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CHAPTER

Introduction

Solving a real-world optimization problem entails dealing with uncertainties and
noise within the system, or a model of the system, for which optima are sought.
Due to various reasons, various types of uncertainties and noise can emerge in
optimization problems. These uncertainties and noise can alter the problem land-
scape, and affect the practical applicability of the optimal solutions found by the
algorithms. Hence, for practical scenarios, optimization methods are needed which
can deal with these uncertainties, and solutions have to be found which take into
account the impact of the unexpected drifts and changes in the optimization setup.
The practice of optimization that accounts for uncertainties and noise is referred
to as robust optimization (Ben-Tal et al., 2009).

In real-world engineering applications, e.g., automobile manufacturing, building
construction, and steel production, finding a robust solution, i.e., a solution whose
performance is not greatly affected by the uncertainties in the optimization setup,
is crucial due to the potentially serious impact in case of a failure. Despite the
significance, however, achieving robustness in modern engineering applications
is quite challenging. Some of the most important reasons for that include the
variety of problem landscapes, high dimensionality, the type and structure of the
uncertainty, and the robustness formulation or criterion among others (Gabrel
et al., 2014). In practice, the optimization scenarios in these applications are
treated as black-box problems, which need to be efficiently solved in the face of

uncertainty and noise.

Most of the approaches to efficiently solve black-box problems fall under the cate-
gory of direct-search methods (Lewis et al., 2000), such as evolutionary algorithms
(EAs) (Béack and Schwefel, 1993), and surrogate-assisted optimization (SAO) (For-

rester et al., 2008). This thesis emphasizes on SAO to efficiently solve numerical
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black-box problems, subject to uncertainty and noise. Note that SAO refers to
the utilization of statistical models while solving expensive to evaluate black-box
problems. These statistical models are referred to as the surrogate models or the
meta-models (Keane et al., 2008). The basic idea behind SAO is to replace the
actual (expensive) function evaluations by the predictions of these statistical mod-
els, which is desirable if the optimization problem under consideration is hard
to solve directly. The abstraction provided by the surrogate models is useful in
multiple situations. For instance, it can simplify the task to a great extent in simu-
lation based modeling and optimization, i.e., where a non-deterministic simulator
replaces the actual (physical) system (Sobester et al., 2014). Surrogate models
can also provide practically useful insights about the search space, e.g., space

visualization and comprehension (Forrester et al., 2008).

It is worthwhile to note that SAO was initially utilized to find the nominal solution
of an optimization problem (Schmit Jr and Farshi, 1974; Barthelemy and Haftka,
1993), without taking into account the unexpected drifts and changes in the opti-
mization setup. However, this is problematic for many real-world scenarios, since
uncertainty can alter the practical applicability of the optimal solutions. There-
fore, a natural question arises on the suitability of SAO to find optimal solutions
which are still useful in the face of uncertainty and noise. This thesis focuses on
the applicability of SAO in this context. The most important research questions

that we address in this thesis are:
1. Is surrogate modeling suitable to find robust solutions efficiently!?

2. How can one select the modeling approach and the sampling plan to find

robust solutions via surrogate modeling?

3. What is the impact of external factors, such as the noise level — the scale
of the uncertainty, the problem landscape, and the dimensionality, on the

applicability of surrogate modeling in this context?

4. What is the impact of robustness formulation/criterion in efficiently solving
black-box problems subject to uncertainty and noise, and which robustness
formulations are recommended to practitioners with regards to computa-

tional efficiency?

1The notion of efficiency is based on the utilization of computational resources, and would
be further discussed in Chapter 2.
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1.1 Robust Optimization

In the first half of the twentieth century, Sir Ronald A. Fisher made efforts to grow
larger crops in the face of varying weather and soil conditions (Fisher, 1936). His
work comprised the basic techniques of design of experiments (DoE) and analysis
of variance (ANOVA), which were later enhanced by several statisticians (Plackett
and Burman, 1946; Rao, 1946; Cox and Cochran, 1957). The Japanese engineer
Taguchi employed similar techniques for quality improvement of industrial prod-
ucts and processes in 1950s and 1960s. Taguchi’s work, referred to as robust
design, was virtually unknown outside Japan until the 1980s when he traveled
to the United States and introduced his concept, which became popular after-
wards (Taguchi and Phadke, 1989; Parr, 1989).

In Taguchi’s framework of robust design, three different types of parameters can
be distinguished. The first type of parameters are referred to as the controllable
parameters, since they can be chosen or controlled by the designer during the pro-
cess of optimization. The second category of parameters are known as the noise
parameters, which serve as the source of variation in system’s performance. Note,
however, that, while the variation in these parameters is beyond the designer’s con-
trol, they can be known or describable in the form of probability density functions.
The third category of parameters are known as the system constants. The overall
goal of the robust design in Taguchi’s methods is to determine the optimal settings
of the control parameters, such that the resulting process or product performance
is insensitive to the variations originating from the noise parameters (Taguchi,
1995).

This manifestation of robust design was based on classic DoE techniques, where
all control variables were altered according to an orthogonal array (Rao, 1946),
which was referred to as the inner array. At each control variable setting, the noise
variables were altered according to a second orthogonal array, which was referred
to as the outer array. Based on the combinations of the inner and the outer arrays,
the response data was used to estimate the process mean and variance. Both of
these statistics, namely the mean and the variance, were then combined to give rise
to a single quantitative measure, which was referred to as the signal-to-noise-ratio
(SNR) (Johnson, 2006). SNR was further used to perform a standard ANOVA,
and those control variable settings were identified which yielded the most stable

performance. Taguchi’s work started a process which made aware the importance
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of parameters variations to engineers and designers. His work has been reviewed,
criticized, and enhanced throughout the years (Pignatiello Jr, 1988; Pignatiello Jr
and Ramberg, 1991; Goh, 1993).

Different from Taguchi’s work, the problem of dealing with uncertainties and noise
consisted of a number of variants in operations research. Studies that consid-
ered uncertainty in the optimization model date back to the work of Dantzig in
1955 (Dantzig, 1955), and Wets in 1966 (Wets, 1966). Today, approaches dealing
with uncertainties can be found in various settings in the scope of mathematical
programming, such as in the form of stochastic programming (Kall et al., 1994),
under the term robust optimization (Mulvey et al., 1995; Ben-Tal et al., 2004; Bert-
simas et al., 2011), and in the scope of fuzzy programming (Bellman and Zadeh,
1970), which includes the two types of flexible programming (Zimmermann, 1975;
Tanaka et al., 1973), and possibilistic programming (Tanaka and Asai, 1984). A
survey of different mathematical programming classes in the context of robust

optimization is provided by Sahinidis (Sahinidis, 2004).

Within the scope of numerical black-box optimization, and particularly in the
field of surrogate modeling, there has been an increasing interest for methods that
deal with uncertainty and noise. Earlier work by Jurecka (Jurecka, 2007) focused
on the application of surrogate modeling for structural optimization problems,
whereas the work of Rehman (Rehman, 2016) emphasized on the application of
integrated electronics. Both of these works contributed extending the Bayesian
optimization approach (Jones et al., 1998) to the robust scenario with a particular
focus on computational efficiency. Some of the most important challenges and
opportunities highlighted in the literature (Rehman, 2016; Jurecka, 2007; Beyer
and Sendhoff, 2007; Kruisselbrink, 2012) form the starting point of this thesis. Our
research questions, introduced earlier, are based on these points. These points are

summarised in the following.

e Surrogate modeling was initially utilized to find the nominal solution of a
black-box problem. Its validity to find a robust solution needs further em-
pirical evidence. In particular, the impact of some of the most important
factors, e.g., the type, structure, and the scale of uncertainty, the corre-
sponding robustness formulation, the choice of the modeling technique, the
dimensionality, and the problem landscape, should be considered (Jurecka,
2007; Rehman, 2016).
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e Regarding the computational tractability of surrogate modeling to find ro-
bust solutions, empirical evidence on some of the most important details,
e.g., the sample size, and the appropriate computational budget, is lack-
ing (Jurecka, 2007).

e Solving high dimensional black-box problems with surrogate modeling is
quite challenging due to the computational complexity involved (Shan and
Wang, 2010).

e Bayesian optimization is a global-search strategy designed for expensive to
evaluate black-box problems, and has been extended to the robust scenario.
Within the scope of robust Bayesian optimization, an important contribution
in the literature would be to propose, evaluate, and compare the sampling
plans to sequentially update the surrogate model in a region of interest based

on different robustness formulations/criteria (ur Rehman et al., 2014).

e Finding a robust solution requires additional computational resources as op-
posed to finding a nominal solution, since the optimizer has to take into
account the impact of uncertainty and noise as well. This need for addi-
tional computational resources is referred to as the “computational cost of
robustness” (CCoR) in this thesis. CCoR depends on the formulation of
the robustness, and could be an important factor in efficiently solving the
problem. Ranking and evaluating some of the widely applied robustness
formulations based on CCoR would be a nice contribution to the literature,
as it would help practitioners choose a suitable robustness criterion with

regards to computational efficiency.

1.2 Organization and Contributions

The organization of this thesis is as follows. The motivation, research questions,
and major contributions of each chapter are briefly introduced, followed by a list

of publications resulting from this research.

Chapter 2 provides the technical background and context for robust optimization.
Starting with black-box optimization and related material in Section 2.1, we pro-
vide a concise overview on uncertainty and noise in Section 2.2. Next, surrogate

modeling is defined in Section 2.3.
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Chapter 3 deals with the applicability of surrogate modeling to find robust solu-
tions with the help of a “one-shot optimization” strategy. In this chapter, Sec-
tion 3.1 answers the question regarding the training sample size, modeling tech-
niques, effect of the type and structure of the uncertainty, and quality of the
robust solution. In the following section, we discuss how to alleviate the “Curse of
Dimensionality” in surrogate modeling. To answer our questions in this chapter,
two empirical studies are conducted and presented. The results of these studies

are published as:

Ullah, S., H. Wang, S. Menzel, B. Sendhoff, and T. Béck (2019). An Empir-
ical Comparison of Meta-Modeling Techniques for Robust Design Opti-
mization. In 2019 IEEE Symposium Series on Computational Intelligence
(SSCI), 2019, pp. 819-828.

Ullah, S.; D. Anh Nguyen, H. Wang, S. Menzel, B. Sendhoff, and T. Béack
(2020). Exploring Dimensionality Reduction Techniques for Efficient
Surrogate-Assisted optimization. In 2020 IEEE Symposium Series on
Computational Intelligence (SSCI), 2020, pp. 2965-2974.

Chapter 4 deals with the applicability of the Bayesian optimization algorithm
to the robust scenario. In particular, Section 4.1 provides an overview of the
existing literature for BO and the so-called infill criteria. Section 4.3 empirically
compares the performance of the so-called Moment-Generating Function of the
Improvement, which is an infill criterion extended to the robust scenario. For the
baseline, the so-called Fxpected Improvement criterion is chosen, which has already
been extended to find robust solutions. The publication reports the results in this

chapter:

Ullah, S., H. Wang, S. Menzel, B. Sendhoff, and T. Béack (2021). A New
Acquisition Function for Robust Bayesian Optimization of Unconstrained
Problems. In 2021 Genetic and Evolutionary Computation Conference
Companion (GECCO 21 Companion), New York, NY, USA, pp. 1344-
1345.

Chapter 5 provides a novel perspective on the computational cost for achieving
robustness. Note that it has been observed in the literature that finding a robust
solution is computationally more expensive than finding a nominal solution. The
needs for additional computational resources are determined by the robustness

formulation/criterion among others. Because of this, Section 5.2 conducts an
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empirical study which measures the running (cpu) time for some of the widely
adopted robustness formulations on a wide range of test scenarios. Based on the
findings in this section, these robustness formulations are ranked with respect to
each other. These rankings provide a new perspective to practitioners for choosing
the robustness formulations in practical scenarios with regards to computational

efficiency. The results of this investigation have been published as:

Ullah, S., H. Wang, S. Menzel, B. Sendhoff, and T. Béck (2022). A Sys-
tematic Approach to Analyze the Computational Cost of Robustness in
Model-Assisted Robust Optimization. In Seventeenth International Con-
ference on Parallel Problem Solving from Nature (PPSN 2022), pp. 63-75.

Chapter 6 focuses on benchmarking the performance of the surrogate modeling
techniques, introduced earlier in the thesis, on a real-world engineering case study.
To this end, a case study focusing on the optimization of car hood designs is
investigated for both the “one-shot optimization” strategy and the Bayesian opti-
mization algorithm. The results from this case study validate some of the earlier
findings in the thesis and provide a novel perspective regarding the applicability

of surrogate modeling in robust optimization.

Chapter 7 provides the overall summary of the thesis, alongside major challenges

and opportunities pertaining to robust optimization.






