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English Summary

While solving real-world optimization problems, e.g., in the area of automotive
engineering, building construction, and steel production, the issue of uncertainty
and noise is frequently-encountered. Common sources of uncertainty and noise
include search/decision variables (that describe the system to be optimized), the
environmental variables or operating conditions the system is subject to, the eval-
uation of the (physical) system (or model of the system), and the preference in
objectives and vagueness in constraints when modeling the (physical) system. It
is therefore intuitive that uncertainty and noise surround the system in most prac-
tical scenarios of continuous optimization, and can significantly compromise the
applicability of the optimization algorithms and the (nominal) optimal solutions
obtained from these algorithms. In the ECOLE (Experience-based COmputation:
Learning to optimisE) project, the focus of this thesis is on the parametric un-
certainties in the search/decision variables that are assumed to be structurally
symmetric, additive in nature, and can be modeled in a deterministic or a prob-
abilistic fashion. Accounting for these uncertainties and noise leads us to robust
optimization, which emphasizes on the solutions that are still optimal and useful
in the face of such uncertainties and noise.

Some of the most important performance indicators in the area of product engi-
neering include shortening the product-development cycle, reducing the resource
consumption during the complete process, and creating more balanced and innova-
tive products. These practical aspects necessitate solving the robust optimization
problem in an efficient manner. Since it is very costly to assess candidate solutions,
we substitute the expensive function evaluations with a statistical model, which is
referred to as the “surrogate model”, or the “meta model”. In this way, the model
predicts the function response, and the optimization algorithm can query the func-
tion response instead of actually running the real production process.
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Solving robust optimization problems with surrogate models, we answer some of
the most important research questions in Chapter 3. This chapter implements
surrogate modeling with the help of a “one-shot optimization” strategy, and dis-
cusses the practical applicability of surrogate modeling to find robust solutions,
and the related difficulties thereof. In this chapter, it is found that we can con-
struct surrogate models with Kriging, Polynomials, and Support Vector Machines,
with a reasonable (linear) sample size. The resulting surrogate model can find the
robust solution in most situations, which is very close to the true baseline robust
solution.

Since in practical scenarios, high dimensionality can affect the performance of
surrogate modeling, we devote the second half of Chapter 3 to focus on dimen-
sionality reduction techniques. The dimensionality reduction techniques discussed
include Principal Component Analysis, Kernel Principal Component Analysis, Au-
toencoders, and Variational Autoencoders. An empirical performance assessment
indicates the suitability of Autoencoders and Principal Component Analysis to
help construct a low dimensional surrogate model.

A major manifestation of surrogate modeling, which is referred to as the “Bayesian
optimization” algorithm, is discussed in Chapter 4. The major research results in
this chapter include adapting the Bayesian optimization algorithm to find robust
solutions in an efficient manner, as well as benchmarking its performance. To this
end, it is found that the “Expected Improvement” criterion, and the “Moment-
Generating Function of the Improvement” are good choices of sampling infill cri-
teria to be utilized in the Bayesian optimization algorithm. Furthermore, the
performance of the Bayesian optimization algorithm is deemed satisfactory in the
light of a fixed budget and a fixed target analysis.

A major point of concern in the context of robust optimization is the choice of a
robustness criterion, which can have tremendous implications for the designers in
the area of product engineering. This is due to the fact that the choice of robust-
ness criterion can dictate the computational budget and quality of the optimal
solution to a large degree. In Chapter 5, we focus on the computational aspect
concerning the choice of the robustness criterion. Based on a broad spectrum of
test cases, we assess and rank commonly employed robustness criteria with respect
to a fixed budget and a fixed target analysis, in addition to the analysis on the
average running time per iteration.
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The major findings from these analyses provide a novel perspective on the choice
of the robustness criteria. For instance, it is found that the robustness criterion
based on the “worst-case scenario” is also the most suitable criterion in terms
of computational cost. Furthermore, the probabilistic robustness criteria have a
higher variance in terms of quality of the solution, but lower variance in terms of
utilization of the computational resources. Lastly, it is found that the probabilistic
robustness criteria scale well with the dimensionality, whereas the deterministic
criteria become inapplicable as the dimensionality increases.

Some of our findings, reported above, are validated, when benchmarking our ap-
proaches on a real-world design optimization scenario based on car hood frames.
These findings include the promising nature of Kriging as the modeling technique,
as well as the heuristics commonly employed for determining the initial sample
size. Furthermore, the “Moment-Generating Function of the Improvement” is cor-
roborated as an effective sampling infill criterion for the Bayesian optimization
algorithm.
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