
Model-assisted robust optimization for continuous black-
box problems
Ullah, S.

Citation
Ullah, S. (2023, September 27). Model-assisted robust optimization for
continuous black-box problems. Retrieved from
https://hdl.handle.net/1887/3642009
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3642009
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3642009


ch
ap

te
r

4
Robust Bayesian Optimization

This chapter is devoted to the applicability of the so-called “Bayesian optimiza-
tion” algorithm (Močkus, 2012; Jones et al., 1998) to efficiently solve expensive
to evaluate blck-box problems, which are subject to uncertainty and noise in
the search variables. The Bayesian optimization algorithm is based on the so-
called “sequential model-based optimization” approach, which updates the surro-
gate model in an iterative manner, in order to find a globally optimal solution
on the model surface (cf. Section 2.3.4). We consider the scenario of finding ro-
bust solutions via Bayesian optimization. Note that in this context, the standard
(nominal) Bayesian optimization algorithm cannot be utilized directly, and must
be extended to care for robustness, in order to find robust solutions (Rehman, 2016;
Ullah et al., 2021). Pertaining to find robust solutions via Bayesian optimization,
we attempt to answer the following questions in this chapter.

1. How can we extend the Bayesian optimization algorithm to find robust solu-
tions: solutions which are still optimal and useful in the face of parametric
uncertainties in the search variables?

2. What is the performance of the Bayesian optimization algorithm in this
context, and which factors1 influence its performance?

In Section 4.1, we introduce the Bayesian optimization algorithm, which is fol-
lowed by three of the most important sampling infill criteria considered in this
chapter: the so-called “Lower Confidence Bound”, “Expected Improvement” cri-
terion, and the “Moment-Generating Function of the Improvement” (Wang et al.,
2017). Following this, we extend the Bayesian optimization algorithm to care for

1Note that the factors considered in this context include scale/severity of the uncertainty,
dimensionality, sampling infill criterion, and computational budget among others.
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4. ROBUST BAYESIAN OPTIMIZATION

parametric uncertainties in the search variables. Note that this section also de-
scribes the practical difficulties and potential pitfalls for extending the Bayesian
optimization algorithm to the robust scenario (ur Rehman et al., 2014; Jurecka,
2007). We then move forward to benchmark the empirical performance of the
Bayesian optimization algorithm to find robust solutions. Lastly, we provide the
discussion on the empirical results and summary of the chapter.

4.1 Bayesian Optimization

Bayesian optimization (BO) is a global search strategy, designed to optimize expen-
sive to evaluate black-box problems in an efficient manner (Močkus, 2012; Jones
et al., 1998). The basic idea behind BO is to treat the objective function as a
random function, and place a prior over it (Močkus, 1975). The prior information
captures our beliefs about the anticipated behavior of the function, e.g., smooth-
ness. After observing the function response at well-specified sampling locations,
the prior is updated to form the posterior distribution over the objective func-
tion (Močkus, 1975). The posterior distribution, in turn, is used to construct
a utility function, which determines the next query point (where the function
response is to be observed). Note that the utility function, also referred to as
the acquisition function (AF) or the sampling infill criterion (SIC), quantifies the
potential “gain” in the objective value, by evaluating the potential of each new
solution (Liu et al., 2012). It therefore selects the next query point which maxi-
mizes this gain. Once the next query point is determined, the function response
is observed at that location, and the posterior distribution is updated (Frazier,
2018).

The BO algorithm is based on the SMBO approach, which is already described in
Chapter 2 (cf. Fig. 2.3). The main points of the BO algorithm are summarized
as follows. We start by generating an initial design data set: D = {X, y}, on the
objective function f . The next step involves constructing the Kriging model Kf ,
based on the available data set D. Once the Kriging model is constructed, we
can utilize the strategy of adaptive sampling (based on the AF), to estimate the
global optimum of the objective function f (ur Rehman et al., 2014).

The AF is constructed by assuming that the function response at any untried
position x can be modeled in terms of a normally distributed random variable
Y (x), whose mean is given by the predicted value: f̂(x), and the variance is given
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4.1 Bayesian Optimization

by the MSE: s2(x) (as described in Eq. (2.11)) (Rasmussen and Williams, 2006;
Woodard, 2000).

The potential improvement to query the position x with respect to the best-so-far
observed valued of the function: fmin, can be described as:

I(x) = max{0, fmin − Y (x)}. (4.1)

The utility function of the improvement is denoted as A , and can be employed to
find the next query point xnew:

xnew = argmax
x∈S

A (x). (4.2)

Once the next query point is determined, the data set D is extended by appending
the pair (xnew, f(xnew)) to it (Jones et al., 1998). The Kriging model Kf

1 is then
reconstructed based on the extended data set. This process is repeated until either
a satisfactory solution is obtained, or a predefined computational budget, or other
termination criterion is reached. Since at each iteration, the next query point xnew

brings the maximum anticipated improvement to the current solution according
to the chosen infill criterion, the algorithm can find the optimal solution in an
efficient manner (Wang, 2018).

4.1.1 Sampling Infill Criteria

When employing the surrogate model to perform optimization, it is important to
determine how the search should be balanced with respect to exploration and ex-
ploitation (Snoek et al., 2012). To this end, we can introduce the notion of “gain”
to assess the potential of untried points, i.e., to assess the potential improvement
with respect to the current best known solution. Since in BO, the surrogate
model is stochastic in nature, the resulting “gain” function also becomes stochas-
tic (Wang, 2018). Consequently, it is important to use some statistical properties,
e.g., the expectation, of the this function to assess the potential of untried loca-
tions. Utilizing such a function, we can determine the location of the next query
point (to observe the function response).

1While other modeling techniques, e.g., Random Forest, Support Vector Machines, can also
be employed, the theoretical quantification of the uncertainty in the Kriging prediction makes it
an ideal candidate in this context (cf. Eq. (2.11)). Furthermore, Kriging arises naturally in the
context of non-parametric Bayesian inference, and therefore has a natural Bayesian interpreta-
tion (Rasmussen and Williams, 2006; Wang, 2018).
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4. ROBUST BAYESIAN OPTIMIZATION

In the literature, several different types of AFs exist, each with its own merits
and demerits (Hoffman et al., 2014). Examples of some of the most important
AFs, based on the notion of “improvement”, include “Expected Improvement” cri-
terion (Jones et al., 1998), “Bootstrapped Expected Improvement” criterion (Klei-
jnen et al., 2012), “Probability of Improvement” (Žilinskas, 1992), “Weighted
Expected Improvement” (Sóbester et al., 2005), “Generalized Expected Improve-
ment”, and “Multiple Generalized Expected Improvement” (Ponweiser et al., 2008)
among others. This chapter, however, only concentrates on “Upper Confidence
Bound”, “Expected Improvement” criterion, and the “Moment-Generating Func-
tion of the Improvement”, to find robust solutions in an efficient manner.

The “Upper Confidence Bound” (Srinivas et al., 2010; Parr et al., 2010), also
referred to as the “Lower Confidence Bound” (LCB) in the case of minimization,
is defined as:

LCB (x; β) = f̂(x)−
√

βs2(x), (4.3)

where β is a carefully chosen learning rate, which explicitly controls the trade-
off between exploitation and exploration (Auer, 2002). Note that a high setting
of β concentrates more on model uncertainty (s2(x)), and thus performs explo-
ration (Bubeck et al., 2009).

“Expected Improvement” (EI) criterion is a widely utilized sampling infill criterion
in BO (Močkus, 2012; Jones et al., 1998). This infill criterion is based on the first
moment, i.e., the expectation, of the improvement. In the context of Gaussian
processes (where the Kriging response can be represented as a Gaussian random
variable: Y (x) ∼ (f̂(x), s2(x))), the expectation of the improvement has a closed
form expression1:

E[I(x)] = (fmin − f̂(x))Φ

(
fmin − f̂(x)

s

)
+ sϕ

(
fmin − f̂(x)

s

)
, (4.4)

where Φ(·) and ϕ(·) are cumulative distribution function and probability density
function of the standard normal random variable respectively.

“Moment-Generating Function of the Improvement” (MGFI) (Wang et al., 2017) is
another important infill criterion discussed in this chapter, where all the moments

1Recall that the potential “gain” or “improvement”, which is defined with respect to the best
known function value: fmin (cf. Eq. (4.1)), is a stochastic process over the search space S, as it
depends on the stochastic modeling of the function value.
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4.1 Bayesian Optimization

of the improvement are linearly combined. MGFI is based on the intuition of
utilizing the higher moments of the improvement, and can be thought of as an
alternative way of defining its probability distribution.

Formally speaking, MGFI can be defined as:

∀t ∈ R, M(x, t) := E[etI(x)] =
∫ ∞

−∞
etu PI(u; x) du, (4.5)

where u = (fmin − f̂(x))/s, PI indicates the probability density function of the
improvement, and t is a real-valued parameter which controls the behavior of the
search, i.e., balances the trade-off of exploration and exploitation. Note that in
this context, the parameter t is referred to as the “temperature”, similar to the
simulated annealing algorithm (Kirkpatrick et al., 1983), and can be updated for
each iteration of the BO algorithm based on a “linear” or an “exponential” cooling
strategy (Wang et al., 2018).

The MGFI can also be calculated using the density function of I(x) as:

M(x, t) = 1 + Φ

(
fmin − f̂

′(x)
s

)
exp

(
(fmin − f̂)t + s2t2

2

)
− Φ

(
fmin − f̂

s

)
,

(4.6)
where f̂

′ = f̂ − s2t, and MGFI is well-defined for all t ∈ R in this context.

From a different perspective, the Taylor expansion of the MGFI is:

M(x, t) = 1 + tE[I(x)] + t2

2!
E[I2(x)] + t3

3!
E[I3(x)] + · · · =

∞∑
n=0

tn

n!
E[In(x)]. (4.7)

As Wang notes (Wang, 2018), for an arbitrary distribution, this series might not
converge for all t ∈ R, even if all the moments exist. The functional form in
Eq. (4.7) can be considered a linear combination of all the moments, where each
moment E[In(x)] is weighted by tn

n! . In this context, the weight of each moment
can be controlled with parameter t. Note that these weights can also be normal-
ized, since

∑∞
n=0

tn

n! = et. Normalizing the weights in this manner leads to the
convergence for all t ∈ R.

Finally, by incorporating the probability of improvement PI(x) as the “zero-order”
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4. ROBUST BAYESIAN OPTIMIZATION

moment, and replacing the constant 1 by it in Eq. (4.6), we have:

M(x; t) = M(x, t)− 1 + PI(x)
et

= PI(x) + t

et
E[I(x)] + t2

2!et
E[I2(x)] + t3

3!et
E[I3(x)] + . . .

= Φ

(
fmin − f̂

′(x)
s

)
exp

(
(fmin − f̂ − 1)t + s2t2

2

)
.

(4.8)

4.2 Robustness in Bayesian Optimization

In the previous chapter, we defined five of the most common robustness criteria
(cf. Section 3.1.1), which can be employed to achieve robustness in practical sce-
narios. When aiming to find a robust solution based on these robustness criteria,
we note that the standard BO algorithm cannot be utilized.

As Rehman notes (ur Rehman et al., 2014), there are two main reasons for
that.

• The potential “improvement”, which is defined in the nominal scenario
(cf. Eq. (4.1)), renders inapplicable in the context of RO. This is due to
the fact that this improvement is defined with respect to the “best-so-far”
observed value of the function: fmin, which has no clear meaning and usage
when aiming for a robust solution. Rather, in the case of RO, the improve-
ment must be defined with respect to the current best known “robust” value
of the function: f̂∗(x), which by implication can only be estimated on the
Kriging surface (as opposed to observed or fully known in the nominal case).

• The posterior process: Y (x) ∼ N (f̂(x), s2(x)), does not model the robust
(effective) response of the function1, which is desirable when aiming for a
robust solution.

Therefore, the standard BO approach must be extended to the robust scenario,
which is henceforth referred to as “Robust Bayesian optimization” (RBO) in this
thesis. Following the approach of Rehman (ur Rehman et al., 2014), the adapta-
tion of the BO algorithm to RBO is done in the following manner.

1The robust or effective function response has already been defined in Section 3.1.1 for five
of the most common robustness criteria.
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4.2 Robustness in Bayesian Optimization

• We substitute the “best-so-far” observed value of the function: fmin, with
its robust Kriging counterpart: f̂∗(x), which is defined as:

f̂∗(x) = min
x∈S

f̂eff(x), (4.9)

where f̂eff(x) is the robust (effective) Kriging response of the function, which
depends on the robustness criterion chosen. Note that f̂eff(x) is the approxi-
mation of the true robust response of the function: feff(x). In the context of
deterministic uncertainty: MMR and MMRR, this estimation merely refers
to the substitution of true function responses with their Kriging predictions
in Eqs. (3.1) – (3.3). On the other hand, in the context of probabilistic
uncertainty: EBR, DBR, and CR, it also encompasses the monte-carlo ap-
proximations for the corresponding statistical quantities of interests, e.g., in
Eq. (3.4), f̂eff(x) is approximated with monte-carlo samples based on the
Kriging prediction at each search point x + ∆x.

• We extend the nominal posterior process: Y (x) ∼ N (f̂(x), s2(x)) to model
the true robust response of the function: feff(x), by assuming that the true
robust response of the function at each search point is also normally dis-
tributed with mean f̂eff(x) and variance s2

eff(x): Yeff(x) ∼ N (f̂eff(x), s2
eff(x)).

Note that the assumption that Yeff(x) is normally distributed is not entirely
rigorous, but rather a practical compromise (ur Rehman et al., 2014). Ide-
ally, we should have attempted to estimate the true posterior distribution of
the robust Kriging response of the function: f̂eff(x), which would require ad-
ditional assumptions on the joint distribution of all search points. However,
the computational costs of finding this generally non-Gaussian distribution
several times on the original (nominal) Kriging surface Kf are prohibitively
high. Additionally, numerically computing the integral for the expectation
of the improvement for this generally non-Gaussian distribution would also
be computationally expensive. To add to that, we note that the Kriging
surface Kf only ever provides an approximation, and hence the true distri-
bution of the robust response of the function for each robustness criterion
can never be described with certainty in BO.

Modeling the true robust response of the function with a normally distributed
random variable: Yeff(x), we note that in the context of deterministic uncertainty,
the value s2

eff(x) merely refers to the Kriging MSE at point x + ∆∗
x, where ∆∗

x
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4. ROBUST BAYESIAN OPTIMIZATION

indicates the worst setting of the uncertainty, i.e., which maximizes Eq. (3.1)
or (3.3), as the case may be.

In the context of EBR, s2
eff(x) has a closed form expression as:

s2
eff = 1

J2

J∑
i,j

C, (4.10)

where C is a co-variance matrix with elements C(x′

i, x′

j). The entries C(x′

i, x′

j)
in the matrix C are computed with the help of posterior Kernel (with optimized
hyper-parameters), and the point x′

j is defined as: x′

j = x+∆j
x, where ∆j

x indicates
the j-th sample for ∆x. In the context of DBR and CR, s2

eff(x) does not have a
closed form expression, and should be computed numerically.

After substituting the “best-so-far” observed value of the function: fmin, with its
robust Kriging counterpart: f̂∗(x), and modeling the true robust response of the
function with a normally distributed random variable: Yeff(x) ∼ N (f̂eff(x), s2

eff(x)),
we can define the improvement in the robust scenario as:

Ieff(x) = max{0, f̂∗(x)− Yeff(x)}, (4.11)

In the following, we extend the LCB, EIC, and MGFI to the robust scenario based
on the improvement in Eq. (4.11).

4.2.1 Robust Infill Criteria

The adaptation of the LCB to the robust scenario is referred to as LCBeff , and
can be formulated to be:

LCBeff (x; β) = f̂eff(x)−
√

βs2
eff(x), (4.12)

where f̂eff(x) and s2
eff(x) describe the robust Kriging response of the function, and

the uncertainty therein. An important thing to note here is that the search point
induced by the uncertainty: x + ∆x, can become infeasible with respect to the
original search space S, if x is already close to the boundary of S (Ullah et al.,
2021). In this case, we simply clip the infeasible point with the boundary it breaks,
similar to the approach of Rehman (ur Rehman et al., 2014).
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4.2 Robustness in Bayesian Optimization

Like LCB, the adaptation of the EI criterion to the robust scenario can be written
as:

E[Ieff(x)] := (f̂∗(x)− f̂eff(x))Φ

(
f̂∗(x)− f̂eff(x)

seff(x)

)
+ seff(x)ϕ

(
f̂∗(x)− f̂eff(x)

seff(x)

)
,

(4.13)

where Φ(·) and ϕ(·) in Eq. (4.13) represent the cumulative distribution function
and probability density function of the standard normal random variable respec-
tively.

Lastly, the MGFI is extended to the robust scenario as (Ullah et al., 2021):

Meff(x; t) = Φ

(
f̂∗(x)− f̂

′′(x)
seff

)
exp

(
(f̂∗(x)− f̂eff(x)− 1)t + s2

efft2

2

)
, (4.14)

where f̂
′′(x) = f̂eff(x)−s2

efft, and Φ(·) denotes the cumulative distribution function
of the standard normal random variable, same as above.

Algorithm 1: Robust Bayesian Optimization
1: procedure (f,S, Aeff , ∆x) ▷ f : objective function, S: search space, Aeff :

robust acquisition function, ∆x: uncertainty in the search variables
2: Generate the initial data set D = {X, y} on the objective function.
3: Construct the Kriging model Kf on D = {X, y}.
4: while the stop criteria are not fulfilled do
5: Find robust optimum on the Kriging surface Kf as:

f̂∗(x) = min
x∈S

f̂eff(x).

6: Choose a new sample xnew by maximizing the robust (effective)
acquisition function:

xnew ← argmax
x∈S

Aeff(x).

7: Compute function response f(xnew).
8: Extend the data set D by appending the pair (xnew, f(xnew)) to

D = {X, y}.
9: Reconstruct the Kriging model Kf on D = {X, y}.

10: end while
11: end procedure
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4. ROBUST BAYESIAN OPTIMIZATION

4.3 Empirical Investigation

So far in this chapter, we have provided the basic working mechanism of the BO
algorithm, alongside three of the most important AFs: LCB, EI criterion, and the
MGFI. Furthermore, we have extended the BO algorithm to the robust scenario,
to account for parametric uncertainties in the search variables (Ullah et al., 2021).
Extending the BO algorithm in this context is a rather difficult task, since the
Kriging model only ever provides an approximation to the nominal response of
the function, making the modeling of the true robust (effective) response of the
function computationally intractable (Rehman, 2016). This is due to the fact that
modeling the true robust response of the function requires additional assumptions
on the joint probability distribution of all search points, which are induced by
the uncertainty (ur Rehman et al., 2014). Furthermore, computing the utility
function, e.g., the expectation, of this generally non-Gaussian distribution would
also require us to evaluate analytically intractable integrals, which would result in
prohibitively high computational demand.

Practically, following the approach by Rehman (ur Rehman et al., 2014), we model
the true robust (effective) response of the function with a Gaussian process over
the search points induced by the uncertainty: x + ∆x, similar to the nominal
scenario. This approach enables us to study the performance of the BO algorithm
in a comprehensive manner, as we can take into account the variability in external
factors, such as severity of the uncertainty, robustness criterion, and infill crite-
rion among others. The BO algorithm extended in this context is presented in
Algorithm 1.

We are now interested in benchmarking the performance of the extended BO
algorithm (cf. Algorithm. 1) to find robust solutions. We follow an empirical
approach, based on a broad spectrum of test cases, to assess the performance of
this algorithm. Following are the most important research question which we aim
to answer with our study.

• Is the extended BO algorithm suitable to find robust solutions in an efficient
manner?

• What factors influence the performance of the BO algorithm in this context?

• What impact does the infill criterion have on the quality of the robust solu-
tions?
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• How does the noise level and dimensionality affect the quality of the robust
solutions?

• Which infill criterion is recommended to practitioners for practical scenarios,
i.e., with regards to computational efficiency?

Answering these questions in a comprehensive manner is important because of
the associated practical reasons, as it will enable us to find robust solutions in an
efficient manner, with the help of the BO algorithm.

In the following, we describe the experimental setup of our study.

Experimental Setup

We select ten multi-modal test functions: F = {f15−f24}, from BBOB (Hansen
et al., 2021) for our study. The uni-modal functions in BBOB are skipped be-
cause the BO algorithm is designed for multi-modal functions, and utilizing a high
temperature in MGFI (high explorative effect) usually leads to inefficient conver-
gence on the uni-modal function (Wang, 2018). All test functions are subject to
minimization, and are evaluated on three different settings of dimensionality as:
D = {2, 5, 10}.

Apart from the test functions and dimensionality, we also vary the uncertainty level
based on two distinct settings as: L = {0.05, 0.1}, which indicate the maximum
% deviation in the nominal values of the search variables. For the deterministic
setting of the uncertainty, i.e., MMR and MMRR, the compact set U is defined
as: U = [−(L×R), (L×R)], where L ∈ L denotes the choice of the uncertainty
level, and R serves as the absolute range of the search variables. For the test
functions in F , the absolute range of the search variables is 10, since all test
functions are defined from -5 to 5. For the probabilistic setting of the uncertainty,
i.e., EBR, DBR and CR, the uncertainty is modeled according to a continuous
uniform probability distribution: ∆x ∼ U(a, b), where the boundaries a and b are
defined similar to the boundaries of the the set U in the deterministic case.

In our study, the size of the initial training data is set to be 2×D, where D ∈ D

denotes the corresponding setting of the dimensionality. Likewise, the maximum
number of iterations for BO is set to be 50×D. Note that our Kriging surrogate
is based on the popular Matérn 3/2 kernel (Rasmussen and Williams, 2006), and
we standardize the function responses: y = [f(x1), f(x2), . . . , f(xN )]⊤, before
constructing the Kriging surrogate Kf . In addition, we utilize the three robust
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4. ROBUST BAYESIAN OPTIMIZATION

AFs discussed in our study: LCBeff , E[Ieff(x)], andMeff(x; t), as the infill criteria
for our experiments.

The hyper-parameters β and t in LCBeff and Meff(x; t) respectively, are set in
a similar fashion, as we monotonically decrease them with increasing number of
iterations of the BO algorithm. This is due to the fact that we mainly want to
emphasize on exploration at the beginning of the search. As the search progresses,
we want to be more and more exploitative to be able to retain the good candi-
date solutions. To monotonically decrease β and t, we perform a linear cooling
strategy (Wang et al., 2018) as:

ti+1 = ti − η, (4.15)

and
η = t0 − tf

Nmax
, (4.16)

where t0 and tf indicate the initial and final temperature settings respectively, and
Nmax serves as the maximum number of iterations of the BO algorithm.

We set the parameter β by adapting the Eqs. (4.15) and (4.16) for LCBeff . In our
experiments, β0 and βf are set to be 25 and 1 respectively, whereas t0 and tf are
set to be 2 and 0.1, following the setup of Wang (Wang, 2018). For the parallel
execution of RBO for each of the 360 test cases considered, we utilize the Dis-
tributed ASCI Supercomputer 5 (DAS-5) (Bal et al., 2016), where each standard
node has a dual 8-core 2.4 GHz (Intel Haswell E5-2630-v3) cpu configuration and
64 GB memory. We implement our experiments in python 3.7.0 with the help
of “scikit-learn” module (Pedregosa et al., 2011). The performance assessment
of the robust solutions in our experiments is based on 15 independent runs R of
the RBO algorithm for each of the 360 test cases considered. Note that for each
trial, i.e., the unique combination of the independent run and the test case, we
ensure the same configuration of hardware and software to account for fairness.
Furthermore, in each trial, we measure the cpu time for all iterations of the RBO
algorithm to measure the efficiency.

After the successful parallel execution of all trials, we evaluate the quality differ-
ence of our robust solutions from the baseline (cf. Eq. (3.12))). Note that DQ
in this case is based on the space of objective function values1. After this, we

1In this study, we do not divide DQ with the number of independent runs R as Eq. (3.12)
suggests, but rather report all trials.
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perform six different analyses to answer the questions outlined earlier. The first
two type of analyses are referred to as the fixed cpu time analysis, and the fixed
iteration analysis respectively. In fixed cpu time analysis, we fix 50 different set-
tings of the cpu time, and report the best DQ (the lowest) for each trial. The DQ
in this context is averaged over all 50 settings of the cpu time. For fixed iteration
analysis, we fix 30 different settings of the iterations (checkpoints) to report the
best DQ (the lowest) for each trial. The DQ in this context is also averaged over
all 30 checkpoints.

After fixed cpu time and fixed iteration analysis, we perform a fixed target analysis.
The fixed target analysis is also based on two different settings: by fixing a target
DQ and reporting the cpu time as well as the number of iterations taken to reach
that target. We fix ten different settings for the target in this context, and the
corresponding cpu time and iterations are averaged over these target values. Note
that each target describes the minimum desirable quality threshold of the robust
solution. If such a quality is never achieved, we report the penalized cpu time and
penalized number of iterations respectively. The penalized cpu time is set to be
D × Tmax, whereas penalized number of iterations is set to be D × Nmax. Here
D is the corresponding setting of the dimensionality, and Nmax and Tmax indicate
the maximum number of iterations of the BO algorithm and the cpu time taken
to execute it. After the fixed budget and fixed target analyses, we also report the
average cpu time per iteration for the BO algorithm. In addition, we also report
Tmax, the accumulated cpu time at the last iteration of the BO algorithm, for each
trial.

4.3.1 Results

We share the results originating from our study in Figs. 4.1 – 4.6. Each of these
figures contains the graphs for a particular type of analysis. In particular, Fig. 4.1
shares the results based on fixed cpu time analysis. The figure contains six dif-
ferent plots corresponding to two noise levels, and three different settings of the
dimensionality. Each plot shares the empirical cumulative distribution function
(ecdf) of DQ for three different robust AFs considered. Note that each ECDF
curve (for each AF in a plot) is based on 300 data points, owing to the combina-
tion of ten test functions, two robustness criteria, and fifteen independent runs of
the algorithm.
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Figure 4.1: Fixed cpu time analysis. Rows distinguish between noise levels,
whereas columns identify different settings of dimensionality. Each plot contains
three ECDF curves based on three infill criteria discussed. Each ECDF curve is
based on 300 data points.

Likewise, Fig. 4.2 shares the ECDF plots corresponding to fixed iteration analysis,
whereas the analyses based on fixed targets are presented in Figs. 4.3 and 4.4.
The average cpu time per iteration of the BO algorithm to find robust solutions
is presented in Fig. 4.5. Lastly, we present the maximum accumulated cpu time:
Tmax, for each trial in the form of box plots in Fig. 4.6.

In the following, we report the major findings of these results.

• Applicability of the Bayesian Optimization

Based on the results presented in Figs. 4.1 – 4.2, we deem BO as a promising
heuristic to find robust solutions in an efficient manner. This is due to the
fact that the empirical success rate of the BO algorithm is high. For instance,
if we cut-off the DQ values at 8, the empirical success rate is around 60 %.

• Factors with Significant Influence

Based on the results presented in Figs. 4.1 – 4.4, we find that dimensional-
ity significantly affects the quality of the robust solutions. Furthermore, we
observe that this affect is much clearer to notice for LCBeff and Meff(x; t),
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Figure 4.2: Fixed iteration analysis. Rows distinguish between noise levels,
whereas columns identify different settings of dimensionality. Each plot contains
three ECDF curves based on three infill criteria discussed. Each ECDF curve is
based on 300 data points.

unlike E[Ieff(x)] whose performance is not significantly compromised in the
face of higher dimensionality. Because of the dimensionality, the computa-
tional budget, i.e., whether measured in cpu time or number of iterations,
also affects the quality of the robust solutions in a significant manner. For
instance, in Fig. 4.3, we see that the empirical success measured at 210 sec-
onds (cpu time) is more than 85 % for trials belonging to two-dimensional
problems. On the other hand, the empirical success rate drops to under
40 % when dimensionality is increased from 2 to 5. If, on the other hand,
the dimensionality is further increased to 10, the observed empirical success
rate drops below 20 %. When measuring the impact of noise level, i.e., the
scale/severity of the uncertainty, on the performance of the BO algorithm,
we do not observe any clear patterns. However, in some individual cases,
the performance of the BO algorithm is compromised with a higher settings
of the noise level.

• Impact of Infill Criterion

In the context of fixed budget analyses, the performance of all three AFs
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Figure 4.3: Fixed target analysis based on cpu time. Rows distinguish between
noise levels, whereas columns identify different settings of dimensionality. Each plot
contains three ECDF curves based on three infill criteria discussed. Each ECDF
curve is based on 300 data points.

is comparable in most trials. For a higher setting of the dimensionality,
i.e., D = 10, however, we observe a higher variance in the performance of
LCBeff and Meff(x; t). In the context of fixed target analyses, we observe
similar patterns, i.e., for most trials, we do not observe a significant difference
in the performance. Hence, we cannot find a clear winner in this case, albeit
we can say that E[Ieff(x)] is better suited for higher dimensionality.

• Infill Criterion for Practical Scenarios

For choosing an AF for practical scenarios, we emphasize on the average
running cpu time per iteration (ARCTPI), as well as the maximum cpu
time required for an independent run: Tmax, in addition to the fixed budget
and fixed target analyses. In the context of ARCTPI, i.e.,Figs. 4.5, we find
Meff(x; t) as clearly superior to its competitors in most trials. Likewise,
in the context of Tmax, i.e., we find Meff(x; t) as clearly superior to its
competitors. Combining the performance for all type of analyses, we find
E[Ieff(x)] andMeff(x; t) as suitable AF to be employed in the BO algorithm
to find robust solutions.
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Figure 4.4: Fixed target analysis based on number of iterations. Rows distinguish
between noise levels, whereas columns identify different settings of dimensionality.
Each plot contains three ECDF curves based on three infill criteria discussed. Each
ECDF curve is based on 300 data points.

4.4 Summary and Discussion

To employ the Bayesian optimization algorithm to find robust solutions, we face
several technical issues. Chief among them is the issue that the “best-so-far”
observed value of the function, which acts as a baseline to compute “improve-
ment/gain” in nominal Bayesian optimization algorithm, renders inapplicable,
when we are interested in robust solutions. This is due to the fact that this
value has no clear meaning/usage in the context of robust solutions. Therefore,
we substitute this value with the current best known “robust” value of the function,
which by implication can only be estimated on the Kriging surface (as opposed to
observed or fully known in the nominal case).

The second issue that we face is that the Kriging model only ever provides an
approximation to the nominal function response, and therefore cannot be utilized
directly to model the “robust” function response, without which we cannot pro-
ceed. To solve this issue, we assume that the true “robust” response of the function
is also normally distributed with Kriging prediction and MSE acting as the pa-
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Figure 4.5: Average cpu time per iteration for the BO algorithm. Rows distinguish
between noise levels, whereas columns identify different settings of dimensionality.
Each plot contains three ECDF curves based on three infill criteria discussed. Each
ECDF curve is based on 300 data points.
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Figure 4.6: Maximum accumulated cpu time: Tmax for each trial. Rows dis-
tinguish between noise levels, whereas columns help identify different settings of
dimensionality.
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rameters of the distribution. Note that the assumption that the true “robust”
response of the function is normally distributed is not a rigorous one, but a prac-
tical compromise. This is due to the fact that modeling the true robust response
of the function with a non Gaussian distribution is computationally intractable in
our opinion.

After solving these issues, we extend the Bayesian optimization algorithm to
find robust solutions. We consider three sampling infill criteria in this chapter:
the “Lower Confidence Bound”, the “Expected Improvement” criterion, and the
“Moment-Generating Function of the Improvement”, which are also extended to
care for robustness, in order to find robust solutions. Following this, we perform a
comprehensive empirical investigation to answer fundamental research questions
on this topic. These questions deal with the applicability of the Bayesian optimiza-
tion algorithm to find robust solutions, the factors that influence its performance,
the impact of the sampling infill criterion, and the preferred choice of the sampling
infill criterion in practical scenarios.

The key findings from our study provide new insights on this topic. For instance,
we find that the Bayesian optimization algorithm is suitable to find robust solu-
tions, which implies that our adaptation of the Bayesian optimization algorithm
works well in practice. This is an important aspect to know since we are unaware
of any empirical investigation which answers this question in a comprehensive
manner, i.e., by taking into account the variability in external factors such as
dimensionality, robustness criterion, and uncertainty level.

We also find that dimensionality, and consequently the computational budget,
plays a significant role in the performance of the Bayesian optimization algorithm.
This finding validates our understanding on the so-called “Curse of Dimensionality”
discussed in Chapter 3, and the dimensionality reduction techniques discussed
therein become even more important. Apart from that, we also validate that the
noise level, i.e. the scale/severity of the uncertainty, does not directly affect the
quality of the robust solution in an adverse manner.

Lastly, we find that the performance of the “Expected Improvement” criterion,
and the “Moment-Generating Function of the Improvement” enables them to be
employed in practical scenarios. While the performance of the “Lower Confidence
Bound” is deemed satisfactory in most cases, it does not show promising aspects
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with respect to a higher setting of the dimensionality, and the average cpu time
per iteration is also higher.
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