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IMAGE-GUIDED SURGERY: FROM CLASSICAL TECHNIQUES
TO NOVEL ASPECTS AND APPROACHES
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ABSTRACT

It is well known nowadays that radioactivity can destroy the living cells it interacts with. It is therefore unsurprising that radioactive sources,
such as iodine-125, were historically developed for treatment purposes within radiation oncology with the goal of damaging malignant cells.
However, since then, new techniques have been invented that make creative use of the same radioactivity properties of these sources for medi-
cal applications. Here, we review two distinct kinds of therapeutic uses of radioactive sources with applications to prostate, cervical, and breast
cancer: brachytherapy and radioactive seed localization. In brachytherapy (BT), the radioactive sources are used for internal radiation treatment.
Current approaches make use of real-time image guidance, for instance by means of magnetic resonance imaging, ultrasound, computed tomog-
raphy, and sometimes positron emission tomography, depending on clinical availability and cancer type. Such image-guided BT for prostate
and cervical cancer presents a promising alternative and/or addition to external beam radiation treatments or surgical resections. Radioactive
sources can also be used for radio-guided tumor localization during surgery, for which the example of iodine-125 seed use in breast cancer is
given. Radioactive seed localization (RSL) is increasingly popular as an alternative tumor localization technique during breast cancer surgery.
Advantages of applying RSL include added flexibility in the clinical scheduling logistics, an increase in tumor localization accuracy, and higher
patient satisfaction; safety measures do however have to be employed. We exemply the implementation of RSL in a clinic through our experi-
ences at the Netherlands Cancer Institute.

(Cite this article as: Dickhoff LR, Vrancken Peeters MJ, Bosman PA, Alderliesten T. Therapeutic applications of radioactive sources: from image-
guided brachytherapy to radio-guided surgical resection. Q J Nucl Med Mol Imaging 2021;65:190-201. DOI: 10.23736/S1824-4785.21.03370-7)
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fter Wilhelm Rontgen’s discovery of X-rays, Henri

Becquerel’s detection of emitted uranium radiation,
and Pierre and Marie Curie’s experiments with radium,
which happened in the early 19t to 20th century, it was
soon discovered that the rays of these radioactive materi-
als could be used for therapeutic goals.! Since the interac-
tion of ionizing radiation with cancerous cells was quickly
found to lead to the potential destruction of the latter, the
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treatment of cancer with radiation has grown to be an un-
deniable part of modern medicine. In the field of radiation
oncology, radioactive sources are now used for treatment
of cancer. Radioactive materials (drugs and sources) are
however also utilized for diagnostic and treatment plan-
ning purposes. Medical imaging presents an excellent
template for demarcation of the tumor before intervention
to present a basis for the choice of treatment, including
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chemotherapy, surgery, and different types of radiation
treatment. However, in order to increase accuracy and ef-
ficiency — and thereby the recovery rates of patients — also
more and more real-time guidance is used during these
kinds of treatments.

Such guidance is traditionally provided by imaging, of
which the most used modalities include magnetic reso-
nance imaging (MRI), computed tomography (CT), ultra-
sound (US), and positron emission tomography (PET).2
These techniques are most known for their communality
in that waves or rays are directed towards the patient and
reflected, after which changes are caught by appropriate
detectors. Some of these modalities have been elevated
by introducing substances or tracers into the patient, e.g.,
contrast agents in MRI or radioactive tracers in PET.3 The
previously mentioned radioactive sources, historically
only used for the treatment of tumors, together with this
idea of image guidance has led to ground-breaking newly
developed techniques, during which the sources are alter-
natively used to effectively guide surgical procedures from
within the patient.

In this article, we review two different kinds of thera-
peutic applications of radioactive sources. First, a classi-
cal example of the sources used for treatment purposes is
exemplified by image-guided brachytherapy (BT), during
which the radioactivity is meant to destroy malignant cells
while imaging is used for guidance. Second, these radioac-
tive sources, together with a gamma ray detector, can be
used for radio-guided tumor localization during therapeu-
tic surgery to accurately resect the tumor.

We focused on three main indications where radioac-
tive sources are used either as a therapeutic or guidance
tool during intervention or treatment, namely cervical and
prostate cancer for image-guided BT, and breast cancer for
radio-guided tumor localization during surgery.

Image-guided brachytherapy
Overview

BT is a form of radiation treatment which has been used
since the early 20t century and involves placing sealed
radioactive sources near or inside the targeted tumor.
The emitted radiation destroys cells by damaging the
deoxyribonucleic acid (DNA) chain and thereby poses
a threat to surrounding organs at risk (OARs), as well
as fulfils its purpose in destroying malignant cells. The
sources are placed using catheters and/or applicators,
in each of which they can reside at defined so-called
dwell positions, for different times, called dwell times.
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An afterloader is used to propagate the sources from
the shielded safe through guide tubes to their respective
dwell positions.

BT procedures can be divided into distinct techniques
consisting of low-dose-rate (LDR), high-dose-rate (HDR),
and pulsed-dose-rate (PDR). During LDR, the radioactive
sources (also referred to as seeds) are implanted for at least
several days or often even permanently, the radiation is
thus continuous and defined by a dose of 0.4 to 2 Gy/h.4
PDR is characterized by low-intensity pulses which are
repeated every hour to every few days. Finally, HDR is
nowadays the most used technique and, depending on the
type of cancer, consists either of a single-dose treatment
or is divided into a few fractions of doses above 12 Gy/h
each.4

Different radionuclides are used as radioactive sources
for each of these techniques. Some of them are iodine-125
(125]), palladium-103 (193Pd), and cobalt-60 (¢°Co), where-
as the most common one is iridium-192.5 They have half-
lives of 59.41 d, 16.99 d, 5.2714 y, and 73.83 d,5 respec-
tively, and are chosen because of these longer half-lives,
combined with their emitted energy range and ease of pro-
duction. The ones with shorter half-lives and lower photon
energy are generally used in LDR BT, whereas the other
ones are rather used in HDR procedures to generate higher
doses in shorter times.

BT procedures can furthermore be of intracavitary
and/or interstitial nature. The former makes use of appli-
cators and involves the placement of radioactive sources
inside a natural body cavity, whereas the latter includes
the implantation of sources using catheters (needles)
in order to place them inside the tumor or organ. One
type of cancer to which both techniques can be applied
is breast cancer, for which BT in general has proven
to be as effective as external beam radiation treatment
(EBRT) while considerably shortening the overall treat-
ment time.” There are different ways to perform BT for
breast cancer, all of which are considered part of acceler-
ated partial breast irradiation, a kind of radiation treat-
ment which exclusively treats the adjacent breast tissue
around the surgical cavity.® The more traditional form of
BT is multi-catheter interstitial BT,? which is comparable
to how prostate cancer is treated and which is described
below. Alternatively, intracavitary BT for breast cancer
includes a MammoSite lumen balloon that is inserted ei-
ther during a lumpectomy surgery or as a separate proce-
dure.!0 Note that intraoperative BT, where the treatment
takes less than an hour straight after the lumpectomy, is
also a possibility.!! A more specific example for which
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only the interstitial technique is used is prostate cancer.
Cervical cancer treatments are always of intracavitary
nature, but they are often combined with an interstitial
implantation of additional catheters. Cervical and pros-
tate cancer are two of the main types of cancer tackled
using BT, which is why they are further discussed in the
following sections.

Cervical and prostate cancer

Cervical cancer is the second most common cause of can-
cer death in females.!? The most common treatment for
locally advanced cervical cancer consists of EBRT with
concomitant cisplatin-based chemotherapy, which is then
followed by BT.5 The latter can rarely also be used alone
as treatment for early-stage cervical tumors, but is mostly
used as a boost, either as a postoperative treatment or after
EBRT in inoperable patients. The 5-year disease-free sur-
vival rate of a treatment including chemoradiation and BT
was found to increase from 69.3% to 76.7% as compared
to chemotherapy and surgery.5 In all cases, this type of
intracavitary BT predominantly uses HDR and remote af-
terloaders, since LDR (and PDR) entails an increased risk
of manual error (e.g., during selection and implantation of
the sources) as well as higher radiation doses to physicians
and assistants.!3 While dose fractionation and survival and
complication rates in LDR are historically more estab-
lished and have been confirmed by data and experts, HDR
is much more promising in relation to adaptive image-
guided BT, allowing the technique to grow with modern
imaging modalities. There are no proven benefits of HDR
as compared to LDR in terms of local control and target
coverage — only late complications and toxicity are found
to be slightly reduced in HDR.14

BT is also one of the most used treatments for pros-
tate cancer, the second most common type of cancer in
men worldwide, since it is minimally invasive, and has
been shown to lead to fewer side effects (such as potency
or urination disorders) with similar 10-year survival rates
as radical prostatectomy.!5 It can both be used as a sole
therapy in patients with expected survival of at least 10
years, or as a boost after EBRT for patients who are symp-
tomatic or have an unfavorable intermediate risk factor.
HDR BT has been on the rise over the past 20 years, but
LDR permanent !25] (or sometimes '9Pd or cesium-131
(131Cs)) seed implantation is still widely used, especially
in tumors that have not spread beyond the prostate gland.!5
This can be due to the interstitial nature of the procedure,
which is by definition more invasive than intracavitary BT.
If one adds to this that multiple implantations are neces-
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sary for HDR, and that the number of catheters used is
higher for prostate cancer than e.g., for cervical cancer,
choosing LDR over HDR limits the invasiveness of the
procedure. However, HDR is generally believed to give
rise to a higher rate of erectile preservation than LDR,!¢
though not all studies agree.!” Furthermore, HDR is often
associated with a higher radiobiological advantage.!8 The
final choice between HDR, LDR, and PDR is therefore
highly dependent on the patient, physician, patient geom-
etry, and tumor properties.!®

Workflow

In order to unfold the role of modern medical imaging in
relation to BT, it is essential to be guided by the workflow
of a standard image-guided BT treatment. Examples of
used imaging modalities differ per cancer type and include
MRI, CT, US, or even PET — specific choices for each of
the steps for cervical and prostate cancer are laid out in
the following section. The mentioned workflow is visual-
ized in Figure 1, which is kept as general as possible with
the intention of being broadly applicable across BT pro-
cedures for breast, prostate, and cervical cancer. Medical
imaging precedes the start of the actual BT procedure and

Medical imaging

1 BT single-dose treatment
or fraction

Figure 1.—Succession of steps before and during one single-dose treat-
ment or fraction of a standard BT treatment. The cervical cancer case is
used as an example for the illustrations: A) surgical implantation of the
applicator and potentially catheter(s); B) image acquisition with applica-
tor/catheter(s) in place; C) applicator/catheter reconstruction (turquoise
in the online version), the dots (red in the online version) denote active
dwell positions; D) organ and target delineation; E) treatment plan op-
timization, the dose distribution is visible through isodose lines; and F)
an afterloader used for propagation of the radioactive source in order to
deliver treatment.
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includes imaging used for diagnosis and preplanning. The
BT workflow of one single-dose treatment or fraction can
be subdivided into six different steps as follows.

First, after the kind of applicator and/or number of
catheter(s) to use have been chosen based on patient and
tumor geometry, they are implanted in the patient. This is
considered a surgical procedure during which the patient is
under general or spinal anesthesia, and for which real-time
image guidance is often used. Then, with the applicator/
catheter(s) in place, a more precise image of the implant-
ed instruments and their exact location is obtained using
one of different imaging modalities. Next, the applicator/
catheter(s) are reconstructed, which means being digitized
into a 3D reconstruction using available software. Subse-
quently, based on the imaging and other clinical findings,
the OARs and targets are delineated. At some institutes
this is first done by a radiation treatment technologist, but
always with a check (and adjustment if necessary) by a
radiation oncologist. Thereafter, during treatment plan op-
timization, a treatment plan, consisting of a set of dwell
times for each of the dwell positions, is optimized with
respect to aspiration values regarding the minimum (target
volume) and maximum (OARs) amounts of dose for the
given patient. Finally, the radioactive sources are intro-
duced into the catheters using an afterloader, and accord-
ing to the optimized treatment plan the therapeutic doses
are delivered.

It is worth noting that for LDR BT, the treatment ends
after step 6 (as shown in Figure 1), followed by a seed
extraction procedure if the seeds are meant to be non-
permanent. For HDR cervical cancer BT, steps 1-6 cor-
respond to one fraction and are thus repeated 2-4 times
with intervals of days to weeks, depending on the local
clinical practice. During PDR, the applicator/catheter(s)
are usually not removed between fractions, which are
then called pulses.

Imaging techniques

The portrayed workflow reveals that medical imaging
is utilized at three distinct times in relation to a BT pro-
cedure. Firstly, imaging done before the treatment itself
serves for preplanning purposes in terms of applicator/
catheter choice. Secondly, it provides guidance during the
applicator/catheter implantation phase. Thirdly, images
obtained after applicator/catheter insertion are the basis
for 3D applicator/catheter reconstruction and OARs and
target delineation. The following sections provide an over-
view of different imaging modalities used for cervical and
prostate cancer.
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Cervical cancer

Before a cervical cancer patient is treated with BT for the
first time, imaging for diagnostic purposes is done, at the
tumor detection stage and potentially after tumor regres-
sion following EBRT treatment. An EBRT treatment is
planned based on a planning CT, as well as a diagnostic
T2 weighted MRI. EBRT involves several daily treatments
(fractions). Cone-beam CT is used for daily pretreatment
patient setup verification. Therefore, when EBRT preced-
ed the BT treatment, the cone-beam CT scans are utilized
for BT preplanning, while otherwise, MRI scans are used.
It is worth noting that these are the most general choices,
but standard clinical practice at specific local clinics can
of course diverge.

With regard to applicator and potentially catheter im-
plantation guidance for HDR cervical cancer BT, US is the
current golden standard, since it offers real-time images,
while being cheap, easy to use, and widely available.20
As to post-implantation image acquisition to serve as the
basis for OARs and target delineation, MRI is highly rec-
ommended, its main benefit being the easy discrimination
between the cervix soft tissue and the tumor. It also dis-
plays unique properties of functional imaging that allow
for dose painting, i.e., targeting areas with increased radio-
resistance.2 However, the applicator, catheters, and OARs
are often at least as easily recognizable in CT images.2! An
advantage of the latter is that uterine perforation, which is
one of the most well-known complications, is easily de-
tectable.22 Some studies claim that PET is another accurate
method for cervical cancer treatment planning,?3 but clini-
cal studies are limited. All in all, MRI is the preferred mo-
dality, but CT is widely accepted in smaller-scale hospitals
with reduced MRI availability.

Prostate cancer

US is sufficient for preplanning in prostate cancer cases and
then provides the basis for the choice of catheter number
and source/seed positions, but MRI is becoming increas-
ingly popular.24¢ Then, regarding image-guidance, compa-
rably to cervical cancer, transrectal US is conventionally
most widely used for guidance during catheter implanta-
tion since it gives an outstanding view of the prostate gland
and is easily applicable.25 There are nonetheless observ-
able errors that arise during US-based catheter reconstruc-
tion due to bright echoes and shadow artefacts.2 Hence,
as a basis for postimplant dosimetry, most frequently CT
imaging is used, which provides an easy identification of
the implanted seeds and catheters for LDR and HDR treat-
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ments, respectively. Since, however, the delineation of the
prostate itself (and of the OARs) can be difficult because
of the ineffectiveness of CT scans in distinguishing soft
tissues such as the prostate base or apex, MRI has been
used more and more since 1997 - whenever available.2¢
PET imaging has merely shown limited sensitivity for the
detection of prostate cancer, and no clinical studies ad-
dressing the use of PET within BT have been conducted.?”

Dosimetric optimization

For BT treatment planning, doses given by the set of dwell
positions and dwell times are calculated before treatment
delivery, as depicted in Figure 1. For breast, prostate, and
cervical cancer, affected tissues are of limited density;
therefore, the patient is approximated as containing purely
water. The detailed dose calculations, followed by the clin-
ical objectives in order to optimize the resulting calculated
dose distribution, are presented below.

AAPM TG-43 formalism

The international standard for dose calculations in BT is
since 2012 the AAPM TG-43 formalism.28-32 [t includes
a description of the accepted available sources, corre-
sponding datasets, and source production and handling.
The recommended dose calculation formalism is divided
into a one-dimensional (1D) and a two-dimensional (2D)
dose-rate equation. These are defined for a point of inter-
est P(r, 0), in which r denotes the distance from the center
of the source to the point, and 0 denotes the polar angle
between this point relative to the source longitudinal axis.
For the reference point P(r,, 6,), r, denotes the reference
distance of 1 cm from the source, and the reference angle,
0y, defines the source transverse plane, and equals 90°.30
The 2D dose-rate is then defined by:

Gu(r,0)

D(r,0)=S;-A
¢ G (r,0p)

g(r)-F(r,0)

where Sg symbolizes the air kerma strength and A the
dose rate constant, G, (1,0) represents the geometry fac-
tor for a line-source (L) approximation, g; (r) is the radial
dose function, and F(r,0) corresponds to the 2D anisotropy
function.

Clinical objectives

The TG-43 formalism allows for the calculation of the
dose rate for different dose calculation (DC) points in the
MRI/CT images, but the specific clinical goals must still
be defined. To this end, radiation oncologists first define
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a planning-aim dose, equivalent to the dose deemed suf-
ficient for tumor treatment. They then also make use of
parameters called dose-volume indices, which designate
maximum and minimum doses that cover a given volume
of an organ, and maximum and minimum volumes of an
organ that are covered by a specific amount of dose. In
this way, clinical goals are clearly defined and can thus
provide a basis for the optimization of the doses in the
treatment plan, based in turn on dose rate calculations of
the DC points within the delineated target(s) and OARs.
Different doses are naturally defined by a different com-
bination of dwell times for each of the dwell positions.
It is also worth noting that for some types of cancer such
as that of the cervix, the clinical protocol includes dose-
point indices, representing maximum doses given to spe-
cific locations with respect to the applicator or organs.

Because of the necessity to include multiple different
dose-volume indices for all organs and regions of inter-
est, the optimization is of an inherently multi-objective
(MO) nature. This is caused by conflicting objectives: tar-
get volumes should be covered as much as possible with
the planning-aim dose, whereas OARs should receive as
little dose as possible. The problem at hand therefore has
multiple optimal solutions with different trade-offs be-
tween the objectives. Apart from manual optimization,
different algorithms are used for treatment planning opti-
mization: deterministic methods such as the Nelder—Mead
simplex (NMS) and stochastic ones like simulated anneal-
ing (SA).33 While these types of algorithms generate one
single treatment plan, MO optimization methods approxi-
mating a Pareto front of multiple plans, of which the ra-
diation oncologist can then pick one, have recently been
developed for prostate HDR BT.34 35 Studies show that
physicians prefer plans automatically optimized in this
way over the manually optimized clinical plan,3¢ as is also
the case for other optimization approaches for prostate3?
and cervix HDR BT.38

Outlook

The future of image-guided BT is mostly comprised of
automating processes that are currently done by hand. An
example would be organ delineation that is carried out by
radiation treatment technologists or radiation oncologists,
which can be error prone and most of all time consuming.
Therefore, numerous studies focus on developing machine
learning algorithms in order to automatically detect tar-
gets and organs based on many previously delineated im-
ages.39.40

The automation of the applicator/catheter reconstruction
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step can be accomplished through electromagnetic track-
ing.41.42 For this approach, induction coils are inserted into
the applicator or into the catheters such that when they are
placed in an area under a field generator, their precise po-
sition and orientation can be determined. Currently, only
preclinical studies for interstitial BT have been conducted:
as part of the afterloader as a position assessment method
between implantation and treatment,*3 and as an integra-
tion into US-guided HDR prostate BT.44 Furthermore, as
for delineation, deep learning is another method for auto-
matic catheter detection and reconstruction.s

Another promising method of BT treatment consists in
online imaging, which strongly differs from the workflow
presented in this article in that all imaging and dose de-
livery is carried out in the same room.4¢ Advantages in-
clude increased patient comfort, efficient use of resources,
and higher imaging precision due to decreased patient and
therefore organ movement. On-site use of US is already
part of the clinical practice for prostate treatments at some
institutes?4 and has laid out the groundwork needed for
MRI integration,#” which recently has been successfully
applied at some treatment centers.48

There is naturally also other research which could lead
to better future treatment quality in BT. First, examples
of biologically based optimization include taking into ac-
count individual patients’ tumor and normal tissue bio-
logical characteristics, as well as the use of radiosensitive
nanoparticles in order to enhance radiation doses given to
the tumor. Then, biomarkers can be used for diagnostic,
prognostic, and predictive reasons, and facilitate studying
precise biological molecules and pathways related to the
procedure. Finally, self-shielded applicators, of which the
most advanced ones are applicable to intracavitary types
of BT, allow for intensity and direction modulation.®

Radioactive iodine seed use
in breast cancer treatment

Overview

Radioactive 125] seeds consist of a welded titanium capsule
containing 125] adsorbed onto a nickel/copper coated, gold-
cord aluminum wire. 125 has a half-life of 59.41 days and
decays by electron capture with the emission of character-
istic photons and Auger electrons. The seeds were devel-
oped for BT which is described in the previous section. In
2001 radioactive seed localization (RSL) was introduced
as an alternative tumor localization techniques? in breast
cancer surgery. With RSL, a radioactive !25]-labelled seed
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is preoperatively implanted in the center of the tumor area
using ultrasonic or stereotactic guidance. The surgeon uses
a gamma detector probe during surgery to localize the 125]
seed and thus the tumor center (Figure 2).

Table I summarizes the current clinical applications of
radioactive 1251 seeds when treating patients with breast
cancer.

The seeds of the different brandss!-5¢ vary little with
respect to design, dose-rate constant, anisotropy function,
radial dose function, and anisotropy factor. Additionally,
all types are approximately of the same size (=4 mm long
axis, 0.8 mm short axis), a typical example is presented in
Figure 3.

Different institutes used a variety of activities, ranging
from 3 to 13 MBgq. In the more recent studies, a trend is
evolving towards the use of seeds with lower activities
(even below 3 MBq). This might be the result of a chang-
ing paradigm, from the early days when hot 1251 BT seeds
were used, to a more standardized procedure in which low-
activity 125] seeds dedicated for RSL are used.

Breast cancer

Breast cancer is the most common type of cancer in
women worldwide.5® Breast cancer treatment consist of a
multidisciplinary approach combining surgery, radiation
treatment, and systemic treatment. The last few decades
this multidisciplinary treatment was focused on patient
and tumor tailored treatment resulting in de-escalation
of treatment whenever possible. A large shift in surgery
de-escalation started when large prospective randomized
trials showed that survival rates between patients that un-
derwent breast conserving treatment, consisting of breast
conserving surgery (BCS) followed by radiation treatment

[ 1. US guided seed implantation }—»[2, Mammography 3. Intraoperative
] seed localization

Figure 2.—Succession of steps during RSL: A) implantation of an 125]
seed by US guidance; B) post-implantation mammography to validate
the implantation location; and C) intraoperative 1251 seed localization
while using a gamma probe.
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TABLE L.—Current clinical applications of radioactive seed localization for breast cancer treatment.

Localization in the breast

Localization in the axillary nodes

Diagnostics

Diagnostic excision of breast lesion

Diagnostic excision of lymph node

Primary breast conserving surgery In non-palpable breast cancer

In non-palpable multicentric breast cancer

In non-palpable DCIS

In eDCIS (multiple seeds)
Breast conserving surgery after NST
Axillary staging after NST

In T1-2-3 breast cancer treated with NST

In cNplus breast cancer patients treated with NST
MARI procedure

TAD procedure

RISAS procedure

DCIS: ductal carcinoma in situ; eDCIS: extensive DCIS; cNplus: clinical node positive; MARI: Marking of Axillary lymph node by Radioactive Iodine seed; NST:
neoadjuvant systemic therapy; RISAS: Radioactive Iodine Seed localisation in the Axilla in axillary node positive breast cancer combined with a Sentinel node
procedure; TAD: targeted axillary dissection; T1-2-3: T categories for breast cancer (T1: tumor size is 2 cm or less across; T2: tumor size is more than 2 cm but no more

than 5 cm across; T3: tumor size is more than 5 cm across).

1-125 adsorbed onto a radio-opaque, solid substrate
|

titanium
0.8mm H [ } ’ anit

== 0.08 mm
} 4.5mm I

2
3.8x0.5mm

Figure 3.—Schematic and measurements of a radioactive !25I seed.

(RT), and mastectomy were similar.59-¢! Therefore, today
more than 60% of breast cancer patients are being treated
with BCS.

Following the introduction and improvement of differ-
ent breast screening programs, more early-stage and non-
palpable tumors, including both invasive cancer and ductal
carcinoma in situ (DCIS), are being detected.5! In addition,
the use of neoadjuvant systemic therapy (NST) is increas-
ing. These NST regimen have been increasingly tailored to
specific patient and tumor characteristics, resulting in ef-
fective downsizing of the tumor before surgery to lesions
that are suitable for BCS instead of mastectomy.62. 63 NST
based on tailored therapy regimens even leads to many
pathologic near-complete or complete responses, resulting
in many more non-palpable lesions.

The main goal of BCS is removal of the whole tumor,
surrounded by a margin of healthy breast tissue. Simulta-
neously, the surgeon aims to spare as much healthy breast
tissue as possible to ensure good cosmetic outcome. Es-
pecially in non-palpable lesions, BCS is challenging. To
improve the surgical outcome of BCS for non-palpable
lesions, several tumor localization methods have been de-
veloped. Currently there are three important techniques
for tumor localization prior to surgery: wire-guided, ul-
trasound guided, and radio-guided localization. For more
than 20 years, the standard method has been wire-guided
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localization (WGL). This involves a wire being inserted
into the center of the tumor under ultrasound or stereo-
tactic guidance shortly before surgery. During surgery, the
wire is used as a guide to estimate the center and borders
of the tumor. Several studies have shown that WGL is
associated with high rates of positive resection margins,
varying between 13 and 58%.55-65 Other major disadvan-
tages of WGL are possible dislocation of the wire, patient
discomfort, and poor cosmetic outcome.66-68

Intraoperative US is another technique that provides per-
operative visualization of the tumor and has been shown to
lead to fewer positive resection margins than WGL.%9. 70
With US guided localization the tumor borders are visual-
ized during the surgical procedure. However, since not all
tumors are visible on US, for example DCIS or tumors
with a complete clinical response after NST, the use of US
is still limited in clinical practice.

With radio-guided localization techniques, the surgeon
is guided by a radionuclide. One method is the Radioac-
tive Occult Lesion Localization (ROLL) in which a small
amount of radioactive liquid technetium is injected into
the tumor, shortly before surgery. The location with the
highest radioactive signal is subsequently localized dur-
ing surgery with a portable gamma probe. However, the
diffuse uptake of technetium in the breast hampers pre-
cise tumor localization. In order to overcome this issue,
RSL has been developed in which a radioactive 1251 seed is
preoperatively implanted.50. 71-75 For localization of unifo-
cal spherical tumors the 1251 seed is preferably implanted
in the center of the tumor, using US or stereotactic X-ray
guidance. Similar to ROLL, a gamma probe provides in-
traoperative guidance to the radioactive 125] seed and thus
the tumor location. With RSL the surgeon is guided by
point-source localization of the 125] seed, instead of the dif-
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fuse radioactive signal throughout the breast with ROLL.
Transcutaneous measurements with the gamma probe de-
termine the location of the maximum !25]-gamma counts,
which is marked on the skin, and subsequently the inci-
sion is made at this site. The gamma probe is further used
to guide the excision of the 125I-seed and lesion. Correct
125]-seed removal is confirmed by a measurement of no
125]-signal in the wound and an 125]-signal measurement in
the excised specimen (Figure 2).

Several randomized clinical trials and cohort studies
have shown that, firstly, the use of ROLL or RSL results in
lower rates of incomplete tumor removal and re-excisions
when compared to WGL. Secondly, cosmetic outcome im-
proved.76. 77

RSL has several advantages over ROLL. The point-
source activity of the seed used in RSL allows more precise
tumor localization in comparison with the diffuse activity
of the liquid 9mTc-labelled tracer. Furthermore, multiple
seeds could be used to bracket the edges of extensive DCIS
or multifocal invasive tumors; this has been demonstrat-
ed previously using multiple wires in, for example, large
clusters of calcifications.’8-80 Another advantage of 125]-
labelled seeds is the long half-life of 59.41 days, allowing
seed implantation up to 12 months before surgery, which
is useful in patients treated with NST.53. 75-81 Even after
completion of several courses of NST, which can be sev-
eral months after seed implantation, the radioactive signal
of the 125] seed can still be localized at the time of surgery,
guiding the surgeon towards the original tumor location.

Finally, seed implantation is also possible in metastatic
axillary lymph nodes before the start of NST in order to
tailor axillary treatment after NST. Tumor-positive axil-
lary lymph nodes can be marked with a seed before NST
and selectively removed after NST to analyze axillary re-
sponse, a procedure known as MARI (Marking of Axil-
lary lymph node by Radioactive lodine seed).82 83 For this
purpose, an 1251 seed (STM 1251, Bard Brachytherapy Inc.,
Carol Stream, IL, USA) with an apparent activity varying
from 0.2 to 1.0 MBq at time of implementation was placed
under ultrasound guidance in the largest pathology proven
tumor-positive axillary lymph node (i.e., MARI-node)
prior to the start of the first NST cycle. The activity of 1251
seeds used for MARI-node localization is lower than for
breast tumor localization (apparent activity 1.0-7.6 MBq)
to minimize irradiation of the node. The MARI procedure
was introduced in 2008 at the Netherlands Cancer Insti-
tute. We first showed that the MARI-procedure has a false
negative rate of 7% for predicting pathologic complete re-
sponse (pCR) in the additional axillary nodes. Marking the
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positive axillary nodes with a conventional marker (e.g., a
hydrogel-based biopsy marker) before NST followed by
placement of an 125] seed after NST, just before surgery,
has also been described. When combining this with a sen-
tinel lymph node biopsy (also known as targeted axillary
dissection), a false negative rate of 4% can be reacheds as
was also shown in the Dutch RISAS trial.85 It is therefore
possible to stage the axilla adequately after NST, with a
false negative rate below 10%.

Hereafter, an axillary treatment protocol was developed
(i.e., MARI-protocol) which combined the outcome of the
MARI-procedure (ypMARI-neg or ypMARI-pos) with a
pre-NST acquired fluorodeoxyglucose (FDG)-PET/CT
scan to determine the presence of less or more than four
tumor-positive axillary lymph nodes (ALNs) (cN(<4) or
cN(4+)) prior to NST. Patients staged cN(<4), ypMARI-
neg received no further axillary treatment, patients staged
cN(<4), ypMARI-pos and cN(4+), ypMARI-neg received
axillary radiation treatment (ART), and patients staged
cN(4+), ypMARI-pos received axillary lymph node dis-
section (ALND) plus ART (Figure 4).86.87

We have recently demonstrated that MARI-protocol is
an effective axillary staging and treatment protocol which
resulted in omission of ALND in 80% of cNplus patients
undergoing NST while maintaining excellent three-year
axillary- and regional recurrence free survival rates of
98% and 96%.88

Implementation of RSL in the clinic; an example

As mentioned in Table I and explored above, there are sev-
eral useful applications for the introduction of 125] seed lo-
calization in the clinical workflow for breast cancer treat-
ment.

Although 125 seeds are increasingly being used for tu-
mor localization due to improved surgical planning and
diminished patient discomfort, extensive regulations of-
ten apply for handling and disposal of the seeds requiring
extensive protocols and administrative works® which may
keep people from starting this type of localization tech-
nique.

For instance, despite the dose of the seeds used in RSL
for the breast being low, in the Netherlands, RSL in the
breast requires authorization by the government and some
safety issues need to be addressed.’2 More specifically,
personnel handling the 1251 seed are required to receive
training in radiation safety. In addition, the seed should be
traceable during all phases of care with an electric accom-
paniment form containing the dose at time of implantation.
Next, to confirm correct placement of the seed, patients
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Patients with FNAC
proven ALN
metastasis
1-3 FDG-avid >4 FDG-avid

PET/CT before NST ALNS (cN(<4)) ALNs (cN(<4+4))
rPéasthg:%%ic CR residual CR residual
MA%I—node P tumor P tumor

{ | | |

Proposed axillary ‘ no further

axillary ALND+ART
treatment treatment

Figure 4 —Axillary treatment protocol at the Netherlands Cancer Insti-
tute for patients presenting with axillary disease before NST.

FNAC: fine-needle aspiration cytology; ALN: axillary lymph node;
PET/CT: positron emission tomography combined with computed to-
mography; MARI: marking axillary lymph nodes with radioactive 1251
seeds; pCR: pathologic complete response; ALND: axillary lymph node
dissection; ART: axillary radiation treatment.

receive mammograms directly after RSL; whenever the
seed is not visible, other imaging is applied to visualize
the location of the seed. Further, after placement of the
resection specimen in the cup used for transportation to
the pathology department, the resection specimen needs
to be scanned with a gamma detector probe to confirm the
presence of the 125]-labelled seed. The excision cavity in
the breast must be scanned with a gamma detector probe to
ensure removal of the seed from the patient.9° Special care
needs only to be taken in case of contact with small in-
fants. All in all, it is worth noting that national regulations
on radioactive seed handling can differ, and it is therefore
essential to get acquainted with and follow them when
clinically introducing RSL.

However, the effort of implementing RSL is worth-
while and is only a hazzle in the beginning. An example of
implementation which could encourage others is given by
our institute: at the Netherlands Cancer Institute we treat
around 500 to 600 newly diagnosed breast cancer patients
per year. RSL was implemented in 2008. In Figure SA we
show the total amount of 125 seeds being used over the
years. It is visible that the implementation of RSL took
about 5 years, and that, since then, RSL is routinely being
used in our daily clinical practice. In Figure 5B we show
the use in one year (2020) in both the breast and axillary
nodes.

Summary

RSL is an increasingly popular technique to localize breast
lesions and/or axillary nodes as part of breast cancer treat-
ment. It provides many clear advantages over other local-
ization procedures used. RSL adds flexibility to the clini-
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cal schedules as well as the planning of the localization ap-
proach and surgical incision site. RSL allows more accu-
rate lesion localization and improves patient satisfaction in
comparison with e.g., wire localization. Safety measures
must be employed when radioactive seeds are used, in-
cluding guidelines and precautions for the safe and secure
handling of the radioactive seeds to prevent any mishaps.

Conclusions

Today, radioactive sources have a variety of therapeu-
tic applications. Key examples of this are image-guided
brachytherapy for prostate and cervical cancer in which
the sources are directly used for treatment purposes, while
radioactive seed localization for breast conserving sur-
gery demonstrates that they can also be used for real-time
guidance during surgery. Once incorporated in the clinical
workflow, both procedures present advantages in setup,
efficiency, and/or outcomes when compared to respective
alternative methods.
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