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Engineering Applications

So far in this thesis, we have focused on two different but related research streams.
The first one (Chapter 3) deals with the applicability of surrogate modeling to
find robust solutions. The manifestation of surrogate modeling focused in this
research stream is based on “one-shot optimization” strategy (Ullah et al., 2019).
In this research stream, we emphasize on the fundamental questions regarding
the applicability of surrogate modeling in robust optimization, and the related
difficulties thereof, e.g., high dimensionality (Ullah et al., 2020a).

The second research stream (Chapters 4 and 5) emphasizes on the applicability
of the Bayesian optimization algorithm, and the related difficulties thereof (Ullah
et al., 2021). As part of the second research stream, we made an attempt to find a
suitable robustness criterion in practical scenarios with regards to the associated
computational cost (Ullah et al., 2022). We are now interested in benchmarking
our earlier findings for both research streams on a real-world engineering applica-
tion.

To this end, we consider a benchmark engineering case study based on the design of
car hood frames. The associated data set contains over 10,000 3D mesh geometries
for variants of card hood frames. This data set is generated through an automated,
industry-grade Computer Aided Design (CAD) workflow, described in (Ramnath
et al., 2022), and further benchmarked in (Wollstadt et al., 2022). The data set
provides realistic designs of car hood frames, which were validated by experts
with respect to realism, manufacturability, variability, and performance. Each
geometry is described by a subset of design variables, such as cut-outs and ribs on
the hood frame as well as their properties, for example, rib location and height,
or cut-out location.
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6.1 Car Hood Design

Starting in Section 6.1, we provide an overview on the case study with the most
important details, such as the description of the data set, the data pre-processing,
and the targeted tasks. In Section 6.2, we apply the data set to validate our
findings for the first research stream. This is followed by benchmarking the per-
formance of the Bayesian optimization algorithm on the data set. Lastly, we
provide a short summary and discussion on the results.

6.1 Car Hood Design

We consider a case study inspired from a real-world design optimization sce-
nario (Ramnath et al., 2022), where the aim is to optimize the design of a car
hood frame with respect to three performance metrics. These performance met-
rics are the “Geometry Mass (kg)”, “Directional Deformation Maximum (mm)”,
and “Equivalent Stress Maximum (MPa)”. Each geometry is represented as a sur-
face mesh (STL file), and is described by a subset of 38 design variables, such as
“Rear Rib Depth”, “Rear Rib Offset”, “Pocket Offset”, and “Front Curve Height”
among others.

The data set in this context was generated using a feature-based modeling ap-
proach (Ramnath et al., 2019). In the context of automotive car hoods, features
describe components that contribute to desirable properties of the design, e.g., ribs
to add stiffness during driving or impact, or cut-outs and pockets to reduce over-
all weight. Real car hood designs were simplified by removing features that were
irrelevant for the hood’s performance. Remaining features were created indepen-
dent of the base surface to allow for the generation of a sufficiently large variety
of hoods by combining features and feature patterns with a set of 100 base geome-
tries. Features were parameterized and generated using an automated workflow
in computer-aided three-dimensional interactive application (CATIA) v5 (König
and Wintermantel, 2004). It is important to note that some parametrizations led
to invalid geometries, such that in total 10,478 unique hood geometry files were
generated. CAD models were converted to watertight STL surface meshes in the
STL format (Ramnath et al., 2022).

For each car hood, structural mechanics performance values were simulated using
finite element analysis (FEA) (Szabó and Babuška, 2021). FEA was performed
for a hood lift load case under driving conditions, which is an important structural
requirement when designing car hood frames (Vyas et al., 2020). The obtained
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6. ENGINEERING APPLICATIONS

Figure 6.1: Example of variability in car hood designs in the data set. The
variability is due to the introduction of features, e.g., pockets, cut outs, and ribs.

performance values are “Maximum Equivalent Stress (MPa)” and “Maximum Di-
rectional Deformation (mm)”. Additionally the “Geometry Mass (kg)” is provided
for each design. FEA was performed using a standardized setup over all geome-
tries to allow for automated generation of simulation results. Fig. 6.1 illustrates
the variability in geometries considered in our case study.

6.1.1 Data Set

We start with the data set provided by Ramnath et al. (Ramnath et al., 2022),
which includes geometries, i.e., surface meshes, for 10,070 different designs for car
hood frames. Each geometry contains values of the design variables, e.g., “Rear
Rib Depth”, used to run the FEA simulation for assessing the performance of the
corresponding design with respect to structural mechanics indicators, e.g., “Max-
imum Equivalent Stress (MPa)” and “Maximum Directional Deformation (mm)”.
Note that the entire data set contains 38 unique design variables, but each geome-
try is accompanied with a subset of these variables. The average number of design
variables per geometry is found to be 14, whereas the maximum number of design
variables is found to be 27.

6.1.2 Data Wrangling

Since the geometries in the data set have irregular and asynchronous design
schema1, our first task is to identify the most common design variables. For
this purpose, we count the frequency of each design variable in the entire data set,
and select the top five most commonly appearing design variables. They are “Rib
Depth”, “Rear Rib Width”, “Rear Rib Offset”, “Rear Rib Depth”, and “Rear Rib

1Irregular in this context refers to the fact that geometries are provided with varying number
of design variables. Asynchronous refers to the fact that not all design variables are present in
each geometry (Ullah et al., 2020b)
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6.1 Car Hood Design

Figure 6.2: Some of the most commonly appearing features considered in the opti-
mization of car hood design. The design variables considered in our study indicate
the properties for these features, e.g., “Rear Rib Depth” and “Pocket Offset”.

End Point Y”. We then scan the entire data set to identify designs where these five
variables appear together. As a results, we are left with 1176 geometries where
these five variables appear together. We then extend this data set by scanning
these 1176 designs so as to search for other design variables, which maybe present
in all of these 1176 geometries. This increases the number of design variables to
18.

We are interested in benchmarking our previous findings on a real-world engineer-
ing case study. For this purpose, we have to formulate optimization scenarios with
three settings of dimensionality as: D = {2, 5, 10}. This means we have to select
two, five, and ten design variables among the set of available design variables. For
this purpose, we construct a benchmark Kriging surrogate model (Rasmussen and
Williams, 2006) with all 18 variables and 1176 training instances, for all three
performance indicators: Mass (kg), Deformation (mm), and Stress (MPa). Then,
we remove each one of the 18 variables in the model, and see the potential impact
on the accuracy of the model. Based on this, we rank all 18 variables for all three
performance indicators, and select the top two, five, and ten variables that have
the most significant effect on the model accuracy (Fan, 2007). These variables
for all three performance indicators are presented in Table 6.1. Furthermore, we
present an example of some of the most important features for car hood designs
in Fig. 6.2 for further clarification.
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6. ENGINEERING APPLICATIONS

Table 6.1: A summary of the selected design variables and tasks to be performed.
“Performance Indicators” indicates the three output variables (tasks), which are to
be minimized in optimization. “Variables” indicates the design variables which are
included for a particular choice of task and dimensionality (based on the data wran-
gling discussed earlier). The abbreviations for these design variables are presented
in Table 6.2.

Performance Indicators Dimensionality Variables

M
as

s
(k

g)

2 “RRO”, “RRD”

5
“RRO”, “RRD”
“P1O”, “P2O”

“P3O”

10

“RRO”, “RRD”
“P1O”, “P2O”

“P3O”, “RREPY”
“P2R”, “P3R”
“P4O”, “SRW”

D
ef

or
m

at
io

n
(m

m
)

2 “RRO”, “RCH”

5
“RRO”, “RCH”

“RREPY”, “P4O”
“RRW”

10

“RRO”, “RCH”
“PREPY”, “P4O”
“RRW”, “1SRL”
“P2O”, “P3O”
“ARW”, “P3R”

St
re

ss
(M

Pa
)

2 “RRO”, “ARW”

5
“RRO”, “ARW”
“RCH”, “P4O”

“SRW”

10

“RRO”, “ARW”
“RCH”, “P4O”
“SRW”, “P2O”
“P3O”, “RRD”

“1SRL”, “2SRL”
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6.1 Car Hood Design

Table 6.2: Abbreviations of the 18 design variables discussed in Section 6.1.2.
Some of these variables are presented in Table 6.1 to formulate the optimization
tasks with three settings of the dimensionality.

Design Variable Abbreviation Range

“1SRL” “1st Subsidiary Rib Length” [140, 200]
“2SRL” “2nd Subsidiary Rib Length” [120, 240]
“ARW” “Angled Rib Width” [30, 180]
“MRW” “Middle Rib Width” [40, 200]
“P1O” “Pocket1 Offset” [0, 10]
“P1R” “Pocket1 Radius” [18, 35]
“P2O” “Pocket2 Offset” [0, 10]
“P2R” “Pocket2 Radius” [18, 45]
“P3O” “Pocket3 Offset” [0, 10]
“P3R” “Pocket3 Radius” [13, 45]
“P4O” “Pocket4 Offset” [0, 10]
“RCH” “Rear Curve Height” [20, 120]
“RRD” “Rear Rib Depth” [8, 14]

“RREPY” “Rear Rib End Point Y” [400, 620]
“RRO” “Rear Rib Offset” [-50, 10]
“RRW” “Rear Rib Width” [20, 30]
“RD” “Rib Depth” [15, 30]

“SRW” “Subsidiary Rib Width” [25, 50]

6.1.3 Tasks

We are interesting in design optimization scenarios with three performance indi-
cators illustrated in Table 6.1. For each one of the indicators, we consider three
settings of dimensionality as described earlier. This gives rise to a total of 9
optimization tasks. Furthermore, we consider two different goals of robust opti-
mization for these 9 tasks. These two goals emphasize on benchmarking “one-shot
optimization” strategy (Chapter 3) and Bayesian optimization algorithm (Chap-
ter 4) (Ullah et al., 2019, 2021).

It is pertinent to mention that we try to maintain the same experimental setup,
wherever possible, for these two goals, as discussed previously in the thesis (Chap-
ter 3 and Chapter 4), to account for fairness. Nonetheless, the nature of the
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industrial data, as well as the realism, manufacturability, and variability associ-
ated with the data generation process means we might have to compromise on
some settings of our previous experimental setups. This would be explained in
further details in experimental setup, wherever applicable.

6.2 One-shot Optimization

We begin with the goal of benchmarking the “one-shot optimization” strategy
based on our data set. This refers to the fact that we consider a surrogate model,
which after construction, is directly utilized by a benchmark numerical optimiza-
tion algorithm, e.g., L-BFGS-B (Wright et al., 1999), without any adaptive sam-
pling, i.e., updating the surrogate model (Ta’asan et al., 1992). This strategy has
been explained in detail in Chapter 2 (cf. Fig. 2.2). This goal has two objectives:
evaluating the surrogate model based on the modeling accuracy, and the quality
of the optimal solution obtained from surrogate modeling. Experimental setup as
well as results for both of these manifestations are provided in the following.

6.2.1 Experimental Setup

In the context of modeling accuracy, our aim is to determine which of the pop-
ular modeling techniques (Bishop, 2007) is most suitable to model the objec-
tive function effectively. In this experimental setup, we consider five model-
ing techniques: Kriging, Polynomial (degree=2), K Nearest-Neighbour (KNN),
Random Forest (RF), and Support Vector Machines (SVMs). Furthermore, for
each one of these techniques, we consider ten different sample sizes as: K × D,
where D refers to the corresponding setting of the dimensionality, and K ∈
{5, 10, 15, 20, 25, 30, 35, 40, 45, 50}. This gives rise to a total of 450 test cases, owing
to the unique combinations of 9 optimization tasks, 10 different sample sizes, and
5 modeling techniques. For each one of these cases, we measure the modeling ac-
curacy according to the RMAE criterion introduced earlier (cf. Eq. (3.11)).

In terms of data pre-processing, we first extract the information about the quan-
tity of interest, e.g., Mass (kg), as per the task, and the corresponding design
variables, e.g., “RRD”, according to the setting of the dimensionality. We then
identify the duplicates in the newly formed data set and remove them. Following
this, we construct a design for each setting of the sample size according to the LHS
scheme (Montgomery, 2017). This, however, poses a practical problem, since we
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6.2 One-shot Optimization

do not have direct access to the FEA simulation, but rather a pre-computed evalu-
ation of the FEA simulation for the corresponding quantity of interest. Therefore,
for each location in the LHS design, we look for the nearest pre-computed evalu-
ation available. The nearest evaluation is identified based on cosine similarity of
the design variables. In this way, we sample the search space according to the LHS
scheme based on the nearest available point. Note, however, that, this might also
give rise to duplicates, since a pre-computed evaluation could be nearest to more
than one location retrieved from LHS. In this case, we do not allow a duplicate,
and rather select the second nearest point available point, from the data set. After
the generation of the training data for a particular choice of sample size, we look
for testing data points in the remaining data set. These data points are randomly
selected based on a size, which is half of the training data size. We then feed the
corresponding training and testing data set to all five modeling techniques, and
report the RMAE.

In the context of the quality of the optimal solutions, we consider 180 test cases, ow-
ing to the combinations of 5 modeling techniques described above, 9 optimization
tasks discussed, 2 noise levels, and 2 robustness formulations. An important thing
to note in this context is that all design variables take integer values. Therefore,
we employ the Mixed-Integer Surrogate Models, where-ever possible, to find robust
solutions, similar to the approach by (Garrido-Merchán and Hernández-Lobato,
2020)1. The two noise levels in this context characterize 0.5 and 1 % (max) devia-
tion in the nominal values of the design variables as: L = {0.005, 0.01}, whereas
the two robustness formulation considered are MMR and CR.

For the deterministic setting of the uncertainty, i.e., MMR, the compact uncer-
tainty set U is defined as: U = [−(L × R), (L × R)], where L ∈ L denotes the
choice of the noise level, and R serves as the absolute range of the search variables
provided in Table 6.2. Note that in this context, the uncertainty set U is a sub-
set of integer values: U ⊆ Z, since all design variables take integer values2. For

1Only the Kriging and Polynomials are transformed to “Mixed-Integer Surrogate Models”
in this context since current implementations do not allow other modeling techniques to be
extended.

2It is not difficult to verify that the internal optimization loop of the MMR in this context
refers to the complete enumeration over a full factorial design of all unique noise combinations.
Hence, the noise levels in this experimental setup are significantly reduced to be 0.5 and 1 %
respectively, as opposed to the 5 and 10 % (and sometimes even 20 %), discussed previously in
the thesis. Increasing the noise levels to 5 and 10 % makes solving the problem infeasible since
the size of the full factorial design increases rapidly with each new level.
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the probabilistic setting of the uncertainty, i.e., CR, the uncertainty is modeled
according to a discrete uniform probability distribution: ∆x ∼ U(a, b), where the
boundaries a and b are defined similar to the boundaries of the the set U in the
deterministic case.

The sample size is set to be 50×D, and the resulting surrogate model each time is
directly utilized to find robust solution according to the noise level and the robust-
ness formulation chosen. For the purpose of data generation, we utilize the same
procedure applied for modeling accuracy. Moreover, the numerical optimization
algorithm employed to find robust solution is L-BFGS-B (Morales and Nocedal,
2011).

6.2.2 Results

Graphs showing the quality of the surrogate models, based on the criterion of
RMAE (lower is better), and by varying the training sample size, are presented in
Figs. 6.3 – 6.5. Each figure contains three subplots corresponding to three settings
of the dimensionality, whereas each subplot indicates the RMAE values for five
modeling techniques and ten sample sizes, i.e., S1 – S10. In particular, Fig. 6.3
illustrates the quality in this context for predicting “Mass (kg)”. Fig. 6.4 shows
the quality regarding “Deformation (mm)”, whereas Fig. 6.5 indicates the quality
for “Stress (MPa)”.

Similar to RMAE, the difference in the quality of the optimal solution, obtained
from OSO strategy, to that of the baseline (DQ cf. Eq. (3.12)), is presented in
Figs. 6.6 – 6.8. Similar to modeling accuracy, each figure in this context also con-
tains three subplots corresponding to three settings of the dimensionality, whereas
each subplot indicates the DQ values (lower is better) for five modeling techniques,
two noise levels, i.e., NL 1 and 2, and two robustness formulations, i.e., MMR
and CR. Note that in this context, DQ values are computed based on objective
function values. The baseline values are computed by solving the corresponding
optimization problem – with corresponding settings of task, noise level, robustness
formulation, and modeling technique – with a baseline surrogate model, which is
trained with all 18 design variables for all car hood designs available. In the
following, we report the major findings from our investigation.

• Sample Size
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Figure 6.3: Quality of the surrogate models for all five modeling techniques, and
ten sample sizes, i.e., S1 – S10, evaluated based on the criterion of RMAE (lower is
better). The surrogate models are trained to predict “Mass (kg)” of the car hood
designs.
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Deformation (mm)” of the car hood designs.
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Figure 6.6: Quality of the surrogate models for all five modeling techniques, and
for all four cases based on the combinations of two noise levels, i.e., NL 1 and
2, and two robustness formulations, i.e., MMR and CR. The quality is measured
according to the criterion of DQ (lower is better), introduced in Chapter 3. The
goal of optimization in this context is to minimize the “Mass (kg)” of the geometry.

An analysis of the averaged results in Figs. 6.3 – 6.5 w.r.t. sample size
indicates that we can achieve a good approximation quality with reasonable
sample size in most test scenarios. Increasing the sample size does not
strictly increase the approximation quality of the surrogate model. However,
the surrogate models with the highest number of training points, i.e., S10,
usually produce one of the best averaged results. In a loosely speaking
manner, our observations re-affirm the generally employed heuristic in model-
assisted optimization, which states that the initial sample size can be set
linearly in terms of dimensionality (Forrester et al., 2008; Jurecka, 2007).

• Modeling Technique

An analysis of the averaged results in Figs. 6.3 – 6.5 w.r.t. modeling tech-
niques indicates that, in general, all five modeling techniques, produce good
approximations, for most test scenarios. RF produces the best averaged re-
sult in terms of the first and second tasks, i.e., “Mass (kg)” and “Deformation
(mm)”, whereas KNN performs best in terms of the third task, i.e., “Stress
(MPa)”. This gives us a new perspective of considering RF and KNN as well,
when modeling the real-world complex objective functions.

In terms of the averaged results in Figs. 6.6 – 6.8 w.r.t. modeling techniques,
we find that the optimal solutions obtained from RF achieve the highest
quality for the first task, whereas Kriging produces the best solutions in
terms of the second task. Optimal solutions obtained from KNN perform
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Figure 6.7: Quality of the surrogate models for all five modeling techniques, and
for all four cases based on the combinations of two noise levels, i.e., NL 1 and
2, and two robustness formulations, i.e., MMR and CR. The quality is measured
according to the criterion of DQ (lower is better). The goal of optimization in this
context is to minimize the “Maximum Directional Deformation (mm)” of the car
hood design.

the best in terms of the third task. Overall, in terms of the quality of the
optimal solutions, we conclude Kriging produces excellent results in most
test scenarios. An important thing to note here is that we do not achieve
the higher quality expected from polynomial surrogates.

• Applicability

Based on the overall performance of the surrogate models in terms of model-
ing accuracy, and quality of the robust optimal solutions, we deem surrogate
modeling to be applicable for efficiently solving optimization problems under
uncertainty. This is due to the fact that in most cases, the quality of the
approximation obtained from Kriging, SVM, RF and KNN is good enough
to employ a surrogate to find robust solution. The quality of the optimal
solutions in most cases is also satisfactory, since the optimal function value
found on the model surface is close to the baseline/ground truth in most
cases.

6.3 Bayesian Optimization

We are interested in benchmarking the performance of the Bayesian optimization
algorithm (cf. Alg. 1), which is based on the “sequential model-based optimization”
framework, to find the optimal solutions in an efficient manner (Jones et al., 1998).
In Chapter 4, we extended the Bayesian optimization algorithm to the robust
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Figure 6.8: Quality of the surrogate models for all five modeling techniques, and
for all four cases based on the combinations of two noise levels, i.e., NL 1 and 2, and
two robustness formulations, i.e., MMR and CR. The quality is measured according
to the criterion of DQ (lower is better). The goal of optimization in this context is
to minimize the “Maximum Equivalent Stress (MPa)” of the car hood design.

scenario, in order to efficiently find the robust solutions (Ullah et al., 2021). We
now emphasize on the performance of the Bayesian optimization algorithm, as
well as the choice of the sampling infill criterion. To this end, we study three
sampling infill criterion: LCB, EIC, and MGFI, which have been introduced earlier
(cf. Chapter 4) in the thesis.

6.3.1 Experimental Setup

We start with 9 optimization tasks, introduced earlier in this Chapter. These 9
optimization tasks refer to the minimization of three structural mechanics perfor-
mance indicators: “Mass (kg)”, “Maximum Directional Deformation (mm)”, and
“Maximum Equivalent Stress (MPa)”, each for three settings of the dimensional-
ity as: D = {2, 5, 10}. Furthermore, we consider two levels of additive noise as:
L = {0.005, 0.01}, and two robustness formulations: MMR and CR, respectively.
In addition, we consider three sampling infill criteria for the Bayesian optimiza-
tion algorithm: LCB, EIC, and MGFI, respectively. This gives rise to a total of
108 test cases, owing to the unique combinations of 9 optimization tasks, 2 noise
levels, 2 robustness formulations and 3 sampling infill criteria.

In our study, the size of the initial training data is set to be 5×D, where D ∈ D

denotes the corresponding setting of the dimensionality. Likewise, the maximum
number of iterations for Bayesian optimization is set to be 30×D. Note that our
Kriging surrogate is based on the “absolute exponential” kernel (Rasmussen and
Williams, 2006), and we standardize the function responses: y = [f(x1), f(x2), . . . ,
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f(xN )]⊤, before constructing the Kriging surrogate Kf . Furthermore, the Kriging
surrogate is based on the implementation of (Garrido-Merchán and Hernández-
Lobato, 2020), which transforms the model to handle variables that take integer
values. The hyper-parameters β and t for LCB and MGFI are set similar to the
setup described in Section 4.3.

For the parallel execution of Bayesian optimization for each of the 108 test cases
considered, we utilize Das-5 (Bal et al., 2016), where each standard node has
a dual 8-core 2.4 GHz (Intel Haswell E5-2630-v3) cpu configuration and 64 GB
memory. We implement our experiments in python 3.7.0 with the help of scikit-
learn module (Pedregosa et al., 2011). The performance assessment of the robust
solutions in our experiments is based on 15 independent runs R of the Bayesian
optimization algorithm for each of the 108 test cases considered. Note that for
each trial, i.e., the unique combination of the independent run and the test case,
we ensure the same configuration of hardware and software to account for fair-
ness. Furthermore, in each trial, we measure the cpu time for all iterations of the
algorithm to measure the efficiency.

After the successful parallel execution of all trials, we evaluate the performance of
our robust solutions based on quality differenceDQ from the baseline (cf. Eq. (3.12))).
Note that DQ in this case is based on the space of objective function values1. Af-
ter this, we perform six different analyses to answer the questions outlined earlier.
The first two type of analyses are referred to as the fixed cpu time analysis, and
the fixed iteration analysis respectively. In fixed cpu time analysis, we fix 50 dif-
ferent settings of the cpu time, and report the best DQ (the lowest) for each trial.
The DQ in this context is averaged over all 50 settings of the cpu time. For fixed
iteration analysis, we fix 30 different settings of the iterations (checkpoints) to
report the best DQ (the lowest) for each trial. The DQ in this context is also
averaged over all 30 checkpoints.

After fixed cpu time and fixed iteration analysis, we perform a fixed target analysis.
The fixed target analysis is also based on two different settings: by fixing a target
DQ and reporting the cpu time as well as the number of iterations taken to reach
that target. We fix ten different settings for the target in this context, and the
corresponding cpu time and iterations are averaged over these target values. Note
that each target describes the minimum desirable quality threshold of the robust

1In this study, we do not divide DQ with the number of independent runs R as Eq. (3.12)
suggests, but rather report all trials.
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Figure 6.9: Fixed cpu time analysis for car hood design optimization. Each
subplot contains 3 Ecdf curves based on 3 infill criteria discussed. Each Ecdf curve
is based on 180 data points owing to the combinations of 6 optimization tasks
F (3 optimization scenarios and 2 robustness criteria), 2 noise levels L , and 15
independent runs R.

solution. If such a quality is never achieved, we report the penalized cpu time and
penalized number of iterations respectively. The penalized cpu time is set to be
D × Tmax, whereas penalized number of iterations is set to be D × Nmax. Here
D is the corresponding setting of the dimensionality, and Nmax and Tmax indicate
the maximum number of iterations of the BO algorithm and the cpu time taken
to execute it. After the fixed budget and fixed target analyses, we also report the
average cpu time per iteration for the BO algorithm. In addition, we also report
Tmax: the accumulated cpu time at the last iteration of the BO algorithm, for
each trial.

6.3.2 Results

The results originating from this are shown in Figs. 6.9 – 6.13. Each of these figures
contains the graphs for a particular type of analysis. In particular, Fig. 6.9 shares
the results based on a fixed cpu time analysis. The figure contains 3 different
subplots corresponding to 3 different settings of the dimensionality. Each subplot
shares the empirical cumulative distribution function (ecdf) of DQ for 3 different
sampling infill criteria considered.

Likewise, Fig. 6.10 shares the ecdf plots corresponding to fixed iteration analysis,
whereas the analysis based on fixed targets is presented in Fig. 6.11. The average
cpu time per iteration of the BO algorithm to find robust solutions is presented
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Figure 6.10: Fixed Iteration analysis. Each subplot contains 3 Ecdf curves based
on 3 infill criteria discussed. Each Ecdf curve is based on 180 data points owing to
the combinations of 6 optimization tasks F (due to 2 optimization scenarios and 2
robustness criteria), 2 noise levels L , and 15 independent runs R.
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Figure 6.11: Fixed Target analysis. Each subplot contains 3 Ecdf curves based on
3 infill criteria discussed. Each Ecdf curve is based on 180 data points owing to the
combinations of 6 optimization tasks F (3 optimization scenarios and 2 robustness
criteria), 2 noise levels L , and 15 independent runs R.
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Figure 6.12: Average cpu time per iteration for the BO algorithm. Each subplot
contains 3 Ecdf curves based on 3 infill criteria discussed.
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Figure 6.13: Maximum accumulated cpu time: Tmax for each trial, for each setting
of the dimensionality.

in Fig. 6.12. Lastly, we present the maximum accumulated cpu time: Tmax, for
each trial in the form of box plots in Fig. 6.13.

In the following, we report the major findings of these results.

• Applicability of the Bayesian Optimization

Based on the results presented in Figs. 6.9 – 6.10, we deem Bayesian op-
timization as a promising heuristic to efficiently find robust solutions in
practical scenarios. This is due to the fact that the empirical success rate
of the Bayesian optimization algorithm is satisfactory. For instance, if we
cut-off the DQ values at 8, the empirical success rate is between 35-40 %.

• Factors with Significant Influence

Based on the results presented in Figs. 6.9 – 6.11, we find that dimensionality
affects the quality of the robust solutions. Because of the dimensionality,
the computational budget, i.e., whether measured in cpu time or number
of iterations, also affects the quality of the robust solutions in a significant
manner. For instance, in Fig. 6.9, we see that the empirical success measured
at 24 seconds (cpu time) is more than 40 % for trials belonging to two-
dimensional problems. On the other hand, the empirical success rate drops
to under 35 % when dimensionality is increased (for five and ten-dimensional
cases).

• Impact of Infill Criterion

In the context of fixed budget analyses, the performance of LCBeff and
Meff(x; t) is superior to that of the E[Ieff(x)]. In the context of fixed target
analysis, we we do not observe a significant difference in the performance
for most trials. Hence, we cannot find a clear winner in this case.
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• Infill Criterion for Practical Scenarios

For choosing a sampling infill criteria for practical scenarios, we emphasize
on the average running cpu time per iteration (ARCTPI), as well as the maxi-
mum cpu time required for an independent run: Tmax, in addition to the fixed
budget and fixed target analyses. In the context of ARCTPI, i.e., Fig. 6.12,
we deem Meff(x; t) and LCBeff performing better than E[Ieff(x)]. In the
context of Tmax, i.e., we deem LCBeff performing superior to its competitors
for two and five-dimensional problems. Combining the performance in the
context of fixed budget analyses, fixed target analysis, ARCTPI, and Tmax,
we deem LCBeff and Meff(x; t) as suitable sampling infill criteria.

6.4 Summary and Discussion

In this chapter, we benchmarked the applicability of surrogate modeling on a real-
world engineering case study. To this end, we considered a benchmark engineering
case study based on the design of car hood frames. The associated data set
contains over 10,000 3D mesh geometries for variants of card hood frames. This
data set was generated through an automated, industry-grade CAD workflow,
described in (Ramnath et al., 2019), and further benchmarked in (Wollstadt et al.,
2022). The data set provided realistic designs of car hood frames, which were
validated by experts with respect to realism, manufacturability, variability, and
performance.

Based on this data set, we focused on two goals, which emphasized on benchmark-
ing the performance of “one-shot optimization” strategy (Ta’asan et al., 1992) and
the Bayesian optimization algorithm (Jones et al., 1998) for finding robust solu-
tions. Our findings validate the performance of Kriging (Morales and Nocedal,
2011) as one of the most important modeling techniques in surrogate modeling.
Furthermore, we observed the promising nature of ensemble methods, i.e., Ran-
dom Forest, to effectively model the objective function in practical scenarios. We
also validated the commonly-employed heuristic of utilizing a linear sample size
to construct the model (Jurecka, 2007). Finally, in this context, we were satisfied
with the quality of the optimal solutions obtained from surrogate modeling.

In the context of Bayesian optimization (Jones et al., 1998), we validated the
impact of dimensionality, and consequently, the computational budget, on the
performance of the algorithm. Furthermore, We validated the performance of the
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“Moment-Generating Function of the Improvement” as an effective sampling infill
criterion in Bayesian optimization, in addition to the “Lower Confidence Bound”.
However, we could not validate the highly competitive nature of the “Expected-
Improvement” Criterion. We believe this is due to the fact that the our design
variables and noise settings take integer (rather than continuous) values1.

It is important to note that our study has certain limitations. Ideally, we should
have constructed the surrogate models (in both cases) from the continuous (latent)
variables, derived from the 3D point cloud auto-encoders (Wollstadt et al., 2022),
which in turn could have been constructed from the car hood geometries. This,
however, would have given rise to further difficulties, since such design variables are
generally not interpretable. Furthermore, defining the bounds and the constraints
for such latent variables is a difficult task, i.e., again, due to the fact that they are
not interpretable in the nominal sense. This, in turn, would also have meant that
we cannot specify uncertainty and noise since that requires a precise understanding
of the bounds of the design variables. Combining these points, we believe our
methodology in the experimental setups makes more sense from a practical point of
view, since it validates some of our earlier findings, and offers us a new perspective
to learn from.

1We believe the performance of the ensemble methods is also excellent due to the same
reason, i.e., integer values for design and noise variables
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