
Imaging response evaluation after neoadjuvant treatment in soft
tissue sarcomas: where do we stand?
Gennaro, N.; Reijers, S.; Bruining, A.; Messiou, C.; Haas, R.; Colombo, P.; ... ; Graaf, W.T.A.
van der

Citation
Gennaro, N., Reijers, S., Bruining, A., Messiou, C., Haas, R., Colombo, P., … Graaf, W. T. A.
van der. (2021). Imaging response evaluation after neoadjuvant treatment in soft tissue
sarcomas: where do we stand? Critical Reviews In Oncology/hematology, 160.
doi:10.1016/j.critrevonc.2021.103309
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3281921
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3281921


Critical Reviews in Oncology / Hematology 160 (2021) 103309

Available online 20 March 2021
1040-8428/© 2021 Elsevier B.V. All rights reserved.

Imaging response evaluation after neoadjuvant treatment in soft tissue 
sarcomas: Where do we stand? 
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A B S T R A C T   

Soft tissue sarcomas (STS) represent a broad family of rare tumours for which surgery with radiotherapy rep
resents first-line treatment. Recently, neoadjuvant chemo-radiotherapy has been increasingly used in high-risk 
patients in an effort to reduce surgical morbidity and improve clinical outcomes. An adequate understanding 
of the efficacy of neoadjuvant therapies would optimise patient care, allowing a tailored approach. Although 
response evaluation criteria in solid tumours (RECIST) is the most common imaging method to assess tumour 
response, Choi criteria and functional and molecular imaging (DWI, DCE-MRI and 18F-FDG-PET) seem to 
outperform it in the discrimination between responders and non-responders. Moreover, the radiologic-pathology 
correlation of treatment-related changes remains poorly understood. In this review, we provide an overview of 
the imaging assessment of tumour response in STS undergoing neoadjuvant treatment, including conventional 
imaging (CT, MRI, PET) and advanced imaging analysis. Future directions will be presented to shed light on 
potential advances in pre-surgical imaging assessments that have clinical implications for sarcoma patients.   

1. Introduction 

Soft tissue sarcomas (STS) are a heterogeneous group of rare 
neoplastic diseases accounting for more than 70 different histologies 
(WHO, 2021). Locally-advanced sarcoma may benefit from neoadjuvant 
radiotherapy/chemotherapy to reduce surgical morbidity and improve 
clinical outcomes. Predicting the efficacy of neoadjuvant treatments is 
challenging; however, early identification of non-responders offers the 
potential to prevent unnecessary, potentially toxic treatment and select 
patients who truly benefit from neoadjuvant therapy. Therefore, 

exploring robust methodologies to assess the predictive value of imaging 
for tumour response to neoadjuvant therapies is relevant and timely 
(Subbiah et al., 2017). 

Although serial biopsies may, in theory, monitor the tumour 
response, they are invasive and prone to sampling errors which are 
significant in heterogeneous tumours. Moreover, a proper understand
ing of the correlation between imaging and chemotherapy- and/or 
radiation-induced changes in histology is crucial for the development of 
reliable imaging biomarkers (Schillaci et al., 2019; Hartman et al., 
2016). Unfortunately, insights into changes at tissue level after systemic 
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or local therapy remain limited. Thus, considerable interest has recently 
risen in radiology-pathology correlation in STS before and after neo
adjuvant therapies to identify predictive factors able to influence patient 
management. 

This review gives an overview of the evidence for imaging of the STS 
in the neoadjuvant setting, identifying strengths and weaknesses and 
providing directions for future research. 

2. Neoadjuvant treatment for soft tissue sarcomas 

Neoadjuvant treatment is increasingly used in patients with STS. 
Specific nomograms can be used to better stratify patients and support 
clinical decisions (Callegaro et al., 2016; Donahue et al., 2010; Callegaro 
et al., 2017). Neoadjuvant radiotherapy is predominantly employed to 
reduce post-surgical local recurrence rates. In particular, radiation 
therapy may represent the only strategy for local control when surgery is 
declined, too morbid or not possible (Larrier et al., 2016). Preoperative 
radiotherapy is usually preferred because late morbidity (e.g. fibrosis, 
arthrosis, oedema and bone fractures) tends to be lower than in the 
adjuvant setting, resulting in improved long-term functional outcome 
and quality of life (Haas, 2018). 

Moreover, high-risk STS may be treated upfront with systemic 
therapy to treat potential micro-metastases and thus prevent metastatic 
spread. For specific histotypes with locally advanced diseases (e.g. 
myxoid liposarcomas), chemo/radiotherapy can also be administered as 
an induction therapy to shrink the tumour volume and enable organ 
sparing resection (Pasquali and Gronchi, 2017; Salduz et al., 2017). 
Recently, the European Organization for Research and Treatment of 
Cancer (EORTC) and Soft Tissue and Bone Sarcoma Group (STBSG) 
underwent a survey among their members that confirmed a substantial 
heterogeneity of treatment strategies and agents used both for pre- and 
postoperative chemo/radiotherapy in STS (Rothermundt et al., 2018). 
Multi-agent chemotherapy, like anthracycline plus ifosfamide, is the 
most common and accepted strategy, whereas doxorubicin and dacar
bazine may be used for leiomyosarcoma (D’Ambrosio et al., 2020; 
Judson et al., 2014). 

Some chemotherapy agents, like bevacizumab, sorafenib, sunitinib, 
pazopanib, and trabectedin, can also act as sensitizers prior to radio
therapy (Yoon et al., 2011; Gronchi et al., 2019; Jakob et al., 2016; 
Canter et al., 2014). Preoperative conventionally-fractionated RT is 
usually preferred, but hypo- and hyperfractionated schemes have also 
been proposed (Koseła-Paterczyk et al., 2014). Neoadjuvant 
chemo-radiation is a combined strategy for poorly resectable tumours 
with synergic effects and the potential to lower required RT doses (Look 
Hong et al., 2013; Spałek et al., 2020; Lehane et al., 2016). Hyperther
mic isolated limb perfusion is a further neoadjuvant approach, and can 
be considered an alternative to amputation in specific circumstances 
(Song et al., 2019). 

3. Response criteria for neoadjuvant treatments 

Imaging assessment pursues different aims depending on which kind 
of therapy is delivered. After local therapy, radiology should investigate 
the persistence of viable tumour and possibly provide prognostic in
formation about local recurrence. Conversely, imaging assessment after 
systemic therapy provides insights on histological response and envis
ages the possibility to provide prognostic information, similarly to what 
have been demonstrated in osteosarcoma and Ewing’s sarcoma (Bielack 
et al., 2002; Picci et al., 1997). Traditionally, tumour response has been 
evaluated using RECIST 1.1 criteria, which uses unidimensional mea
surements (Eisenhauer et al., 2009). Apart from some reports on the 
effect of radiotherapy on tumor shrinkage in different histotypes, there 
is no information on a clear association between prognosis, the amount 
of tumour shrinkage or true histological response in STS treated by 
chemo/radiotherapy (Roberge et al., 2010; Tanaka et al., 2018; Canter 
et al., 2010; le Grange et al., 2014; Gui et al., 2019; Miki et al., 2010; 

Betgen et al., 2013). The lack of relationship between percentage 
tumour shrinkage and survival was shown by Grünwald et al. in an 
EORTC analysis, suggesting that absence of progression rather than 
extent of tumour shrinkage defines prognosis in advanced STS patients 
treated with palliative chemotherapy (Grünwald et al., 2016). There is 
no evidence that the RECIST criterion of 30 %-unidimensional shrinkage 
of the target lesion always truly reflects a superior anticancer effect. The 
RECIST 30 %-cut-off is entirely arbitrary and dates back to the time 
when tumours were measured by physical examination. The main goal 
of RECIST was to standardise and harmonise endpoints of clinical trials 
in solid tumours. Furthermore, RECIST does not consider tumour 
changes like cystic transformation or haemorrhage, which can result in 
an increase in size even in case of a true histological response (Roberge 
et al., 2010; Tanaka et al., 2018; Canter et al., 2010; le Grange et al., 
2014; Gui et al., 2019). To overcome this important limitation, Stac
chiotti et al. demonstrated in 2009 how MR-based Choi criteria, which 
incorporate both signal intensity and size (Choi et al., 2007), were more 
accurate in predicting patient outcomes than RECIST (Stacchiotti et al., 
2009). Further publications have confirmed such observations (Betgen 
et al., 2013; Marrari et al., 2020; Esser et al., 2018), and highlighted that 
RECIST responses are scarce and restricted to a few sarcoma types after 
neoadjuvant treatment (e.g. myxoid liposarcoma after radiation treat
ment) (Betgen et al., 2013; Chung et al., 2009; Lansu et al., 2020; Taieb 
et al., 2015; Stacchiotti et al., 2012). Nevertheless, in the absence of a 
validated alternative, most clinical sarcoma trials continue to use 
RECIST 1.1 as a response evaluation system (Schuetze et al., 2008). An 
alternative and standardised approach for imaging evaluation is needed 
to incorporate noninvasive imaging information into the 
decision-making algorithms of multidisciplinary sarcoma teams. This 
includes the definition of optimal acquisition and timing protocol along 
with a structured and objective image interpretation method. Timing of 
imaging assessment differs between radiation therapy and chemo
therapy, as surgery is performed immediately following chemotherapy, 
whereas the interval between the end of radiation and surgery is usually 
6–8 weeks (Subbiah et al., 2017). 

Regarding the imaging evaluation of tumour response, there is no 
consensus on the choice of imaging modality. In 2016, a standardised 
approach for MR longitudinal evaluation of STS following preoperative 
radiotherapy (RT) was proposed by a task force endorsed by the EORTC- 
STBSG and Image Groups (Messiou et al., 2016). The paper advocated a 
standard MRI protocol to be performed at 4–6 weeks following neo
adjuvant radiotherapy as close to the surgical date as possible to mini
mise the potential for pseudo-progression due to the acute effects of 
radiotherapy including vascular disruption, possibly causing an increase 
in size and enhancement. To ensure consistency in longitudinal evalu
ations, the same or comparable MRI equipment should be used. 
Furthermore, technical refinements regarding contrast medium admin
istration have been recently proposed, highlighting how a 60s-acquisi
tion delay optimises the response evaluation when adopting Choi 
criteria (Crombé et al., 2019a). Morphological pre- and 
post-contrast-enhanced sequences should be supplemented by 
diffusion-weighted MRI to explore changes in tissue cellularity (DWI) 
(Messiou et al., 2016; Costa et al., 2018). DWI is gaining interest as a 
widely available and quick quantitative MRI technique for oncology 
imaging. Predictive and prognostic data in STS are limited, but ongoing 
studies are shedding light on the role of multi-parametric MRI (which 
include contrast-enhanced imaging and DWI, but can also be com
plemented with additional DWI for estimation of intra-voxel incoherent 
motion (IVIM) and with multiple gradient-echo imaging, among others) 
for response assessment after neoadjuvant therapy (Costa et al., 2018; 
Dudeck et al., 2008; Winfield et al., 2019). Dynamic contrast-enhanced 
(DCE)-MRI has been investigated and shows some promise, but their 
widespread adoption in clinical practice is limited due to more extensive 
post-processing requirements and variability in acquisition (Crombé 
et al., 2019a; Soldatos et al., 2016). Despite a few preliminary reports, 
MRI-spectroscopy is not yet considered a feasible and reliable tool for 
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the response assessment of neoadjuvant treatment, since it is not 
available in most centres and the current evidence is debatable (Zhang 
et al., 2016). 

Finally, 18F-FDG-PET imaging is a well-established technique for 
assessing metabolic activity (Gennaro et al., 2020), and has been shown 
to be helpful in the early identification of chemotherapy responders 
(Grueneisen et al., 2019; Lim et al., 2019). Alongside the EORTC-STBSG 
paper on imaging response evaluation guidelines (Messiou et al., 2016), 
the same group published in 2016 a standardised approach for pathol
ogy evaluation after neoadjuvant therapy, highlighting the importance 
of radiology-pathology correlation (Wardelmann et al., 2016). The 
proposed protocol provides specific instructions on the handling and 
photography of surgical specimens to enable correlation with radiologic 
findings. Moreover, such correlation may serve as a useful guide for 
pathologists to select the most representative pathology samples. The 
two publications were proposed as frameworks to build new evidence. 
Unfortunately, the first study to assess the prognostic value of the 
EORTC-STBSG response score failed to correlate the amount of viable 
tumour cells with the clinical outcome (Schaefer et al., 2017). 

4. Radiology-pathology correlation in soft tissue sarcoma 

Pathology is considered the gold standard for the definition of 
tumour changes after therapy. The most important factors for predicting 
tumour response and survival after chemo-radiotherapy are pre- 
treatment grading and histological subgroup. High-grade tumours and 
undifferentiated pleomorphic sarcomas (UPS) have been associated with 
improved response rates to the combination of doxorubicin and ifosfa
mide in the metastatic setting as compared to single agent doxorubicin 
(Young et al., 2017). Imaging findings have recently been shown to be 
complementary to tissue findings for the assessment of tumour grade 
(Fisher et al., 2016). A grade difference between biopsy and excision 
specimens of leiomyosarcomas was found in 68 % of cases, with all these 
cases showing an increase in grade from biopsy to excision specimen 
(Schneider et al., 2017). CT and MRI imaging features (e.g. necrotic 
areas) have been proposed to be complementary to improve the accu
racy of histopathological grading (Mcaddy et al., 2020; Crombé et al., 
2019b; Zhao et al., 2014). CT and MRI texture analysis is an advanced 
image analysis referring to characterisation of regions in MR images, 
including DCE-MRI and DWI sequences, by their texture content. Both 
CT- and MRI-based texture analysis may also play a relevant role in this 
regard (Peeken et al., 2019; Hong et al., 2020; Zhang and Ren, 2020). 

Dependent on histology and treatment, several changes in the 
specimen can be recognised after therapy, including the presence of 
ghost cells (necrotic cells with loss of nuclear and cytoplasmic detail), 
reduced cellularity (intended as reduction of stainable cells), granula
tion tissue (observed as foamy macrophages and lymphocytes), fibrosis, 
adipose tissue, hemosiderin deposition, changes in vessel micro density, 
development of calcifications, atrophic or regenerating non-neoplastic 
skeletal muscle (Lucas et al., 2008). A further complicating factor is 
the well-known substantial discordance in the evaluation of histological 
subtype, tumour grade and definitions of post-treatment changes exist
ing between pathologists working at reference institutions and those 
who are not (up to 40 % of cases) (Young et al., 2017). To date, there is 
no agreement on measuring the effects of neoadjuvant chemo
therapy/radiation therapy on STS. Expert pathologists recommend 
describing the morphological changes throughout the tumour (repre
sented as a percentage), including the percentage of viable tumour, 
necrosis, haemorrhage, sclero-hyalinosis, reparative fibrosis, 
fibro-histiocytic reaction with deposits of hemosiderin, myxoid and 
cystic changes. In this setting, adequate sampling is of paramount 
importance (almost 1 sample per cm), including necrotic areas. The 
gross appearance of the tumour can be misleading, as areas that appear 
necrotic may represent myxoid or oedematous tissues (Shah et al., 2016; 
Rubin et al., 2010). A standardised system proposed in 2016 by the 
aforementioned EORTC-STBSG task force is summarised in Table 1 

(Wardelmann et al., 2016). 
Different imaging modalities like MRI, CT and 18F-FDG PET aim to 

macroscopically depict those changes, with a particular interest in 
detecting necrosis, as 95 % necrosis after neoadjuvant therapy was 
initially correlated to a halved risk of local recurrence and metastatic 
spread and pathology-related deaths at 5 and 10 years (Cousin et al., 
2017; Eilber et al., 2001). These results are still controversial and 
advocate for larger studies to confirm that the extent of histopatholog
ical necrosis after neoadjuvant treatment may influence patient man
agement, as several papers were unable to correlate extended tissue 
necrosis with improved survival (Canter et al., 2010; Vaynrub et al., 
2015; Mullen et al., 2014; Menendez et al., 2007). This could be because 
necrosis does not reflect the biological behaviour of the tumour and its 
metastatic potential, including circulating tumour cells. Recently, the 
extent of hyalinization/fibrosis has also been suggested as a better 
predictor for recurrence-free survival and overall survival, supporting 
the hypothesis that histologic appearance can predict tumour biology 
and represent a future endpoint for neoadjuvant trials (Schaefer et al., 
2017). Reliable imaging biomarkers would allow radiologists to com
plement pathology assessment and provide non-invasive, predictive and 
prognostic information (Chen et al., 2013). 

Integration of multi-modality imaging with clinical data may support 
experienced radiologists to better interpret imaging changes in patients 
treated with neoadjuvant therapy. Beneath, we present the latest evi
dence for each imaging modality that has allowed a better under
standing of radiologic-pathology correlation after neoadjuvant 
treatments in STS. 

4.1. Magnetic resonance imaging (MRI) 

MRI is the preferred imaging modality for STS, particularly for ex
tremity STS. Its predominant role is to define the local extent of disease 
and to accurately depict anatomy (Raghavan, 2017). MRI imaging fea
tures include morphology, signal intensity on different sequences and 
enhancement after contrast medium. Features including peritumoral 
contrast enhancement and oedema, heterogeneous T2 signal intensity 
and necrotic areas have been associated with high histological grade and 
poorer outcomes (Crombé et al., 2019b; Zhao et al., 2014). Despite a 
preliminary study describing T1W hyper-intensity correlation with 
improved survival, relapse, and time to relapse (Sala et al., 2010), 
conventional morphologic MRI characteristics are subjective and 
generally inadequate in discriminating between patients with positive or 
negative clinical response (Favinger et al., 2018). Moreover, necrosis on 
imaging lacks an agreed/validated definition and is mostly defined as 
areas of low tumour perfusion, T2W hyper-intensity and high apparent 
diffusion coefficient (ADC) values at DWI (Soldatos et al., 2016; Crombé 
et al., 2019b; MacVicar et al., 1992) (Fig. 1). However, such correlations 
are not always straightforward, as pathological entities may show high 
ADC values (myxoid liposarcoma), as well as certain types of necrosis 
may manifest can also manifest with low ADC values (e.g. coagulative 
necrosis) (Figs. 2 and 3). Semi-automated volumetric segmentation 
techniques provide more objective measurements and have been shown 
to identify necrosis on MRI with similar accuracy compared to histo
pathology (Monsky et al., 2012). A study of multi-parametric MRI, 
entailing DCE and DWI MRI for assessing response to radiotherapy, has 

Table 1 
Assessment of tumour response proposed by EORTC-STBSG in 2016 (Wardel
mann et al., 2016).  

Histological findings Response grade 

No stainable vital tumor cells A 
Single stainable tumor cells or small cluster (overall < 1%) B 
≥1% <10 % stainable vital tumour cells C 

10 % <50 % stainable vital tumour cells D 
≥50 % stainable vital tumour cells E  
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Fig. 1. a) Large lesion in the right thigh of a 52-year old man with heterogeneous contrast-enhancement on T1-weighted MRI due to internal areas of necrosis. b) Pre- 
treatment core needle biopsy shows high-grade spindle cell sarcoma with myogenic differentiation (Ki67 80 %). c) Liquid/myxoid content is shown on T2-weighted 
images and d) Contrast-enhanced T1-weighted MRI after chemoradiotherapy (3 cycles of adriamycin-dacarbazine and 50 Gy/25 fractions) shows no intralesional 
contrast-enhancement in keeping with response to therapy although the mass is stable by RECIST 1.1. e) Post-surgical pathology shows large areas of necrosis and 
reduction in neoplastic cellularity, partly visible on the top-right and accounting for 70 % of the whole specimen. f) Fibrohistiocytic changes and sclerosis are also 
present and are represented by hypointense septa on T2-weighted images. 

Fig. 2. a) Soft tissue mass arising from the left wall of the bladder of a 30-year old patient. a) Contrast enhanced T1-weighted MRI showing areas of non-enhancing 
internal necrosis (arrow). b) Pre-treatment core needle biopsy shows high grade mesenchymal neoplasm characterized by atypical vascular structures consistent with 
epithelioid angiosarcoma (Ki-67 80 %). c) Post-chemotherapy (3 cycles of adriamycin-ifosfamide) contrast-enhanced T1-weighted MRI shows reduction in tumor size 
and diminished contrast-enhancement (arrow) d) Pretreatment T2-weighted images showing heterogeneous signal with liquid/myxoid areas (arrow). e) Post-surgical 
specimen shows florid reparative fibrosis (arrow) and fibrohistiocytic reaction with hemosiderin deposition. f) There is a homogenous bright signal on post-treatment 
T2-weighted images (arrow) g) Pre-treatment ADC map showing low signal corresponding to high tumor cellularity, h) Higher magnification demonstrates foci of 
sclero jalinosis (arrow) and deposition of hemosiderin and foamy histiocytes. i) The post-treatment ADC map demonstrates low signal/ restricted diffusion possibly 
corresponding to coagulative necrosis and haemosiderin. 
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confirmed that ADC is not only a highly reproducible parameter but 
showed significant increase (suggesting response) post radiotherapy 
despite size stability. Furthermore, histopathological correlations 
confirmed correspondence between restriction and degree of cellularity 

(Winfield et al., 2019). More recently, attention has shifted from the core 
of the tumour, where necrosis is easily found after neoadjuvant therapy, 
to the tumour periphery, where viable cells may persist (Baur et al., 
2003). An infiltrative margin on post-contrast images has been 

Fig. 3. a) Axial DWI scan shows a myxoid liposarcoma (<1/10 HPF) in the right thigh, composed of myxoid/cystic areas (arrow) and nodular septa (arrowhead); b) 
Despite the malignant nature, the mass is hyperintese at ADC map due to the high content in myxoid matrix c) After chemo-radiation, axial DWI and d) ADC map 
scans show a considerable increase in dimensions, especially of the myxoid areas. However, pathology described only 5% of viable cells (5/10 HPF) with 50 
% fibrosis. 

Fig. 4. a) Baseline axial fat-suppressed T2W showing a deep-seated mass in the right thigh (arrow) with perilesional oedema (arrowheads), internal cystic/myxoid 
areas (asterisk), with ill-defined margins in its posterior lateral surface (small arrows); b) Baseline core tissue biopsy reveals pleomorphic and spindle cells coherent 
with myxoid liposarcoma, grade III (7/10 HPF, Ki67(MIB1)60 %) with MDM2 amplification (right upper box); c) Baseline axial fat-suppressed contrast-enhanced 
T1W shows peripheral enhancement (arrow), internal necrotic areas (asterisks) and ill-defined margins (small arrow); d) After chemo-radiotherapy (doxorubicin, 
adriamicine 3 cycles and 50 Gy) axial fat-suppressed T2W shows no significant changes in tumour size (arrow), but cystic/myxoid areas are not assessable anymore 
(arrow); e) core tissue biopsy shows >95 % vital cells represented by dedifferentiated spindle cell (arrowheads) and pleomorphic liposarcoma cells (2/10 HPF) with 
small areas of low-grade, well-differentiated liposarcoma cells. Post-radiotherapy changes are clearly visible in the right lower corner (calcification, arrow); f) Axial 
fat-suppressed contrast-enhanced T1W shows homogeneous enhancement with no internal necrotic areas (arrow) and further invasion of nearby structures (small 
arrow), coherent with poor response to chemo-radiotherapy. 
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associated with a lower disease-specific and metastasis-free survival 
(MFS), highlighting the importance of peripheral growth pattern on MRI 
and histology (Fig. 4) (Nakamura et al., 2017; Liu et al., 2008). 

Changes in peri-tumoral regions also appear to play a role in the 
assessment of response. In fact, the presence of satellite tumorous cells 
on surgical specimens is predictive of lower survival and disease-free 
survival (Kandel et al., 2013). Peritumoral oedema has been hypoth
esised to be proportional to peritumoral tumour satellites (Hanna et al., 
1991; Beltran et al., 1987). Conventional MRI sequences accurately 
identify peritumoral oedema through fluid sensitive images, including 
T2W, T2W-FS or T2W-STIR. Stability or increase of peritumoral oedema 
has been recently associated with a poor histological response (>10 % 
viable cells), as well as stability or increase of pre-existing con
trast-enhanced peritumoral areas (Crombé et al., 2018), but the clinical 
significance of peritumoral oedema is still controversial (White et al., 
2005). Functional quantitative imaging refers to a collection of imaging 
parameters that aim to depict biological information and are showing 
encouraging results compared to morphological imaging in the defini
tion of tumour response. Changes in DCE-MRI parameters evaluated 
after the second cycle of neoadjuvant chemotherapy have been shown to 
be highly predictive of histological response, whereas RECIST 1.1 was 
not (Cousin et al., 2017). A recent publication showed poor predictive 
value of conventional MRI (T1W, T2W, T2W with fat suppression images 
and T1W after contrast administration) for response when neoadjuvant 
therapies induce fibrosis and/or granulation tissue instead of necrosis 
(Soldatos et al., 2016). However, over 5% of early tumour enhancements 
and an average ADC value > 2.2 X10 − 3 mm2/sec are considered 
markers of positive response, both reaching 100 % sensitivity in deter
mining nonviable tumour areas (Soldatos et al., 2016). Further, studies 
confirmed the emerging role of quantitative DCE-MRI in early prediction 
using absolute parameters like Ktrans, kep, AUC60 or time-to-peak 
(Huang et al., 2016; Meyer et al., 2013; O’Connor et al., 2011). 
DCE-MRI was validated in vivo models for the very early assessment (24 
h) after isolated limb perfusion, once again with promising results (Alic 
et al., 2013; Preda et al., 2004). 

Frontline research in MRI evaluation of tumour response includes the 
innovative concept of “imaging habitats” (Napel et al., 2018). This 
mapping technique consists of a systematic approach of (1) intratumour 
segmentation into sub-regions based on pixel intensity (2) qualitative or 
quantitative analysis within each distinctive habitat to explore hetero
geneity (3) estimation of percentage of necrosis (Sala et al., 2017). Pilot 
studies have already shown that necrosis can be identified with a 76 % 
accuracy through the analysis of radiologically-defined habitats on T2W 
and contrast-enhanced T1W images, possibly predicting the treatment 
outcome as well as the development of distant metastasis (Farhidzadeh 
et al., 2015a, b). A recently published method consists of plotting the 
voxel-based signal intensity distribution by histogram for analysis of the 
relative signal intensity compared to tumour volume. This approach 
allowed discrimination between viable (enhancing) tumour and necrosis 
(non-enhancing component) using a cut-off signal intensity threshold 
(Fields et al., 2020). Unsupervised clustering of such habitats can 
discriminate between responders and non-responders by analysing 
changes in kep, ktrans, and percent volume when DCE-MRI information is 
available (Yu-Cherng et al., 2019; Y-CC et al., 2017; Diwanji et al., 
2019). Habitat imaging approaches are now also supported by machine 
learning (Blackledge et al., 2019). MRI texture analysis has already been 
shown to distinguish low from high-grade soft tissue sarcoma, and could 
be further explored in the assessment of tumour response (Corino et al., 
2018). Recently, a T2-based Δ-radiomics approach has identified three 
features (Δ_Histogram_Entropy, Δ_Elongation, Δ_Surrounding_Edema) 
associated with good tumour response, defined as <10 % viable cell at 
pathology (Crombé et al., 2019c). 

4.2. Computed tomography (CT) 

CT is not frequently used for local staging due to poorer contrast 

resolution compared to MRI. In general, areas that cease to enhance after 
treatment are considered necrotic and contribute to the definition of 
Choi criteria through the measurement of Hounsfield Units (Fig. 5). 
Unfortunately, contrast-enhanced CT cannot differentiate between 
hypo-densities caused by necrosis and or subacute-to-late haemorrhage 
or cystic components. Differentiating tumour enhancement from gran
ulation or fibrosis is also very challenging with CT (Crombé et al., 
2019b). Evaluation of neoadjuvant therapy using RECIST with MRI or 
CT has been used to predict radical resection and survival. Unfortu
nately, they did not correlate to other clinical or pathology treatment 
characteristics (Chen et al., 2013). 

Recently, CT texture analysis has also been performed alongside with 
the evaluation of descriptive semantic tumour features, which include 
shape, size, location and attenuation (Esser et al., 2018; Tian et al., 
2015). Fine to coarse texture parameters (e.g. entropy, mean value of 
positive pixels, skewness and kurtosis) were extracted from 
non-enhanced CT and compared with biologic markers of angiogenesis, 
showing that the mean value of positive pixels (defined as the average 
brightness of positive values of the image) showed a better clinical 
outcome and a definite correlation with micro-vessel density on 
immunohistochemistry. Interestingly, the entropy parameter also 
showed positive correlations with plasma VEGF and SVEGFR-1, which 
likely represent biomarkers for antiangiogenic therapy (Hayano et al., 
2015). When analysing contrast-enhanced CT, mean perfusion peak 
(MPP) parameter correlated with necrosis on histology and allowed for 
differentiating (with 85 % sensitivity and 71 % specificity) responders 
from non-responders. Therefore, the authors suggested that MPP might 
be chosen as the best predictor for treatment response of STS, as shown 
in other non-sarcoma histologies (Goh et al., 2011; Ravanelli et al., 
2013). 

4.3. 18F-FDG positron emission tomography (18F-FDG-PET) 

Recent research has shown that changes in standardised uptake 
value (SUV) are more accurate than changes in tumour size or density 
(measured on contrast-enhanced CT) to predict pathological response to 
neoadjuvant chemotherapy. Conversely, evidence pertaining to radia
tion therapy or chemo-radiotherapy is still limited (Favinger et al., 2018; 
Evilevitch et al., 2008; Tateishi et al., 2011; Benz et al., 2008, 2009). 
Both early and late metabolic response measured by means of changes in 
SUV peaks were the only two predictors of survival in a prospective 
study on 78 patients (Herrmann et al., 2012). Similarly, the metabolic 
response on 18F-FDG PET using PET Response Criteria in Solid Tumors 
(PERCIST) predicted PFS and time to local and distant progression after 
2–4 cycles of neoadjuvant chemotherapy with regional hyperthermia in 
sarcoma patients. When the predictive performance of PERCIST was 
compared with RECIST 1.1 and Choi, PERCIST was superior in identi
fying responders (Fendler et al., 2015). 

A recent meta-analysis showed that a ≥60 % decrease in FDG-uptake 
resulted in a sensitivity and specificity of 100 % and 71 % respectively 
for assessment of histopathologic response (Lim et al., 2019). Despite the 
promising results, PET cannot replace MRI for surgical planning as 
surgeons require highly accurate anatomic visualisation for procedural 
planning. PET and MRI thus have a synergistic value in such assessment, 
and either the diffusion of hybrid PET/MRI equipment as well as 
post-processing software for fusion imaging might ease its application 
(Gennaro et al., 2020; Cassarino et al., 2020). It is partly with this 
ambition that efforts are being made in implementing PET and MRI 
standardised protocols across multi-vendor platforms to ensure reliable 
quantification of imaging biomarkers in multicentre trials (deSouza 
et al., 2018; Boellaard et al., 2015; Winfield et al., 2016). 

5. Future research 

Unlike bone sarcoma, where the prognostic value of tumour necrosis 
induced by neoadjuvant chemotherapy has been extensively validated 
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(Bielack et al., 2002; Picci et al., 1997), STS still lacks radiological and 
histological markers of tumour response and patient survival. In order to 
deliver personalised treatment strategies, clinicians demand from im
aging a reproducible, objective assessment of the efficacy of local and 
systemic therapies, and they advocate imaging and histologic features 
capable of predicting the clinical behaviour of STS. Without a robust 
understanding of radiology- pathology correlations, developing solid 
imaging biomarkers is challenging. For this purpose, innovative tech
niques such as radiomics and radiogenomics complementing conven
tional imaging have arisen, where quantitative radiomic features 
derived from routine images are linked to tumour biology (Bodalal et al., 
2019; Crombé et al., 2020). While still in its infancy, radiogenomics 
promises to address many of the pitfalls of current biological profiling by 
analysing the full tumour burden of a patient (to account for intra
tumoural and intertumoural heterogeneity). Additionally, once radio
genomic models are better fine-tuned, longitudinal imaging will be the 
new frontier of AI imaging research. Both diagnostic disciplines, pa
thology and radiology, are likely to play complementary roles (Jha and 
Topol, 2016). In theory, the complementary data from these two diag
nostic modalities can be integrated into a single AI algorithm with the 
potential for higher predictive performance (Bodalal et al., 2018; Chibon 
et al., 2019). 

The recent introduction of the concept of “imaging habitats” to 
improve radiological mapping of different microenvironments has 
brought radiologists and pathologists closer in the characterisation of 
tumour heterogeneity (Blackledge et al., 2019; Gatenby et al., 2013). 
In-vivo models can also aid in the comprehension of 
radiologic-pathology treatment-related tissue changes, especially in the 
case of innovative imaging modalities (Shapiro et al., 2018; Sigal and 
Sebro, 2018). The huge potential of artificial intelligence models seems 

promising in identifying features hidden in radiological images, possibly 
predicting or complementing histological and molecular information or 
even outcomes. Along with tissue and imaging biomarkers, correlations 
with serum/molecular biomarkers and circulating tumour cells/DNA 
might also be further explored (Aggerholm-Pedersen et al., 2019; Wang 
et al., 2019; Kambadakone et al., 2015). 

6. Conclusion 

Imaging can depict various changes induced by neoadjuvant thera
pies in the treatment of STS, but these changes are poorly correlated 
with histology and clinical outcomes. Evidence so far shows that Choi 
criteria, along with functional and molecular imaging information (DWI, 
DCE-MRI and 18F-FDG-PET), outperform commonly used response 
criteria like RECIST 1.1 in identifying good responders based on necrosis 
and viability of tumour cells after treatment. The introduction of 
advanced quantitative image analysis such as unsupervised clustering, 
texture analysis and dynamic post-contrast imaging appears promising 
in improving non-invasive evaluation of treatment response in soft tis
sue sarcoma, therefore complementing histological information. Histo
logical and radiological response criteria advocated by the EORTC- 
STBSG and EORTC Imaging Group should shed light on the biological 
efficacy of neoadjuvant therapies through future studies. Such studies 
would not only help radiologists identify prognostic and early response 
predictive imaging biomarkers, but also help us understand how far 
imaging can interrogate cancer biology in the description of tumour 
response. This will allow for improved personalised treatment within the 
heterogeneous group of STS patients. 

Fig. 5. a) Contrast-enhanced CT demonstrates a soft tissue mass occupying the left adductor compartment in a 37-year old female. The lesion is predominantly solid 
with some low density (arrow), likely representing cystic changes or necrosis (asterisk) b) Pre-treatment core-needle biopsy shows spindle and pleomorphic cells with 
80 % Ki67 representing high-grade undifferentiated pleomorphic sarcoma c) Contrast enhanced CT post-chemo/radiotherapy (3 cycles of adriamycin-ifosfamide and 
50 Gy/25 fractions with VMAT) shows no significant reduction in size and but there is a marked reduction in enhancement (arrow) and in the extent of the necrotic 
areas (asterisk); d) The surgical specimen reveals <1% viable tumor cells, isolated spindle and pleomorphic cells in a vast sclerotic stroma (<99 %); haemosiderin 
deposits are also present. 
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