapter, we applied the oversampling techniques for benchmark datasets

and our digital vehicle dataset and evaluated their effectiveness. In the next chapter,

we will study hyperparameter optimisation on class-imbalance problems.

53





CHAPTER 4

Hyperparameter Optimisation on

Class-Imbalance Problems

Although the class-imbalance classification problem has caught a huge amount

of attention, hyperparameter optimisation has not been studied in detail in this

field. Both classification algorithms and resampling techniques involve some

hyperparameters that can be tuned. In this chapter, we study hyperparameter

optimisation on class-imbalance problems and investigate the relation between

the degree of class overlap and the improvement yielded via hyperparameter

tuning. This chapter is divided as follows. First, Section 4.1 shows the motivation

and provides a brief introduction on our work. After that, in Section 4.2, the

resampling techniques used in this chapter and the background knowledge on

hyperparameter optimisation are presented. In Section 4.3, the information on the

datasets, the experimental setup as well as the experimental results and discussion

are introduced. Section 4.4 concludes the chapter and outlines the further work.

4.1 Introduction

Over years of development, many techniques have proven to be efficient in handling

imbalanced datasets. These methods can be divided into data-level approaches

and algorithmic-level approaches (Bhowan, Johnston, M. Zhang, and Yao, 2012;

Ganganwar, 2012; M. S. Santos, Soares, Abreu, Araujo, and J. Santos, 2018), where

the data-level approaches aim to produce balanced datasets and the algorithmic-

level approaches aim to adjust classical classification algorithms in order to make

them appropriate for handling imbalanced datasets.

By far, the most commonly used approach for handling imbalanced data
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is a combination of resampling techniques and machine learning classification

algorithms (López, Fernández, Moreno-Torres, and Herrera, 2012). Research works

also focused on these two separate parts, developing new resampling techniques

and adjusting machine learning algorithms to be more appropriate for imbalanced

datasets. Both resampling techniques and machine learning algorithms involve

some hyperparameters that are set to some default values and could be tuned.

A minor variation of these hyperparameters might influence the performance

significantly. However, hyperparameter optimisation has not been studied yet in

detail in the context of learning from imbalanced data, where both components

could be tuned simultaneously.

Previous research has considered the hyperparameters for the classifiers for

class-imbalance problems (Thai-Nghe, Busche, and Schmidt-Thieme, 2009), but

the hyperparameters in resampling techniques are not included. Agrawal et al.

(Agrawal and Menzies, 2018) take the hyperparameters in SMOTE into account

and propose an auto-tuning version of SMOTE. In this chapter, we explore the

potential of applying hyperparameter optimisation for the automatic construction of

high-quality classifiers for imbalanced data. In our research, we experiment with a

small collection of imbalanced datasets and two classification algorithms: Random

Forest and SVM. In each experiment we consider six scenarios for hyperparameter

optimisation (see Table 4.1). For classification algorithms, we consider two

conditions, algorithms with default hyperparameters (Ad) and algorithms with

optimised hyperparameters (Ao). For resampling approaches, we consider

three conditions, no resampling applied (Rn), resampling applied with default

hyperparameters (Rd) and resampling applied with optimised hyperparameters

(Ro).

Table 4.1: Six scenarios in our experiments.

Scenario Classification Algorithms Resampling Approaches
(1) Ad +Rn Default hyperparameters No
(2) Ao +Rn Optimised hyperparameters No
(3) Ad +Rd Default hyperparameters Default hyperparameters
(4) Ao +Rd Optimised hyperparameters Default hyperparameters
(5) Ad +Ro Default hyperparameters Optimised hyperparameters
(6) Ao +Ro Optimised hyperparameters Optimised hyperparameters
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Apart from developing new techniques to deal with imbalanced datasets, the

data complexity in the dataset itself has caught an increasing attention in recent

studies of class-imbalance problems. As we stated in Chapter 3.2.2, it has been

shown that the degradation of machine learning algorithms for imbalanced datasets

is not directly caused by class imbalance, but is also related to the degree of class

overlapping (Prati, Batista, and Monard, 2004), and the classification algorithms

are more sensitive to noise than to class imbalance (López, Fernández, García,

Palade, and Herrera, 2013). It is also concluded that data complexity may influence

the choice of resampling methods (M. S. Santos, Soares, Abreu, Araujo, and J.

Santos, 2018). Hence, in this chapter, we consider the hyperparameter optimisation

for both resampling techniques and classification algorithms. Furthermore, the

relation between the degree of class overlap and the improvement achieved via

hyperparameter tuning is investigated.

The results of our experiments demonstrate that an improvement can be

obtained by applying hyperparameter tuning. In the six scenarios, optimising

the hyperparameters for both classification algorithms and resampling approaches

gives the best performance for all six datasets. Further study shows that the data

complexity of the original data, especially the overlap between classes, influences

whether a significant improvement can be achieved through hyperparameter

optimisation. Compared to imbalanced datasets with high class overlap,

hyperparameter optimisation works more efficiently for imbalanced datasets with

low class overlap. In addition, we point out that resampling techniques are

not effective for all datasets, and their effectiveness is also affected by data

complexity in the original datasets. Hence, we recommend studying the data

complexity of imbalanced datasets before resampling the samples and optimising

the hyperparameters. Our work in this chapter has received more than 20 citations

from other researchers till the end of 2022, which indicates our contributions to

this topic.

4.2 Related Works

This section first introduces the resampling techniques used in this chapter. Then,

the definition of hyperparameter optimisation and the related literature in the

class-imbalance domain are given in Section 4.2.2.
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4.2.1 Resampling Techniques

This section describes four resampling techniques in our experiments, two

oversampling and two hybrid approaches. The two oversampling techniques,

SMOTE and ADASYN, have been introduced in detail in the previous chapters.

Therefore, we only provide details on the two hybrid approaches, SMOTETL and

SMOTEENN.

SMOTETL

In a classification problem, a Tomek link is defined as follows (Tomek, 1976): given

two samples xi and xj from different classes, d(xi,xj) the distance between xi
and xj , and xl is a random sample in the dataset. The pair (xi,xj) is defined as a

Tomek link if the following requirements hold,

∀xl, d(xi,xj) < d(xi,xl) and d(xi,xj) < d(xj ,xl). (4.1)

From the definition, a Tomek link is a pair of samples from different classes

that are the nearest neighbours for each other, and the samples in Tomek links are

either noise or borderline (Batista, Prati, and Monard, 2004).

Oversampling techniques aim to balance the class distribution via expanding

the minority class space. However, some synthetic minority class samples may

invade the majority class space, making the decision boundary blur. To alleviate this

problem, Batista et al. (Batista, Prati, and Monard, 2004) proposed to apply Tomek

links as an additional data cleaning method after SMOTE, and named the new

technique SMOTETL. In the SMOTETL technique, the first step is (1) to oversample

the minority classes using SMOTE and then (2) to identify the Tomek links. After

that, (3) the Tomek links for the oversampled samples are removed. In this way,

the SMOTETL technique provides a more clear decision boundary by removing part

of the samples in the overlapping region. Figure 4.1 gives an example of clearing

Tomek links for oversampled samples.

SMOTEENN

Similar to SMOTETL, SMOTEENN is also a hybrid method that combines

oversampling and data cleaning techniques. SMOTEENN uses Wilson’s Edited

Nearest Neighbours (ENN) (D. L. Wilson, 1972) to remove any sample that has

a different class from at least two of its three nearest neighbours (Lorena, L. P.
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Figure 4.1: Example of clearing Tomek links for oversampled samples. © and the
black 4 indicate the majority and minority class samples respectively. The star
indicates the synthetic samples and each blue circle indicates a Tomek link.

Garcia, Lehmann, Souto, and Ho, 2018). For a binary class-imbalance problem,

SMOTEENN is implemented as follows: (1) the training set is oversampled via

SMOTE, then (2) for each sample in the training set, its three nearest neighbours

are found. After that, (3) any sample whose label contradicts the label of at least

two of its three nearest neighbours is removed. According to the ENN procedure,

more samples are removed than the Tomek links, i.e. ENN provides a deeper data

cleaning (Lorena, L. P. Garcia, Lehmann, Souto, and Ho, 2018).

4.2.2 Hyperparameter Optimisation

Most machine learning algorithms involve several hyperparameters, which have

to be set before the training process. Compared with randomly selecting the

hyperparameters in a learning algorithm, choosing a set of optimal hyperparameters

can improve the performance of the algorithm. For instance, in Random Forest,

the choice of the depth of a decision tree and the number of trees in a forest will

have an influence on the performance. To determine the optimal combination of

hyperparameters for a given problem/dataset naturally leads to the well-established

hyperparameter optimisation (or hyperparameter tuning) task.

Let A denote a typical machine learning algorithm with n hyperparameters, λ

denote a vector of hyperparameters and Λ denote the hyperparameter configuration

space, i.e. λ ∈ Λ. A learning algorithm with hyperparameters λ is represented by
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Aλ (Feurer and Hutter, 2019). Given a dataset X, the goal to find the optimal set

of hyperparameters λ∗ so as to minimize the predefined loss function L(·) can be

represented by (Bergstra, Bardenet, Bengio, and Kégl, 2011; Claesen and De Moor,

2015)

λ∗ = arg min
λ∈Λ

L(X(te);Aλ(X(tr)), (4.2)

where X(tr) and X(te) are the training set and validation set, which are given.

There are many approaches for performing hyperparameter optimisation. Grid

search is a traditional way of tuning hyperparameters. It starts with dividing the

search space into a discrete grid. Then, grid search performs an exhaustive search

on every combination of the hyperparameters, which always requires much time.

Random search is similar to grid search but replaces the exhaustive searching on

every combination with randomly selecting the combinations to test. Bayesian

hyperparameter optimisation approaches provide a less expensive way to optimise

the hyperparameters. Its strategy keeps tracking previously evaluated results

and uses the obtained information to form a surrogate probabilistic model of the

objective function (Bergstra, Bardenet, Bengio, and Kégl, 2011; Bergstra, Yamins,

and Cox, 2013). The hyperparameters for evaluation by the objective function

are selected by applying a criterion to the surrogate function, and this criterion

is defined by a selection function, e.g. Expected Improvement. The optimisation

procedure is described below.

• Form a surrogate probabilistic model of the objective function;

• Optimise the selection function over the surrogate model;

• Find the hyperparameter values which maximise the Expected Improvement;

• Evaluate these hyperparameters on the objective function;

• Update the surrogate according to the new performance;

• Iterate the 2nd - 5th step until time or other constraint is met.

Compared to the original objective function, the surrogate model is less

expensive to optimise because it chooses the next candidate hyperparameters

worth evaluating instead of wasting time on unworthy hyperparameters. In practice,

there are many software packages based on Bayesian hyperparameter optimisation,
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e.g. Spearmint, SMAC, HyperOpt, SPOT, etc. In this chapter, a python library1,

HyperOpt (Bergstra, Komer, Eliasmith, Yamins, and Cox, 2015), is used to perform

the hyperparameter optimisation for classification algorithms.

In the field of imbalanced learning, the most basic methods are combining the

resampling techniques and machine learning classification algorithms; both involve

some hyperparameters that could be tuned. Hyperparameters in classifiers are

widely considered in classification tasks and this is also true in the imbalanced

learning domain. For example, (Thai-Nghe, Busche, and Schmidt-Thieme, 2009)

searches the best hyperparameters for their classifiers when improving academic

performance prediction by dealing with class imbalance. In (Shekar and Dagnew,

2019), researchers perform a grid search-based hyperparameter tuning on Random

Forest classifier when their imbalanced microarray cancer data. Some studies

also take the hyperparameters in resampling techniques into account. In (Douzas,

Bacao, and F. Last, 2018), authors tune the k nearest neighbours in SMOTE-related

resampling techniques. A representative study on hyperparameters in oversampling

techniques is (Agrawal and Menzies, 2018), They take the hyperparameters in

SMOTE into account and propose SMOTUNED, an auto-tuning version of SMOTE.

In their experiments, SMOTUNED improved the performance dramatically, e.g.

improvements in AUC up to 60% compared to SMOTE. In this chapter, we perform

a detailed study on hyperparameter optimisation for class imbalance problems, i.e.

considering six combinations of hyperparameters in both classification algorithm

and resampling techniques (see Table 4.1 in Section 4.1).

4.3 Experiments

In this section, we introduce the information on the datasets used in our

experiments. Then, the experimental setup is described. After that, the

experimental results and discussions are given.

4.3.1 Information on the Datasets

The experiments reported in this chapter are based on six imbalanced datasets from

the KEEL-collection (Alcalá-Fdez, Sánchez, S. Garcia, Jesus, Ventura, Garrell, Otero,

Romero, Bacardit, Rivas, et al., 2009). Detailed information on the datasets are

1available at: http://hyperopt.github.io/hyperopt/
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shown in Table 4.2. The overlap between classes is calculated by the Directional-

vector Maximum Fisher’s Discriminant Ratio (F1v). Lower F1v value indicates

higher overlap between classes (M. S. Santos, Soares, Abreu, Araujo, and J. Santos,

2018).

Table 4.2: Information on the datasets.

Dataset #Attributes #Examples #Classes IR F1v value

glass1 9 214 2 1.82 0.57

glass6 9 214 2 6.38 0.04

yeast3 8 1484 2 8.1 0.13

yeast4 8 1484 2 28.1 0.20

ecoli3 7 336 2 8.6 0.16

abalone19 8 4174 2 129.44 0.31

4.3.2 Experimental Setup

As mentioned in Section 4.1, we experiment with six imbalanced datasets, two

algorithms and four resampling techniques. Thus, in our experiment, we have

6 · 2 · 5 = 60 settings tested on each data set, with 6 scenarios, 2 classifiers,

and 5 resampling approaches (including none). My co-authored work (D. A.

Nguyen, Kong, H. Wang, Menzel, Sendhoff, Kononova, and Bäck, 2021) studies

hyperparameter optimisation on class-imbalance problems more extensively, it

includes experiments with more imbalanced datasets.

The hyperparameter optimisation for the classification algorithm is done

through HyperOpt. Hyperparameters in resampling approaches includes the

number of neighbours, imbalance ratio after resampling and etc. In our experiment,

hyperparameter optimisation for resampling approaches is done through grid

search. Whenever we optimise hyperparameters with “HyperOpt”, the AUC loss

(1-AUC) is set as the objective function to minimise and the number of iterations is

set to 500. For each experiment, we repeated 30 times with different random seeds.

After that, the paired t-tests were performed on each 30 AUC values to test if there

is significant difference between the results of each scenario on a 5% significance

level.

62



4.4. Conclusions and Future Work

4.3.3 Experimental Results and Discussions

The experimental results are presented in Table 4.3 to investigate the importance of

hyperparameter optimisation for imbalanced datasets. For all the six datasets in our

experiment, we observe that optimising the hyperparameters for both classifiers

and resampling approaches gives the best performance. The statistical hypothesis

tests mentioned in Section 4.3.2 are performed on the AUC values of scenario

(Ad +Rd) and (Ao +Ro). The test results indicate that there is enough statistical

evidence showing the performance improvements are significant for datasets

“glass1", “yeast4" and “abalone19". In other words, applying the hyperparameter

optimisation does not bring significant improvement for datasets “glass6", “yeast3"

and “ecoli3". This experimental result demonstrates that significant improvement

can be achieved by performing hyperparameter optimisation for datasets with

high F1v values. That is to say, hyperparameter optimisation works efficiently for

datasets with low overlap between classes.

Furthermore, comparing the AUC values of scenario (Ad +Rn) and (Ad +Rd),

for datasets “glass6", “yeast3" and “ecoli3, resampling techniques does not improve

the classification performance. Thus, we can conclude that oversampling techniques

are not effective for datasets with high overlap. The generated synthetic samples

might bring additional noise and make the class overlap even higher. Another point

worth mentioning is that, compared to datasets with high overlap, we expected

the classification algorithms would perform better on datasets with low overlap.

However, the experimental results are contrary to our presupposition. This is

because the complexity of a classification problem is not only determined by the

overlap between classes but also related to other types of complexity, such as

linearity measures.

In the end, we can also observe that there is no specific combination of classifiers

and resampling techniques that can provide the best performance for all datasets.

For a given dataset, the best combination of classifiers and resampling approaches

might depend on the data complexity itself.

4.4 Conclusions and Future Work

In this chapter we considered six scenarios of hyperparameter optimisation for

classification algorithms and resampling approaches. Two main conclusions can be

derived according to our experimental results:
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1. In our experiment, the results of scenario (Ao + Ro) outperform the other

five scenarios. Especially for imbalanced datasets with low class overlap,

applying hyperparameter optimisation for both classification algorithms

and resampling approaches can significantly improve the performance.

Nevertheless, the time consumption caused by hyperparameter optimisation

is not negligible. Therefore, we recommend studying the data complexity

and considering the trade-off between time cost and potential improvement

before optimising the hyperparameters.

2. Based on our experimental results, we find oversampling techniques does

not give performance improvement for imbalanced datasets with high class

overlap. This further emphasizes the importance of learning the data

complexity before dealing with the imbalanced datasets.

In future work, more data complexity measures will be considered in order to

study the relation between hyperparameter optimisation and data complexity in

detail. Additionally, more attention should be put on developing techniques which

can efficiently handle complex imbalanced datasets. Finally, we observe the best

choice of classifiers and oversampling techniques depends on the dataset itself.

Therefore, another study worth exploring would be to produce a semi-automatic

approach which can help choosing the best combination of resampling approaches,

machine learning algorithms and hyperparameter optimisation strategies.
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CHAPTER 5

Improving Imbalanced Classification

via Adding Additional Attributes

The anomaly detection problem can be considered as an extreme case of class

imbalance problem, however, very few studies consider improving class imbalance

classification with anomaly detection ideas. Most data-level approaches in the

imbalanced learning domain aim to introduce more information to the original

dataset by generating synthetic samples. In this chapter, we introduce our proposed

idea on improving imbalanced classification via adding additional attributes. First,

Section 5.1 shows the motivation and provides a brief introduction on our work.

After that, in Section 5.2, the background knowledge on anomaly detection and

four types of samples in imbalanced datasets are presented. In Section 5.3, the

information on the datasets, the experimental setup as well as the experimental

results and discussion are introduced. Section 5.4 concludes the chapter and

outlines the further work.

5.1 Introduction

The imbalanced classification problem has caught growing attention from many

fields. In the field of computational design optimization, product parameters are

modified to generate digital prototypes and the performances are usually evaluated

by numerical simulations which often require minutes to hours of computation

time. Here, some parameter variations (minority number of designs) would result

in valid and producible geometries but violate given constraints in the final steps

of the optimization. Under this circumstance, performing proper imbalanced
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classification algorithms on the design parameters could save computation time. In

the imbalanced learning domain, many techniques have proven to be efficient in

handling imbalanced datasets, including resampling techniques and algorithmic-

level approaches (Ganganwar, 2012; Kong, Kowalczyk, D. A. Nguyen, Bäck,

and Menzel, 2019; M. S. Santos, Soares, Abreu, Araujo, and J. Santos, 2018),

where the former aims to produce balanced datasets and the latter aims to make

classical classification algorithms appropriate for handling imbalanced datasets.

The resampling techniques are standard techniques in imbalance learning since

they are simple and easily configurable and can be used in synergy with other

learning algorithms (Fernández, García, Galar, Prati, Krawczyk, and Herrera, 2018).

The main idea of most oversampling approaches is to introduce more information

to the original dataset by creating synthetic samples. However, very few studies

consider the idea of introducing additional attributes to the imbalanced dataset.

The anomaly detection problem can be considered as an extreme case of the

class imbalance problem. In this chapter, we propose to improve the imbalanced

classification with some anomaly detection techniques. We propose to introduce the

outlier score, which is an important indicator to evaluate whether a sample is an

outlier (Breunig, Kriegel, R. T. Ng, and Sander, 2000), as an additional attribute of

the original imbalanced datasets. Apart from this, we also introduce the four types

of samples (safe, borderline, rare and outlier), which have been emphasized in

many studies (Napierala and Stefanowski, 2016; Skryjomski and Krawczyk, 2017),

as another additional attribute. The paper contributed to this chapter has been

published in Parallel Problem Solving from Nature–PPSN XVI: 16th International

Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings,

Part I 2020 Aug 31 (pp. 512-523), titled "Improving imbalanced classification by

anomaly detection". In our experiments, we consider four scenarios, i.e. four

different combinations using the additional attributes and performing resampling

techniques. The results of our experiments demonstrate that introducing the

two proposed additional attributes can improve the imbalanced classification

performance in most cases. Further study shows that this performance improvement

is mainly contributed by a more accurate classification in the overlapping region of

the two classes (majority and minority classes).
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5.2 Related Works

This section first introduces the resampling techniques used in this chapter. Then,

the anomaly detection problem is introduced.

5.2.1 Resampling Techniques

This work is based on five resampling techniques in our experiments, one

oversampling, two undersampling and two hybrid approaches. The oversampling

technique SMOTE and the two hybrid approaches, SMOTETL and SMOTEENN;

have been introduced in detail in the previous chapters. Therefore, we only provide

details on the two undersampling approaches, OSS and NCL.

OSS

One-Sided Selection (OSS) (Kubat, Matwin, et al., 1997) is an undersampling

technique which combines Tomek Links and the Condensed Nearest Neighbour

(CNN) Rule. Detailed information on Tomek Links is given in 4.2.1. CNN was first

introduced by Hart in 1968 (Hart, 1968) together with the concept of a consistent

subset. By definition, a subset Ê is consistent with E (Ê ⊆ E), if the 1-NN rule

(K-NN rule, where K = 1) built with samples in Ê can correctly classify samples

in E. In OSS, the following three groups of samples are removed (Kubat, Matwin,

et al., 1997):

• Majority class samples which suffer from class-label noise.

• Majority class samples which are close to the decision boundary. They

are susceptible to variations, and even a tiny variation in training data or

classification model can make them fall on the wrong side of the decision

boundary.

• Majority class samples which have limited contribution for building the

decision boundary. Although they are harmless but they increase the

classification costs.

The first two groups of samples are removed with so-called Tomek links. The

third group of samples are removed with CNN. The remainder of the majority class

samples and all the minority class samples are used to construct the classifiers.

Algorithm 1 summarizes the OSS procedure.
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Algorithm 1: One-Side Selection (OSS) (Kubat, Matwin, et al., 1997)
Input :S - Original training set
Output :T - Undersampled training set

1 Select a subset C (C ⊆ S), which contains all minority class samples and
one randomly selected majority class sample;

2 Classify S using the 1-NN rule built with C. Add all misclassified samples in
S to subset C and now C is a consistent subset of S;

3 Remove from C all majority class samples belonging to Tomek links. The
remaining set is referred to as T .

NCL

Neighbourhood Cleaning Rule (NCL) (Laurikkala, 2001) emphasizes the quality of

the retained samples after data cleaning and can be used for multi-class problems.

Suppose C are the classes of interest, and the rest of the data are referred as R.

The cleaning process is first performed by removing any ambiguous sample in R

whose label differs from the class of at least two of its three neighbours through

the Wilson’s Edited Nearest Neighbours (ENN, introduced in 4.2.1) (D. L. Wilson,

1972). In addition, NCL performs a deeper cleaning in the neighbourhoods of

samples in C. For a sample in C, if its label differs from the classification given by

its three nearest neighbours, the neighbours belonging to R are removed. In this

step, special considerations are paid to small-size classes (details in Algorithm 2).

In the binary scenario, NCL can be described as follows: if a majority class sample

has a different label from the classification given by its three nearest neighbours,

this majority class sample is removed. Additionally, if the label of a minority class

sample contradicts the classification given by its three nearest neighbours, then the

neighbours belonging to the majority class are removed.

5.2.2 Anomaly Detection

Anomaly detection, also referred to as outlier detection, is the process of identifying

irregular patterns in the datasets (Chandola, Banerjee, and Kumar, 2009). The

behaviours of these patterns deviate significantly from the majority of the data.

Such examples can be found in various applications, including fraud detection in

credit cards, medical diagnosis in health care, quality control in the manufacturing

field, etc.

Many algorithms have been developed to deal with anomaly detection problems

70



5.2. Related Works

Algorithm 2: Neighbourhood Cleaning Rule (NCL) (Laurikkala, 2001)
Input :S - Original training set
Output :T - Undersampled training set

1 Split training set S into the classes of interest C and the rest R;
2 Identify the noisy data D1 in R with ENN;
3 Identify the samples in C which are misclassified by their 3 nearest

neighbours and referred to as Cm;
4 for each class Ri ∈ R do
5 if x ∈ Ri ∩ Cm and |Ri| > 1

2 × |C| then
6 move x into D1;
7 end
8 Remove D1 from S and the undersampled training set is T = S −D1.

and the experiments in this chapter are mainly performed with the nearest-

neighbour based local outlier score (LOF). Local outlier factor (LOF), which

indicates the degree of a sample being an outlier, was first introduced in (Breunig,

Kriegel, R. T. Ng, and Sander, 2000). The LOF of an object depends on its relative

degree of isolation from its surrounding neighbours. Several definitions are needed

to calculate the LOF and are summarized in the following Algorithm 3.

According to the definition of LOF, a value of approximately 1 indicates that the

local density of data point xi is similar to its neighbours. A value below 1 indicates

that data point xi locates in a relatively denser area and does not seem to be an

anomaly, while a value significantly larger than 1 indicates that data point xi is

alienated from other points, which is most likely an outlier.

5.2.3 Four Types of Samples in Imbalanced Datasets

Napierala and Stefanowski proposed to analyse the local characteristics of minority

class samples by dividing them into four different types: safe, borderline, rare

samples and outliers (Napierala and Stefanowski, 2016). The idea has been

introduced in detail in Section 2.3.2.
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Algorithm 3: Local Outlier Factor (LOF) algorithm (Breunig, Kriegel, R. T.
Ng, and Sander, 2000)

Input :x - input data x = (x1, ..., xn)
n - the number of input examples
k - the number of neighbours

Output :LOF score of every xi

1 initialization;
2 calculate the distance d(·) between every two data points;
3 for i = 1 to n do
4 calculate k-distance(xi): the distance between xi and its kth neighbour;
5 find out k-distance neighbourhood Nk(xi): the set of data points whose

distance from xi is not greater than k-distance(xi);
6 for j = 1 to n do
7 calculate reachability distance:

reach-distk(xi, xj) = max{k-distance(xj), d(xi, xj)};

8 calculate local reachability density:

lrdk(xi) = 1/avg-reach-distk(xi)

= 1/

(∑
o∈Nk(xi)

reach-distk(xi, xj)

|Nk(xi)|

)
;

intuitively, the local reachability density of xi is the inverse of the
average reachability distance based on the k-nearest neighbours of
xi;

9 calculate LOF:

LOFk(xi) =

∑
o∈Nk(xi)

lrdk(xj)

|Nk(xi)| · lrdk(xi)

=

∑
o∈Nk(xi)

lrdk(xj)
lrdk(xi)

|Nk(xi)|

the LOF of xi is the average local reachability density of xi’s
k-nearest neighbours divided by the local reachability density of xi.

10 end
11 end
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5.3 Experiments

5.3.1 Information on the Datasets

The experiments reported in this chapter are based on 7 two-class imbalanced

datasets, including 6 imbalanced benchmark datasets (given in Table 5.1) and a 2D

imbalanced chess dataset, which is commonly used for visualising the effectiveness

of the selected techniques in the imbalanced learning domain (Fernández, García,

Galar, Prati, Krawczyk, and Herrera, 2018). Figure 5.1 shows the 2D imbalanced

chess dataset.

Table 5.1: Information on benchmark datasets (Alcalá-Fdez, Fernández, Luengo,
Derrac, García, Sánchez, and Herrera, 2011).

Datasets #Attributes #Samples Imbalance Ratio (IR)

glass1 9 214 1.82

ecoli4 7 336 15.8

vehicle1 18 846 2.9

yeast4 8 1484 28.1

wine quality 11 1599 29.17

page block 10 5472 8.79

5.3.2 Experimental Setup

In this chapter, we propose introducing the outlier score and the four types of samples

as additional attributes of the original imbalanced dataset. The LOF algorithm

is an unsupervised anomaly detection method which computes the local density

deviation of a given data point relative to its neighbours. Hence, calculating the

outlier score does not require the information of class labels on either training or test

samples. In our experiments, we calculate the LOF values for all samples (before

splitting the training and test set). The Python library PyOD (Y. Zhao, Nasrullah,

and Z. Li, 2019) is used directly to calculate the LOF values. Unlike computing LOF

values, computing different types of samples requires the information of class labels,

see Table 2.3. However, the labels of test samples should be assumed unknown in
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Figure 5.1: Original imbalanced 2D chess dataset. Black points indicate the majority
class samples and white points indicate minority class samples.

the training process. Therefore, we use the steps below to add four types of samples

as an additional attribute “type”.

1. Split the data into training and test set.

2. Compute the types for samples in training set. We use positive numbers

(Rmin
all

) to indicate the types of minority class samples, and negative numbers

(−Rmaj
all

) for types of majority class samples. For example, for a safe minority

class sample with Rmin
all

= 1, we add “1” as the “type” value. For a borderline

majority class sample with Rmaj
all

= 3
5 , we add “− 3

5” as the “type” value.

3. Treat training set and test set as a whole. Then, given the number of

neighbours k, for each sample in the test set, find the k nearest neighbours

belonging to the training set.

4. For a sample in the test set, average the “type” values of its k nearest

neighbours belonging to the training set. The average is the “type” value for

this sample.

Each dataset was experimented with five resampling techniques and our

proposed method. For each method of each dataset, we repeat the experiments 30

times with different random seeds. After that, the paired t-tests were performed on
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each of the 30 performance metric values to test if there is significant difference

between the results of each scenario on a 5% significance level. We perform 5-fold

stratified cross validation in our experiments.

5.3.3 Experimental Results and Discussion

Like other studies (H. He, Bai, E. A. Garcia, and S. Li, 2008; López, Fernández,

García, Palade, and Herrera, 2013), we also use SVM and Decision Tree as the

base classifiers in our experiments to compare the performance of the proposed

method and the existing methods. Our purpose in this chapter is not to achieve the

best performance of a certain method under fine hyperparameter tuning. Hence,

we did not tune the hyperparameters for the classification algorithms and the

resampling techniques (Kong, Kowalczyk, D. A. Nguyen, Bäck, and Menzel, 2019).

The experimental results with the two additional attributes (four types of samples

and LOF score) are presented in Table 5.2, 5.3, 5.4 and 5.5. Before discussing the

experimental results, it is worth mentioning that NCL will not be effective if no

samples meet the removal conditions. In this case, NCL will produce the same

results as dealing with the original dataset, i.e. row “None" and row “NCL" can be

exactly the same in the tables. The tables contain much information, and we will

discuss them separately below.

• Scenarios where adding additional attributes performs significantly better

than resampling techniques:

– 2D chess dataset with SVM;

– glass1 dataset with SVM;

– ecoli4 dataset with Decision Tree.

• Scenarios where adding additional attributes produces competitive

performances to resampling techniques:

– vehicle1 dataset with SVM;

– yeast4 dataset with Decision Tree and SVM;

– wine quality dataset with Decision Tree and SVM.

• Scenarios where both resampling techniques and our proposed method do

not improve the imbalanced classification performances:
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– glass1 dataset with Decision Tree;

– ecoli4 dataset with SVM;

– page block dataset with Decision Tree and SVM.

• Scenarios where adding additional attributes degrades the imbalanced

classification performance:

– 2D chess dataset with Decision Tree;

– vehicle1 dataset with Decision Tree.

We conclude that in most cases, adding additional attributes produces

significantly better or competitive classification performance, except for two

scenarios 2D chess dataset with Decision Tree and vehicle1 dataset with

Decision Tree. Further feature importance analysis shows that due to the high

correlation between the added “type" attribute and class labels, Decision Tree

uses only the added “type" attribute for classification when dealing with these

two datasets. This results in the degradation of these two scenarios. Hence,

it is recommended to implement the proposed method with feature-insensitive

classifiers.

According to our experimental setup, we notice that introducing the local outlier

factor focuses on dealing with the minority samples since the local outlier factor

indicates the degree of a sample being an outlier. Meanwhile, introducing four

types of samples (safe, borderline, rare and outlier) puts emphasis on separating

the overlapping region and safe region. The visualisation of different scenarios for

the 2D chess dataset with SVM is given in Figure 5.2 in order to further study the

reason for the performance improvement.

From both the experimental results and the visualisation in Figure 5.2, we can

conclude that, for the 2D chess dataset, the experiment with the two additional

attributes outperforms the experiment with the classical resampling technique

SMOTE. The figure also illustrates that the proposed method has a better ability to

handle samples in the overlapping region.

5.4 Conclusions and Future Work

In this chapter, we propose to introduce additional attributes to the original

imbalanced datasets in order to improve the classification performance. Two
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5.4. Conclusions and Future Work

(a) Classification performance for original chess dataset with SVM.

(b) Classification performance for SMOTE-sampled chess dataset with SVM.
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Chapter 5. Improving Imbalanced Classification via Adding Additional Attributes

(c) Classification performance for chess dataset with additional attributes with SVM.

Figure 5.2: Classification performance for chess dataset under different scenarios.
The red-circled points indicate the misclassified points.

additional attributes, namely four types of samples and outlier score, and the

resampling techniques (SMOTE, NCL, OSS, SMOTEENN and SMOTETL) are

considered and experimentally tested on seven imbalanced datasets. According to

our experimental results, two main conclusions can be derived:

1. In most cases, introducing these two additional attributes can improve or

produce competitive class imbalance classification performance. For some

datasets, only introducing additional attributes gives better classification

results than only performing resampling techniques.

2. The proposed additional attribute “type" is highly correlated with class labels

in some datasets. Hence, it is recommended to implement the proposed

method with feature-insensitive classifiers.

3. An analysis of the experimental results also illustrates that the proposed

method has a better ability to handle samples in the overlapping region.

In this chapter, we only validate our newly proposed method with five

resampling techniques and seven benchmark datasets. As future work, other
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anomaly detection techniques, such as the clustering-based local outlier score

(CBLOF) (Z. He, Xu, and Deng, 2003) and histogram-based outlier score (HBOS)

(Goldstein and Dengel, 2012) could be included in the analysis. Future work could

also consider an extension of this research for engineering datasets (Kong, Rios,

Kowalczyk, Menzel, and Bäck, 2020a), especially for the design optimization

problems mentioned in our Introduction. Detailed analysis of the feature

importance and how the proposed method affects the classification performance in

the overlapping region would also be worth studying.
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CHAPTER 6

Improved Sample Type Identification

for Multi-Class Imbalanced

Classification

The idea of studying different types of samples was first proposed and evaluated

on binary imbalanced classification problems and then extended to multi-class

scenarios. However, simply extending the identification rule in binary scenarios

to multi-class scenarios results in several problems. In this chapter, we introduce

our proposed sample type identification for multi-class imbalanced classification.

First, Section 6.1 shows the motivation and briefly introduces on our work. After

that, in Section 6.2, the literature review and problems when extending to multi-

class scenarios are presented. In Section 6.3, detailed information on the new

identification rule is given. In Section 6.4, the information on the datasets,

the experimental setup as well as the experimental results and discussion are

introduced. In addition, a real-world application is described in Section 6.5.

Section 6.6 concludes the chapter and outlines the further work.

6.1 Introduction

Despite the progress for several years, learning from imbalanced data is still

a challenging problem in machine learning. Solving imbalanced classification

problems refers to the predictive modelling of data comprising a high or even

extreme imbalance in the sample distribution. Since machine learning models

assume that the sample distribution is relatively balanced, the nature of imbalanced

data violates this assumption, thus the class imbalance is commonly considered the
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determinant factor for the degradation of classification performance (Fernández,

García, Galar, Prati, Krawczyk, and Herrera, 2018; Ganganwar, 2012). However,

several studies in the literature have pointed out that the data characteristics

also play a crucial role in dealing with imbalanced problems (López, Fernández,

García, Palade, and Herrera, 2013; Napierała, Stefanowski, and Wilk, 2010; Prati,

Batista, and Monard, 2004). Here, Napierala and Stefanowski proposed to consider

samples from minority class consisting of four types of samples: safe, borderline,

rare samples and outliers (Napierala and Stefanowski, 2016). They studied the

influence of these four types of samples on binary imbalanced classification, where

the datasets are composed of two classes and one class significantly outnumbers

the other. Other researchers then extended this idea to develop new techniques to

improve imbalanced classification in both binary and multi-class scenarios (Kong,

Kowalczyk, Menzel, and Bäck, 2020; Lango and Stefanowski, 2018; B. Liu and

Tsoumakas, 2019). However, the relationships among classes are more complicated

in multi-class scenarios since there are more than two classes in the datasets.

Simply extending the idea of four types of samples from binary to multi-class

scenarios without changing the identification rule will cause several problems.

In this chapter, we first recall the identification rule for the four types of samples

as proposed in the literature (Napierala and Stefanowski, 2016). Then, we show

the drawbacks when applying this identification rule to multi-class scenarios and

emphasize the importance of proposing a new identification rule for multi-class

scenarios. We find mainly two drawbacks: (1) a higher percentage of unsafe

(borderline, rare and outliers) samples and (2) false identification of outliers.

As a consequence, we propose a new identification rule for the four types of

samples to handle the drawbacks mentioned above and validate the effectiveness

of the new rule with benchmark datasets. In these experiments, we consider

oversampling different types of samples before performing the classification, where

oversampling is a data-level approach to handle the imbalance in the datasets.

Experimental results on benchmark and real-world data show that the proposed

rule can significantly improve the classification performance on minority class(es)

when a high imbalance exists in the datasets.

Class imbalance is present in many real-world classification tasks, for instance,

medical diagnosis (Mazurowski, Habas, Zurada, Lo, Baker, and Tourassi, 2008),

email filtering (Bermejo, Gámez, and Puerta, 2011), fault diagnosis (Krawczyk,

Galar, Jeleń, and Herrera, 2016), etc. Most of class imbalance applications in the
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literature have been devoted to binary classification problems. Most of the multi-

class imbalanced benchmark datasets contain only a small number of attributes

and a limited number of samples (Alcalá-Fdez, Fernández, Luengo, Derrac, García,

Sánchez, and Herrera, 2011; D. Dua and Graff, 2017). Therefore, our work makes

an additional contribution by introducing a challenging industrial surface defects

dataset, with 172 attributes, 27 classes and 12496 samples. Experimental results on

this industrial dataset also confirm the effectiveness and usefulness of our proposed

rule for real-world applications.

6.2 Related Works

In this section, we first introduce the existing rule for identifying types of samples

in binary scenarios from the related literature (Section 6.2.1). Then, we show the

drawbacks when extending this idea from binary to multi-class scenarios (Section

6.2.2), which motivates our own research presented in Section 6.3.

6.2.1 Studies on Types of Samples in Binary Scenarios

It is essential to recall the identification of types of samples in binary scenarios.

Napierala and Stefanowski first proposed the idea of identifying minority class

samples in four categories: safe, borderline, rare samples and outliers (Napierala

and Stefanowski, 2016), the latter three are called unsafe samples. The majority

class samples can also be categorized into these four types. The general rule to

identify the four types is as follows.

• a sample is considered to be safe if the majority of the neighbours belongs to

the same class;

• a sample is considered to be borderline if the proportion of the neighbours

in both classes is approximately the same;

• a sample is considered to be rare if the majority of the neighbours belongs to

a different class;

• a sample is considered to be an outlier if all the neighbours belongs to a

different class.
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Since the idea was proposed, it has attracted widespread attention in the field

of imbalanced learning, and more than 200 papers have cited the original paper

so far. It appears in the citations of review papers as an important development

in the imbalanced learning domain, and also in the citations of papers proposing

new approaches as a source of inspiration. Various researchers confirmed the

occurrence of the different types of samples in real-world data. They studied

the influence of different types of minority class samples on binary imbalanced

classification (Fernández, García, Galar, Prati, Krawczyk, and Herrera, 2018), and

concluded that the unsafe samples are the actual source of difficulty when learning

from imbalanced problems (S. Wang, Minku, and Yao, 2018). Studies also focus

on investigating the influence of minority class samples on the performance of

SMOTE (Skryjomski and Krawczyk, 2017). This idea is also evaluated in real-

world applications. For example, authors in (García, Marqués, and Sánchez, 2019)

explored the effects of sample types on credit risk and corporate bankruptcy

prediction.

6.2.2 Problems When Extending to Multi-class Scenarios

As the importance of learning different types of samples has received more

and more attention, some studies extended this idea to multi-class imbalanced

classification without changing the identification rule for the four types of samples

(Lango and Stefanowski, 2018; Sáez, Krawczyk, and Woźniak, 2016; Sleeman IV

and Krawczyk, 2021). However, the relationships among classes in multi-class

imbalanced scenarios are more complicated than in binary scenarios, resulting in

two main drawbacks if we follow the identification rule for binary scenarios.

• A higher percentage of unsafe samples in minority classes. In the

identification rule in Table 2.3, the number of neighbours is set the same for

all the classes when considering the neighbourhood information. However,

this setting neglects the fact that, in multi-class imbalanced classification,

minority classes contain significantly fewer samples than in the majority

classes. Hence, choosing the same k for all classes in multi-class scenarios

will result in a higher percentage of unsafe samples (borderline, rare, outliers)

in minority classes, see orange triangles (4) in Figure 6.1. The methods we

propose to handle this problem are described later in Section 6.3.1.
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Figure 6.1: An artificial 2-dimensional dataset showing the drawbacks when
simply extending the identification rule in binary scenarios to multi-class scenarios.
Suppose k = 5, then according to the identification rule in Table 2.3, the orange
triangles (4) are all unsafe samples and the green diamond (�) marked with the
dotted circle is an outlier.

• False identification of outliers. In the identification rule in Table 2.3,

outliers refer to the isolated samples surrounded by different classes. For

example, following this rule, the blue circle at the bottom (Figure 6.1)

is classified as an outlier. However, the rule also distinguishes the green

diamond (�) marked with the dotted circle (Figure 6.1) as an outlier.

According to the geometric location of this sample, however, it is not an

isolated sample far away from other samples in the same class. This indicates

that the current rule leads to the false identification of some samples.

In the case of multi-class problems, the relationships among classes are

more complex, and our proposed idea to reduce the probability of false

identification is detailed in Section 6.3.2.

José et al. (Sáez, Krawczyk, and Woźniak, 2016) analyzed the oversampling

of different classes and types of samples with several benchmark multi-class

imbalanced datasets. They calculate the percentage of each type of sample

(safe/borderline/rare/outlier) using the identification rule for binary scenarios.
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Related information on selected datasets is given in Table 6.1. We can observe that

if there is a significant gap between the number of minority and majority class

samples, over 60% of the minority class samples are considered outliers (see C1

in Balance and C1 & C2 in Thyroid). Hence, we confirm that the drawbacks above

exist in multi-class benchmark datasets, and a new identification rule is required

for distinguishing the types of samples in multi-class imbalanced scenarios.

Table 6.1: The number of samples of each class in the three selected datasets
(detailed information on datasets shown in Table 6.5) and percentage of each type
of sample (safe/borderline/rare/outlier) within the class (taken from José’s work
(Sáez, Krawczyk, and Woźniak, 2016)). “Cj" indicates class j, percentages are
rounded to integer values.

Dataset C1 C2 C3

Balance
49 288 288

(0/0/4/96) (74/26/0/0) (73/27/0/0)

Thyroid
17 37 666

(0/12/6/82) (0/11/24/65) (97/3/0/0)

Wine
48 59 71

(98/2/0/0) (100/0/0/0) (85/14/1/0)

6.3 New Identification Rule for Multi-class

Scenarios

In Section 6.2.2, we pointed out two main drawbacks when extending the

identification rule from binary to multi-class scenarios. In this section, we propose

a new identification rule for multi-class scenarios to overcome these drawbacks.

6.3.1 Adjusting k according to Imbalance Ratio

In the literature, the same k is used when assigning the types for samples in

both majority classes and minority classes, where k is the k in k-NN within the

sampling methods. However, considering the enormous gap between the sample

size of minority and majority classes, choosing the same k will result in a higher

percentage of unsafe samples in the minority class (stated in Section 6.2.2). Hence,

to ensure a reasonable proportion of different types of samples in minority class(es),

a smaller k should be used when analysing the local characteristics of a minority
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class sample. Here, we propose to adjust k to kj according to the class distribution,

as follows:

kj =

⌈√
nj
N/C

× k
⌉
, (6.1)

where j = 1, . . . , C denotes the class index, nj is the number of samples in class

j, C is the number of classes and N =
∑C

j=1 nj is the total number of samples in

the dataset. The results of adjusting k as shown in Table 6.2 indicate that Equation

(6.1) meets our requirements for choosing a larger k for majority class(es) and a

smaller k for minority class(es).

Table 6.2: The number of samples of each class in the three selected datasets and
kj for each class. k is preset to 5 and “Cj" indicates class j.

Dataset C1 C2 C3

Balance
49 288 288

k1 = 3 k2 = 6 k3 = 6

Thyroid
17 37 666

k1 = 2 k2 = 2 k3 = 9

Wine
48 59 71

k1 = 5 k2 = 5 k3 = 6

6.3.2 Considering neighbourhood Information of the

neighbours

In Section 6.2.2, we illustrated that only considering neighbours of a sample is

insufficient to identify the type because the neighbourhood information might not

adequately reflect the geometric location. Increasing k is a straightforward solution

to expand neighbourhood information. However, this will also decrease the number

of safe samples for both minority and majority class samples. For example, taking

an extreme case, if k is large enough, all samples will be unsafe. Hence, we propose

to consider neighbourhood information of the neighbours additionally, i.e. we also

find the k nearest neighbours for the neighbours. In our proposed approach, the

importance of neighbourhood information usually is higher than of neighbourhood

information of the neighbours. A definition of “type score (TS)" of data sample x is
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given below,

TS(x) =

neighbourhood︷ ︸︸ ︷
α(x) · nx

kj
+ (1− α(x)) · Nx

(kj)2︸ ︷︷ ︸
neighbourhood of the neighbours

α(x) =

1− 1
kj

if kj > 1

0.8 if kj = 1

(6.2)

where x belongs to class j, kj is the number of nearest neighbours for sample x

(see Section 6.3.1), nx is the number of neighbours which share the same label

with sample x, Nx is the number of neighbours of x’s neighbours which share the

same label with sample x, α(x) is the weight for the neighbourhood information

of sample x. If kj = 1, we set α(x) = 0.8 (to avoid α(x) = 1− 1
kj

= 0) to ensure

the higher importance of neighbourhood information. Note that when considering

the neighbourhood information of the neighbours, we also use kj . The proposed

identification rule to assign the four types of samples in multi-class scenarios is

given in Table 6.3. Following the proposed identification rule, the percentage of

each type of sample is recalculated and shown in Table 6.4. For datasets with

a significant gap between minority and majority class sample sizes (Balance and

Thyroid), the percentage of outlier type decreases from over 60% to less than 30%

(compare with Table 6.1).

Table 6.3: Identification rule to assign types for samples in multi-class scenarios.
Note that the thresholds can be adjusted (hand-tuned) depending on the given
datasets.

Type Safe Borderline Rare Outlier

Rule TS>0.75 0.5<TS≤0.75 0.05<TS≤0.5 TS≤0.05

6.4 Experiments

In this section, we introduce the information on the datasets used in our

experiments. Then, the experimental setup is described. After that, the

experimental results and discussions are given.
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Table 6.4: The number of samples of each class in the three selected datasets and
percentage of each type of sample (safe/borderline/rare/outlier) within the class.
“Cj" indicates class j, percentages are rounded to integer values.

Dataset C1 C2 C3

Balance
49 288 288

(0/0/78/22) (70/24/6/0) (70/23/7/0)

Thyroid
17 37 666

(6/24/47/23) (8/13/49/30) (99/1/0/0)

Wine
48 59 71

(98/2/0/0) (100/0/0/0) (76/13/8/3)

6.4.1 Information on the Datasets

The experiments in this chapter are based on 6 selected benchmark multi-class

imbalanced datasets from the KEEL repository (Alcalá-Fdez, Fernández, Luengo,

Derrac, García, Sánchez, and Herrera, 2011). The descriptions of the datasets are

summarized in Table 6.5.

Table 6.5: Information on the benchmark datasets. AT, CL and NS indicate the
number of attributes, the number of classes and the number of samples respectively.

Dataset AT CL NS (in each class)

Balance 4 3
625

(49 / 288 / 288)

Contraceptive 9 3
1473

(333 / 511 / 629)

Glass 9 6
214

(9 / 13 / 17 / 29 / 70 / 76)

Thyroid 21 3
720

(17 / 37 / 666)

Wine 13 3
178

(48 / 59 / 71)

Winequality-red 11 6
1599

(10 / 18 / 53 / 199 / 638 / 681)

6.4.2 Experimental Setup

In this chapter, we (1) improve the rule for identifying the four types of samples

for multi-class imbalanced problems and (2) investigate how oversampling for
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different types of sample combinations affects the classification performance. Our

experimental setup is illustrated in Figure 6.2. We consider
(
4
4

)
+
(
4
3

)
+
(
4
2

)
+
(
4
1

)
= 15

(excluding None) combinations of the four types of samples and SMOTE (Chawla,

Bowyer, Hall, and Kegelmeyer, 2002) to oversample these combinations in our

experiments. To be specific,
(
4
4

)
means we choose all four types of samples to

be oversampled,
(
4
3

)
means we choose three out of four types of samples to

be oversampled,
(
4
2

)
means we choose two out of four types of samples to be

oversampled and
(
4
1

)
means we choose only one type of samples to be oversampled.

Three classifiers (C5.0, SVM and Nearest Neighbour) are used as classification

algorithms, and 5-fold stratified cross-validation is used to preserve the original

class distribution (M. S. Santos, Soares, Abreu, Araujo, and J. Santos, 2018).

Figure 6.2: Experimental setup to compare the effectiveness of the two different
identification rules (inspired by (Sáez, Krawczyk, and Woźniak, 2016)). The
comparison is done via changing the identification rule in step (2).

6.4.3 Experimental Results and Discussion

Experimental results of the decision tree C5.0 (average of 30 trials) on Balance

and Winequality-red are given in Table 6.6 and Table 6.7. Note that there is one
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minority class in Balance and three minority classes in Winequality-red. Three main

conclusions can be drawn from our experiments:

Table 6.6: Performance results of decision tree (C5.0) on the dataset Balance.
“1 0 1 0" represents “safe(1) borderline(0) rare(1) outlier(0)", i.e. only safe and
rare samples are oversampled. Rmin/all and TS indicate the different rules for
identifying types of samples. “–" means that there are not enough samples to
execute the k-nearest-neighbour algorithm in the oversampling step.

Combination
MinAcc MAUC

Rmin/all TS Rmin/all TS

1 1 1 1 0.0129 0.0129 0.7449 0.7449
1 1 1 0 – 0.1590 – 0.8179
1 1 0 1 0.1546 0.1374 0.8119 0.7712
1 0 1 1 0.1386 0.1600 0.8138 0.8216
0 1 1 1 0.0535 0.0676 0.7894 0.7934
1 1 0 0 0 0.0222 0.7534 0.7470
1 0 1 0 – 0.1907 – 0.8219
0 1 1 0 – 0.1301 – 0.8101
1 0 0 1 0.1151 0.1037 0.8092 0.7764
0 1 0 1 0.0474 0.0823 0.7825 0.7810
0 0 1 1 – 0 – 0.7348
1 0 0 0 0 0 0.7489 0.7537
0 0 1 0 – 0 – 0.7303
0 1 0 0 – 0 – 0.7481
0 0 0 1 – – – –

• Taking different types of sample combinations into account in the

oversampling technique can significantly improve the classification

performance on minority class(es). At the same time, improved or competitive

classification performance on the whole dataset can also be achieved. Please

refer to the bold numbers, the best performance in the 15 combinations, in

Table 6.6 and Table 6.7. This improvement can be explained by the fact that,

when considering different combinations, one or several types of samples

will be discarded. This can be regarded as an informed undersampling to

balance the class distribution.

• From the performance comparison between two identification rules (Rmin/all

and TS), it can be concluded that our proposed identification rule provide

significantly better performance on classifying minority class(es). Moreover,
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there are less “–" in the experiments using the proposed identification rule,

where “–" means that there are not enough samples to execute the k-nearest-

neighbour algorithm in the oversampling step. Both points confirm the

appropriateness of and improvement provided by the proposed rule.

• Only experimental results on the dataset Winequality are shown in this

chapter. Experimental results on other datasets can be found in Appendix A.

The relationship between imbalance ratio and MinAcc is shown in Figure 6.3.

The imbalance ratio (IR) for multi-class classification in this chapter is defined

as the average majority sample size to the average minority class sample size.

It is worth mentioning that if the imbalanced ratio is not significant (< 4),

oversampling different combinations of types of samples will not bring a

significant improvement on minority classification performance. However, no

linear relationship between the imbalance ratio and MinAcc can be concluded

(see linear regression equation and R2 in Figure 6.3). This is because the

improvement is not only determined by the imbalance ratio, but also depends

on the separability of classes.

Table 6.7: Performance results of C5.0 on the dataset Winequality-red. The huge
difference in the corresponding positions of the two columns in MinAcc is caused
by the significant difference between the four types of samples under the two
identification rules, i.e., data distribution in different combinations varies a lot.

Combination
MinAcc MAUC

Rmin/all TS Rmin/all TS

1 1 1 1 0.0819 0.0819 0.6751 0.6751
1 1 1 0 – 0.0771 – 0.6581
1 1 0 1 0.0281 0.1219 0.6571 0.6637
1 0 1 1 0.0520 0.0588 0.6600 0.6627
0 1 1 1 0.0466 0.1170 0.6541 0.6534
1 1 0 0 – – – –
1 0 1 0 – 0.0498 – 0.6576
0 1 1 0 – 0.0394 – 0.6548
1 0 0 1 0.1305 0.0444 0.6518 0.6584
0 1 0 1 0.0511 0.1140 0.6553 0.6601
0 0 1 1 0.0851 0.0680 0.6615 0.6637
1 0 0 0 – 0.0698 – 0.6782
0 0 1 0 – 0.0875 – 0.6616
0 1 0 0 – – – –
0 0 0 1 0.0563 0.1485 0.6461 0.6453
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Figure 6.3: Relationship between imbalance ratio and MinAcc. The imbalance ratio
(IR) for multi-class classification in this chapter is defined as the average majority
sample size to the average minority class sample size.

6.5 Applications on the Detection of Surface

Defects

In this section, we report our study on an imbalanced application for detecting

surface defects. We first introduce the industrial problem. Then, the information

on the surface defects dataset is given in Section 6.5.1. After that, the visualisation

and preprocessing step on this high-dimensional dataset is described in Section

6.5.2. In Section 6.5.3, we evaluate our proposed sample identification rule on the

surface defects dataset.

The surface of a steel product is one of the major quality aspects. Therefore,

surface anomalies should be avoided or at least known. A camera-based Surface

Inspection Systems (SIS) is used in various process lines to identify those anomalies

in the industry (Neogi, Mohanta, and Dutta, 2014). Grey value images taken from

the surface by the SIS contains information on the anomalies. These images of

various anomalies occurring in production are assessed and gathered in defined

classes within a defect library. Figure 6.4 shows a diagram of how to capture the

defects images. The defect library is used to train and test classifiers (classification

algorithms), and these classifiers are finally used to identify the new surface
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anomalies from production. Thus, a stable, accurate and high classification

performance is a must in the quality check procedure. However, the imbalance

in the number of various defect types makes it challenging to obtain a stable and

accurate classification performance.

Figure 6.4: A diagram of how to capture the defects images. Defects images are
from TATA steel official website1, for example purpose.

6.5.1 Information on Surface Defects Dataset

The images captured by the SIS cameras will be processed in the feature extraction

module. Relevant defect features, e.g. geometrical, textural and moment features,

are extracted for the purpose of classification. Both the images and information

after extraction will be stored in the defect library. The surface defects dataset

used in this chapter is taken from a defect library after a certain selection (for

privacy reasons). The dataset is after extraction and contains 12496 samples along

with 173 attributes. After removing samples with missing values, there are 12456

1https://automation.tatasteel.com/products/rolling-mills/squins-surface-quality-inspection-
system/
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samples in total. The information on surface defects data for experiments is given

in Table 6.8.

Table 6.8: Dimension of each record in the surface defects dataset after
preprocessing. NS and “class" indicate the number of samples and class label
respectively. There are 25 classes and 12456 samples in total

class NS class NS class NS class NS

25 2012 1 385 11 282 20 134
17 1666 10 382 19 255 23 121
24 1211 12 379 22 243 6 71
15 1205 16 357 9 215 4 39
18 937 7 354 21 201
3 623 5 312 27 165 Total
2 457 13 296 8 154 25 12456

6.5.2 Visualisation and Preprocessing

Visualisation is an important step when dealing with real-world applications. It

can provide some general information on the datasets, e.g. clusters. In the data-

preprocessing step, missing values and redundant attributes are usually removed

to provide high-quality data for future experiments.

Visualisation with t-SNE

Before experimenting with this real-world application dataset, we visualise the data

to get some general information on the data. T-distributed Stochastic neighbourhood

Embedding (t-SNE) (Van der Maaten and G. Hinton, 2008), a variation of Stochastic

neighbourhood Embedding (SNE) (G. E. Hinton and Roweis, 2002), is a statistical

technique for visualising high-dimensional data. It first converts high-dimensional

Euclidean distance into conditional probability to characterise similarity among

data points. Then, t-SNE models the similarity distribution among data points in

the low-dimensional map. After that, it minimises the Kullback-Leibler divergence

(KL divergence) between the joint distributions in high-dimensional and low-

dimensional space.

t-SNE has been used for visualisation in various applications, consisting of

medical research (Esteva, Kuprel, Novoa, Ko, Swetter, Blau, and Thrun, 2017),

music analysis (Van den Oord, Dieleman, and Schrauwen, 2013), bioinformatics
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(Baxevanis, Bader, and Wishart, 2020), etc. In this chapter, we use t-SNE to

visualise the surface defects data from industry. As we discussed in Section 6.2.2,

the relationships among classes in multi-class scenarios are more complicated than

in binary scenarios. It is very intuitive from Figure 6.5 that as the number of classes

increases, it gets more and more difficult to visualise the boundaries of different

classes.

Figure 6.5: Visualisation on surface defects dataset with 2/3/5/all classes (top-
left/top-right/bottom-left/bottom-right).

Data Preprocessing

As we mentioned in Section 6.5.1, we have already deleted the missing values.

Therefore, in this chapter, we focus on reducing dimensionality via feature
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correlation analysis, i.e. feature selection. Correlation is a statistical term to

describe the linear relationship between two or more variables. When correlation

happens in features (attributes), we call this feature correlation. In other words,

if two features have a high correlation, we can predict one from the other. When

training a predictive model based on a certain dataset, correlated features are

considered redundant and we can delete one of them for simplification. As per

the Occam’s razor, “entities should not be multiplied beyond necessity” (Schaffer,

2015). (In Latin, Entia non sunt multiplicanda praeter necessitatem (Bauer, 2007).)

According to the information from the industry (which provides the surface

defects data), the first 20 attributes in the surface defects dataset are only for

internal recording, such as image number, date, top camera or bottom camera,

etc. These features provide no information on the defects and can be directly

deleted. After that, we calculate the feature correlation through Pearson correlation.

From Figure 6.6, we can observe that many features are highly correlated. For our

surface defects dataset, if the correlation between two features is higher than 0.7

(this number is suggested by the industrial expert in TATA company), one of them

will be deleted. After removing the redundant features, there are 62 features left

for future experiments.

6.5.3 Experiments on Surface Defects Dataset

Experimental results on the industrial surface defects dataset are given in

Table 6.9. This real-world dataset is a multi-class imbalanced dataset with an

extreme imbalance ratio. Significant improvements on both minority and overall

classification performance can be observed in Table 6.9. This is consistent with

our conclusions from the experiments on benchmark datasets in Section 6.4.3.

Furthermore, the best performances out of 15 combinations are contributed mainly

by “no outliers (1 1 1 0)", which also shows that the outlier type has a significant

influence on the classification performance in real-world imbalanced problems.

In addition, the proposed identification rule (TS) outperforms the other one on

classifying minority class samples. This confirms that the proposed rule can better

recognise the outliers in this real-world problem.
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Figure 6.6: Visualisation of correlation matrix on 31 selected features. Positive
correlations are displayed in blue and negative correlations in red color. Color
intensity and the size of the circle are proportional to the correlation coefficients.

6.6 Conclusions and Future Work

The idea of introducing four types of samples (safe, borderline, rare and outlier)

in binary imbalanced literature has been done already. This chapter introduces

the drawbacks of extending this idea to multi-class imbalanced scenarios. We

proposed a new identification rule to deal with these drawbacks and evaluated

the effectiveness of this proposed rule on six benchmark datasets and a real-world

application. According to our experimental results, the following conclusions can

be derived:

• Oversampling different combinations of types of samples can provide better

or competitive performance in classifying minority class(es) while not losing

too much classification performance on majority class samples.

• The proposed identification rule for types of samples makes the percentage of
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Table 6.9: Performance results of C5.0 in surface defects dataset.“1 0 1 0" represents
“safe(1) borderline(0) rare(1) outlier(0)", i.e. only safe and rare samples are
oversampled. Rmin/all and TS indicate the different rules for identifying types of
samples. “–" means that there are not enough samples to execute the k-nearest-
neighbour algorithm in the oversampling step.

Combination
MinAcc MAUC

Rmin/all TS Rmin/all TS

1 1 1 1 0.5256 0.5256 0.8748 0.8748
1 1 1 0 0.5361 0.5468 0.8900 0.8917
1 1 0 1 0.4927 0.4780 0.8924 0.8881
1 0 1 1 0.5022 0.4994 0.8879 0.8880
0 1 1 1 0.5040 0.4923 0.8759 0.8746
1 1 0 0 – – – –
1 0 1 0 – 0.5430 – 0.8914
0 1 1 0 0.5190 0.5301 0.8796 0.8794
1 0 0 1 0.4806 0.4754 0.8871 0.8857
0 1 0 1 0.4903 0.4671 0.8803 0.8758
0 0 1 1 0.4891 0.4944 0.8668 0.8679
1 0 0 0 – – – –
0 0 1 0 – – – –
0 1 0 0 – – – –
0 0 0 1 – – – –

each type of sample within the class more reasonable (avoiding all samples

in the minority class considered as outliers).

• Our experimental results do not show significant improvement on datasets

that are not highly imbalanced. Therefore, it is recommended to analyse the

types of samples only when the dataset is highly imbalanced.

• The proposed identification rule can be applied to real-world multi-class

imbalanced datasets and significantly improve the classification performance.

When dealing with real-world problems, much attention should be paid to

the sample type “outlier".

In future work, it is worth studying the relationship between imbalance ratio,

separability of classes and performance improvement while analysing the four

types of samples in the imbalanced learning domain. In addition, further study

on applying the proposed identification rule to more real-world applications

is encouraged. However, real-world data available in the machine learning

community is rare due to confidentiality and the time-consuming generation.
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We also would like to explore how these four types of samples can be used for

interacting with and benefiting from the feedback of human experts in real-world

applications. One scenario is, for example, the rule identifies some outlier samples

and plans to delete these samples in future analysis. Then, the human experts check

whether these are real outliers and provide feedback to the algorithm training

process.
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CHAPTER 7

Conclusions

As class-imbalance problems attract attention from academic and industrial

fields, many approaches have been proposed to improve the imbalanced

classification theoretically and practically. In this thesis, we mainly conducted

research on Learning Class-Imbalanced Problems from the Perspective of Data

Intrinsic Characteristics. In the following, Section 7.1 first summarizes the

main contributions of the thesis as the answers to the research questions in the

Introduction chapter. Then, the strengths and weaknesses of the research work

(Chapters 3-6) are also discussed following the chapter order. Finally, the outlook

on future research is provided in Section 7.2.

7.1 Summary

Chapter 1 introduced the scientific background and the motivation of this thesis.

It showed the existence of class imbalance problems in real-world applications and

emphasized the importance of learning from imbalanced data. Then, the outline of

the thesis and relevant publications were given.

Chapter 2 provided the necessary literature review. It started with the

visualisation of a binary class imbalance problem. After that, the methods and the

performance metrics for both binary and multi-class class imbalance scenarios were

presented. Furthermore, the studies on the data complexity in the imbalanced

learning domain were introduced in detail. Finally, the imbalanced benchmark

datasets and the real-world imbalanced application work were reviewed.
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Chapter 3 investigated the effectiveness of several oversampling techniques,

where the new ones (RACOG, wRACOG and RWO-sampling) take into account

the minority class distribution, while the “classic" ones (SMOTE, ADASYN and

MWMOTE) do not. These oversampling techniques were experimented with 19

benchmark datasets and our real-world inspired vehicle dataset. The experimental

results first answered research question 1: In most cases, oversampling

approaches considering the minority class distribution perform better. Different

data complexity measures were taken into account with the original aim to

answer research question 2. According to our experimental results, no apparent

relationship between data complexity measures and the choice of resampling

techniques can be derived. One noteworthy finding is that the F1v value strongly

correlates with the potential best AUC value (after resampling).

Although “new" oversampling approaches showed effectiveness over “classical"

ones in most cases, one main practical limitation must be taken into account.

Due to the fact that “new" oversampling techniques consider the minority class

distribution, implementing these techniques often requires more time compared

to “classical" ones. When facing large datasets, huge time costs are inevitable.

Therefore, the trade-off between performance improvement and time consumption

must be considered while using “new" oversampling techniques.

Chapter 4 introduced our work on hyperparameter optimisation on class-

imbalance problems. Both hyperparameters in resampling techniques and

classification algorithms were optimised in our experiments. Further exploration

of how data complexity affects the classification improvement yielded via

hyperparameter optimisation answered our research question 3. Applying

hyperparameter optimisation for both classification algorithms and resampling

approaches can significantly improve the performance of imbalanced datasets

with low class overlap. However, oversampling techniques and hyperparameter

optimisation do not improve performance for imbalanced datasets with high class

overlap.

Despite the fact that hyperparameter optimisation improves the classification

performance significantly for imbalanced datasets with low class overlap, the

optimisation process always involves hundreds to thousands of iterations. The

additional time consumption is significant. Moreover, different resampling

techniques contain different hyperparameters. Therefore, one needs to have
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an in-depth understanding of the resampling techniques in order to set the

hyperparameters that need to be optimised.

Chapter 5 conducted research on improving imbalanced classification via adding

additional attributes. We proposed introducing the outlier score and four types

of samples as two additional attributes of the original imbalanced datasets.

We compared the classification performance of our proposed method and the

resampling techniques in the literature and concluded that adding additional

attributes in most cases produces significantly better or competitive classification

performance. This naturally leads to the answer of research question 4: we

can take advantage of anomaly detection techniques to improve the imbalanced

classification.

We must consider the following points when using our proposed method to

improve the imbalanced classification. Firstly, we have shown that the proposed

attribute “type" highly correlates with the class labels under certain circumstances.

Hence, we recommend choosing feature-insensitive classification algorithms when

implementing our proposed method. Furthermore, considering the fact that

anomaly detection problems are imbalanced problems with extreme imbalance

ratios, it is recommended to add the outlier score as an additional attribute when

the imbalance ratio is relatively high (no less than 5).

Chapter 6 presented our improved sample type identification for multi-class

imbalanced classification. We showed the drawbacks of the existing identification

rule in multi-class scenarios, (i) a higher percentage of unsafe samples in minority

classes and (ii) the false identification of outliers. The proposed rule answered

the research question 5, we can improve the sample identification by adjusting

k according to the imbalance ratio and considering neighborhood information

of the neighbors. The proposed approach was tested on a challenging real-

world problem, the steel surface defects detection task. The experimental results

answered research question 6, showing the industrial applicability of our method.

We used two performance metrics to evaluate the experimental results, MinAcc

for assessing the performance of minority class(es) and MAUC for measuring

the overall performance of all classes. According to our experimental setup,

the proposed identification rule significantly better classifies minority class(es)

while producing competitive overall classification performance. Hence, one main

107



Chapter 7. Conclusions

limitation of the proposed method is that a significant better performance cannot

be guaranteed if the given task only focuses on the overall performance.

7.2 Future Work

This thesis mainly conducted the research on Learning Class-Imbalanced Problems

from the Perspective of Data Intrinsic Characteristics. Despite the achievements

presented here that have revealed interesting insights, learning the data

intrinsic characteristics in imbalanced datasets and how to efficiently use these

characteristics to obtain guidance on choosing the imbalanced techniques still need

to be completed. Furthermore, much work is yet to be done to apply the class

imbalance techniques to handle complex real-world scenarios. Several possible

future research directions for extending the work in this thesis are discussed as

follows.

Software Tool for Learning from Class Imbalance Datasets As we have shown

in this thesis, the class imbalance problem has been studied extensively from

different aspects, including data interpolation, algorithm adjusting, cost-sensitive

learning, data complexity etc. Given a class imbalance problem, one has to try

several techniques and choose the best one for the specific situation. However,

these techniques are available in different languages, Python, R and C, which makes

it challenging for researchers to implement and compare. Therefore, software with

the following functions would greatly contribute to the community.

• Main class-imbalance techniques, e.g. various resampling techniques,

different algorithm-level approaches, cost-sensitive learning approaches and

ensemble learning methods.

• Efficient hyperparameter optimisation algorithms to choose the optimal

combination of hyperparameters.

• Data complexity analysis to provide some algorithm selection insights.

• Several benchmark examples to help beginners understand the functions of

the software.
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Comparative Study of Anomaly Detection and Class Imbalance Problem The

anomaly detection problem can be considered a class imbalance problem with an

extreme imbalance ratio. In this thesis, we proposed to add the Local Outlier Score

as an additional attribute to gain more information for the original imbalanced

dataset. In future work, other anomaly detection techniques, such as the clustering-

based local outlier score (CBLOF) (Z. He, Xu, and Deng, 2003) and histogram-

based outlier score (HBOS) (Goldstein and Dengel, 2012) could be included in the

analysis. It is also interesting to explore other potential attributes to be added.

Data Complexity in Real-Time Processing In this thesis we mainly focused

on stationary imbalanced datasets, whereas in many applications, such as fault

diagnosis and bank commercial monitoring systems (H. M. Nguyen, Cooper, and

Kamei, 2011), the data is constantly arriving and real-time analysis must be

given. This scenario refers to the topic of Online Class Imbalance Learning from

Imbalanced Data Streams (Fernández, García, Herrera, and Chawla, 2018; M. Last,

2002), which combines the difficulties of data stream mining and class imbalance

problems (Fernández, García, Galar, Prati, Krawczyk, and Herrera, 2018; S. Wang,

Minku, and Yao, 2014). In this type of problem, the new learning instances arrive

in a time-based manner and the class distribution is dynamic. The imbalance ratio

may evolve over time, making the relationship dynamic so that the algorithms with

fixed imbalance ratio assumptions are not valid anymore. For example, when the

imbalanced problem evolves into a balanced problem, it will lead to the failure

of the previous imbalanced algorithm. When the majority class evolves into the

minority one (or vice versa), the algorithm may even bring more imbalance bias to

the problem. Thus, analysing the data complexity dynamically and adjusting the

approaches accordingly would significantly benefit applications.
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APPENDIX A

Additional Experimental Results

Table A.1: Performance results of decision tree (C5.0) on the dataset Contraceptive.
“1 0 1 0" represents “safe(1) borderline(0) rare(1) outlier(0)", i.e. only safe and
rare samples are oversampled. Rmin/all and TS indicate the different rules for
identifying types of samples.

Combination
MinAcc MAUC

Rmin/all TS Rmin/all TS

1 1 1 1 0.4154 0.4154 0.6736 0.6744
1 1 1 0 0.3925 0.3503 0.6734 0.6735
1 1 0 1 0.3800 0.3846 0.6714 0.6753
1 0 1 1 0.3978 0.3690 0.6607 0.6617
0 1 1 1 0.3530 0.3695 0.6670 0.6643
1 1 0 0 0.4296 0.4360 0.6807 0.6834
1 0 1 0 0.3773 0.3518 0.6689 0.6655
0 1 1 0 0.3865 0.3882 0.6737 0.6699
1 0 0 1 0.3814 0.3932 0.6669 0.6700
0 1 0 1 0.3988 0.3950 0.6725 0.6678
0 0 1 1 0.3963 0.3605 0.6679 0.6626
1 0 0 0 0.4457 0.4360 0.6884 0.6826
0 0 1 0 0.3666 0.3688 0.6698 0.6676
0 1 0 0 0.3899 0.4207 0.6771 0.6768
0 0 0 1 0.4343 0.4040 0.6841 0.6622
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Table A.2: Performance results of decision tree (C5.0) on the dataset Thyroid.
“1 0 1 0" represents “safe(1) borderline(0) rare(1) outlier(0)", i.e. only safe and
rare samples are oversampled. Rmin/all and TS indicate the different rules for
identifying types of samples. “–" means that there are not enough samples to
execute the k-nearest-neighbor algorithm in the oversampling step.

Combination
MinAcc MAUC

Rmin/all TS Rmin/all TS

1 1 1 1 0.8648 0.8648 0.9813 0.9808
1 1 1 0 0.7789 0.7708 0.9829 0.9733
1 1 0 1 0.7221 0.7486 0.9726 0.9736
1 0 1 1 0.7227 0.7440 0.9703 0.9737
0 1 1 1 0.9432 0.9350 0.9831 0.9830
1 1 0 0 0.7011 – 0.9774 0.9712
1 0 1 0 – 0.7306 – 0.9765
0 1 1 0 0.7694 0.7756 0.9838 0.9815
1 0 0 1 0.7816 – 0.9735 0.9744
0 1 0 1 0.8224 – 0.9831 0.9814
0 0 1 1 – – – –
1 0 0 0 – – – –
0 0 1 0 – – – –
0 1 0 0 – – – –
0 0 0 1 – – – –
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Table A.3: Performance results of decision tree (C5.0) on the dataset Wine.
“1 0 1 0" represents “safe(1) borderline(0) rare(1) outlier(0)", i.e. only safe and
rare samples are oversampled. Rmin/all and TS indicate the different rules for
identifying types of samples. “–" means that there are not enough samples to
execute the k-nearest-neighbor algorithm in the oversampling step.

Combination
MinAcc MAUC

Rmin/all TS Rmin/all TS

1 1 1 1 0.9385 0.9297 0.9493 0.9495
1 1 1 0 0.9578 0.9600 0.9619 0.9606
1 1 0 1 0.9232 0.9192 0.9577 0.9560
1 0 1 1 0.9500 0.9800 0.9546 0.9553
0 1 1 1 – – – –
1 1 0 0 0.9068 0.9436 0.9583 0.9556
1 0 1 0 0.8986 0.9378 0.9531 0.9547
0 1 1 0 – – – –
1 0 0 1 0.9618 0.9374 0.9529 0.9492
0 1 0 1 – – – –
0 0 1 1 – – – –
1 0 0 0 0.9532 0.9636 0.9530 0.9475
0 0 1 0 – – – –
0 1 0 0 – – – –
0 0 0 1 – – – –
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Chapter A. Additional Experimental Results

Table A.4: Performance results of decision tree (C5.0) on the dataset Glass.
“1 0 1 0" represents “safe(1) borderline(0) rare(1) outlier(0)", i.e. only safe and
rare samples are oversampled. Rmin/all and TS indicate the different rules for
identifying types of samples. “–" means that there are not enough samples to
execute the k-nearest-neighbor algorithm in the oversampling step.

Combination
MinAcc MAUC

Rmin/all TS Rmin/all TS

1 1 1 1 0.6243 0.6291 0.8603 0.8605
1 1 1 0 0.7357 0.6778 0.8903 0.8958
1 1 0 1 0.4933 0.7111 0.9010 0.8925
1 0 1 1 0.4778 0.6156 0.8798 0.8840
0 1 1 1 0.5211 0.6522 0.8954 0.8952
1 1 0 0 – – – –
1 0 1 0 – – – –
0 1 1 0 – – – –
1 0 0 1 – – – –
0 1 0 1 – – – –
0 0 1 1 – – – –
1 0 0 0 – – – –
0 0 1 0 – – – –
0 1 0 0 – – – –
0 0 0 1 – – – –
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Samenvatting

Het ongebalanceerde klasse probleem is een uitdagende classificatie probleem en

komt vaak voor in de praktijk in dagelijkse toepassingen. Er zijn verschillende

technieken ontwikkeld om de onevenwichtige classificatieprestaties theoretisch

en praktisch te verbeteren. Naast het ontwikkelen van nieuwe methodes, richten

onderzoekers zich ook op het belang van het begrijpen van de data zelf, wat

meer inzicht zal geven in wat de ongebalanceerde klasse prestaties daadwerkelijk

belemmert.

In dit proefschrift is onderzoek gedaan naar het leren van ongebalanceerde

klasse problemen vanuit het perspectief van data-intrinsieke kenmerken. Het

empirische onderzoek waarbij verschillende algoritmen op data niveau werden

vergeleken, toont aan dat over-sampling-benaderingen, rekening houdend met

de minderheids-klasse-verdeling, in de meeste gevallen betere ongebalanceerde

classificatieprestaties kunnen opleveren. Hoewel data complexe metingen geen

richtlijn kunnen geven over de keuze van re-sampling technieken, vinden we dat

de potentieel beste AUC-waarde kan worden voorspeld door de F1v-meting (de

Directional-vector Maximum Fisher’s Discriminant Ratio). Beide conclusies worden

ook geverifieerd op een op de praktijk geïnspireerde voertuig mesh dataset van het

Honda Research Institute.

Optimalisatie van hyperparameters is zeer effectief gebleken voor veel

classificatiealgoritmen voor machine learning. De maximale diepte van de boom

en het minimale aantal samples dat nodig is intern knooppunt te splitsen, zijn

bijvoorbeeld cruciaal voor het afstemmen van de beslissingsboom om de beste

prestaties te bereiken. we benadrukken daarom het belang van afstemming van

hyperparameters voor benaderingen op data niveau.

Het afwijkingsdetectieprobleem is een ongebalanceerd-klasse-probleem met een
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extreem onevenwichtige verhouding. Technieken voor afwijkingsdetectieprobleem

kunnen worden toegepast op ongebalanceerde-klasse problemen met nauwkeurige

afstelling. In dit proefschrift stellen we voor om de Local Outlier Score te

introduceren, wat een belangrijke indicator om te evalueren of een steekproef

een outlier is, als een extra toepassing van de originele ongebalanceerde dataset.

Dit voorstel is meer dan het lenen van kennis uit afwijkingsdetectie onderzoeksveld,

maar geeft onderzoekers ook de mogelijkheid om inzicht te krijgen in de data in

plaats van te over- of onder-samplen.

In het laatste deel van het proefschrift wordt een verbeterde sampling type

identificatie voorgesteld voor het omgaan met ongebalanceerde classificatie

met meerdere klassen en toegepast op een dataset uit de praktijk voor

oppervlaktedefecten van TATA Steel. Ondertussen gaan we in op het belang van

het begrijpen van de verschillende intrinsieke gegevenskenmerken voor binaire

scenario’s en scenario’s met meerdere klassen.
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Summary

The class-imbalance problem is a challenging classification task and is frequently

encountered in real-world applications. Various techniques have been developed

to improve the imbalanced classification performance theoretically and practically.

Apart from developing new approaches, researchers also address the importance of

understanding the data itself, which will provide more insight into what actually

hinders the imbalanced classification performance.

This thesis conducted research on Learning Class-Imbalanced Problem from the

perspective of Data Intrinsic Characteristics. The empirical investigation comparing

several data-level algorithms shows that oversampling approaches considering the

minority class distribution can provide better imbalanced classification performance

in most cases. Although data complexity measures cannot provide any guidance

on the choice of resampling techniques, we find the potential best AUC value

can be predicted by the F1v measure (the Directional-vector Maximum Fisher’s

Discriminant Ratio). Both conclusions are also verified on a real-world inspired

vehicle mesh dataset from Honda Research Institute

Hyperparameter optimisation has shown great effectiveness for many machine

learning classification algorithms. For example, the maximum depth of the tree and

the minimum number of samples required to split an internal node are critical for

tuning the Decision Tree to achieve the best performance. Therefore, we emphasize

the importance of hyperparameter tuning for data-level approaches.

The anomaly detection problem is a class-imbalance problem with an extreme

imbalanced ratio. Techniques for anomaly detection problems can be applied to

class-imbalanced problems with fine adjustment. In this thesis, we propose to

introduce the Local Outlier Score, which is an important indicator to evaluate

whether a sample is an outlier, as an additional attribute of the original imbalanced
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dataset. This proposal is more than borrowing the knowledge from anomaly

detection research field but also provides researchers with another possibility to

acquire more insight from the data rather than undersampling/oversampling.

In the final part of the thesis, an improved sample type identification is proposed

for dealing with multi-class imbalanced classification and applied on a real-world

surface defects dataset from TATA Steel. Meanwhile, we address the importance of

understanding the different data intrinsic characteristics for binary and multi-class

scenarios.
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