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Conclusion and Outlook

In this thesis, several important aspects of robust optimization (Ben-Tal et al.,
2009) are empirically investigated in depth. Chapter 1 introduces the fundamen-
tal research questions of the thesis. The first three questions are related to each
other, in that they deal with the applicability of surrogate modeling to find robust
solution in an efficient manner, by taking into account a list of factors such as noise
level, problem landscape, dimensionality, and design of experiment. Note that the
notion of efficiency in this context is based on the utilization of computational
resources.

We made two attempts to answer these questions in a comprehensive manner. The
first one is based on “one-shot optimization” and described in detail in Chapter 3.
The key findings from this investigation indicate the following points.

1. Kriging, Response Surface Models (Polynomials), and Support Vector Ma-
chines construct good quality surrogate models with linear sample sizes.
These models can then be utilized to estimate robust solution. The robust
solutions estimated with these models are very close to the baseline.

2. Dimensionality is a detrimental factor on the quality of the surrogate models,
whereas the noise level does not play a significant role in this context.

Due to the significant impact of dimensionality on the quality of surrogate mod-
els, we devote the rest of Chapter 3 to find dimensionality reduction techniques
that can be utilized for efficient surrogate modeling. To this end, we empirically
compare the performance of Principal Component Analysis, Kernel Principal Com-
ponent Analysis, Autoencoders, and Variational Autoencoders. Following points
summarize the key findings from this study.

132



1. Based on the criteria of modeling accuracy, Autoencoders are the most
promising dimensionality reduction technique.

2. Based on the quality of optimal solutions obtained from low dimensional
surrogate models, Principal Component Analysis perform superior to the
other competitors.

3. The quality of the optimal solutions obtained after dimensionality reduction
can be very low in some cases. Therefore, dimensionality reduction is not
always feasible.

In Chapter 4, we attempt to answer the first and the third research questions
of our thesis with “sequential model-based optimization” framework (Jones et al.,
1998). We refer to it as the “Bayesian optimization” framework, since we always
employ Kriging (or Gaussian process) as the modeling technique. Here, we also
consider the impact of the acquisition function to find robust solution.

Following points summarize the applicability of the Bayesian optimization ap-
proach to find robust solution.

1. The Bayesian optimization algorithm is to be extended to account for para-
metric uncertainty in the search variables. The extended Bayesian optimiza-
tion algorithm is computationally tractable, and able to find robust solutions
efficiently as backed by the empirical investigation.

2. Dimensionality and computational budget play a significant role in the per-
formance of our extended version.

3. Noise level does not directly affect the quality of the robust solution in an
adverse manner.

4. “Expected Improvement” criterion and “Moment-Generating Function of
the Improvement” prove to be excellent choices for the acquisition function,
as opposed to the “Lower Confidence Bound”, which is affected adversely if
the dimensionality increases.

5. The evaluation of the “Lower Confidence Bound” is also computationally
costlier when compared with the other two sampling infill criteria.

Chapter 5 focuses on the fourth research question of our thesis – What is the im-
pact of robustness formulation/criterion in efficiently solving black-box problems
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7. CONCLUSION AND OUTLOOK

subject to uncertainty and noise, and which robustness formulations are recom-
mended to practitioners with regards to computational efficiency?

An empirical study (Ullah et al., 2022) is conducted to answer this questions. The
major findings from this study are as follows.

1. In the situations where the designer cannot afford the computational bud-
get beyond a certain threshold, “mini-max robustness”, “mini-max regret
robustness”, “expectation-based robustness”, and “composite robustness”
can be utilized to find robust solutions in an efficient manner.

2. On the other hand, if the designer cannot compromise on the quality of the
solution, “mini-max robustness” is the most efficient robustness criterion to
be employed.

3. The average cpu time per iteration of the Bayesian optimization algorithm
is lowest when “mini-max robustness” is employed.

Chapter 6 emphasizes on benchmarking the surrogate modeling approaches, de-
scribed earlier in the thesis, on a real-world engineering application. To this end,
we emphasize on the design optimization of car hood frames, obtained from (Ram-
nath et al., 2019). Our findings from this case study validate some of our earlier
results, and also provide a new perspective in the applicability of surrogate model-
ing. For instance, we observe that Kriging and Random Forest generally perform
excellently in the context of “one-shot optimization”, and the sample size can
be set linearly in terms of dimensionality. Furthermore, we note that “Moment-
Generating Function of the Improvement” and “Lower Confidence Bound” perform
competitively as the sampling infill criteria, and that dimensionality affects the
quality of the optimal solutions in an adverse manner.

7.1 Challenges and Opportunities

Robust optimization (Ben-Tal et al., 2009) has received a lot of attention in the last
two decades due to the advancements in several field of engineering. For instance,
shortening the product-development cycle, reducing the resource consumption dur-
ing the complete process, and creating more balanced and innovative products
has become a desirable outcome in the field of product engineering. To achieve
this, designers have to account for uncertainties and noise in an efficient manner.
Therefore, a practical approach to robust optimization is necessitated.
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7.1 Challenges and Opportunities

When accounting for uncertainties and noise, we believe “environmental variables”
(or operating conditions of the product) have been overlooked in the literature.
As stated earlier, they can impact the quality of an optimal design in an adverse
manner. Therefore, effectively modeling the uncertainties surrounding these “en-
vironmental variables” is of huge significance.

In the context of parametric uncertainties in the search variables, the choice of
robustness criterion is very important due to three main reasons: “computational
cost of robustness”, “price of robustness”, and “problem landscape induced by the
robustness criterion”. We believe all three of these aspects have been overlooked
in the literature. The first one of these, namely the “computational cost of robust-
ness” has been studied in an empirical fashion in Chapter 5, but the findings
need to be validated with real-world engineering case studies. Furthermore, the
“price of robustness”: the aspect of compromising on the performance/optimality
to achieve robustness/stability, also needs to be systematically studied. Lastly,
it may be the case that the “problem landscape induced by the robustness cri-
terion” encompasses certain attributes, making the robust counterpart easier or
more difficult to solve. We believe this aspect of robustness criterion also needs
to be systematically studied.

In practical scenarios, high dimensionality poses a major obstacle in the appli-
cability of surrogate modeling. Albeit we discuss the issue of high dimensional-
ity at great length in Chapter 3, further research is necessary to validate our
findings for the robust scenario. In particular, answering the following is very
important:

“In the face of high dimensionality, what can be done to find robust solutions in
an efficient and effective manner via surrogate modeling? Which dimensionality
reduction techniques are most suitable in this context? What factors influence the
performance of the dimensionality reduction techniques in this context?”

When extending the Bayesian optimization algorithm to the robust scenario, cer-
tain practical compromises have to be made, in order to effectively model the true
“robust” response of the function. For instance, we assumed in Chapter 4 that
the true “robust” response of the function can also be modeled according to a
Gaussian process, similar to the nominal scenario. However, this approach is not
entirely rigorous, as we are not estimating the true joint posterior distribution of
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all search points induced by the uncertainty. Estimating this posterior distribu-
tion would be a significant contribution to the literature, as it would enable us to
extend the Bayesian optimization algorithm to the robust scenario in a seamless
fashion (from the nominal case).

Benchmarking the empirical performance of the Bayesian optimization algorithm
in robust optimization also entails an interesting opportunity for researchers. To
this end, we made an attempt in Chapter 4, which includes the variability in
problem landscape, dimensionality, noise level, robustness and sampling infill cri-
teria. Note, however, that, further research is necessary to cover a broad spectrum
of test scenarios.

Lastly, observing the synergies between surrogate modeling and machine learning,
we note that “robustness” also needs to be incorporated in machine learning. This
is due to the fact that learning and mining in the presence of uncertain (indus-
trial) data poses additional challenges for the modeling techniques. Therefore,
these modeling techniques need to be extended to care for “robustness”, in or-
der to effectively account for the uncertainties present in the training data. A
major contribution in this direction is to extend the Support Vector Machines
to the robust scenario, based on the conceptual framework proposed in (Ben-Tal
et al., 2009). Similarly, the adaptation of the “Variational Recurrent Models” to
account for irregular, highly-sporadic, and asynchronous sequential data is also
an important contribution (Ullah et al., 2020b) in this direction.
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