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Chapter 3

Measuring local moiré lattice
heterogeneity of twisted
bilayer graphene

We introduce a new method to continuously map inhomogeneities of a moiré lattice
and apply it to large-area topographic images we measure on open-device twisted bi-
layer graphene (TBG). We show that the variation in the twist angle of a TBG device,
which is frequently conjectured to be the reason for differences between devices with a
supposed similar twist angle, is about 0.08◦ around the average of 2.02◦ over areas
of several hundred nm, comparable to devices encapsulated between hBN slabs. We
distinguish between an effective twist angle and local anisotropy and relate the latter
to heterostrain. Our results imply that for our devices, twist angle heterogeneity has a
roughly equal effect to the electronic structure as local strain. The method introduced
here is applicable to results from different imaging techniques, and on different moiré
materials.

This chapter has been published as T. Benschop, T. A. de Jong, P. Stepanov, X. Lu, V. Stalman, S.
van der Molen, D. K. Efetov, and M. P. Allan, Measuring local moiré lattice heterogeneity of twisted
bilayer graphene, Phys. Rev. Research, 3:013153, 2021
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Introduction

3.1 Introduction

Stacking two sheets of identical periodic lattices with a small twist angle θ leads to a
super-periodic lattice with moiré lattice constant λ(θ) much larger than the original
lattice constant a (figure 3.1a). This new lattice is called a moiré lattice. When using
atomic layers exfoliated from van der Waals materials, and stacking them with a twist
angle, the electronic and structural properties are modulated on the moiré length scale
λ(θ), leading to the potential for new, emergent electronic properties of the moiré ma-
terial [22, 73].
Such new properties have been spectacularly demonstrated in twisted bilayer graphene
(TBG) around the magic angle of θ ≈ 1.1◦ [20, 21, 74–80]. In TBG, the moiré lattice
modulates the interlayer coupling between the individual graphene sheets, as well as
the van der Waals forces on the individual carbon atoms. The former leads to flat
bands of low-kinetic-energy electrons [22]. The latter leads to a slight deformation of
the graphene lattice and bandgaps that separate the more localized electrons from the
other bands [22]. When the flat bands are tuned to the Fermi level, they pair and
condense into a superfluid at temperatures much higher than what one would naively
expect at the low carrier densities observed in TBG [21]. Additionally, a variety of
insulating and metallic behavior has been observed in TBG for different twist angles
and band-fillings [20,74,75,81].
The kinetic energy of the electrons changes rapidly as the twist angle is varied, es-
pecially around the magic angle, therefore the fabrication of devices with just the
right angle is key in making them superconducting. But getting the right angle might
not even be the most challenging aspect of fabricating high-quality superconducting
TBG devices: contaminations, internal stress, and heterogeneities of the twist angle
are difficult to avoid. This is in part because the magic angle is not the lowest energy
configuration and in part because of the strong forces associated with the tear-and-
stack technique. Internal stress and heterogeneities are often conjectured to limit the
quality of the devices and are attributed as the main causes for the variability be-
tween devices [82]. This holds especially for open devices that lack the hBN top layer;
notably such devices have never been found to superconduct. Measuring, visualizing,
and characterizing heterogeneity in the twist angle and strain in TBG is thus crucial
to understand and improve devices.
Probably the most complete visualization of inhomogeneity thus far has been obtained
using scanning SQUID-on-tip microscopy (SOT) [83]. SOT measures the Landau levels
as a function of location and thus has access to the local superlattice carrier density.
On encapsulated devices, SOT has been used to visualize heterogeneity on length
scales of a few micron with a resolution of several tens of nanometers, demonstrating
that the twist angle varies by less than 4% [83]. While being a very precise measure
of the local twist angle, SOT is also influenced by other factors, e.g. inhomogeneities
of the chemical potential and the local magnetic screening. Other techniques to ac-
cess homogeneity are Nano-ARPES [24, 84, 85], which can image the full electronic
structure in reciprocal space with a spatial resolution of circa 600 nm, low energy elec-
tron microscopy (LEEM) [24], which can image structural inhomogeneities at twist
angles lower and higher than the magic angle, conductive atomic-force microscopy
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Measuring local moiré lattice heterogeneity of twisted bilayer graphene

Figure 3.1: a) Moiré pattern created by stacking 2 hexagonal lattices with a twist angle
of 5◦. b) Schematic representation of our spatial lock-in algorithm to map the local twist
angle and anisotropy. The measured lattice can be thought of as the result of a series of
transformations applied to an ideal lattice. The scaling transformation, D, holds information
about the local twist angle θ∗(r) and the intrinsic local strain present in the device, κ(r). V
gives the direction of this local strain, ψ(r). Finally, W indicates the relative angle between
the bilayer and the underlying hBN substrate.

(AFM) [86], nano-photocurrent mapping [87], which can measure the twist angle with
a resolution on the order of 20 nm, and scanning single electron transistors [88],
which can map the twist angle by measuring the inverse local compressibility. Finally,
scanning tunneling microscopy (STM), the probe used in this study, has been used to
measure both the topography and the local density of states of TBG, including the
emergence of correlations at the magic angle [89–94].
In previous STM studies, two different methods have been used to determine the local
twist angle. First, one can determine the twist angle using three neighboring moiré
lattice sites in real space. The distances between each lattice site, λ1, λ2, λ3 are fit to a
set of equations that yield the twist angle at a per-triangle resolution (figure 1a) [90],
and, using a model with assumptions about the strain distribution in the two layers,
an estimate for the heterostrain ε.
A second method to determine the twist angle uses the Fourier transform of a real
space topography to determine the moiré wavelengths λj in the three directions of the
moiré lattice (in principle, two directions are fully determining the lattice, but often
all three are used for a better signal-to-noise ratio). The twist angle is determined

using λ = a
2 sin( θ2 )

, where λ = 1
3

∑3
j=1 λj and a is the lattice constant of graphene.

Using the Fourier transform is generally more accurate than fitting three moiré lattice
peaks, because it averages over the whole field of view, but this also limits its spatial
resolution to the full field of view.
In this work, we introduce an alternative method of quantifying and visualizing the
heterogeneity in open devices, with sub-moiré lattice cell resolution over length scales
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Methods

of hundreds of nanometers. We develop a spatial lock-in method that enables one
to map, with sub-moiré wavelength resolution, the local twist angle θ∗(r), the local
moiré anisotropy κ(r), and the anisotropy direction ψ(r), as defined below. Notably,
we can separate these effects from each other and from rotations of the lattice (figure
3.1b). We then apply our method to determine the heterogeneity in open TBG devices.

3.2 Methods

We fabricate our devices using the tear and stack method with a special focus on
avoiding contamination to ensure the large clean areas needed for this study. A single
graphene flake is pre-cut in halves with an AFM tip, ensuring initial crystallographic
alignment between them. The first half is subsequently picked up with a hBN flake,
mechanically exfoliated on a SiO2/Si chip and adhered to a PDMS/PC stamp at
∼ 100 ◦C. The second half of graphene is manually rotated to a target twist angle of
1.5◦–2.0◦ and consequently picked up by the hBN/graphene stack on PC. In the next
step, the PC layer is carefully peeled off of the initial PDMS stamp and placed on
another PDMS stamp up-side down. The sacrificial polycarbonate (PC) layer is then
removed in 1-Methyl-2-Pyrrolidone. Subsequently, the TBG/hBN heterostructure is
transferred on a target SiO2/Si substrate with a pre-patterned navigation structure,
two gold electrodes and a graphite gate contacting one of them within the measurement
area. We carefully align the TBG/hBN stack with the local graphite gate to avoid short
circuiting. The second pre-patterned gold electrode is used to electrically contact TBG
using another graphite piece. The devices are inserted into our ultra-high-vacuum
setup and annealed at 350◦C for 12h before inserting them into the low-temperature
STM operating at 4.2K. The TBG samples are located using a capacitive navigation
scheme [95].
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Measuring local moiré lattice heterogeneity of twisted bilayer graphene

Figure 3.2: a) STM topography of a device with an average twist angle of θ = 2.38◦ (set-up
conditions: V = 250 mV, I = 100 pA). The topography shows both the atomic- and moiré
lattice. b) Fourier transform of a, with zoom ins of the moiré peaks (green inset) and the
bottom left atomic peak (blue inset). Satellite peaks of the moiré lattice are visible around
the atomic peak as well. c) Large scale topography measured on a different device with an
average twist angle of 2.02◦ (set-up conditions: V = 250 mV, I = 20 pA).
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Spatial lock-in algorithm

3.3 Spatial lock-in algorithm

Figure 3.2a shows a topographic image where both the atomic lattice of the top
graphene layer and the moiré lattice are resolved. The Fourier transform of the image
shows the lattice peaks as well as the peaks from the moiré superlattice (figure 3.2b,
blue and green inset respectively). While such small field-of-views are well suited for
spectroscopy studies, we require large field of views that encompass many moiré cells
for the heterogeneity study using spatial lock-in detection presented here. Figure 3.2c
shows an example.

The general method of spatial lock-in is illustrated in figure 3.3 for the one-dimensional
case: the “measured” signal S(x), a not-quite periodic signal, is multiplied with a ref-
erence signal, a perfectly periodic complex plane wave Sref(x). The phase of the
resulting signal, when low pass-filtered, corresponds to the local phase of the original
wave. To obtain the local variations in wavelength λ(x) of the original wave, shown on
the bottom, one calculates the derivative of the local phase. Spatial lock-in algorithms
like this have been used previously in electron microscopy studies (known as geometric
phase analysis) [96–98] and optical metrology [99]. In the context of STM, the most
well-known application is known as the Lawler-Fujita algorithm [100]. Lawler, Fujita
et al. have, based on earlier work by Slezak et al. [101], introduced a lock-in algorithm
to correct topographic images for drift by calculating the displacement field, i.e. the
vectors that connect the coordinates of the measured images with the points of an
ideal reference lattice. Our motivation here is different: we do not need to correct an
imperfect image, but want to extract heterogeneities of the lattice.
To do so, we start with defining three reference plane waves Rj(r) = eiqj ·r, j ∈
{1, 2, 3}, where the reference wavevectors qj are determined by simultaneously fitting
six gaussians to the Bragg peaks in the Fourier transform of the topography (figure
3.4b). In order to measure deviations from an isotropic triangular lattice, we force
the reference wavevectors to be of equal magnitude and 60 degrees with respect to
each other (although see appendix B.1.4 on choice of reference vectors). The reference
lattice is then defined as the real part of the sum of the reference plane waves, i.e.

Tr(r) = Re
[
T0

∑
j Rj(r)

]
= T0

∑
j cos(qj · r), where T0 is the average amplitude.

The transformation between the measured lattice, Tm(r), and this perfectly periodic,
hexagonal reference lattice, Tr(r) can approximately be parametrized as the shifts be-
tween points in the moiré lattice and corresponding points in the reference lattice. To
this end, we introduce the displacement field, u(r), in the following manner:

Tm(r) = Tr(r + u(r)) = T0

∑
j

cos (qj · (r + u(r))) . (3.1)

To extract the displacement field from our data, each reference signal is multiplied with
the original topographic image and low-pass filtered with a gaussian window. This op-
eration corresponds to convolution of the original topographic image with the plane
wave encompassed by a gaussian, calculating the relevant wave vector component of
the ultimately small window 2D Fourier transform. The window of the gaussian filter
needs to be chosen large enough (small enough in frequency space), in order to exclude
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Figure 3.3: Lock-in in 1D. The panels in the left column show, from top to bottom,
the signal (an almost periodic sinusoid), the real part of the reference, the real part of the
product of the signal and reference, and the wavelength calculated by taking the gradient
of the phase of the product signal. The right column displays the Fourier transform of the
(complex) signals in the left column. Finally, in the bottom right curve, the orange dashed
line represents the gaussian filter used for the lock-in procedure.

larger frequencies, but simultaneously small enough (big enough in frequency space) to
maintain good spatial resolution (appendix B.1). A lower limit on the filter size is put
in place by higher frequencies: If the filter is chosen too small (too large in frequency
space), more higher frequencies become included in the filter window reducing the
signal to noise ratio. In practice a filter width of a few periods is used, as illustrated
by the circle in figure 3.4a. The local phase of the result of this operation corresponds
to the local shift between the real image and the reference wave, or more precisely
φj(r) = qj · u(r) (appendix B.1).
This local phase is 2π periodic and needs to be phase-unwrapped to remove discon-
tinuities. After phase unwrapping, the displacement field u(r) can be extracted from
two of the phase maps by pixel-wise multiplication with Q−1, the inverse of a matrix
containing the used wave vectors (Although not applied here, using all three wave
vectors is more involved but can be beneficial for low signal-to-noise ratio situations,
as detailed in appendix B.1.4).
In a second step, we decompose the obtained displacement field, u(r) into the local ef-
fective twist angle, θ∗(r) and the local moiré anisotropy magnitude and direction, κ(r)
and ψ(r) respectively. To that end, we consider the Jacobian of the transformation,
J = I +∇u, which is the displacement gradient tensor that describes the transforma-
tion of an infinitesimal triangle at each position. The polar decomposition J = WA
splits J into the product of the unitary matrix W , describing the local rotation of the
lattice and a matrix A, describing the local scaling and anisotropy. This matrix A can
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Results

be further decomposed into a (unitary) rotation matrix V , indicating the major and
minor axis of scaling and a diagonal scaling matrix D such that J = WA = WV TDV .
This final decomposition is illustrated in figure 3.1b and makes it straightforward to
extract relevant quantities. The change in density of unit cells is equal to the change
in area under the effect of the deformation gradient tensor, hence the geometric mean
of the scaling elements in the diagonal of D,

√
d1d2 =

√
det(J), allows us to calculate

the wavelength of the moiré lattice and consequently, the local twist angle (appendix
B.1). Furthermore, the local anisotropy magnitude, κ(r), is calculated by taking the
ratio of the scaling elements that make up D, κ = d1

d2
, where d1 > d2. Defined in this

way, κ = 1 indicates an isotropic lattice, and κ > 1 indicates an anisotropy of the
moiré lattice in the direction given by ψ, the angle corresponding to the rotation cor-
responding to V . Lastly, the rotation of the total lattice, corresponding to W , is left
unattended, as a rotation of the full lattice should not directly influence the physics
at play, although we point out that it does describe the variations of the rotation with
respect to the hBN substrate.

3.4 Results

Figure 3.4c shows the effective twist angle θ∗(r), figure 3.4d the local anisotropy κ(r)
and figure 3.4e shows the angle of major scaling ψ(r), all as a function of location for
open-device TBG. The maps show rather smooth variations with an exception in the
bottom right corner of the field of view, where an apparent vertical feature appears.
This feature is only barely visible in the topography itself, showcasing the sensitivity
of our method. The origin of this particular vertical stripe remains unclear, and no
such peculiarities were observed in our other data (appendix B.7).

The overall twist angle heterogeneity in the image in figure 4c, excluding border effects,
is 0.033◦ (standard deviation) or 0.23◦ peak-to-peak. We find areas of hundreds of
nanometers with a standard deviation of the twist angle of 0.02◦ and a peak to peak
variation of 0.08◦, e.g. in the area marked by a red square in figure 4c. A good estimate
of the accuracy of our method can be made by applying the conventional Lawler-
Fujita algorithm [100] and using spatial lock-in to extract the residual displacement
field (appendix B.5). We find residual twist angle variations more than one order of
magnitude smaller than the originally found values, underlining the accuracy of our
method. We further note that this is achieved with a pixel density corresponding to
∼5 pixels per moiré lattice constant, which makes implementation of the conventional
heterostrain model challenging (appendix B.10).
Our result allows for a first comparison between open and encapsulated devices. For
the latter, we compare our results with results from SOT [83]. SOT measures the
superlattice density, ns(r), which scales directly with the size of the unit cell. We
note that SOT does not differentiate between heterogeneity of the chemical potential,
strain, and twist-angle, which can all influence ns(r).
To make a comparison between SOT and our data, one has to take into account the
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Figure 3.4: a) STM topography of a device with an average twist angle of 2.02◦ (V = 250
mV, I = 20 pA, same data as Figure 3.2c). The blue circle in the bottom right indicates the
size of the filter used by the algorithm (see main text). b) Fourier transform of a, showing the
Bragg peaks of the moiré lattice visible in the image. The Bragg peaks are labelled q1 − q3.
c) Effective twist angle map extracted from a, by the algorithm discussed. The red square
indicates the area over which the average twist angle and standard deviation are calculated.
d) Local moiré anisotropy map κ(r) extracted by the algorithm from a. e) Local moiré
anisotropy direction ψ(r) extracted by the algorithm from a. f) Heterostrain map extracted
as described in the text.
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difference in the width of the point spread function (PSF). As this width is around
30 nm for SOT, we artificially broaden the PSF of our data to match (appendix B.9),
which naturally leads to a reduction of both the peak-to-peak spread and the standard
deviation. In the full field of view, including the bright vertical feature, we find a peak
to peak spread of 0.20◦ and a standard deviation of 0.036◦. These numbers are similar
among different devices of similar twist angle (appendix B.11) and measured for areas
of several hundreds of nanometers across.

Interestingly, this result matches rather well with the result from SOT on encapsulated
devices, despite the lack of a stabilizing top hBN slab in our devices. This implies that
open devices can rival the quality of encapsulated devices, at least in terms of twist
angle homogeneity.

Our results then raise the following question: why have open-devices never been shown
to superconduct, nor to show spectral gaps in low temperature tunneling experiments?
Assuming that the mechanical properties of the bilayer do not change drastically as
the angle of reconstruction is approached (θ ≈ 1.0◦), our experiments suggest that the
homogeneity of the TBG itself cannot be the only reason. Instead, another reason
might be the absence of a second hBN layer encapsulating the bilayer, despite hBN
often being neglected in theoretical studies due to its supposed weak interaction. Fur-
thermore, the second hBN layer creates a near symmetric environment for the bilayer.
We speculate that breaking of this symmetry may be at the basis for the lack of super-
conductivity in open devices. However, more careful transport investigations of open
devices are necessary to confirm this hypothesis.

The local anisotropy parameter κ(r) discussed here can be related to heterostrain,
following the model of Kerelsky et al. [90]. Here, it is assumed that one of the
graphene sheets is strained with a uniaxial strain ε(r), while the other one is un-
affected and only undergoes a rotation. To connect to our measurements, we note
that for small average twist angles, the displacement field of the moiré lattice is re-
lated to relative displacement of the constituting layers by the following formula:
(〈J〉−I) ·umoiré(r) = u↓(r)−u↑(r) = u∼(r), where 〈J〉 is the Jacobian corresponding
to the average angle between the layers and u∼(r) is the relative displacement field
experienced between the two sheets (appendix B.2). The relative displacement field
can be decomposed in the same way as before, where the angle corresponding to W
now corresponds to the deviation of the twist angle between the two sheets from the
average twist angle, and the local anisotropy κ(r) and ψ(r) obtained from the resulting
scaling matrix indicate the relative strain between the layers. Furthermore, from the
resulting scaling matrix elements, we can calculate the magnitude of the strain applied
to the deformed sheet, ε(r) (appendix B.2). We show the resulting ε(r) in figure 3.4f.
On average, we find that ε = 0.14% with a standard deviation of 0.09%.
It is interesting to compare the numbers for strain and twist angle heterogeneity, and
their respective influence on the electronic structure of TBG. Calculations using a con-
tinuum model have considered both strain and twist angle changes in TBG samples
close to the magic angle [102]. It was shown that a heterostrain of ε ≈ 0.1% results in
a splitting of the van Hove singularities of approximately 5 meV. This is comparable to
variations in the twist angle of about 0.03◦, which we obtain by interpolating the rela-

28



Measuring local moiré lattice heterogeneity of twisted bilayer graphene

tion between twist angle and van Hove splitting given in [23]. Furthermore, stress can
cause strong qualitative changes to the electronic structure including new van Hove
singularities for ε ≈ 0.5%. If we compare these numbers with our measurements, we
conclude a roughly equal effect of the observed strain and twist angle inhomogeneity,
suggesting that both have to be taken into account when fabricating samples, as both
effects significantly alter the electronic structure compared to a perfect lattice.
Before concluding, we want to address one potential challenge of the method intro-
duced here: it is also sensitive to piezo drift. Piezo drift occurs in STM experiments
due to thermal fluctuations that influence the piezo, due to piezo relaxation after a
change of field of view, or due to the piezo relaxation from the movement necessary
to take the topography. The former two effects change over time. The latter effect
depends on the speed with which the topography is measured. To check the validity
of this procedure, we have repeated the above procedures for different topographies
in the same field of view, taken with different scan speeds at different times. As we
show in detail in appendix B.6, these different measurements yield very similar results,
demonstrating that the twist angle variations we measure are intrinsic and not a con-
sequence of piezo drift.

3.5 Conclusion

In this work, we have visualized and characterized structural heterogeneity in TBG,
demonstrating peak to peak variations in the twist angle of roughly 0.08◦ over areas of
hundreds of nanometers. While our samples exhibit an average twist angle higher than
the magic angle, we expect the issues to be similar as long as the twist angle is above
the reconstruction that occurs for twist angles . 1◦. This indicates that the best open
device TBG could, purely based on homogeneity of the twist angle, superconduct,
and that lack of experimental evidence thereof suggests a critical role of the missing
hBN top layer. The spatial lock-in algorithm we introduced is in principle applicable
to a variety of different moiré materials, and additionally, may also be usable in a
different context, e.g. in determining the topological properties of band structures
through QPI measurements [103]. We anticipate that this algorithm can be applied
to other microscopy probes as well, including AFM and LEEM. Lastly, by presenting
our results in the way we did, we hope to pave the way for further studies, especially
for correlating electronic- and spatial properties by combining with theoretical models
like the ones presented in references [102,104,105].
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