
Model-assisted robust optimization for continuous black-
box problems
Ullah, S.

Citation
Ullah, S. (2023, September 27). Model-assisted robust optimization for
continuous black-box problems. Retrieved from
https://hdl.handle.net/1887/3642009

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3642009

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3642009

Model-Assisted Robust Optimization for
Continuous Black-Box Problems

Proefschrift

ter verkrijging van

de graad van doctor aan de Universiteit Leiden,

op gezag van rector magnificus prof.dr.ir. H. Bijl,

volgens besluit van het college voor promoties

te verdedigen op woensdag 27 september 2023

klokke 16:15 uur

door

Sibghat Ullah

geboren te Dera Ghazi Khan, Pakistan

in 1995

Promotores:
Prof.dr. T.H.W. Bäck
Prof.dr. B. Sendhoff (TU Darmstadt, Germany)

Co-promotor:
Dr. H. Wang

Promotiecommissie:
Prof.dr. Y. Jin (Universität Bielefeld, Germany)
Dr. K. Li (University of Exeter, UK)
Prof.dr. A. Plaat
Prof.dr. M.M. Bonsangue
Dr. A.V. Kononova

Copyright © 2023 Sibghat Ullah All Rights Reserved.

This research has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement number 766186.

Figures and diagrams are generated using Flowchart Maker and matplotlib.

Abstract

Uncertainty and noise are frequently-encountered obstacles in real-world appli-
cations of numerical optimization, e.g., mechanics, engineering, economics and
finance. Due to various reasons, various types of uncertainties and noise can
emerge in optimization problems. These uncertainties and noise can alter the
problem landscape, and affect the practical applicability of the optimal solutions
found by the algorithms. The practice of optimization that deals with uncer-
tainties and noise is commonly referred to as robust optimization. This thesis
concentrates on robust optimization with respect to the parametric uncertainties
in the search variables. These parametric uncertainties are assumed to be struc-
turally symmetric, additive in nature, and can be modeled in a deterministic or a
probabilistic fashion.

Despite its significance, achieving robustness in real-world applications is quite
challenging. One of the major reasons is the computational cost involved to find
the robust solution. The computational cost mainly depends on problem land-
scape, dimensionality, type and structure of the uncertainty, and the robustness
formulation or criterion among others. To achieve robustness in an efficient man-
ner, this thesis utilizes surrogate modeling. For this purpose, several attempts are
made to implement and apply surrogate modeling in robust optimization. One re-
search stream (Chapter 3) focuses on the fundamental research questions with the
help of a “one-shot optimization” strategy based on surrogate modeling. The main
questions targeted in this research stream deal with the impact of factors, such
as sample size, modeling technique, design of experiments, data pre-processing,
structure and scale/severity of the uncertainty, robustness aim/criterion, dimen-
sionality, and problem landscape among others. By and large, this research stream
targets the practical applicability of surrogate modeling to find robust solutions

i

and the related difficulties thereof. To be able to answer these questions in a
comprehensive manner, two empirical studies are designed.

The key findings from these studies reveal the promising nature of Kriging, Polyno-
mials, and Support Vector Machines to construct a good quality surrogate model
based on a reasonable sample size. Moreover, it is found that in the majority
of the cases, surrogate modeling yields a reasonably good solution, which is very
close to the baseline. Another observation from the empirical results in this con-
text affirms the suitability of Principal Component Analysis and Autoencoders to
perform dimensionality reduction in the case of high dimensional problems, albeit
with some performance deterioration.

The second research stream (Chapters 4 and 5) targets more advanced research
questions, such as the practicality of the Bayesian optimization approach to find ro-
bust solutions, as well as how to choose the robustness criterion/merit in practical
scenarios. To investigate the applicability of the Bayesian optimization approach
in this context, it is extended to account for parametric uncertainties in the search
variables. Moreover, the validity of the Bayesian optimization approach to find
robust solutions is investigated.

The key findings from this investigation indicate the suitability of the extended
Bayesian optimization algorithm to find robust solutions in an efficient manner.
Furthermore, it is found that dimensionality, and consequently the computational
budget, plays a significant role in determining the performance of our approach.
Lastly, we find that the “Expected Improvement” criterion and the “Moment-
Generating Function of Improvement” prove to be excellent choices as the sam-
pling infill criterion for robust optimization.

As part of the second research stream (Chapters 5), an attempt is made to answer a
crucial yet unanswered question, namely how to select a robustness criterion/merit
in practical scenarios with regards to computational efficiency? Another empiri-
cal investigation is carried out to answer this question in a comprehensive manner.
This empirical investigation computes the running cpu time of the Bayesian op-
timization algorithm for five of the most common robustness criteria. The key
findings from this investigation indicate the promising nature and practical appli-
cability of “mini-max robustness” to find solutions under uncertainty with regards
to computational efficiency.

ii

The last part of the thesis (Chapter 6) deals with benchmarking the performance of
the surrogate modeling approaches, introduced earlier in the thesis, on a real-world
engineering case study. To this end, a case study focusing on the optimization
of car hood designs is investigated in detail for both, the “one-shot optimization”
strategy and the Bayesian optimization algorithm. The results from this case study
indicate the promising nature of Kriging and Ensemble methods, e.g., Random
Forest, to effectively model the objective function in practical scenarios. Further-
more, it is found that the “Moment-Generating Function of Improvement” and the
“Lower Confidence Bound” are excellent choices for the sampling infill criterion in
Bayesian optimization. A short summary of the major contributions in the thesis
is provided in Chapter 7, which also encompasses the list of major challenges and
opportunities pertaining to robust optimization.

iii

Contents

1 Introduction 1
1.1 Robust Optimization . 3
1.2 Organization and Contributions . 5

2 Background 9
2.1 Black-Box Optimization . 9
2.2 Robust Optimization . 12

2.2.1 Uncertainties and Noise in Black-Box Optimization 13
2.2.2 Sources of Uncertainty and Noise 14
2.2.3 Modeling Uncertainty and Noise 17
2.2.4 Cases of Uncertainty and Noise 19
2.2.5 Scope of Robust Optimization 20

2.3 Surrogate Modeling . 22
2.3.1 Introduction . 23
2.3.2 Response Surface Models 24
2.3.3 Kriging . 25
2.3.4 Surrogate Modeling in Practice 26

2.4 Summary and Discussion . 29

3 Surrogate-Assisted Robust Optimization 32
3.1 Robust Optimization via Surrogate Modeling 33

3.1.1 Robust Counterpart Approach 37
3.1.2 Design of Experiment . 40
3.1.3 Preparing Data and Choosing a Modeling Approach 43
3.1.4 Appraising the Surrogate Model 45
3.1.5 Hyper-parameter Optimization 47
3.1.6 Empirical Investigation . 47

3.1.7 Results . 51
3.2 The “Curse of Dimensionality” . 59

3.2.1 Principal Component Analysis 61
3.2.2 Kernel Principal Component Analysis 62
3.2.3 Autoencoders . 63
3.2.4 Variational Autoencoders 64
3.2.5 Dimensionality Reduction 66
3.2.6 Empirical Investigation . 66
3.2.7 Experimental Setup . 67
3.2.8 Results . 71

3.3 Summary and Discussion . 76

4 Robust Bayesian Optimization 79
4.1 Bayesian Optimization . 80

4.1.1 Sampling Infill Criteria . 81
4.2 Robustness in Bayesian Optimization 84

4.2.1 Robust Infill Criteria . 86
4.3 Empirical Investigation . 88

4.3.1 Results . 91
4.4 Summary and Discussion . 95

5 Computational Cost of Robustness 100
5.1 Cost of Robustness . 101
5.2 Empirical Investigation . 102

5.2.1 Results . 104
5.2.2 Analysis . 108

5.3 Summary and Discussion . 109

6 Engineering Applications 112
6.1 Car Hood Design . 113

6.1.1 Data Set . 114
6.1.2 Data Wrangling . 114
6.1.3 Tasks . 117

6.2 One-shot Optimization . 118
6.2.1 Experimental Setup . 118
6.2.2 Results . 120

6.3 Bayesian Optimization . 123

CONTENTS

6.3.1 Experimental Setup . 124
6.3.2 Results . 126

6.4 Summary and Discussion . 129

7 Conclusion and Outlook 132
7.1 Challenges and Opportunities . 134

Bibliography 138

Index 154

English Summary 158

Nederlandse Samenvatting 163

Acknowledgements 167

About the Author 169

ch
ap

te
r

1
Introduction

Solving a real-world optimization problem entails dealing with uncertainties and
noise within the system, or a model of the system, for which optima are sought.
Due to various reasons, various types of uncertainties and noise can emerge in
optimization problems. These uncertainties and noise can alter the problem land-
scape, and affect the practical applicability of the optimal solutions found by the
algorithms. Hence, for practical scenarios, optimization methods are needed which
can deal with these uncertainties, and solutions have to be found which take into
account the impact of the unexpected drifts and changes in the optimization setup.
The practice of optimization that accounts for uncertainties and noise is referred
to as robust optimization (Ben-Tal et al., 2009).

In real-world engineering applications, e.g., automobile manufacturing, building
construction, and steel production, finding a robust solution, i.e., a solution whose
performance is not greatly affected by the uncertainties in the optimization setup,
is crucial due to the potentially serious impact in case of a failure. Despite the
significance, however, achieving robustness in modern engineering applications
is quite challenging. Some of the most important reasons for that include the
variety of problem landscapes, high dimensionality, the type and structure of the
uncertainty, and the robustness formulation or criterion among others (Gabrel
et al., 2014). In practice, the optimization scenarios in these applications are
treated as black-box problems, which need to be efficiently solved in the face of
uncertainty and noise.

Most of the approaches to efficiently solve black-box problems fall under the cate-
gory of direct-search methods (Lewis et al., 2000), such as evolutionary algorithms
(EAs) (Bäck and Schwefel, 1993), and surrogate-assisted optimization (SAO) (For-
rester et al., 2008). This thesis emphasizes on SAO to efficiently solve numerical

1

1. INTRODUCTION

black-box problems, subject to uncertainty and noise. Note that SAO refers to
the utilization of statistical models while solving expensive to evaluate black-box
problems. These statistical models are referred to as the surrogate models or the
meta-models (Keane et al., 2008). The basic idea behind SAO is to replace the
actual (expensive) function evaluations by the predictions of these statistical mod-
els, which is desirable if the optimization problem under consideration is hard
to solve directly. The abstraction provided by the surrogate models is useful in
multiple situations. For instance, it can simplify the task to a great extent in simu-
lation based modeling and optimization, i.e., where a non-deterministic simulator
replaces the actual (physical) system (Sóbester et al., 2014). Surrogate models
can also provide practically useful insights about the search space, e.g., space
visualization and comprehension (Forrester et al., 2008).

It is worthwhile to note that SAO was initially utilized to find the nominal solution
of an optimization problem (Schmit Jr and Farshi, 1974; Barthelemy and Haftka,
1993), without taking into account the unexpected drifts and changes in the opti-
mization setup. However, this is problematic for many real-world scenarios, since
uncertainty can alter the practical applicability of the optimal solutions. There-
fore, a natural question arises on the suitability of SAO to find optimal solutions
which are still useful in the face of uncertainty and noise. This thesis focuses on
the applicability of SAO in this context. The most important research questions
that we address in this thesis are:

1. Is surrogate modeling suitable to find robust solutions efficiently1?

2. How can one select the modeling approach and the sampling plan to find
robust solutions via surrogate modeling?

3. What is the impact of external factors, such as the noise level – the scale
of the uncertainty, the problem landscape, and the dimensionality, on the
applicability of surrogate modeling in this context?

4. What is the impact of robustness formulation/criterion in efficiently solving
black-box problems subject to uncertainty and noise, and which robustness
formulations are recommended to practitioners with regards to computa-
tional efficiency?

1The notion of efficiency is based on the utilization of computational resources, and would
be further discussed in Chapter 2.

2

1.1 Robust Optimization

1.1 Robust Optimization

In the first half of the twentieth century, Sir Ronald A. Fisher made efforts to grow
larger crops in the face of varying weather and soil conditions (Fisher, 1936). His
work comprised the basic techniques of design of experiments (DoE) and analysis
of variance (ANOVA), which were later enhanced by several statisticians (Plackett
and Burman, 1946; Rao, 1946; Cox and Cochran, 1957). The Japanese engineer
Taguchi employed similar techniques for quality improvement of industrial prod-
ucts and processes in 1950s and 1960s. Taguchi’s work, referred to as robust
design, was virtually unknown outside Japan until the 1980s when he traveled
to the United States and introduced his concept, which became popular after-
wards (Taguchi and Phadke, 1989; Parr, 1989).

In Taguchi’s framework of robust design, three different types of parameters can
be distinguished. The first type of parameters are referred to as the controllable
parameters, since they can be chosen or controlled by the designer during the pro-
cess of optimization. The second category of parameters are known as the noise
parameters, which serve as the source of variation in system’s performance. Note,
however, that, while the variation in these parameters is beyond the designer’s con-
trol, they can be known or describable in the form of probability density functions.
The third category of parameters are known as the system constants. The overall
goal of the robust design in Taguchi’s methods is to determine the optimal settings
of the control parameters, such that the resulting process or product performance
is insensitive to the variations originating from the noise parameters (Taguchi,
1995).

This manifestation of robust design was based on classic DoE techniques, where
all control variables were altered according to an orthogonal array (Rao, 1946),
which was referred to as the inner array. At each control variable setting, the noise
variables were altered according to a second orthogonal array, which was referred
to as the outer array. Based on the combinations of the inner and the outer arrays,
the response data was used to estimate the process mean and variance. Both of
these statistics, namely the mean and the variance, were then combined to give rise
to a single quantitative measure, which was referred to as the signal-to-noise-ratio
(SNR) (Johnson, 2006). SNR was further used to perform a standard ANOVA,
and those control variable settings were identified which yielded the most stable
performance. Taguchi’s work started a process which made aware the importance

3

1. INTRODUCTION

of parameters variations to engineers and designers. His work has been reviewed,
criticized, and enhanced throughout the years (Pignatiello Jr, 1988; Pignatiello Jr
and Ramberg, 1991; Goh, 1993).

Different from Taguchi’s work, the problem of dealing with uncertainties and noise
consisted of a number of variants in operations research. Studies that consid-
ered uncertainty in the optimization model date back to the work of Dantzig in
1955 (Dantzig, 1955), and Wets in 1966 (Wets, 1966). Today, approaches dealing
with uncertainties can be found in various settings in the scope of mathematical
programming, such as in the form of stochastic programming (Kall et al., 1994),
under the term robust optimization (Mulvey et al., 1995; Ben-Tal et al., 2004; Bert-
simas et al., 2011), and in the scope of fuzzy programming (Bellman and Zadeh,
1970), which includes the two types of flexible programming (Zimmermann, 1975;
Tanaka et al., 1973), and possibilistic programming (Tanaka and Asai, 1984). A
survey of different mathematical programming classes in the context of robust
optimization is provided by Sahinidis (Sahinidis, 2004).

Within the scope of numerical black-box optimization, and particularly in the
field of surrogate modeling, there has been an increasing interest for methods that
deal with uncertainty and noise. Earlier work by Jurecka (Jurecka, 2007) focused
on the application of surrogate modeling for structural optimization problems,
whereas the work of Rehman (Rehman, 2016) emphasized on the application of
integrated electronics. Both of these works contributed extending the Bayesian
optimization approach (Jones et al., 1998) to the robust scenario with a particular
focus on computational efficiency. Some of the most important challenges and
opportunities highlighted in the literature (Rehman, 2016; Jurecka, 2007; Beyer
and Sendhoff, 2007; Kruisselbrink, 2012) form the starting point of this thesis. Our
research questions, introduced earlier, are based on these points. These points are
summarised in the following.

• Surrogate modeling was initially utilized to find the nominal solution of a
black-box problem. Its validity to find a robust solution needs further em-
pirical evidence. In particular, the impact of some of the most important
factors, e.g., the type, structure, and the scale of uncertainty, the corre-
sponding robustness formulation, the choice of the modeling technique, the
dimensionality, and the problem landscape, should be considered (Jurecka,
2007; Rehman, 2016).

4

1.2 Organization and Contributions

• Regarding the computational tractability of surrogate modeling to find ro-
bust solutions, empirical evidence on some of the most important details,
e.g., the sample size, and the appropriate computational budget, is lack-
ing (Jurecka, 2007).

• Solving high dimensional black-box problems with surrogate modeling is
quite challenging due to the computational complexity involved (Shan and
Wang, 2010).

• Bayesian optimization is a global-search strategy designed for expensive to
evaluate black-box problems, and has been extended to the robust scenario.
Within the scope of robust Bayesian optimization, an important contribution
in the literature would be to propose, evaluate, and compare the sampling
plans to sequentially update the surrogate model in a region of interest based
on different robustness formulations/criteria (ur Rehman et al., 2014).

• Finding a robust solution requires additional computational resources as op-
posed to finding a nominal solution, since the optimizer has to take into
account the impact of uncertainty and noise as well. This need for addi-
tional computational resources is referred to as the “computational cost of
robustness” (CCoR) in this thesis. CCoR depends on the formulation of
the robustness, and could be an important factor in efficiently solving the
problem. Ranking and evaluating some of the widely applied robustness
formulations based on CCoR would be a nice contribution to the literature,
as it would help practitioners choose a suitable robustness criterion with
regards to computational efficiency.

1.2 Organization and Contributions

The organization of this thesis is as follows. The motivation, research questions,
and major contributions of each chapter are briefly introduced, followed by a list
of publications resulting from this research.

Chapter 2 provides the technical background and context for robust optimization.
Starting with black-box optimization and related material in Section 2.1, we pro-
vide a concise overview on uncertainty and noise in Section 2.2. Next, surrogate
modeling is defined in Section 2.3.

5

1. INTRODUCTION

Chapter 3 deals with the applicability of surrogate modeling to find robust solu-
tions with the help of a “one-shot optimization” strategy. In this chapter, Sec-
tion 3.1 answers the question regarding the training sample size, modeling tech-
niques, effect of the type and structure of the uncertainty, and quality of the
robust solution. In the following section, we discuss how to alleviate the “Curse of
Dimensionality” in surrogate modeling. To answer our questions in this chapter,
two empirical studies are conducted and presented. The results of these studies
are published as:

Ullah, S., H. Wang, S. Menzel, B. Sendhoff, and T. Bäck (2019). An Empir-
ical Comparison of Meta-Modeling Techniques for Robust Design Opti-
mization. In 2019 IEEE Symposium Series on Computational Intelligence
(SSCI), 2019, pp. 819-828.

Ullah, S., D. Anh Nguyen, H. Wang, S. Menzel, B. Sendhoff, and T. Bäck
(2020). Exploring Dimensionality Reduction Techniques for Efficient
Surrogate-Assisted optimization. In 2020 IEEE Symposium Series on
Computational Intelligence (SSCI), 2020, pp. 2965-2974.

Chapter 4 deals with the applicability of the Bayesian optimization algorithm
to the robust scenario. In particular, Section 4.1 provides an overview of the
existing literature for BO and the so-called infill criteria. Section 4.3 empirically
compares the performance of the so-called Moment-Generating Function of the
Improvement, which is an infill criterion extended to the robust scenario. For the
baseline, the so-called Expected Improvement criterion is chosen, which has already
been extended to find robust solutions. The publication reports the results in this
chapter:

Ullah, S., H. Wang, S. Menzel, B. Sendhoff, and T. Bäck (2021). A New
Acquisition Function for Robust Bayesian Optimization of Unconstrained
Problems. In 2021 Genetic and Evolutionary Computation Conference
Companion (GECCO 21 Companion), New York, NY, USA, pp. 1344-
1345.

Chapter 5 provides a novel perspective on the computational cost for achieving
robustness. Note that it has been observed in the literature that finding a robust
solution is computationally more expensive than finding a nominal solution. The
needs for additional computational resources are determined by the robustness
formulation/criterion among others. Because of this, Section 5.2 conducts an

6

1.2 Organization and Contributions

empirical study which measures the running (cpu) time for some of the widely
adopted robustness formulations on a wide range of test scenarios. Based on the
findings in this section, these robustness formulations are ranked with respect to
each other. These rankings provide a new perspective to practitioners for choosing
the robustness formulations in practical scenarios with regards to computational
efficiency. The results of this investigation have been published as:

Ullah, S., H. Wang, S. Menzel, B. Sendhoff, and T. Bäck (2022). A Sys-
tematic Approach to Analyze the Computational Cost of Robustness in
Model-Assisted Robust Optimization. In Seventeenth International Con-
ference on Parallel Problem Solving from Nature (PPSN 2022), pp. 63-75.

Chapter 6 focuses on benchmarking the performance of the surrogate modeling
techniques, introduced earlier in the thesis, on a real-world engineering case study.
To this end, a case study focusing on the optimization of car hood designs is
investigated for both the “one-shot optimization” strategy and the Bayesian opti-
mization algorithm. The results from this case study validate some of the earlier
findings in the thesis and provide a novel perspective regarding the applicability
of surrogate modeling in robust optimization.

Chapter 7 provides the overall summary of the thesis, alongside major challenges
and opportunities pertaining to robust optimization.

7

ch
ap

te
r

2
Background

This chapter provides the necessary background and context for robust optimiza-
tion. Starting with an overview of black-box optimization and related material
in Section 2.1, we delineate some of the most important concepts related to ro-
bust optimization in Section 2.2. Section 2.3 provides an overview on surrogate
modeling, followed by two of the widely adopted modeling techniques, namely the
response surface models and Kriging. Lastly, we provide a short summary of the
chapter in Section 2.4.

2.1 Black-Box Optimization

We start with an abstract system1, which takes some input x, and produces some
output y. The goal of optimization is to find such setting(s) of the input x accepted
by the system, which produce the best possible output y. We refer to such a system
as a black-box, since no further information about the system is assumed (Alarie
et al., 2021; Conn et al., 2009). This refers to the fact that the internal dynamics
and mechanism of the system are unknown to the designer. Such a system can
represent a wide range of optimization problems in practice, such as finding the
optimal control parameters of an industrial production line.

In the following, we define some of the most important concepts related to the
optimization of such a system.

Domain It may also be referred to as the search space, and contains the set
of all inputs accepted by the system. We denote it with symbol S throughout

1The notion of “abstract” refers to the fact that no particularities are assumed on the input,
output, and the internal functionality of the system.

9

2. BACKGROUND

this thesis. Examples of some important domains include Discrete spaces (Korte
et al., 2011), Hilbert spaces of functions (Balakrishnan, 2012), and Mixed-integer
spaces (Belotti et al., 2013). In this thesis, the discussion is always restricted to the
search space S ⊆ RD with Euclidean metric, where D denotes the dimensionality.
The resulting optimization problems are known as real parameter optimization
problems. The practice of optimization that deals with real parameter problems
is referred to as continuous optimization (Wright et al., 1999).

Objective Function In optimization, the purpose of the objective function is
to assign score to each input based on the quality of the output. In this thesis, we
deal with real-valued black-box functions, which means that the objective function
represents a black-box system. Furthermore, no additional analytical properties,
e.g., continuity, differentiability, and smoothness, are assumed on the objective
function, and the only available information about the objective function is taken
to be the evaluation of points in its domain (Audet and Hare, 2017).

f : S ⊆ RD → RM , (2.1)

where the domain S is assumed to be a subset of the D-dimensional Euclidean
space, and its image is RM .

Single-Objective Optimization Problem A real-valued single-objective opti-
mization problem is a special problem in continuous optimization which has exactly
one objective, i.e., M = 1 in Eq. (2.1). Without loss of generality, the optimization
of such a problem can be defined as the problem of determining a global minimum
x∗ as:

x∗ = arg min
x∈S

f(x), (2.2)

where the definition of global minimizer is provided later in this section.

Multi-Objective Optimization Problem A real-valued multi-objective opti-
mization problem is also a special case of an optimization problem with at least
two objectives, i.e., M > 1 in Eq. (2.1). For this class of optimization problems,
the definition of optimality is often based on the notion of Pareto dominance.
Note that dominance can be defined by introducing a partial order on the space
of objective function values, and can result in weak dominance, strict dominance,
or in-comparability.

10

2.1 Black-Box Optimization

The majority of the current work in this context emphasizes on obtaining a rep-
resentative subset of Pareto optimal solutions, which are based on the notion of
non-dominance introduced by Edgeworth, and later independently by Vlifredo
Pareto (Pareto et al., 1971). Within the scope of Pareto methods, nature inspired
heuristics have been successfully integrated, resulting in famous algorithms, such
as Non-dominated Sorting Genetic Algorithm-II (NSGA-II) (Deb et al., 2002),
Strength Pareto Evolutionary Algorithm2 (SPEA2) (Kim et al., 2004), and Multi-
objective particle swarm optimization (MOPSO) (Coello and Lechuga, 2002),
among others. For a technical overview on multi-objective optimization, please
refer to the work of Emmerich and Deutz (Emmerich and Deutz, 2018).

Definition 2.1 (Black-Box Optimization). An objective function f as defined
in Eq. (2.1) is called a black-box if no prior knowledge about f is available, and
the only accessible information about f is the objective value: f(x), ∀ x ∈ S.
The optimization of such a function is referred to as black-box optimization in this
thesis.

Definition 2.2 (Global Minimum). For a given single-objective optimization
problem, a candidate solution: x∗ ∈ S, is said to be a global minimum of f if:
∀ x ∈ S, f(x∗) ≤ f(x).

Finding a global minimum is generally a difficult task due to multi-modality, dis-
continuity, and ill-conditioning. In practice, it is only possible to guarantee the
convergence to the local minimizer (Wright et al., 1999).

Definition 2.3 (Local Minimum). For a given single-objective optimization
problem, a candidate solution: x ∈ S, is said to be a local minimum of f if there
is a neighborhood Nx of x, such that: ∀ x′ ∈ Nx, f(x) ≤ f(x′).

As the search space is a subset of the metric space RD, in principle, any metric on
RD can be used to define the neighborhood. For instance, in the case of Euclidean
metric, the neighborhood can be defined as a subset of the search space S, which
contains an open Euclidean ball around x as: Bϵ(x) = {x′ ∈ S : ||x − x′ || < ϵ},
for any ϵ > 0.

11

2. BACKGROUND

Definition 2.4 (Constrained Optimization Problems). When solving a black-
box optimization problem in practice, we might encounter a set of constraint
functions: G = {g1, . . . , gp}, p ∈ N0. A real-valued black-box optimization prob-
lem with a set of constraint functions G is referred to as a constrained optimization
problem.

Note that the set of constraint functions can include two types of constraints,
namely inequality and equality constraints. In this thesis, we only present the in-
equality constraints for convenience since equality constraints can be easily trans-
formed into inequality ones. In the presence of inequality constraints, the global
minimizer x∗ must belong to the set of feasible solutions A, which can be defined
as:

A = {∀ x ∈ S | gi(x) ≥ 0 , i = 1, . . . , p}. (2.3)

Definition 2.5 (Practical Goal of Optimization). Given a black-box optimiza-
tion problem with an optimization goal and a finite amount of computational
resources, the practical goal of optimization is to use these resources in an opti-
mal way to find as good a solution as possible.

In an alternative sense, one can also aim for finding solution(s) that are an im-
provement with respect to the previously known best solution(s). Based on these
reasons, one can also define a global optimization algorithm as the algorithm, that,
given an infinite amount of computational resources, would get arbitrarily close
to the global optimum.

2.2 Robust Optimization

The traditional view on black-box optimization as presented in the previous sec-
tion does not account for the unexpected drifts and changes in the optimization
setup. However, this is unrealistic for many real-world optimization scenarios.
For instance, often in engineering applications, a non-deterministic simulator re-
places the actual (physical) system (Bhosekar and Ierapetritou, 2018). The goal
of optimization in these scenarios is to find solutions, such that the real-world
realizations of these solutions are also of a good quality, even if they are subject
to perturbations (Kruisselbrink, 2012).

It is intuitive to believe that we can face several types of uncertainties and noise
in real-world applications (Beyer and Sendhoff, 2007). For instance, we can think

12

2.2 Robust Optimization

of the uncertainty because an approximate model substitutes the actual (physical)
system. Furthermore, the model itself may be non-deterministic/stochastic in
nature. We can also think of the uncertainty in this situation because the real-
world manufacturing of different parts of the system is precise only to a certain
degree. Therefore, when these parts are assembled together, the system may not
perform as expected. Taking these observations into consideration, we are faced
with three issues as:

• How can uncertainties and noise arise in black-box optimization?

• In what ways can we classify such uncertainties based on their common
characteristics?

• How can we mitigate the effects of such uncertainties in practical scenarios?

In the following, we summarize the state-of-the-art to answer these questions.

2.2.1 Uncertainties and Noise in Black-Box Optimization

Uncertainties and noise comprise one of the most challenging areas in black-box
optimization. They are encountered frequently in real-world optimization prob-
lems (Jurecka, 2007). Below, we provide a few reasons why they can appear in
practical scenarios.

• The search variables, also referred to as the decision variables, can not be
controlled with unlimited precision in reality, e.g., manufacturing tolerances.

• The operational or environmental conditions for an industrial product or
process can only be known to a certain extent.

• The output of the (physical) system, or a model of the system, is intrinsically
stochastic.

• An approximate model may replace the real-world system within the opti-
mization loop.

• The objective and the constraint functions can be fuzzy in nature, e.g., a
degree of vagueness on the objective and constraint functions might exist.

Because of these reasons, we can establish that uncertainties and noise surround
the black-box system in practical scenarios, since they can emerge in the input

13

2. BACKGROUND

and output of the system, in addition to the modeling and evaluation of the sys-
tem (Beyer and Sendhoff, 2007). Therefore, it is intuitive to believe that the com-
mon assumptions for solving real-world black-box problems can be significantly
compromised in the face of uncertainty and noise. But in order to effectively ac-
count for these uncertainties and noise, a nomenclature is needed. To this end,
we follow the categorization of Beyer and Sendhoff to a large degree (Beyer and
Sendhoff, 2007), in combination with the work of Kruisselbrink (Kruisselbrink,
2012).

2.2.2 Sources of Uncertainty and Noise

Here, we first categorize uncertainty and noise by looking at their origin within the
general loop of black-box optimization. For this purpose, an elaborated version
of the black-box optimization loop is provided in Fig. 2.1, which highlights the
potential sources of uncertainty and noise. In this figure, an optimizer1 is coupled
to the system, or a model of the system, for which optima are sought. The opti-
mizer generates some candidate solution(s), which is/are fed to the system. The
system evaluates this/these solution(s), and provides a quality score of this/these
candidate solution(s). Based on this feedback, the optimizer generates a new set
of candidate solution(s), which is/are fed to the system again for evaluation (Pošík
et al., 2012). This loop is repeated until either a satisfactory solution is found, or a
predefined computational budget, or other termination criterion is reached (Audet
and Hare, 2017).

In Fig. 2.1, we can identify five regions of interest where uncertainty or noise can
arise and affect the black-box optimization loop.

(I) Uncertainties and/or noise in the search/decision variables, denoted as x.

(II) Uncertainties and/or noise in the environmental or operating conditions (gen-
erally referred to as the environmental variables, and denoted as α).

(III) Uncertainties and/or noise in the evaluation(s) of the candidate solution(s),
denoted as y.

(IV) Vagueness when modeling the constraints.

1The notion of “optimizer” is used to refer to a particular solution, as well as an optimization
algorithm, in this thesis.

14

2.2 Robust Optimization

System

(Model)

Optimizer

YX

f1

f2

l

fk

min
min

min

g1

g2

l

gp

l

l

Candidate Solutions

Terminate / Return best
Solution(s)

Quality Scores

Figure 2.1: The general black-box optimization loop with five different sources
of uncertainty. These sources include the decision variables x, the environmental
variables α), the evaluation of the system y, the objectives fi, and the constraint
functions gi.

(V) Preference uncertainty in the objectives, if the optimization problem has
more than one objective.

The effect of these sources of uncertainty is presented in several different ways in
black-box optimization.

(I) Uncertainties and/or noise in the decision variables

This type of uncertainty arises in practical scenarios because the real-world
realizations of the candidate solutions differ arbitrarily much from their nom-
inal values, which are used to find the optimal solutions. For instance, in
the area of product engineering, we might encounter this uncertainty due to
manufacturing tolerances, i.e., realizing a candidate solution to its nominal
value might be too costly, and may not make an economic sense (Beyer and
Sendhoff, 2007). With this type of uncertainty, we can usually face either of
the following two scenarios.

Scenario 1:

An approximate model replaces the actual (physical) system within the
black-box optimization loop (presented in Fig. 2.1). Thus, although the
model might accept inputs with unlimited precision, the real-world (physical)
system can only realize these inputs to a certain degree, e.g., in automobile

15

2. BACKGROUND

design optimization, physical parts of the vehicle can only be manufactured
with a limited precision (Chowdhury and Taguchi, 2016).

Scenario 2:

In case the real-world (physical) system is enclosed within the black-box
optimization loop, the uncertainty in the inputs can propagate through the
output, to the set of objective and constraint functions. Generally, the motif
of the uncertainty in the inputs is unknown in advance. Hence, one can only
make very general assumptions on the structure of the uncertainty (Rehman,
2016), e.g., additive vs multiplicative, deterministic vs stochastic, symmetric
vs non-symmetric (Averbakh and Zhao, 2008).

The effect of the additive uncertainty ∆x, in the search variables, can be
represented by reformulating the objective function as:

f̃(x) = f(x, ∆x) = f(x + ∆x), (2.4)

For constraint functions, similar formulation can be adopted:

g̃j(x) = gj(x, ∆x) = gj(x + ∆x), j = {1, . . . , p}. (2.5)

In Eqs. (2.4)-(2.5), we are not making any assumption on the way in which
the uncertainty ∆x is mathematically modeled, which would be the topic of
interest later in this chapter.

(II) Uncertainties and/or noise in the environmental variables

In design optimization, the uncontrollable environmental variables are gen-
erally assumed to be system constants. In practical scenarios, however, it
is found that they fluctuate, and can affect the performance of anotherwise
stable system (Beyer and Sendhoff, 2007). As such, it is useful to think
that these fluctuations can also affect the objective and constraint functions,
similar to the uncertainty in the search variables (Jin and Branke, 2005).

(III) Uncertainties and/or noise in the output

This class of uncertainty is formed in the evaluation of the candidate solu-
tions. Here, we can distinguish between two different scenarios.

Scenario 1:

16

2.2 Robust Optimization

The system is inherently non-deterministic in nature. Therefore, the precise
evaluation of the candidate solutions is impossible, and the resulting output
is noisy and stochastic (Nissen and Propach, 1998).

Scenario 2:

The system produces a deterministic output. However, this output can
not be realized in practice, e.g., due to the manufacturing imprecisions and
tolerances, or similar issues.

(IV) Uncertainty in the constraints

Another class of uncertainty is the ambiguity and the vagueness when math-
ematically formulating the set of constraint functions. This is due to the
fact that there are several different types of constraints, e.g., soft vs hard
constraints, and probabilistic vs deterministic. The requirements for the sat-
isfaction of these constraints can therefore be represented in various different
ways in black-box optimization (Shahraki and Noorossana, 2014).

(V) Preference uncertainty in the objectives

Intrinsically, when dealing with a black-box optimization problem with mul-
tiple conflicting objectives, a source of uncertainty lies in the trade-off of the
objective functions. This is due to the fact that the quality of the candidate
solutions can only be known a posteriori. Hence, regarding the importance
and trade-off of different objective functions, highly subjective decisions have
to be made. This type of uncertainty deals with multi-objective optimiza-
tion, and can be compensated for by introducing a partial order on the space
of objective function values, such as Pareto dominance (Kruisselbrink, 2012).

2.2.3 Modeling Uncertainty and Noise

To properly account for the uncertainties and noise in black-box optimization, we
have to describe the mathematical ways in which they can be modeled. However,
for that, we first have to make an important, albeit an informal distinction between
uncertainty and noise.

17

2. BACKGROUND

Uncertainty vs Noise In the existing literature on robust optimization, there
does not appear to be a clear distinction between uncertainty and noise1. Here, we
provide an informal distinction between both concepts, which are also related to
aleatory and epistemic uncertainties respectively. The most basic understanding
of aleatory uncertainty is that it is fundamentally irreducible, completely random,
and almost certainly unavoidable (Der Kiureghian and Ditlevsen, 2009). This type
of uncertainty can informally be thought of as the additive noise in the context of
black-box design optimization (Beyer and Sendhoff, 2007).

Epistemic uncertainty on the other hand, is, in principle, due to the lack of under-
standing, knowledge, or information on the optimization problem (Der Kiureghian
and Ditlevsen, 2009). The effect of this kind of uncertainty, can, therefore, be
minimized by representing the optimization problem in another way, and/or with
more data. Epistemic uncertainty can also be referred to as just the uncertainty,
albeit in an informal setting. Similar view is also adopted by Cornell (Paté-Cornell,
1996). For a thorough discussion on the differences between uncertainty and noise,
please refer to the work of Kruisselbrink (Kruisselbrink, 2012).

In the following, we review different ways of mathematically representing the
uncertainty.

1. Deterministic

One of the most important ways to mathematically describe the uncertainty
is with the help of deterministic crisp sets, which describe the crisp possibil-
ity of the states of the uncertain variables (Ionescu-Bujor and Cacuci, 2004).
Here, an uncertain variable is usually modeled as a pair: (A, mA), where A

serves as the crisp set, and mA describes the membership function. Note
that the membership function is usually of the form: mA : A → {0, 1}. A
particular design x ∈ A can then take one of the two forms:

• x is a member of the set A, if mA(x) = 1.

• x is not a member of the set A, if mA(x) = 0.

Note that crisp sets may also be referred to as the classical set or full mem-
bership sets in the literature (Ben-Tal et al., 2009; Beyer and Sendhoff, 2007).

1In this thesis, we use both terms interchangeably, which refer to the unexpected drifts and
changes in the optimization setup.

18

2.2 Robust Optimization

2. Probabilistic

In a probabilistic setting, an uncertain variable is assumed to be of a stochas-
tic nature. A probabilistic measure can be established by measuring the
probabilistic frequency of the events that may occur. Uncertainties of this
type can be represented by the probability (density) functions. This refers
to the fact that a function: p : A → R0 maps every event x ∈ A, to a
probability value, which quantifies the likeliness of that event (Kruisselbrink,
2012).

3. Possibilistic

In this setting, the uncertainty is formulated with fuzzy statements, which
describe the possibility (or degree of membership) about the states of the
uncertain variables of interest. As opposed to crisp sets in the deterministic
setting, here we make use of the fuzzy sets. An uncertain variable is modeled
as a pair: (A, mA), where A serves as the fuzzy set, and mA describes
the membership function (Kruisselbrink, 2012). Note that the membership
function in this setting is usually of the form: mA : A → [0, 1]. Thus,
the degree of membership is a real value between 0 and 1. The degree of
membership increase as we get close to 1 (Bagheri et al., 2016).

2.2.4 Cases of Uncertainty and Noise

So far, we have seen five major classes of uncertainty in black-box optimization
(based on their origins), along side three common ways to mathematically repre-
sent them. This gives rise to a total of 15 scenarios in which we can encounter
uncertainty in practical situations. It is intuitive that not all of these scenarios
are equally important. Therefore, a question arises as to which of these scenarios
should be given more consideration over the others for achieving robustness? An-
swering this question will limit the scope of this thesis to a well-defined class of
uncertainty, which will then be the focus for the rest of the thesis. In Table 2.1,
we provide a summary of different classes of uncertainty based on their conceptual
distinction, mathematical representation, and common characteristics.

It is pertinent to note that the first two classes of uncertainty discussed in this
section, namely the Class (I) and (II), are related to the so-called “sensitivity

19

2. BACKGROUND

Table 2.1: A summary of different categorizations of uncertainty in black-box
optimization as described by Kruisselbrink (Kruisselbrink, 2012).

Conceptual Classification Modeling Characteristics

Epistemic (uncertainty)
Possibilistic

Domain unknown
Probabilities unknown

Deterministic
Domain known
Probabilities unknown

Aleatory (noise) Probabilistic
Domain known
Probabilities known

robustness1” (Beyer and Sendhoff, 2007). Furthermore, Class (IV) and (V) are
related to each other in that they do not directly affect the output of the black-box
system. Instead, they influence the search space S, and the set of feasible solutions
A. Uncertainty of Class (IV) is also related to another important concept – the
so-called “reliability-based robustness” (Shahraki and Noorossana, 2014).

2.2.5 Scope of Robust Optimization

Given five different classes of uncertainty in black-box optimization, alongside
three mathematical approaches to model them, one can identify several different
scenarios of robust optimization as presented in Table 2.2. For the scope of robust
optimization in this thesis, however, we limit ourselves to a few of these scenarios.
This is due to the fact that not all of these cases are considered to belong to
robust optimization in the literature. For instance, Bertsimas (Bertsimas et al.,
2010, 2011) only considers the uncertainty in the decision variables to define robust
optimization.

In this work, we only consider the first two types of uncertainties – Class (I) and
(II) – to represent robust optimization. This refers to the fact that we only deal
with sensitivity robustness – robustness which is associated with the sensitivity
of the objective function with respect to the specific changes in the decision and
environmental variables. The most important reasons for limiting the scope of
this work to only the first two types of uncertainties.

1“Sensitivity robustness” refers to the sensitivity of the objective function with respect to
the specific changes in the optimization setup.

20

2.2 Robust Optimization

Table 2.2: A summary of different cases of uncertainty and noise in black-box
optimization as described by Kruisselbrink (Kruisselbrink, 2012). Bold types of
modeling and algorithmic approaches are more common in the literature.

Class Modeling Major Approaches

Class (I)
(1) Deterministic (1) Evolutionary Algorithms
(2) Probabilistic (2) Surrogate Modeling
(3) Possibilistic (3) Quasi-Newton Methods

Class (II)
(1) Deterministic (1) Evolutionary Algorithms
(2) Probabilistic (2) Surrogate Modeling
(3) Possibilistic (3) Mathematical Programming

Class (III)
(1) Deterministic (1) Evolutionary Algorithms
(2) Probabilistic (2) Surrogate Modeling
(3) Possibilistic (3) Mathematical Programming

Class (IV)
(1) Possibilistic (1) Fuzzy Logic
(2) Probabilistic (2) Monte-Carlo Methods

Class (V)
(1) Deterministic (1) Evolutionary Algorithms
(2) Possibilistic (2) Surrogate Modeling

• As indicated earlier, uncertainties of Class (IV) and (V) do not directly af-
fect the candidate solutions. Instead, they affect the search space S and
its image RM when formulating the optimization problem. For this rea-
son, they have been considered separately from robust optimization in the
literature (Jurecka, 2007).

• Uncertainties of type (I) and (II) are most frequent in design optimization,
and can also determine the practical applicability of the optimal solutions to
a large degree (Rehman, 2016). Accounting for these types of uncertainties
is therefore critical (Jurecka, 2007; Kruisselbrink, 2012).

• Accounting for the uncertainty of type (III) refers to optimizing a noisy
objective function, instead of finding robust optima. This formulates an-
other scenario of optimization under uncertainty. Although important, this
scenario is often considered separately from robust optimization, where the
focus is to find optimal solutions, which are practically applicable despite
varying conditions. In his work, Kruisselbrink (Kruisselbrink, 2012) also
considers this type of uncertainty into robust optimization, but treats it
differently from the first two types.

21

2. BACKGROUND

Based on the information provided so far, we can now extend the practical goal
of optimization in Definition 2.5 to formulate the general goal of robust black-box
optimization.

Definition 2.6 (Practical Goal of Robust Black-Box Optimization). Given a
black-box optimization problem with uncertainty and/or noise in the decision and
environmental variables, alongside an optimization goal, and a limited amount of
computational resources. the practical goal of robust black-Box optimization is to
use these resources to find as good as possible solutions despite uncertainty and/or
noise, which are also optimal and useful in the face of uncertainties/noise.

In the remainder of this thesis, we will only deal with single-objective numer-
ical optimization problems, which are subject to uncertainty and noise in the
decision/search variables. We will further assume that the uncertainty/noise is
additive and structurally symmetric in nature, and can only be represented in a
deterministic, or a probabilistic fashion.

2.3 Surrogate Modeling

Continuous optimization problems in real-world application domains, e.g., me-
chanics, engineering, economics and finance, can encompass some of the most
complicated optimization setups. Principal obstacles in solving the optimization
tasks in these areas involve multi-modality (Beasley et al., 1993), high dimensional-
ity (Shan and Wang, 2010), and unexpected drifts and changes in the optimization
setup (Kruisselbrink, 2012; Beyer and Sendhoff, 2007). Due to these obstacles
and the black-box assumption on the optimization setup, traditional numerical
optimization schemes, e.g., gradient descent and Newton methods, are rendered
inapplicable. The majority of the optimization schemes applied in these areas now
focus on utilizing direct-search methods (Lewis et al., 2000; Beyer and Sendhoff,
2007), in particular EAs (Bäck et al., 2018), and SAO (Keane et al., 2008).

The use of direct-search methods, also referred to as derivative-free methods (Au-
det and Hare, 2017), in numerical black-box optimization, can be attributed to
the following reasons.

• Direct-search methods perform well in practice, since many of them are
based on sound heuristics. Recent analysis demonstrates the global conver-

22

2.3 Surrogate Modeling

gence behavior for some of these methods, similar to the results known for
the globalized quasi-Newton methods (Lewis et al., 2000).

• Some of the most important characteristics of direct-search methods, e.g., no
evaluation of the derivative, dictate the practical applicability of these meth-
ods, where more sophisticated techniques fail to perform (Audet and Kokko-
laras, 2016).

Within the scope of direct search methods, EAs and SAO formulate two of the
most important classes of techniques to solve non-linear black-box problems. This
thesis deals with SAO since we further assume that the black-box problem is
expensive to evaluate.

In the following, we provide a brief introduction to SAO.

2.3.1 Introduction

Surrogate-Assisted Optimisation (SAO) refers to solving the optimisation problem
with the help of a surrogate model, also referred to as the meta-model, which
replaces the actual function evaluations by the model prediction (Keane et al.,
2008). The surrogate model estimates the true values of the objective function
under consideration. This is desirable if the objective function is too costly to
evaluate. The abstraction provided by the surrogate model is useful in a variety
of situations. For instance, it simplifies the task to a great extent in simulation-
based modeling and optimisation, by providing the opportunity to evaluate the
objective function indirectly if the exact computation is intractable. Surrogate
models can also provide practically useful insights, e.g., space visualization and
comprehension, about the search space (Forrester et al., 2008).

The idea of SAO was proposed as early as 1974 (Schmit Jr and Farshi, 1974). This
line of research was particularly useful in structural optimization with the name
of response surface approximation. Some of the most important contributions,
concerning the applicability of SAO for structural optimization, include the initial
work of Svanberg (Svanberg, 1987), Toropov (Toropov et al., 1993), Roux (Roux
et al., 1998), Box (Box and Draper, 1987), and Myers (Myers et al., 2016). The first
attempt to classify such methodologies, based on their accuracy, in the context of
structural engineering, was made in 1993 (Barthelemy and Haftka, 1993).

In the context of optimization under uncertainty, surrogate models were investi-
gated by Rehman (Rehman, 2016), Jurecka (Jurecka, 2007), Jin (Jin et al., 2003),

23

2. BACKGROUND

and Persson (Persson and Ölvander, 2013). For a detailed review of surrogate
modeling and its applications in structural engineering, please refer to the work
of Jurecka (Jurecka, 2007).

In the following, we provide a brief overview for response surface models and
Kriging models, two of the widely utilized modeling techniques.

2.3.2 Response Surface Models

The term response surface models (RSM) can be somewhat misleading, since all
types of surrogate models construe a “surface”, which enables the designer to
estimate the function response at untried locations. For this reason, the term
RSM has also been used as a synonym for surrogate models in the literature. A
different understanding of the term, however, points to the “polynomial regression
models” (Bishop, 2007), which were initially utilized for the analysis of physical
experiments (Santner et al., 2003; Jurecka, 2007).

The basic idea behind RSM is to establish an explicit functional relationship
(response surface) between the input and the output variables (Hastie et al.,
2009). We start with the design data of N vectors of co-variate values X =
{x1, x2, . . . , xN}⊤, where each one of these vectors denotes a sample point in the
search space S ⊆ RD. The corresponding response values of the function f are
denoted as y = [f(x1), f(x2), . . . , f(xN)]⊤. Then, a polynomial approximation of
the function f , of degree M , at an untried location x, can be written as:

f̂(x, M,γ) = γ0 + γ1x + γ2x2 + · · ·+ γM xM =
M∑

j=0
γjxj , (2.6)

where the free parameters: γ = {γ0, γ1, . . . , γM}⊤ can be estimated through
the maximum likelihood principle as: Φγ = y, and Φ is the Vandermonde ma-
trix (Kalman, 1984) defined as:

Φ =


1 x1 x2

1 · · · xM
1

1 x2 x2
2 · · · xM

2
...

...
...

. . .
...

1 xN x2
N · · · xM

N

 . (2.7)

The maximum likelihood estimate of γ can be proven to be:

γ = Φ+y, (2.8)

24

2.3 Surrogate Modeling

where Φ+ = (Φ⊤Φ)−1Φ⊤, is the Moore-Penrose pseudo-inverse (Golub and
Van Loan, 2013) of Φ. Using Eq. (2.8), we can estimate the value of the free
parameters.

Note that the polynomial approximation f̂ of the objective function f , based on
M degrees is essentially, a Taylor series expansion of f truncated after M + 1
terms. From this observation, it follows that a greater value of M will yield a
better approximation. However, with greater number of terms, the approximation
also becomes too flexible, and there might be over-fitting and poor generalization
capability. We can prevent this phenomenon by restricting the value of M to be
small (Forrester et al., 2008; Bishop, 2007; Hastie et al., 2009).

One of the ways to do it is through cross-validation, which can determine the
optimal setting of M for a given problem. We can also prevent over-fitting with
the help of regularization, such as Lasso and Ridge regularization (Hastie et al.,
2009; Bishop, 2007). Throughout this thesis, we utilize a RSM with degree M = 2,
combined with the so-called elastic-net penalty, which linearly combines the Lasso
and Ridge regularization terms. It is also pertinent to mention that a higher value
of M will result in a more (computationally) expensive approximation of f , since
computing the inverse of Φ in Eq. (2.7) will become much costlier.

2.3.3 Kriging

Kriging is an interpolation technique based on geostatistics (Woodard, 2000; Ras-
mussen and Williams, 2006), and has been widely utilized as a surrogate modeling
tool in Design and Analysis of Computer Experiments (Sacks et al., 1989; Sant-
ner et al., 2003), Surrogate-Assisted Evolutionary Algorithms (Emmerich, 2005),
Global Optimization (Jones et al., 1998), and Algorithm Configuration (Hutter
et al., 2011). Similar to RSM, we start with the data of N vectors of co-variate
values as: X = {x1, x2, . . . , xN}⊤, and the corresponding functions responses as:
y = [f(x1), f(x2), . . . , f(xN)]⊤. Kriging formulates that the function response at
any untried search point x can be described as a normally distributed random vari-
able Y (x) with mean µ and variance σ2. Furthermore, for any pair x, x′ ∈ RD, the
correlation between f(x) and f(x′) is modeled by a kernel function (Rasmussen
and Williams, 2006). Here, we describe the popular Matérn 3/2 kernel:

k(x, x′) =
(

1 +
√

3l
)

e−
√

3l, l =

√√√√ D∑
i=1

θj(xj − x′
j)2, (2.9)

25

2. BACKGROUND

Start Sampling Plan
 (DoE)

Generate and

Preprocess Data Set

Construct

 Surrogate

 Model
Choose

 Modeling Technique

Perform

 Hyper-parameter

Optimization

1 2 3

7 8

Find Optimal Solution

on Surrogate Model
 End

456

Figure 2.2: Flowchart showing the implementation of a “one-shot optimization”
strategy in this thesis. The “one-shot optimization” strategy is based on surrogate
modeling, to find the optimal solutions in an efficient manner.

where D represents the dimensionality of the problem, and θj measures the influ-
ence of the j-th dimension with respect to the search domain. Then, the Krig-
ing prediction of the function response at any untried point x can be shown to
be:

f̂(x) = µ̂ + c⊤Σ−1(y− 1µ̂), (2.10)

where c is the vector of correlations between x and each of the N sample points,
µ̂ is the generalized least square estimator of µ, Σ is the N×N correlation matrix
between N sample points with elements defined by Eq. (2.9), and 1 is a vector of
1’s.

An estimated mean squared error (MSE) of f̂ arises naturally from Kriging’s
theoretical setup:

s2(x) := E{Y (x)− f̂(x)}2 = σ2
[
1− c⊤Σ−1c + 1− 1⊤Σ−1c

1⊤Σ−11

]
. (2.11)

The MSE is zero at the sample points since the true response of the function is
known at these locations.

2.3.4 Surrogate Modeling in Practice

In this thesis, we implement SAO in two different ways: in the framework of
a “one-shot optimization” (OSO) strategy (Ta’asan et al., 1992), and with the
help of a “sequential model-based optimization” (SMBO) framework (Jones et al.,

26

2.3 Surrogate Modeling

1998). As we shall see, the former is more desirable with regards to practicality
(Chapter 3), due to the potential difficulties and pitfalls of extending the latter to
the robust scenario (ur Rehman et al., 2014). However, we note that the latter is
more stringent in nature, due to the fact that it updates the surrogate model in
an iterative manner, according to a sampling infill criterion (Jurecka, 2007). The
sampling infill criterion encodes the search behavior, i.e., balances the trade-off
of exploration and exploitation, and can be utilized to find a globally optimal
solution on the model surface (Jones et al., 1998).

The working mechanism of OSO strategy in this thesis is described as follows. We
start by generating an initial design data set D = (X, y), on the objective function
f . The locations X = {x1, x2, . . . , xN} can be determined by the DoE methodolo-
gies, such as the Latin Hyper-cube Sampling (LHS) scheme (Montgomery, 2017).
After this, objective function values y = [f(x1), f(x2), . . . , f(xN)]⊤ are computed
on these locations. The next step involves constructing the surrogate model based
on the available data set D. Note that before constructing the surrogate model,
we perform Hyper-parameter Optimization (HPO) to estimate the best configura-
tion of the corresponding hyper-parameters, in order to achieve the best quality
surrogate model based on the available function evaluations (Hutter et al., 2009).
Once the surrogate model is constructed, we utilize a benchmark numerical op-
timization algorithm (Wright et al., 1999) to find the optimal solution on the
model surface, and the process comes to a halt (Ullah et al., 2019). Since we do
not perform an adaptive sampling in this case, the sampling infill criterion does
not need to be extended to care for robustness. This allows us to be much more
thorough and comprehensive in our approach, as we can take into account the vari-
ability in external factors without involving the prohibitively high computational
costs (Bossek et al., 2019).

Similar to the previous case, in the SMBO approach, we also construct the initial
design data set D = (X, y) (Jurecka, 2007). After this, we construct the surrogate
model based on the available data set. Following this, the next query point xnew

(to sample the function) is determined with the help of a sampling infill criterion,
such as the “Expected Improvement” criterion (Jones et al., 1998). The function
response f(xnew) is computed at this location, and the data set D is extended by
appending the pair (xnew, f(xnew)) to it. The surrogate model is then updated
based on the extended data set (Močkus, 2012). This process is repeated until ei-
ther a satisfactory solution is obtained, or a predetermined computational budget,

27

2. BACKGROUND

Start
Set Initial Budget

 and

 Termination Criterion

Generate and

Preprocess Data Set

Sample
 New Point

Choose

 Modeling Technique

(Re-) Construct

Surrogate Model

1

7 8

Compute Function Response

 and

 Extend the Data Set

End

456

Termination

 Criterion

 Reached

9

Yes

No

2 3

Figure 2.3: Flowchart shows the implementation of “sequential model-based op-
timization” framework in this thesis. The “sequential model-based optimization”
framework updates the surrogate model based on a sampling infill criterion, which
encodes the search behavior to find the optimal solution on the model surface.

or another termination criterion is reached. Since at each iteration, the surrogate
model is updated according to an infill criterion, the optimal solution can be ob-
tained in an efficient manner (Jones et al., 1998). While the SMBO approach
is deemed a powerful heuristic to find a globally optimal solution on the model
surface, extending it to the robust scenario is a much more difficult task. The
potential difficulties and pitfalls of extending the SMBO approach to the robust
scenario are explained in detail in Chapter 4.

In this thesis, we attempt to answer some research questions with the help of a
OSO strategy (Chapter 3). These research questions target the potential of sur-
rogate modeling to find robust solutions, and the related difficulties thereof. The
potential of surrogate modeling in this context is evaluated by varying sample
size, modeling technique, problem landscape, dimensionality, robustness formula-
tion, and noise level among others. The OSO strategy is readily applicable to
answer these questions in an empirical fashion (Ullah et al., 2019). However, we
also assume that SMBO is a a powerful heuristic, and it is possible to answer more
advanced research questions with it (Ullah et al., 2021). These research questions
deal with the impact of the sampling infill criterion, computational cost of robust-
ness, and the choice of a robustness criterion in practical scenarios (Chapters 4
and 5).

28

2.4 Summary and Discussion

Important Remarks

In the remainder of the thesis, the terms “efficient global optimization”, “sequen-
tial model-based optimization”, and “Bayesian optimization” are used interchange-
ably to refer to the same concept – surrogate-assisted optimization, where the
surrogate model is iteratively updated according to a criterion/merit to find the
optimal solution. The chosen criterion/merit is referred to as the “sampling infill
criterion”, or the “acquisition function”, which controls the search behavior of the
algorithm, i.e., balances the trade-off between exploration and exploitation.

2.4 Summary and Discussion

This chapter provides a concise overview on three different but related topics,
namely black-box optimization, robust optimization, and surrogate modeling, re-
spectively. Section 2.1 provides a short description of black-box optimization, as
well as definitions for some of the most important and related concepts. This
section also emphasizes on the practical goal of optimization with regards to com-
putational tractability, i.e., computational resources/budget available. Note that
the practical goal of optimization proposes to use the computational resources in
an optimal way to find better solutions, which are an improvement with respect
to the previously known best solutions (Wright et al., 1999).

Section 2.2 introduces the notion of uncertainty and noise in black-box optimiza-
tion. Based on their origins, five different classes of uncertainty and noise are
identified. The sources of uncertainty include decision/search variables, environ-
mental variables, output/evaluation of the system, constraints, and objectives,
respectively. Furthermore, three mathematical ways of modeling these uncertain-
ties: deterministic, probabilistic, and possibilistic, are presented. Based on the
combinations of different classes of uncertainties alongside their mathematical rep-
resentations, we limit the scope of this thesis to only deal with the uncertainties of
the first two types, which can be represented in a deterministic or a probabilistic
fashion (Ullah et al., 2019).

In Section 2.3, we provide a short overview of surrogate modeling, which utilizes
the empirical models to substitute the expensive function evaluations. Surrogate
modeling can be helpful in multiple different ways in black-box optimization (For-
rester et al., 2008). We describe the working mechanism of two of the most im-
portant modeling techniques, namely the RSM and Kriging. We also describe two

29

2. BACKGROUND

different manifestations of surrogate modeling in this thesis, namely the “one-shot
optimization” approach, and the “sequential model-based optimization” approach
respectively.

30

ch
ap

te
r

3
Surrogate-Assisted Robust Optimization

This chapter mainly focuses on the applicability of surrogate modeling to find
robust solutions, which are still optimal and useful in the face of uncertainty and
noise in the decision variables. Uncertainty in the decision variables is frequently-
encountered in engineering, where an approximate model replaces the real-world
(physical) system (Beyer and Sendhoff, 2007). Note that the model can take
arbitrarily precise values of the decision variables, whereas the actual (physical)
system cannot be set arbitrarily precise. As such, the (nominal) optimal solutions
returned by the model may not be useful in practice (Kruisselbrink, 2012; Jurecka,
2007). Therefore, the designer has to aim for robust solutions, which would still
be optimal and useful, even if the real-world (physical) system differs from the
(simulation) model.

Pertaining to find robust solutions via surrogate modeling, following are some
of the key research questions which need to be answered. Note that these ques-
tions are manifestations of the foundational questions introduced in the first chap-
ter.

1. How to choose the sampling plan and data preparation approach for con-
structing a surrogate model?

2. Which modeling technique to prefer for constructing the surrogate?

3. How to assess the quality of the surrogate model?

4. How to deal with the issue of high dimensionality?

5. How can the structure and scale of the uncertainty, the problem landscape,
the dimensionality, and the robustness formulation, impact the quality of
the surrogate model?

32

3.1 Robust Optimization via Surrogate Modeling

To answer these questions in a comprehensive manner, we will first provide an
optimization framework, whereby we can perform empirical research in surrogate
modeling. Note that in real-world scenarios, the issue of high dimensionality can
also affect the practical applicability of surrogate modeling (Shan and Wang, 2010).
Consequently, we devote the later part of this chapter towards dimensionality
reduction in surrogate-assisted optimization.

3.1 Robust Optimization via Surrogate Modeling

We propose an optimization framework, based on OSO strategy (Ta’asan et al.,
1992), which can be employed to find robust solutions via surrogate modeling. The
proposed framework is presented in Fig. 3.1 in the form of a flowchart. Note that
this framework is different from the one proposed by Jurecka (Jurecka, 2007),
which is rooted in the SMBO (Jones et al., 1998) approach. SMBO seeks to
sequentially update the surrogate model based on the so-called “acquisition func-
tion” (Wang, 2018), in order to find the optimal solution. It is an important opti-
mization framework and a topic later in this thesis (Chapters 4 and 5). However,
in this chapter, we deviate from SMBO to examine the practicality of surrogate
modeling to find robust solutions. This is due to two main reasons.

• As stated earlier, SMBO requires to sequentially update the surrogate model
based on the acquisition function, which also needs to be extended to care
for robustness, in order to find robust solutions (Rehman, 2016). Extending
the acquisition function to the robust scenario is a difficult task, since it de-
pends on the way the uncertainty and robustness formulations are specified.
Existing work only focuses on the so-called “Expected Improvement” crite-
rion for only one robustness formulation, namely the so-called “mini-max
robustness” (ur Rehman et al., 2014).

Note that even this approach is limited, as it does not provide a rigorous
mathematical formulation for extending the “Expected Improvement”criterion
to the robust scenario, but rather focuses on computational tractability to
get a reasonably good solution. As we shall see in the next chapter, this ap-
proach is a practical compromise, since modeling the true robust response of
the function within surrogate-assisted robust optimization is computation-
ally intractable. Furthermore, we find that there are no systematic studies
that deal with other types of uncertainties, robustness formulations, and

33

3. SURROGATE-ASSISTED ROBUST OPTIMIZATION

acquisition functions. Therefore, we note that studying the applicability
of surrogate modeling to find robust solutions in a comprehensive manner
with the help of the SMBO approach is extremely difficult. Due to this
reason, we utilize a different optimization framework based on the OSO
strategy (Ta’asan et al., 1992) to answer the questions outlined earlier.

• Implementing surrogate-assisted robust optimization based on our proposed
framework is straightforward, as it does not require extending the acquisition
function, or prohibitively high computational budget. Since the goal here is
to assess the practical applicability of surrogate models based on a number of
criteria1, it makes sense to utilize the proposed framework, as it allows us to
be much more thorough and comprehensive in our empirical approach (Ullah
et al., 2019).

The first step in our proposed framework is the clear formulation of problem de-
scription, alongside uncertainty and robustness specification (Kruisselbrink, 2012).
Note that uncertainty specification deals with two issues, namely the mathematical
modeling of the uncertainty – deterministic vs probabilistic, and the scale/severity
of the uncertainty. It is also important to note that in practical situations, the
structure and the scale of the uncertainty cannot be completely described in ad-
vance (Beyer and Sendhoff, 2007). Nonetheless, the designer, with the help of a do-
main expert, can make a few general assumptions about the quality of the system
at hand, and hence specify uncertainty to some extent. An alternative approach
would be to first find a deterministic solution x, and employ the practical appli-
cability of the nominal solution as an indicator for uncertainty assessment.

Robustness specification in the first step refers to choosing a robustness formula-
tion/criterion to find robust solutions – solutions that are not greatly impacted by
the uncertainties in the search variables (Jurecka, 2007). The choice of robustness
is one of the most critical decisions for the designer, since it can determine the qual-
ity of the robust solution, as well as the efficiency of the optimization (measured
in terms of computational resources), to a large degree (Gregory et al., 2011). The
aim for robustness can be achieved from two different schools of thought, which
are often conflicting (Kruisselbrink, 2012).

1These criteria involve the computational budget/sample size, the modeling technique, the
noise level, the robustness formulation, the dimensionality, and the problem landscape, among
others.

34

3.1 Robust Optimization via Surrogate Modeling

Start

(5)

Perform Hyper-parameter Optimization

(6)

Construct Surrogate Model

(7)

Find Robust Solution

End

(1)

 Problem Description

(2)

Design of Experiment

(3)

Generate and Evaluate Data Set

(4)

Choose Modeling Technique

Figure 3.1: Flowchart shows the proposed framework for surrogate-assisted robust
optimization in this chapter.

35

3. SURROGATE-ASSISTED ROBUST OPTIMIZATION

• Performance/Quality

Robustness of a solution is measured from the perspective of the overall
performance, i.e., function value, under the variation of the uncertain pa-
rameters of the solution.

• Robustness/Stability

Robustness of a solution is measured from the perspective of minimal per-
formance variation under the variation of the uncertain parameters of the
solution.

In Section 3.1.1, we describe some of the most common ways to represent robust-
ness mathematically.

The second step of our framework emphasizes on the specification of sampling
plans (Montgomery, 2017; Santner et al., 2003). Ideally, we want to have the
maximum information about the search space, in order to achieve a high quality
approximation. In practice, however, we only have a finite amount of computa-
tional resources, and thus cannot afford to observe the function response at each
search point. Therefore, we must come up with a plan to extract maximum infor-
mation about the search space with a finite (usually small) number of samples. To
this end, we can select a sampling plan, which according to a criterion/merit, and
available computational budget, completely specifies the sampling points (Gra-
macy, 2020). Section 3.1.2 describes some of the most common sampling plans
based on DoE approaches.

The third step in our framework involves generating the initial design data, i.e., com-
puting function responses, and pre-processing it, if deemed necessary. Note that
pre-processing the data is a common practice in statistical learning (Hastie et al.,
2009), since many modeling techniques make a few general assumptions on the
structure of the data, in order to effectively model it. Pre-processing the design
data may also help with better generalization capability of the model (Bishop,
2007). Despite its importance, however, the decision on the pre-processing should
be carefully made based on the problem at hand, as well as the choice of the
modeling technique, among others.

After the completion of the first three steps, we can construct the surrogate model
based on the modeling technique chosen, e.g., Kriging. Note that the computa-
tional complexity involved to find the robust solution may also be affected by

36

3.1 Robust Optimization via Surrogate Modeling

the choice of the modeling technique (Ullah et al., 2020a). After constructing
the surrogate model, we perform hyper-parameter optimization (HPO) (Hutter
et al., 2011, 2009). The purpose of HPO is to get the best quality surrogate model
based on the available function evaluations, i.e., HPO can improve the quality of
a surrogate model by optimizing the corresponding hyper-parameters.

Following this, we utilize the model to find robust solutions. This refers to the
fact that we employ a benchmark numerical optimization algorithm (Wright et al.,
1999) to find a robust solution1, which utilizes the predictions of the surrogate
model as an approximation to the actual function evaluations. When the algo-
rithm converges, we return the robust solution, and the process comes to a halt.
In the following, we describe some of the most important concepts related to our
optimization framework in further detail.

3.1.1 Robust Counterpart Approach

We deal with the uncertainty in the decision variables, which can be represented
in a deterministic or a probabilistic fashion. When facing this type of uncertainty,
the objective function is transformed as well. Reformulating the objective func-
tion to account for robustness is referred to as the robust counterpart approach
(RCA) (Ben-Tal et al., 2009). The new objective function depends on the choice
of the robustness formulation, which in turn is based on the anticipated structure
of the uncertainty, as well as other criteria, e.g., application domain, computa-
tional budget.

In the following, we describe some of the most common robustness formulations,
employed in this thesis.

Mini-max Robustness

“Mini-max robustness” (MMR) deals with the uncertainty which is modeled with
a deterministic set (Rehman, 2016). Given a real-parameter objective function:
f(x), and the additive uncertainty in the decision variables: ∆x, the “mini-max”
treatment minimizes the worst-case scenario for each search point x, where the
worst-case is defined by taking into account all possible perturbations to x, which
are restricted in a compact set U ⊆ RD (containing a neighborhood of x).

1The robust solution is based on the robustness formulation/criterion chosen in the first step
of the framework.

37

3. SURROGATE-ASSISTED ROBUST OPTIMIZATION

Effectively, this is to minimize the following objective function:

feff(x) = max
∆x∈U

f(x + ∆x). (3.1)

The worst-case scenario refers to the fact that we consider the maximal value of
the function under additive uncertainty at each search point, and try to minimize
that (Ben-Tal et al., 2009; Ullah et al., 2019). As Kruisselbrink notes (Kruis-
selbrink, 2012), this type of uncertainty handling is also referred to as the least
upper bound (LUB). Note that the bounds of the compact set U are based on
the anticipated scale/severity of the uncertainty – based on the maximum antici-
pated deviation of the decision variables from their nominal values. Throughout
this thesis, we assume that the deterministic uncertainty is symmetric around
zero.

Note that feff(x) in Eq. (3.1) is the robust (or effective) counterpart of the original
objective function, which ensures we have a minimal performance variation under
uncertainty. Therefore, this robustness criterion has a great appeal, when dealing
with highly sensitive applications – where the designer cannot afford to accept a
slight deviation in the performance (McIlhagga et al., 1996; El Ghaoui and Lebret,
1997; Herrmann, 1999).

Mini-max Regret Robustness

“Mini-max Regret Robustness” (MMRR) (Jurecka, 2007) focuses on minimizing
the maximum regret under uncertainty. The regret can be defined as the difference
between the best obtainable value of the function f∗ for an uncertainty event ∆x,
and the actual function value under that uncertainty event f(x + ∆x). The best
obtainable response f∗ of the function under an uncertainty event ∆x can be
defined as:

f∗(∆x) = min
x∈S

f(x + ∆x), (3.2)

and the robust counterpart for MMRR can be defined as:

feff(x) = max
∆x∈U

(f(x + ∆x)− f∗(∆x)). (3.3)

Minimizing Eq. (3.3) refers to the fact that firstly, the best achievable response
value for each uncertainty event: ∆x ∈ U, is subtracted from the actual outcome:
f(x + ∆x). Then, the worst-case is determined similar to the MMR. As a conclu-
sion, the optimal solution is identified as the one for which the worst-case has a
minimal deviation from f∗ as defined in Eq. (3.2) (Jiang et al., 2013).

38

3.1 Robust Optimization via Surrogate Modeling

One of the most beneficial aspects of employing MMRR is that it ensures that even
in the worst-case scenario, we are still not very far from the nominal optimum,
and therefore not compromising significantly in terms of optimality. Hence, it can
be argued that it deals with the concerns of both schools of thought in an elegant
manner. The biggest challenge, however, is the prohibitively high computational
demand. Notice that solving Eq. (3.3) inside an iterative optimization framework
(such as SMBO) implies a quadrupled nested loop, which is computationally in-
feasible even for a modest setting of dimensionality.

Expectation-based Robustness

Different from the first two robustness formulations, the expected output of a
noisy function can also serve as a robustness criterion (Kruisselbrink, 2012; Ju-
recka, 2007; Beyer and Sendhoff, 2007). The focus of this robustness criterion is
the overall good performance, rather than the minimal deviation of the optimal
solution under uncertainty. Note, however, that, this robustness formulation (RF)
requires the uncertainty to be defined in a probabilistic manner. The uncertainty
can be modeled according to a continuous uniform probability distribution, if no
prior information is available.

The (effective) robust counterpart of the original function based on “Expectation-
based Robustness” (EBR) is defined as:

feff(x) = E∆x∼U(a,b)[f(x + ∆x)], (3.4)

where the bounds a and b can be set according to the anticipated scale of the
uncertainty.

Dispersion-based Robustness

Minimizing the performance variance under variation of uncertain search vari-
ables (Jurecka, 2007; Kruisselbrink, 2012) is an important criterion to achieve
robustness in several applications (Das, 2000). In this case, the original objective
function: f(x), can be remodeled into a robust objective function: feff(x), by
minimizing the variance as:

feff(x) =
√

Var∆x∼U(a,b)[f(x + ∆x)]. (3.5)

Note that this RF also requires the uncertainty to be defined in a probabilistic
manner, similar to the previous case.

39

3. SURROGATE-ASSISTED ROBUST OPTIMIZATION

Composite Robustness

Different from the robustness criteria mentioned above, practitioners may also
optimize the expected output of a noisy function, while minimizing the dispersion
simultaneously. We refer to this formulation as the “Composite Robustness” (CR).
CR requires the uncertainty to be specified in the form of a probability distribution.
The expectation and dispersion of the noisy function are combined at each search
point x ∈ S to produce a robust output.

The optimization goal thus becomes to find a point x∗ ∈ S, which minimizes:

feff(x) := E∆x∼U(a,b)[f(x + ∆x)] +
√

Var∆x∼U(a,b)[f(x + ∆x)]. (3.6)

Note that this approach also tries to balance the concerns of both schools of
thought, e.g., performance and stability. This approach may also be adapted as
a bi-objective optimization problem, and the two terms in Eq. (3.6) may also be
weighted (Lee and Park, 2001).

3.1.2 Design of Experiment

The surrogate modeling techniques rely on training data, which has to be collected
by evaluating the function responses at well-specified sampling points. The mecha-
nism to choose these points is described with the help of DoE techniques (Gramacy,
2020). As stated earlier, it is often advantageous to minimize the number of sam-
pling points in order to reduce the simulation effort. On the other hand, it is
crucial to extract as much information as possible about the major characteristics
of the system under investigation. Note that the choice of the modeling technique,
e.g., Kriging, can also influence the sampling plan (Montgomery, 2017).

In this thesis, we describe an experimental design as a set of N experiments, each
of which is based on D input variables, which may also be referred to as the factors
or co-variates in this context. An experimental design can be represented with
a matrix X, where the rows distinguish between different experiments, and the
columns represent different factors. As Jurecka notes (Jurecka, 2007), the choice
for a particular DoE depends on the following factors.

• The intended utilization of the model, e.g., to construct a surrogate model
for numerical optimization (Wright et al., 1999), vs space visualization and
comprehension (Forrester et al., 2008).

40

3.1 Robust Optimization via Surrogate Modeling

• Available information concerning the problem at hand, e.g., the complexity,
the dimensionality, and the relevant domain information (Rehman, 2016).

• Additional constraints such as the limitation of the computational resources,
and the choice of the modeling technique (Jurecka, 2007).

In the following, we describe two major classes of DoE techniques.

Full Factorial Design

In full factorial design, we start with the assumption that we have D factors
(or variables) describing our system, which can only take a finite number of val-
ues/levels, which are denoted as L. These levels are completely specified before ob-
serving the system response at any of the locations. Then, the full factorial design
can be defined as the design, which contains all factor-level combinations (Mont-
gomery, 2017). The total number of experiments to be performed results from the
product of the respective number of discrete levels for each factor as:

N =
D∏

k=1

Lk. (3.7)

Note that a full factorial design with D factors, each evaluated at L levels, is
symbolized as LD. Therefore, an increasing number of factors or levels rapidly
raises the experimental effort (Jurecka, 2007).

Fractional Factorial Design

A fractional factorial design consists of a subset of a full factorial design (Gramacy,
2020; Montgomery, 2017). These experimental designs are typically represented as
LD−R, where R defines the reduction compared to the corresponding full factorial
design. The total number of sampling points in a fractional factorial design is only
a fraction of the corresponding full factorial design, where the fractional portion
is (1

L)R of the full design (Jurecka, 2007).

Note that the full and fractional factorial designs have been utilized for perform-
ing screening experiments, where the aim is to identify either especially significant
factors, or factors with negligible effect on the response. In this context, they can
be thought of being useful for reducing the dimensionality of the problem. Ex-
amples of some other DoE techniques, besides full and fractional factorial design,
include Orthogonal Arrays (Parr, 1989), Plackett-Burman designs (Myers et al.,
2016), and Box-Behnken designs (Ferreira et al., 2007).

41

3. SURROGATE-ASSISTED ROBUST OPTIMIZATION

Space Filling Design

For (surrogate) modeling techniques which rely on interpolation, e.g., Kriging,
the quality of the estimation depends on the distance to the nearest sampling
point, as they, i.e., the distance and the quality, are correlated with each other.
Due to this reason, the so-called space-filling property is emphasized a lot in the
context of model-assisted optimization (Rasmussen and Williams, 2006; Gramacy,
2020; Jurecka, 2007). This property ensures that the sampling points are evenly
spread over the entire factor space (search space in the context of continuous
optimization). Consequently, for an arbitrary untried point x, the distance to
the nearest sampling point does not become too large, and a good quality of the
estimation is ensured.

There are two major classes of DoE based on the space-filling property. They are
explained in the following.

Maxi-min Designs

The so-called maxi-min design scheme emphasizes on maximizing the minimum
distance between all pairs of sampling points to ensure space-filling (Johnson et al.,
1990; Tan, 2013). Note that in this context, the choice of metric for measuring
the distance is crucial. If we choose the (squared) Euclidean metric, we can define
the distance as:

D(x, x
′
) = ||x− x

′
||2 =

D∑
j=1

(x− x
′
)2. (3.8)

Then, a design: X∗ = {x1, x2, . . . , xN}, which maximizes the minimum distance
between all pairs of points,

X∗ = argmaxX min {D(xi, xk) : i = 1, . . . , N ∧ i ̸= k}, (3.9)

is called a maxi-min design. Note that the opposite way around, the so-called
mini-max design, also leads to sampling points which are all spread out (Gramacy,
2020).

Latin Hyper-cube Sampling

The aim in latin hyper-cube sampling (LHS) (Gramacy, 2020; Olsson et al., 2003)
is to guarantee a certain degree of spread in the design, while otherwise enjoying
the properties of a random uniform sampling scheme. LHS accomplishes that

42

3.1 Robust Optimization via Surrogate Modeling

by dividing the search space into equal-sized cubes/segments, and ensuring that
each such segments contains just one sample point, which is drawn uniformly
within that cube. If we have only two factors, the pattern of the selected cube
containing a sample resembles latin squares (Jurecka, 2007). Since the location
of the sampling point within the selected cube is allowed to be random, the LHS
does not preclude two points located nearby one another. For instance, two points
may reside near a corner in common between a cube from an adjacent row and
column. Nonetheless, it is important to know that LHS does limit the number of
such adjacent cases, guaranteeing a certain amount of spread.

Formally, a latin hype-cube design X in the search space [0, 1]D is an N×D matrix,
whose ij-th entry can be defined as

xij = lij + (N − 1)/2 + µij

N
, i = 1, . . . , N ∧ j = 1, . . . , D, (3.10)

where µij are independent uniform random samples in [0, 1], and lij represents
the i-th sample and j-th factor from the latin hyper-cube of N designs and D

factors. Note that the denominator N normalizes such that xij is mapped into
[0, 1]D. For a detailed overview of LHS and related space-filling designs, please
refer to the work of Gramacy (Gramacy, 2020), and Montgomery (Montgomery,
2017).

3.1.3 Preparing Data and Choosing a Modeling Approach

After generating the training data set with the help of DoE techniques, it is
important to prepare and present it in a meaningful way to the learning tech-
nique to ensure a good generalization capability of the model. We refer to this
step as the pre-processing of the initial (design) data. Pre-processing the data
may involve dimensionality reduction, screening, space visualization, and scal-
ing/standardization among others (Bishop, 2007; Hastie et al., 2009). Note that
dimensionality reduction and screening could be important for pre-processing if
we are dealing with a large number of design variables.

In general, standardizing the decision variables is important when we compare
measurements that have different units. Decision variables that are measured at
different scales do not contribute equally to the construction of the surrogate mod-
els, and might end up creating a bias. For instance, a decision variable that ranges
between 0 and 1000 may outweigh another decision variable that only ranges be-
tween 0 and 1. Employing these variables without standardization thus may give

43

3. SURROGATE-ASSISTED ROBUST OPTIMIZATION

the variable with the larger range, a weight of 1000 in the analysis (Rehman,
2016).

Transforming the design data to a comparable scale can prevent issues like this.
Typical data standardization procedures equalize the range, and/or data variabil-
ity. Similar to standardization, the goal of normalization is to change the values of
the numerical decision variables in the data set to a common scale, without distort-
ing the differences in the ranges of values. Note that in the context of statistical
learning (Hastie et al., 2009; Bishop, 2007), not every data set requires normaliza-
tion. Rather, data normalization is emphasized only when variables have different
ranges.

Although pre-processing can be crucial, it is hard to specify the exact procedure
for it. This is since the aim is to get the best quality surrogate model for each test
problem with minimum computational effort. In the following, we describe some
general guidelines for pre-processing.

• In the face of a large number of decision variables, dimensionality reduction
becomes important (Shan and Wang, 2010). To this end, one may utilize
the classical dimensionality reduction techniques, e.g., Principal Component
Analysis (Jolliffe, 1986), as well as screening and visualization of the search
space.

• In case the decision variables have different units of measurement, e.g., meter
vs seconds, standardization and/or normalization becomes crucial (Jolliffe
and Cadima, 2016).

• If the chosen modeling technique assumes certain characteristics of the data-
generating process, e.g., standard normal distribution, consider converting
the original design data into a form, which is closer to the assumed behav-
ior (Hastie et al., 2009).

After the data pre-processing, we face another important question, which deals
with the choice of the modeling technique. The selection of the modeling technique
depends on the following factors.

• Approximation Quality

The quality of approximation of the original search space is one of the most
important factors in determining the modeling technique. Since the prob-
lem landscape may exhibit certain undesirable characteristics, e.g., multi-

44

3.1 Robust Optimization via Surrogate Modeling

modality, our modeling technique has to be able to model the function
responses in an effective manner (Jurecka, 2007). Examples of such tech-
niques involve Polynomial Regression, Kriging, Support Vector Regression,
and Artificial Neural Networks, among others. Note that we also have to
avoid over-fitting in addition to maximizing the quality of the approximation,
when choosing a modeling approach (Bishop, 2007; Goodfellow et al., 2016;
Hastie et al., 2009; Vapnik, 1999). This is since some techniques, e.g., Ar-
tificial Neural Networks, are more prone to over-fitting than others, which
may result in poor generalization capability of such models (Ying, 2019).

• Computational Budget

Similar to approximation quality, computational budget is also an important
factor. This is since even if we choose a modeling technique with a good
(approximation) quality, we may not have enough computational resources
to construct the model based on that (Forrester et al., 2008). On the other
hand, it is possible that we may have to choose a less promising modeling
technique in practice simply because of the computational resources avail-
able (Keane et al., 2008).

• Utilization in Optimization

The choice of the modeling technique may also be based on its potential
utilization in the optimization pipeline. For instance, if we want to sequen-
tially update the surrogate model, we need a measure of the uncertainty in
the prediction, which makes Kriging an ideal candidate for the choice of the
modeling technique (Rasmussen and Williams, 2006). On the other hand, if
our purpose is only space visualization and comprehension, we may end up
using the Polynomial Regression (Bishop, 2007).

3.1.4 Appraising the Surrogate Model

An important aspect in model-assisted optimization is the evaluation of the sur-
rogate model (Forrester et al., 2008). An appropriate evaluation criterion can
ensure the quality of our model, and therefore its subsequent usage (Queipo et al.,
2005). There are different criteria that apply to the surrogate models based on
their utilization. In this work, we only deal with two criteria. These are referred
to as the modeling accuracy and the quality of the solution respectively. There are
explained in the following.

45

3. SURROGATE-ASSISTED ROBUST OPTIMIZATION

Modeling Accuracy

We measure the global error in modeling, which is referred to as the Relative
Mean Absolute Error (RMAE) (Shcherbakov et al., 2013). The RMAE measures
the error in the overall approximation of the search space by the surrogate model,
with the help of a testing data set of M instances.

The mathematical formulation of the RMAE is given as

RMAE = 1
M

M∑
i=1

100 ·
(
|fi − f̂i|
|fi|

)
, (3.11)

where fi and f̂i are the target and the predicted values for the i-th test data point.
Note that the RMAE is averaged, normalized, and measured in percentage. The
RMAE indicates the overall precision of the surrogate model. The benefit of em-
ploying RMAE as an assessment criterion is that the quality of the approximation
is always determined relative to the corresponding ground truth/baseline, which
is desirable since different robustness criteria can affect the scale and structure of
the original landscape in different ways (Kruisselbrink, 2012).

Optimality Criteria

Apart from the modeling accuracy, another important criterion employed in this
thesis is based on the difference in the quality (DQ) of the optimal solutions.
In this case, the quality of the optimal solution (obtained from the surrogate
model) is compared to that of a baseline for multiple independent runs. Often,
the baseline is measured by solving the optimization problem with a benchmark
(numerical) optimization algorithm (Wright et al., 1999; Boggs and Tolle, 1995).
Then, the average1 difference between the two solutions is computed, which acts
as a criterion for assessing the performance of the model.

DQ = 1
R

R∑
i=1
|S∗ − Si|, (3.12)

where Si and R denote the optimal solution (obtained from the surrogate model),
and number of independent runs respectively, and S∗ serves as the baseline2.

1Note that in some empirical studies in this thesis (Ullah et al., 2020a), we take the median
in lieu of the average difference. In such situations, it is explicitly stated that the difference in
the quality is measured according to the median.

2The difference between the two solutions can be computed in the search space, as well as
the space of the objective function values. Therefore, Si and S∗ in Eq. (3.12) represent both of

46

3.1 Robust Optimization via Surrogate Modeling

3.1.5 Hyper-parameter Optimization

Hyper-parameter optimization (HPO) refers to estimating the optimal configu-
ration (settings) of the hyper-parameters involved in constructing the surrogate
model (Hutter et al., 2009). HPO can improve the performance of the surrogate
model to a certain degree. Recent advances in computer hardware technology, as
well as the increase in the number of hyper-parameters in algorithm configuration,
have led the researchers and practitioners to employ HPO as a powerful heuristic to
ensure good quality of the approximation in surrogate modeling (Ullah et al., 2019;
Hutter et al., 2011). We employ HPO in our proposed framework to ensure the
best quality surrogate models based on the available function evaluations.

For performing HPO in this thesis, we do not stick to a particular method, but
rather choose an approach which is practically viable for the situation at hand.
This includes the utilization of a grid of values, as well as random and LHS schemes
for HPO. We also employ the Tree Parzen Estimator algorithm (TPE) (Bergstra
et al., 2011) to perform HPO. For the related material on how to perform HPO
in algorithm configuration, please refer to the works of Bergstra (Bergstra et al.,
2011, 2013a), and Hutter (Hutter et al., 2009, 2011).

3.1.6 Empirical Investigation

So far in this chapter, we have provided a basic workflow, whereby we can solve
RO problems via surrogate modeling. The workflow starts with the problem
description, which involves uncertainty and robustness specifications. We assume
that the uncertainty in this work can only be specified by a probability density
function, or a compact deterministic set. The latter describes the potential range
of uncertainty with a set of numeric values in which all values are equally likely.
The robustness formulation is therefore based on the chosen representation of the
uncertainty. Section 3.1.1 describes some of the widely utilized robustness criteria
such as MMR, MMRR, EBR, DBR, and CR (Jurecka, 2007). In Chapter 5, we
will extensively deal with the issue of choosing the robustness criteria based on
the computational efficiency.

The second step in our framework deals with two issues, namely the determination
of the total number of samples, and the corresponding locations in the search space.
We will investigate the first issue – the total number of samples – in the following

these situations with one generalized notation.

47

3. SURROGATE-ASSISTED ROBUST OPTIMIZATION

empirical study (Ullah et al., 2019). For choosing the sampling locations, we
can make use of the DoE techniques mentioned in the literature (Gramacy, 2020;
Montgomery, 2017; Jurecka, 2007). Note that while each of the DoE techniques
has its own merits and demerits, it is recommended to employ a space filling DoE
for model-based optimization. Throughout this work, we utilize the LHS scheme
to determine sampling points.

The next step in our framework is to compute the function responses at the chosen
sampling locations, and pre-process the resulting data set, if deemed necessary.
Pre-processing is an important step in surrogate modeling, since it can help us in
two different ways.

• Pre-processing may help us achieve a higher quality surrogate model, since
it can alleviate some of the problems related to poor generalization of the
model, e.g., multi-dimensional scaling issues, improper representation of the
training data (Hastie et al., 2009).

• Pre-processing may help us construct the surrogate model in an efficient
manner. This is due to the fact that we can employ screening or dimension-
ality reduction techniques in pre-processing, which can provide us with a
representative subset of the most important decision variables (Jolliffe and
Cadima, 2016; Bishop, 2007).

After the pre-processing, we construct the surrogate model based on the modeling
technique chosen. The choice of the modeling technique is based on a number of
factors, such as the ability to model the complex behavior of the system, as well
as the samples size required to train the model adequately (Keane et al., 2008). In
the following empirical investigation, we will attempt to find which of the widely
utilized modeling techniques is most suitable for RO. Note that we also perform
HPO to get the best quality surrogate model. Following this, we perform the
“one-shot optimization” (Ta’asan et al., 1992) to find the robust solution on the
surrogate model.

In the following, we describe the aim, the experimental setup, and the key findings
of our empirical investigation (Ullah et al., 2019).

Aim of the Empirical Investigation

Through this study, we aim to answer the following questions.

48

3.1 Robust Optimization via Surrogate Modeling

• How many samples are required to construct a surrogate with good (approx-
imation) quality?

• Which modeling technique is most suitable for finding the robust solutions?

• How does the scale of the uncertainty, i.e., noise level, affect the quality of
the approximation, and the robust solution?

• What is the impact of problem landscape and dimensionality on the quality
of the approximation, and the robust solution?

• Is the quality of the approximation, and the robust solution, affected by the
choice of the robustness criterion?

• Is surrogate modeling applicable to find robust solutions, i.e., is the quality of
the robust solution (obtained from surrogate modeling), deemed satisfactory,
when compared with the baseline?

Answering these questions in a comprehensive manner is important because of
the associated practical reasons, as it will enable us to find robust solutions in an
efficient manner, with the help of surrogate modeling.

Experimental Setup

In this section, we first describe the optimization problems considered in our study.
We then outline the three levels of noise investigated in our experiments. In partic-
ular, we will specify the context of the noise level for the robustness formulations
employed. Lastly, we will describe the (surrogate) modeling techniques, and the
evaluation criteria to appraise the surrogate models.

We choose six unconstrained black-box optimization problems in our study. Each
of these problems is uniquely identified based on the choice of the test function,
and the dimensionality: D = {2, 5, 10}. The selected test functions are known as
Ackley, Branin, Sphere and Rastrigin. Among these test functions, Branin is only
defined for 2D, Sphere for 5D, Rastrigin for 10D, and Ackley is tested for all three
settings of the dimensionality. This results in a total of six optimization problems.
Note that each one of these problems is investigated on three levels of additive
noise – 5, 10 and 20 % perturbation in the nominal values of the decision variables,
and two robustness formulations – mini-max robustness and composite robustness,
as described in Section 3.1.1. All six optimization problems are presented in Table
3.1, including the box constraints, and key landscape characteristics.

49

3. SURROGATE-ASSISTED ROBUST OPTIMIZATION

Table 3.1: All six optimization problems with test functions, key landscape char-
acteristics, dimensions, and box constraints.

Function Landscape Dimensionality Bounds

Ackley Multi-Modal D = {2, 5, 10} xi ∈ [−32.768, 32.768]
Branin Multi-Global D = {2} x1 ∈ [−5, 10], x2 ∈ [0, 15]
Sphere Isotropic D = {5} xi ∈ [−5, 5]
Rastrigin Multi-Modal D = {10} xi ∈ [−5.12, 5.12]

In our setup, we consider three levels of additive noise. The effect of the additive
noise in the decision variables has already been presented in Chapter 2. Let
R = |Ub − Lb| be the absolute range of the decision variables, where Ub and
Lb serve as the upper and lower limits of the box constraints for the decision
variables. Further, let L be the additive noise level. In the case of mini-max
robustness, this means having a neighbourhood of each design x, whose scale is
defined by the parameters range R and noise level L. As an example, the Ackley
function is defined from Lb = −32.768 to Ub = 32.768, having an absolute range
of R = 65.536.

Considering the first noise level, i.e., L = 5 % in Eq. (3.1), this means the size of
the neighborhood is defined as: L×R = 0.05× 65.536 = 3.2768. Throughout this
thesis, we assume the noise is symmetric around zero, hence a neighbourhood:
U = [−3.2768, 3.2768], of design x is constructed, and Eq. (3.1) can be solved.
For composite robustness in our setup, we employ a normal distribution as: ∆x ∼
N (0, σ2), where the variance is defined as: σ2 = (L×R)

6 , and L and R serve as the
noise level and the absolute range of the decision variables, same as above. Once
the noise is specified in the form of a probability distribution, the CR in Eq. (3.6)
can be solved.

We choose six (surrogate) modeling techniques in our study, namely Kriging (Ras-
mussen and Williams, 2006), Support Vector Machines (SVM) (Cristianini and
Shawe-Taylor, 2004), Radial Basis Function Network (RBFN) (Orr et al., 1996),
Random Forest (RF), K-Nearest Neighbors (KNN), and Polynomial Regression
with Elastic-net penalty (ELN) (Bishop, 2007), for each of the six optimization
problems with three levels of noise. More specifically, for each case – for each
unique combination of the test problem and the noise level, we train these model-
ing techniques on ten different training sample sizes as: N = D×K, where D ∈ D

50

3.1 Robust Optimization via Surrogate Modeling

is the corresponding setting of the dimensionality, and K is a factor that maps
the dimensionality to the sample size. The resulting surrogate model – for each
setting of the sample size – is evaluated with respect to the modeling accuracy
on a testing data set with size: M = 75 ×D. The sampling points to train and
test the surrogate models are generated using LHS scheme. To achieve the best
results in model training, we perform HPO with cross-validation, based on a grid
of values.

The criteria to evaluate the surrogate models in our study are based on the mod-
eling accuracy, and the quality of the obtained (robust) solutions. To find the
robust solutions on the surrogate models, a benchmark optimization algorithm is
run on the model surface. To this end, the Sequential Least Square Programming
(SLSQP) (Boggs and Tolle, 1995) is chosen as the benchmark. To evaluate the
surrogate models for the second criterion, each model is first constructed using
HPO on a training sample of N = 50 ×D. An optimization run with SLSQP is
then performed on the constructed model to minimize Eqs. (3.1) and (3.6). This
process is repeated a 100 times, and the difference in the quality DQ of the solu-
tions is computed according to Eq. (3.12). Note that the difference in the quality
DQ in this context is based on the objective function values.

3.1.7 Results

Graphs showing the (modeling) accuracy of the surrogate models, by varying the
training sample size N , evaluated on the basis of RMAE, are presented in Figs. 3.2
– 3.7. Note that each curve in these plots is accompanied with standard error
(SE) (in the computation of RMAE for a particular choice of the training sample
size). The modeling accuracy results for the two dimensional Ackley function are
presented in Fig. 3.2, whereas the results for the two dimensional Branin function
are illustrated in Fig. 3.3. We show the modeling accuracy of the surrogates on five
dimensional Ackley and Sphere functions in Figs. 3.4 and 3.5 respectively. Lastly,
the modeling accuracy results for the ten dimensional functions are presented in
Figs. 3.6 and 3.7.

To find the best surrogate model for each of the 36 test scenarios – owing to the
combination of two robustness criteria, three noise levels, and six test problems,
we rank the surrogates based on the RMAE, which is averaged over all ten settings
of the training sample size N . Note that the ranking is based on an ascending
order (lowest to highest average RMAE for each test scenario). Then, we perform

51

3. SURROGATE-ASSISTED ROBUST OPTIMIZATION

a non-parametric test, namely the so-called Mann-Whitney U test, to find if there
is a statistical difference in the performance of the top two surrogate models, i.e, to
verify that the top performing surrogate model is indeed significantly better than
the nearest opponent. The resulting p-values for all 36 test scenarios are presented
in Fig. 3.8. Additionally, the frequencies of the modeling techniques, having the
top performing surrogates, for all optimization problems, are presented in Fig. 3.9.
Note that this figure follows the similar evaluation criteria to find the top per-
forming surrogates, i.e., lowest average RMAE. Finally, the results concerning the
performance of the surrogate models based on the optimality criterion – the differ-
ence in the quality DQ of the robust solution, for all thirty six cases, are presented
in Fig. 3.10.

In the following, we report the major findings from our investigation.

• Sample Size

From the graphs in Figs. 3.2 – 3.7, we find that even a small setting of
K results in a good (approximation) quality for most of the test scenarios.
The only exception we find is related to the Branin function, where the
quality of the approximation is not adequate, even for a higher value of K.
Our observation validates the generally employed heuristic in model-assisted
optimization, which states that the initial sample size can be set linearly in
terms of dimensionality (Forrester et al., 2008; Jurecka, 2007).

• Modeling Technique

As Fig. 3.9 suggests, in most cases, we obtain the best quality1 surrogate
models from Kriging, SVMs, and Polynomials. This observation validates
the capability of Kriging and Polynomials to model complex system behav-
iors in an effective manner (Santner et al., 2003; Gramacy, 2020). Besides,
it also indicates the promising nature and practical applicability of SVMs in
surrogate modeling.

• Impact of Noise Level

From these results, we find that the noise level, in general, does not have a
detrimental impact on the quality of the approximation, as we mostly ob-
serve similar curves across columns of subplots in Figs. 3.2 – 3.7. We also

1Note that in this case, the quality is solely based on the modeling accuracy.

52

3.1 Robust Optimization via Surrogate Modeling

observe that the quality of the optimal solution is not significantly deteri-
orated with increasing noise level (cf. Fig. 3.10). However, it is pertinent
to mention that these findings cannot be generalized to other optimization
frameworks, e.g., SMBO, since there is a possibility that the noise can prop-
agate through the acquisition function (which is to be extended to care for
uncertainty and noise).

• Impact of Dimensionality and Problem Landscape

From these results, we observe that dimensionality affects the quality of the
optimal solutions for CR. The techniques affected by the dimensionality in
this context include Kriging, RBFN, KNN, and RF. Furthermore, we find
that in terms of the quality of the solution, the problem landscape can have
a significant impact, i.e., notice that highly multi-modal functions, such as
Rastrigin, seem extremely difficult to optimize, as opposed to the isotropic,
and multi-global landscapes.

• Robustness Formulation

We find that the problem landscape, induced by CR, seems difficult to op-
timize in most cases. One of the possible reasons for that is that unlike
MMR, it relies heavily on numerical approximations, i.e., monte-carlo sam-
ples to estimate mean and variance of the noisy objective function, which
can deteriorate the quality of the solution to a certain extent.

• Applicability of Surrogate Modeling

Based on the overall performance of the surrogate models in terms of model-
ing accuracy, and quality of the robust optimal solutions, we conclude that
surrogate modeling is applicable for efficiently solving optimization problems
under uncertainty. This is due to the fact that in most cases, the quality of
the approximation obtained from Kriging, SVMs, and Polynomials is good
enough to employ a surrogate to find robust solution. The quality of the op-
timal solutions in most cases is also satisfactory1, since the optimal function
value found on the model surface is close to the baseline/ground truth (Ullah
et al., 2019).

1Notice that in some cases, the difference in quality is non-existent.

53

3. SURROGATE-ASSISTED ROBUST OPTIMIZATION

20 40 60 80 100

20

21

22

23

24

RM
AE

Noise Level = 5 %

M
in

i-m
ax

 R
ob

us
tn

es
s

20 40 60 80 100

20

21

22

23

24

25

Noise Level = 10 %

20 40 60 80 100

20

21

22

23

24

25

Noise Level = 20 %

20 40 60 80 100
Sample Size

20

21

22

23

24

RM
AE

Co
m

po
sit

e
Ro

bu
st

ne
ss

20 40 60 80 100
Sample Size

20

21

22

23

24

25

20 40 60 80 100
Sample Size

20

21

22

23

24

25

26

Kriging KNN SVM RF ELN RBF

Figure 3.2: Modeling accuracy of the surrogates for the two dimensional Ackley
function. The modeling accuracy is evaluated on six test scenarios, owing to the
combination of three noise levels, and two robustness criteria.

20 40 60 80 100

23

24

25

26

27

28

RM
AE

Noise Level = 5 %

M
in

i-m
ax

 R
ob

us
tn

es
s

20 40 60 80 100
22

23

24

25

26

27

Noise Level = 10 %

20 40 60 80 100
22

23

24

25

26

27

Noise Level = 20 %

20 40 60 80 100
Sample Size

22

23

24

25

26

27

28

29

RM
AE

Co
m

po
sit

e
Ro

bu
st

ne
ss

20 40 60 80 100
Sample Size

22

23

24

25

26

27

28

29

20 40 60 80 100
Sample Size

22

23

24

25

26

27

28

Kriging KNN SVM RF ELN RBF

Figure 3.3: Modeling accuracy of the surrogates for the two dimensional Branin
function.

54

3.1 Robust Optimization via Surrogate Modeling

50 100 150 200 250

21

22

23

RM
AE

Noise Level = 5 %
M

in
i-m

ax
 R

ob
us

tn
es

s

50 100 150 200 250

21

22

Noise Level = 10 %

50 100 150 200 250

21

22

Noise Level = 20 %

50 100 150 200 250
Sample Size

21

22

RM
AE

Co
m

po
sit

e
Ro

bu
st

ne
ss

50 100 150 200 250
Sample Size

20

21

22

50 100 150 200 250
Sample Size

20

21

22

Kriging KNN SVM RF ELN RBF

Figure 3.4: Modeling accuracy of the surrogates for the five dimensional Ackley
function.

50 100 150 200 250

2 7

2 5

2 3

2 1

21

23

25

RM
AE

Noise Level = 5 %

M
in

i-m
ax

 R
ob

us
tn

es
s

50 100 150 200 250

2 7

2 5

2 3

2 1

21

23

25

Noise Level = 10 %

50 100 150 200 250

2 7

2 5

2 3

2 1

21

23

25

Noise Level = 20 %

50 100 150 200 250
Sample Size

2 1

20

21

22

23

24

25

RM
AE

Co
m

po
sit

e
Ro

bu
st

ne
ss

50 100 150 200 250
Sample Size

2 1

20

21

22

23

24

25

50 100 150 200 250
Sample Size

20

21

22

23

24

25

Kriging KNN SVM RF ELN RBF

Figure 3.5: Modeling accuracy of the surrogates for the five dimensional Sphere
function.

55

3. SURROGATE-ASSISTED ROBUST OPTIMIZATION

100 200 300 400 500

20

21

RM
AE

Noise Level = 5 %
M

in
i-m

ax
 R

ob
us

tn
es

s

100 200 300 400 500

20

21

Noise Level = 10 %

100 200 300 400 500

20

21

Noise Level = 20 %

100 200 300 400 500
Sample Size

2 1

20

RM
AE

Co
m

po
sit

e
Ro

bu
st

ne
ss

100 200 300 400 500
Sample Size

2 1

20

21

100 200 300 400 500
Sample Size

2 1

20

Kriging KNN SVM RF ELN RBF

Figure 3.6: Modeling accuracy of the surrogates for the ten dimensional Ackley
function.

100 200 300 400 500

21

RM
AE

Noise Level = 5 %

M
in

i-m
ax

 R
ob

us
tn

es
s

100 200 300 400 500

21

Noise Level = 10 %

100 200 300 400 500

21

Noise Level = 20 %

100 200 300 400 500
Sample Size

21

RM
AE

Co
m

po
sit

e
Ro

bu
st

ne
ss

100 200 300 400 500
Sample Size

21

100 200 300 400 500
Sample Size

20

21

Kriging KNN SVM RF ELN RBF

Figure 3.7: Modeling accuracy of the surrogates for the ten dimensional Rastrigin
function.

56

3.1 Robust Optimization via Surrogate Modeling

MM__
5

MM__
10

MM__
20

RC__
5

RC__
10

RC__
20

Ack
2D

Bran
2D

Ack
5D

Sph
5D

Ack
10

Ras
t10

D

0.42 0.4 0.01 0.0001 0.012 0.06

0.19 0.42 0.01 0.0001 0.008 0.06

0.012 0.15 0.01 0.0001 0.015 0.24

0.15 0.42 0.0001 0.0001 0.28 0.037

0.14 0.42 0.0001 0.0001 0.26 0.19

0.28 0.037 0.0001 0.002 0.12 0.052
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Figure 3.8: p-values for all thirty-six test scenarios. The test scenarios are based
on six optimization problems (Y-axis), and the combination (X-axis) of three noise
level, and two robustness criteria.

Krig
ing SVM

RBFN
KNN RF

ELN

Ack
2D

Bran
2D

Ack
5D

Sph
5D

Ack
10

Ras
t10

D

0 4 0 2 0 0

5 1 0 0 0 0

0 6 0 0 0 0

6 0 0 0 0 0

0 3 0 0 0 3

0 0 0 0 0 6

0

1

2

3

4

5

6

Figure 3.9: Number of occurrences of the modeling techniques, producing the
best quality surrogate models. Note that the quality in this context is based on the
RMAE values, averaged over all ten settings of the sample size N .

57

3. SURROGATE-ASSISTED ROBUST OPTIMIZATION

20

21

22

23

24

25

26

27

28

 (f
un

ct
io

n
va

lu
es

)

Mini-max Robustness

No
ise

 L
ev

el
 =

 5
 %

Composite Robustness

20

21

22

23

24

25

26

27

 (f
un

ct
io

n
va

lu
es

)
 N

oi
se

 L
ev

el
 =

 1
0

%

Ack2D Bran2D Ack5D Sph5D Ack10 Rast10D
20

21

22

23

24

25

26

27

 (f
un

ct
io

n
va

lu
es

)
 N

oi
se

 L
ev

el
 =

 2
0

%

Ack2D Bran2D Ack5D Sph5D Ack10 Rast10D

Kriging SVM RBFN KNN RF ELN

Figure 3.10: The difference in the quality DQ of the robust solutions (obtained
from surrogate modeling), for all thirty six test scenarios. Note that the quality
in this context is based on the objective function values, measured according to
Eq. (3.12). Furthermore, the number of independent runs in this context are set to
be 100.

58

3.2 The “Curse of Dimensionality”

3.2 The “Curse of Dimensionality”

So far in this chapter, we have exclusively dealt with the issue of uncertainty
and noise in continuous optimization. We have proposed a modified optimization
framework (as opposed to SMBO), based on surrogate modeling, which enables
us to solve robust optimization problems in an efficient manner. Note that the
notion of “efficiency” in this context emphasizes on the computational time taken
to solve the optimization problem. We believe to have achieved efficiency, since
we replaced the actual (expensive) function evaluations by the model predictions.
Note, however, that continuous optimization problems in real-world application
domains, e.g., mechanics, engineering, economics and finance, can also have an
additional obstacle, namely the obstacle of high dimensionality, which can hinder
the computational efficiency (Chen et al., 2015).

Modeling high dimensional optimization problems with surrogates is challeng-
ing (Shan and Wang, 2010), due to two main reasons.

• More training data is required to achieve a comparable level of modeling ac-
curacy, as the dimensionality increases (Forrester et al., 2008), which results
in a considerable upsurge in the computational budget to solve the problem
(due to the expensive function evaluations to generate the training data set).

• Algorithmic complexity to construct the surrogate model also increases rapidly
with respect to the dimensionality of the problem, and the number of train-
ing data points (Stork et al., 2020; Forrester et al., 2008).

Therefore, constructing the surrogate model becomes much costlier, as the dimen-
sionality increases, which is referred to as the “Curse of Dimensionality” (Bishop,
2007). To highlight this issue, upper bounds on the time complexities of the most
common surrogate models are presented in Table 3.2. Note that in Table 3.2, D,
N , Ntrees, Nsv, and K, stand for the dimensionality of the problem, the number
of training data points, the number of trees in RF, the number of support vectors
in SVMs, and the number of neighbours in KNNs respectively. From Table 3.2, it
can be deduced that higher dimensionality can severely affect the computational
budget in model-assisted optimization in two different ways: directly – by a higher
value of D, and indirectly – by a higher value of N , Ntrees, Nsv, and K.

Various methodologies have been proposed to deal with the issue of high dimen-
sionality in model-assisted optimization, including divide-and-conquer (Yang et al.,

59

3. SURROGATE-ASSISTED ROBUST OPTIMIZATION

Table 3.2: Training and prediction time complexities of the most common surro-
gate models. Notation: Ntrees is the number of trees in Random Forest, Nsv is the
number of support vectors in Support Vector Machines, and K is the number of
neighbours in K-Nearest Neighbours.

Model Training Prediction

Quadratic Regression O(D4N + D9 + D2) O(D2)
Random Forest O(N2DNtrees) O(NNtrees)
Support Vector Machines O(N2D + N3) O(DNsv)
K-Nearest Neighbours O(1) O(KD)
Kriging O(N3D) O(ND)

2017), variable screening (Wang, 2009), and mapping the data space to a lower
dimensional space (Robinson et al., 2008) using dimensionality reduction tech-
niques (DRTs). One of the most common DRTs is Principal Component Analysis
(PCA) (Jolliffe and Cadima, 2016). PCA can be defined as the orthogonal projec-
tion of the data onto a lower dimensional linear space, known as the “principal
subspace”, such that the variance of the projected data is maximized (Bishop,
2007). Various generalized extensions of PCA have been established in the lit-
erature, such as Kernel PCA (Schölkopf et al., 1998), Probabilistic PCA (Tip-
ping and Bishop, 1999b; Roweis, 1998), and Bayesian PCA (Tipping and Bishop,
1999a).

On the other hand, Autoencoders (AEs) (Goodfellow et al., 2016; Hinton and
Zemel, 1994) have been contemplated as feed-forward neural networks (FFNNs)
trained to attempt to copy their input to their output, so as to learn the useful
low dimensional encoding of the data. Like PCA, AEs have also been extended
over the years by generalized frameworks, such as Sparse Autoencoders (Ranzato
et al., 2007), Denoising Autoencoders (Bengio et al., 2013), Contractive Autoen-
coders (Rifai et al., 2011), and Variational Autoencoders (VAEs) (Kingma and
Welling, 2014; Rezende et al., 2014; Kingma et al., 2019). Besides PCA and AEs,
other important DRTs include Isomap (Tenenbaum et al., 2000), Locally-Linear
Embedding (Roweis and Saul, 2000), Laplacian Eigenmaps (Belkin and Niyogi,
2002), Curvilinear component analysis (Demartines and Hérault, 1997), and t-
distributed stochastic neighbor embedding (Maaten and Hinton, 2008).

In this thesis, we tackle the issue of high dimensionality by performing dimension-
ality reduction with the help of DRTs. To this end, we face a question on which

60

3.2 The “Curse of Dimensionality”

DRT to choose for? Ideally, we want to choose a technique which can help us con-
struct a low dimensional surrogate model, which is still useful and approximates
the original search space similar to the corresponding (original) higher dimensional
surrogate. To find the most suitable DRT in this context, we perform yet another
empirical investigation, which takes into account the impact of external factors as
well.

In our study, we evaluate and compare the potential of four of the most important
DRTs mentioned above, namely PCA, Kernel PCA, AEs and VAEs. We choose
PCA and AEs due to their historical significance, since both have been employed
regularly for dimensionality reduction, lossy data compression, feature learning,
and data visualization (Bishop, 2007; Goodfellow et al., 2016) in machine learning.
We incorporate Kernel PCA due to the generalized non-linear extension of the
classical PCA algorithm (Schölkopf et al., 1998). Similarly, we consider VAEs in
this paper due to the presence of the non-linear stochastic encodings (Kingma
and Welling, 2014; Ullah et al., 2020a) of the data space, which can be utilized
for constructing the surrogate models efficiently. The focal point of our study
is to provide a novel perspective on the applicability of these DRTs in model-
assisted optimization. This is accomplished by performing an extensive quality
assessment of the corresponding low dimensional surrogate models (LDSMs) on a
broad spectrum of of test cases. For a comprehensive overview on DRTs, please
refer to the works of Sánchez and Maaten (Van Der Maaten et al., 2009).

3.2.1 Principal Component Analysis

Principal Component Analysis (PCA) is a data pre-processing method, which is
commonly employed for dimensionality reduction, feature engineering, and data
visualization (Jolliffe and Cadima, 2016; Bishop, 2007). PCA learns a linear map
RD → RD, that transforms the original data set into a centered and uncorrelated
one, meaning after the transformation, the sample mean is zero, and the sample
co-variance matrix is diagonal.

Denoting by X = {x1, x2, . . . , xN}⊤ the design matrix, PCA starts with calculat-
ing its sample mean as:

µ =

[
1
N

N∑
i=1

Xi1, . . . ,
1
N

N∑
i=1

XiD

]⊤

, (3.13)

61

3. SURROGATE-ASSISTED ROBUST OPTIMIZATION

and centering the original design matrix as:

X̄ = X− 1Nµ, (3.14)

where 1N is a vector containing N 1’s, and each element inside µ represents
the mean of a particular co-variate (decision variable) for the initially generated
design data. Then, the first principal component (PC) u1 can be identified by
maximizing the variance of X̄ projected onto u1 as:

u1 = argmax
||u|| ≤1

Var{X̄u}. (3.15)

Similarly, further principal components can be obtained by removing the already-
computed PCs from X̄, and then solving the same maximization problem.

Note that the variance of the data projections onto each PCs is monotonically
decreasing concerning the order of PCs. It is not difficult to verify that all PCs
are necessarily the eigenvectors of the sample co-variance matrix: X̄⊤X̄/N , sorted
with respect to the decreasing order of their corresponding eigenvalues. Using
PCA for dimensionality reduction, we select a subset of computed PCs according
to a user-specific criterion, e.g., to keep the first several PCs such that the variance
of the data projections onto them sum up to a satisfying percentage of the total
variability of the original data. In this work, we shall select the first L PCs, where
L is the size of the latent space1.

3.2.2 Kernel Principal Component Analysis

Kernel Principal Component Analysis (KPCA) utilizes the so-called “kernel trick”,
which transforms the original data points into a high dimensional (usually infinite
dimensional) feature space using a non-linear feature map, and performs the linear
PCA therein (Schölkopf et al., 1998).

Formally, we denote the feature map as:

ϕ : RD → H, (3.16)

where the feature space H is a reproducing kernel Hilbert space (RKHS) (Berlinet
and Thomas-Agnan, 2011; Bertsimas and Koduri, 2022), equipped with a repro-
ducing kernel such as:

k(x, ·) := ϕ(x), (3.17)
1The term “latent space” refers to the newly created feature space, induced by the chosen

PCs.

62

3.2 The “Curse of Dimensionality”

X Encoder
f (x)

Z

~
X

Decoder
g (z)

Figure 3.11: A schematic diagram of an under-complete Autoencoder. The Au-
toencoder receives some data x, which is encoded to produce a code z. The decoder
takes this code to reproduce the original data, albeit with some deterioration.

and an inner product defined as:

⟨ϕ(x), ϕ(x′)⟩H = k(x, x′). (3.18)

For the transformed data points: {ϕ(x1), ϕ(x2), . . . , ϕ(xN)}⊤, we first calculate
their sample mean:

ϕ̄ = 1
N

N∑
i=1

ϕ(xi), (3.19)

and the pairwise inner product, which is defined as:

K = (k(xi, xj))ij . (3.20)

Then, by seeking a point: u1 ∈ H, that maximizes the variability of the data
projections onto it, we identify the first PC as:

u1 = argmax
∥u∥H≤1

1
N

N∑
i=1
⟨u, ϕ(xi)− ϕ̄⟩H. (3.21)

Without further derivations, we state that the solution to this problem is:

u1 =
N∑

i=1
α

(1)
i (ϕ(xi)− ϕ̄), (3.22)

where α
(1)
i is the eigenvector that corresponds to the largest eigenvalue of the

matrix: HKH (H = IN×N − N−11N). As with linear PCA, we proceed to
compute further components in the same way after removing the data projections
onto the already-computed PCs. In essence, all PCs take the same form of u1,
and the coefficients thereof are determined by eigenvectors of HKH.

3.2.3 Autoencoders

Autoencoders (AEs) (Goodfellow et al., 2016; Hinton and Zemel, 1994) are a
family of deep generative models, which approximate the data distribution by

63

3. SURROGATE-ASSISTED ROBUST OPTIMIZATION

constructing a lower dimensional representation of the data points. An AE consists
of two feed-forward neural networks (FFNNs) for the encoder and the decoder
respectively. The encoder: z = f(x), takes the input x, and produces a code
z used to represent the input. The decoder takes this code, and produces a
reconstruction: x′ = g(z), of the original data. AEs are restricted in ways that
allow them to learn the most salient features of the data. We employ the so-called
“Under-complete Autoencoders” (UAEs) in our study, which are constrained to
have smaller dimensions for z, when compared with the original data x. The
learning process in UAEs focuses on minimizing a loss function: L(x, g(f(x))),
such as mean squared error (MSE). A graphical illustration of a standard AE is
presented in Fig. 3.11.

3.2.4 Variational Autoencoders

Variational autoencoders (VAEs) (Kingma and Welling, 2014; Rezende et al.,
2014) are AEs, which provide a principled methodology for employing deep latent-
variable models, and can be used to learn complex data distributions in a gener-
ative fashion. The data: x ∈ RD, and the latent variables: z ∈ RL, are jointly
related by the chain rule:

pθ(x, z) = pθ(x|z)pθ(z), (3.23)

where L < D, and θ denote the associated set of parameters. More specifically, a
VAE consists of two coupled but independently parameterized models: an infer-
ence (also called an encoder or recognition) model, and a generative (also called
a decoder) model; both of which are implemented by non-linear functions, such
as neural networks (Goodfellow et al., 2016; Kingma et al., 2019). The encoder
encodes the input data x to the set of latent variables z, and the decoder maps
these latent variables z back to reproduce x.

The VAE treats the conditional probability distribution pθ(x|z) as a function ap-
proximation of x. However, the non-linear mapping from z to x can not be imple-
mented directly because of the intractable posterior pθ(z|x) on the latent-variable.
The VAE thus introduces the variational distribution qϕ(z|x), parameterized by
ϕ to approximate the intractable posterior pθ(z|x). The parameters for the ap-
proximate posterior qϕ(z|x) are generated by the encoder network. Lastly, the
variational approximation qϕ(z|x) of pθ(z|x) enables the use of Evidence Lower

64

3.2 The “Curse of Dimensionality”

X
Encoder

Qϕ (z | x)

μϕ

σϕ

z = μϕ+σϕϵ

Decoder

Pθ (x | z)

ϵ ~ N (0,I)

μθ

σθ

~
X

Figure 3.12: The schematic diagram of a vanilla Variational Autoencoder, where
the code z is produced with the help of the reparameterization trick.

Bound (ELBO) as:

log pθ(x) ≥ −KL(qϕ(z|x)||p(z)) + Ez∼qϕ(z|x)[log pθ(x|z)], (3.24)

where KL(Q||P) is the Kullback-Leibler divergence between two probability dis-
tributions Q and P . In the original work of Kingma and Welling (Kingma
and Welling, 2014), the variational posterior qϕ(z|x) is modeled by a Gaussian
N (µ, diag(σ2)), where the parameters µ and σ2 are the outputs of the inference
network, and diag corresponds to the diagonal co-variance structure of the Gaus-
sian distribution. The prior p(z) is assumed to be a standard Gaussian distribu-
tion. The training process focuses on maximizing ELBO, which yields the optimal
parameters for the inference and generative networks. A low variance estimator
can be substituted with the help of the reparameterization trick: z = µ + σ ⊙ ϵ ;
where ϵ ∼ N (0, I) is a vector of standard Gaussian variables, and ⊙ denotes the
element-wise product:

Ez∼qϕ(z|x)[log pθ(x|z)] = Eϵ∼N (0,I)[log pθ(x|z = µ + σ ⊙ ϵ)]. (3.25)

In summary, VAEs are AEs, which provide a principled framework to learn deep
latent-variable models efficiently by combining the Variational Inference (VI) and
the reparameterization trick. Due to this reason, they have become a very im-
portant tool for dimensionality reduction, lossy data compression, representation
learning, and generative modeling. The graphical representation of a VAE is pre-
sented in Fig. 3.12.

65

3. SURROGATE-ASSISTED ROBUST OPTIMIZATION

3.2.5 Dimensionality Reduction

As previously discussed, high dimensionality poses major difficulties in the appli-
cability of model-assisted optimization (Ullah et al., 2019). Consequently, we are
interested in performing dimensionality reduction to efficiently construct the low
dimensional surrogate models. To this end, however, we face an important ques-
tion concerning the choice of the DRT. To answer this question, we conduct an
empirical investigation, which emphasizes on some of the most important DRTs,
such as PCA, KPCA, AEs, and VAEs. We are interested in evaluating the efficacy
of the low dimensional representations of the data, obtained after performing di-
mensionality reduction by these techniques. The low dimensional surrogate models
constructed from these representations/encodings can be represented as:

f̂l : T ⊆ RL → R, (3.26)

where T is the low dimensional feature space of the original search space.

Building the surrogate models in this lower dimensional space is beneficial for two
main reasons. Firstly, we can alleviate the curse of dimensionality by controlling
the size of the latent space. Secondly, with some tolerance, the low dimensional
representations from the latent space contain enough information to reconstruct
the original features in S. Together, these rationales allows us to make a compro-
mise on the quality of the surrogate model, and the computational budget (Roweis
and Saul, 2000). Intuitively, if the size of the latent space is very close to the origi-
nal search space, the quality of the LDSM is expected to be similar to the baseline
surrogate with dimensionality D. On the other hand, if the size of the latent space
is very small, i.e., L ≪ D, the quality of the LDSM is expected to deteriorate,
due to a considerable loss in information (Shan and Wang, 2010). Overall, we
believe it is crucial to utilize the DRTs for constructing the surrogate models in
high dimensional cases with limited computational resources.

3.2.6 Empirical Investigation

Through this empirical study (Ullah et al., 2020a), we aim to answer the following
research questions.

• Which DRT is most suitable to efficiently construct the low dimensional
surrogate models, appraised on the basis of criteria introduced earlier in
this chapter?

66

3.2 The “Curse of Dimensionality”

• What is the impact of problem landscape on the performance of the low
dimensional surrogate models?

• How does the size of the original search space affect the quality of the low
dimensional surrogate models?

• How does the size of the latent feature space (obtained after the dimension-
ality reduction), affect the quality of the low dimensional surrogate models?

• Is the choice of the modeling technique, e.g., Kriging and Polynomials, an
important factor in this context?

Answering these questions in a comprehensive manner is the aim of our study. In
the following, we describe the experimental setup of our study, which describes
the test problems, the data generating scheme, and HPO. A flowchart of the entire
experimental setup is provided in Fig. 3.13 for further clarification.

3.2.7 Experimental Setup

For our study, we select ten unconstrained, noiseless, single-objective optimization
problems from the continuous benchmark function test-bed, known as “Black-Box-
Optimization-Benchmarking” (BBOB) (Hansen et al., 2021). Note that BBOB
provides a total of twenty-four such functions divided in five different categories,
namely “Separable Functions”, “Functions with low or moderate conditioning”,
“Functions with high conditioning and unimodal”, “Multi-modal functions with
adequate global structure”, and “Multi-modal functions with weak global struc-
ture” respectively. We select two functions from each of these categories to cover
a broad spectrum of test cases. The set of selected test functions is given as:
F = {f2, f3, f7, f9, f10, f13, f15, f16, f20, f24}. An important thing to note is that
each of the test functions in F is evaluated on three different settings of dimen-
sionality as: D = {50, 100, 200}.

After the selection of the test cases, we move forward to the data generation, and
pre-processing. For the purpose of data generation, the choice of the training
sample size N is problem-dependent. The practical advice, however, is to begin
with N = K ×D (Forrester et al., 2008; Ullah et al., 2019), where K is usually a
low valued scalar, that maps the dimensionality to the sample size. In this study,
we proceed with K = 20. Choosing K = 20 is based on the previous empirical
evidence (Ullah et al., 2019), as this results in a training data set of moderate
size, which is neither too small to train, nor too big to hinder the computational

67

3. SURROGATE-ASSISTED ROBUST OPTIMIZATION

Start

Sampling Plan
 (DoE)

Generate & Pre-process

Data Set

Dimensionality Reduction

Construct Surrogate Models

Compute Quality and Perform Optimization

Hyper-parameter Optimization

End

Figure 3.13: A schematic diagram of the experimental setup. Each step of the
process is shown in grey rectangles. The central rectangle indicates the HPO loop
based on the modeling accuracy of the surrogates.

68

3.2 The “Curse of Dimensionality”

efficiency. Additionally, the testing data set with size M = 0.2K×D is generated
to evaluate the modeling accuracy of the LDSMs. Notably, we also make sure that
the training and testing data sets are completely disjoint, i.e., no data point is
shared between the two sets. The sampling locations for both data sets are chosen
using a LHS scheme (Gramacy, 2020). The data pre-processing in this study is a
rather straightforward task, involving only the re-scaling of the features between
0 and 1 (ur Rehman et al., 2014).

We consider four DRTs in our study, which have been explained earlier. For each
of these techniques, specifying L – the size of the latent feature space – is crucial,
since it may affect the quality of the corresponding LDSM (Kingma et al., 2019).
Therefore, for each distinct setting of the original dimensionality D, we choose
three corresponding values for L as: L ∈ {0.7, 0.4, 0.1} × D. As an example,
L ∈ {35, 20, 5} when D = 50. An important thing to note is that in AEs and
VAEs, both, the encoder and the decoder, have four hidden layers each with
hyperbolic tangent non-linearity (Sharma et al., 2017).

For PCA and KPCA, we perform a linear transformation of the original features,
before performing the dimensionality reduction (Ullah et al., 2020a). In our study,
we only consider two (surrogate) modeling techniques, namely the Kriging, and
Polynomial Regression (degree=2 with elastic-net penalty) (Zou and Hastie, 2005).
Notably, both sets of techniques, i.e., the dimensionality reduction and the sur-
rogate modeling techniques, have some hyper-parameters. Therefore, it is crucial
to tune these hyper-parameters to get the best quality surrogate models (Hutter
et al., 2009).

At this stage, however, we have a total of 720 experiments, due to four DRTs,
two (surrogate) modeling techniques, ten test functions, three values of the orig-
inal dimensionality D, and three different values for L – the size of the latent
feature space. We deem performing HPO for each of these 720 cases infeasible.
Hence, we reduce the number of cases to a total of 72, by aggregating the per-
formance of the LDSMs on all ten test functions. This implies that we optimize
the hyper-parameters for each of the 72 cases, defined on the combinations of
three values of the original dimensionality D, three values of L, two surrogate
modeling techniques, and four DRTs. In each of these 72 cases, we optimize the
hyper-parameters for both, the dimensionality reduction and the surrogate mod-
eling techniques together, based on the aggregated quality of the corresponding
LDSMs on all ten test functions. The quality assessment for an individual LDSM,

69

3. SURROGATE-ASSISTED ROBUST OPTIMIZATION

i.e., for a particular test function such as f2, is measured by taking the RMAE
(cf. Eq. (3.11)).

For HPO, we measure this RMAE for all ten test functions by specifying D, L,
the dimensionality reduction, and the (surrogate) modeling technique. After this,
we take the median of the RMAE values on all ten test functions. The goal of
the HPO then becomes to find the best configuration of the hyper-parameters,
which minimizes this median. This process is repeated for all 72 cases. Overall,
this approach makes the HPO feasible, and ensures that the configuration of
the hyper-parameters generalizes well across all ten test functions (Ullah et al.,
2020a).

We employ the TPE (Bergstra et al., 2011, 2013b) algorithm to perform the HPO
for each of the 72 cases discussed above by specifying D, L, the dimensional-
ity reduction, and the surrogate modeling technique. The number of function
evaluations are restricted to 150 for finding the best configuration of the hyper-
parameters using TPE, as the maximum number of hyper-parameters in any of
the 72 cases is six.

In our study, we choose two criteria to evaluate and compare the LDSMs. The
first criterion is that of the modeling accuracy. To compare the LDSMs on this
criterion, we first construct the LDSMs in all 720 cases, after performing the
HPO. This implies that we construct and compare four LDSMs, for each distinct
value of D, L, the surrogate modeling technique, and the test function. These
four LDSMs are based on PCA, KPCA, AEs, and VAEs respectively. Note that
in this context, the LDSMs which share the same test function, will also share
the same configuration of the hyper-parameters as an implication of the HPO
procedure discussed before. Since we vary the (surrogate) modeling technique,
the test function, and the values for D and L, we can perform a comprehensive
analysis of the modeling accuracy of the LDSMs based on a particular DRT. We
employ RMAE (cf. Eq. (3.11), as the performance measure for this criterion (Ullah
et al., 2019).

The second criterion to compare the LDSMs is the quality of the optimal solutions.
To compare the LDSMs for this criterion, we proceed with the same setup as be-
fore. This implies that we construct the LDSM in each of the 720 cases, based
on the best configuration of the hyper-parameters, and employ the correspond-
ing LDSM to substitute the exact function evaluations within the optimization

70

3.2 The “Curse of Dimensionality”

loop of the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algo-
rithm (Morales and Nocedal, 2011) for global optimization. To this end, maximum
function evaluations are restricted to be under 1000 ×D. We perform a total of
30 independent runs of the L-BFGS algorithm, for each LDSM, by varying the
starting position, i.e., the initial guess (Wright et al., 1999).

After this, we evaluate and compare the difference in the quality DQ of the optimal
solutions based on two aspects, i.e., the difference in the objective function values,
and the difference in the search space (cf. Eq. (3.12)). Note that the difference
in the quality DQ in this context is measured by taking the median, rather than
the average, of the 30 independent runs of the L-BFGS algorithm (Ullah et al.,
2020a).

3.2.8 Results

We first share the results concerning the criterion of the modeling accuracy. For
this, we share the graphs illustrating the modeling accuracy of the LDSMs, based
on the two modeling techniques chosen – Kriging and Polynomial Regression, in
Figs. 3.14 and 3.15 respectively. Both of these figures contain a total of nine sub-
plots each, based on three distinct values of D and L. Each of these subplots
contains ten bar charts, corresponding to the ten test functions discussed. Fur-
thermore, each bar chart shares the RMAE values, for the LDSMs based on the
DRTs involved in our study.

Next, we report the results concerning the difference in the quality DQ of the
optimal solutions. For this, we first report DQ for all 720 test cases, measured on
the basis of the objective function values, and presented in Figs. 3.16 and 3.17. As
opposed to this, DQ (measured on the basis of the difference in the search space),
is shared in Figs. 3.18 and 3.19.

In the following, we report the major findings from these results.

• Dimensionality Reduction Technique

From the results concerning the criterion of the modeling accuracy, we find
the AEs as the most promising modeling technique. This is due to the
fact that in 132/720 test scenarios, the LDSMs obtained from the latent
feature space of the AEs, achieve the highest modeling accuracy. In most
of the remaining cases, the performance of the LDSMs is analogous. On
the other hand, appraising the quality of the LDSMs based on DQ, we find

71

3. SURROGATE-ASSISTED ROBUST OPTIMIZATION

the AEs perform poorly as opposed to the other competing DRTs in most
cases. In this context, we deem that PCA and KPCA perform excellently.
An interesting observation here is that the KPCA does not perform superior
to PCA in most cases, which is computationally less expensive to evaluate.

• Problem Landscape

Based on the results, we observe the functions f2, f9, f10, and f20 to be
extremely challenging to approximate and optimize. Out of these four test
functions, we observe the worst performance on f2 and f10, which are ill-
conditioned functions with smooth local irregularities (Hansen et al., 2021).
The other two test functions, namely f9 and f20, exhibit highly multi-modal
and rugged structure in high dimensions (Merkuryeva and Bolshakovs, 2011),
and are consequently difficult to model and optimize with dimensionality
reduction (loss of information). An important thing to note here is that we
see significant variation in the performance of the LDSMs for the functions
belonging to the same class. For instance, both f2 and f3 belong to the
class of “separable functions”, and yet exhibit a significant difference in the
quality.

• Size of the Search Space

We observe that the quality of the approximation of the LDSMs is improved
with a higher dimensionality. We believe this might be due to the fact that
our sample size is more than sufficient to maintain the modeling accuracy, as
the dimensionality increases, i.e., the true sample size required to maintain
the modeling accuracy may not be linear, but rather a fraction of the linear
sample size.

• Size of the Latent (Feature) Space

For an extremely small size of the latent feature space, i.e., L = 0.1 × D,
we observe a significant deterioration in the quality of the LDSMs in most
cases (measured on the basis of DQ) (cf. Fig. 3.18 and Fig. 3.19).

• Modeling Technique

We observe that in terms of DQ, the performance of the LDSMs (based on
Kriging) is sensitive.

72

3.2 The “Curse of Dimensionality”

23

24

25

RM
AE

L=0.7D
D=

50

23

24

25

L=0.4D

23

24

25

L=0.1D

22

23

24

25

RM
AE

D=
10

0

22

23

24

25

22

23

24

25

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24

22

23

24

RM
AE

D=
20

0

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24

22

23

24

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24

22

23

24

PCA KPCA AEs VAEs

Figure 3.14: Modeling accuracy of the low dimensional Kriging surrogates. The
accuracy is measured with Relative Mean Absolute Error (lower is better).

23

24

25

RM
AE

L=0.7D

D=
50

23

24

25

L=0.4D

23

24

25

L=0.1D

22

23

24

25

RM
AE

D=
10

0

22

23

24

25

22

23

24

25

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24

22

23

24

RM
AE

D=
20

0

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24

22

23

24

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24

22

23

24

PCA KPCA AEs VAEs

Figure 3.15: Modeling accuracy of the low dimensional Polynomial surrogates.
The accuracy is measured with Relative Mean Absolute Error (lower is better).

73

3. SURROGATE-ASSISTED ROBUST OPTIMIZATION

101

102

103

104

105

106

107

108

 (f
un

ct
io

n
va

lu
es

)

L=0.7D
D=

50

101

102

103

104

105

106

107

108
L=0.4D

101

102

103

104

105

106

107

108
L=0.1D

101

102

103

104

105

106

107

108

109

 (f
un

ct
io

n
va

lu
es

)
D=

10
0

101

102

103

104

105

106

107

108

101

102

103

104

105

106

107

108

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
101

102

103

104

105

106

107

108

109

 (f
un

ct
io

n
va

lu
es

)
D=

20
0

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
101

102

103

104

105

106

107

108

109

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
101

102

103

104

105

106

107

108

109

PCA KPCA AEs VAEs

Figure 3.16: The difference in the quality: DQ, between the optimal solutions
obtained from the low dimensional Kriging surrogates, and the corresponding base-
line. The difference in the quality is based on the objective function values.

101

102

103

104

105

106

107

108

 (f
un

ct
io

n
va

lu
es

)

L=0.7D

D=
50

101

102

103

104

105

106

107

108
L=0.4D

101

102

103

104

105

106

107

108
L=0.1D

101

102

103

104

105

106

107

108

109

 (f
un

ct
io

n
va

lu
es

)
D=

10
0

101

102

103

104

105

106

107

108

109

101

102

103

104

105

106

107

108

109

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
101

102

103

104

105

106

107

108

109

 (f
un

ct
io

n
va

lu
es

)
D=

20
0

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
101

102

103

104

105

106

107

108

109

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
101

102

103

104

105

106

107

108

PCA KPCA AEs VAEs

Figure 3.17: The difference in the quality: DQ, between the optimal solutions
obtained from the low dimensional Polynomial surrogates, and the corresponding
baseline. The difference in the quality is based on the objective function values.

74

3.2 The “Curse of Dimensionality”

25

26

27

28

 (s
ea

rc
h

sp
ac

e)

L=0.7D

D=
50

24

25

26

27
L=0.4D

21

22

23

24

25
L=0.1D

26

27

28

29

 (s
ea

rc
h

sp
ac

e)
D=

10
0

25

26

27

28

22

23

24

25

26

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
27

28

29

210

 (s
ea

rc
h

sp
ac

e)
D=

20
0

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
26

27

28

29

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
23

24

25

26

27

PCA KPCA AEs VAEs

Figure 3.18: The difference in the quality: DQ, between the optimal solutions
obtained from the low dimensional Kriging surrogates, and the corresponding base-
line. The difference in the quality is based on the distance in the search space.

25

26

27

28

 (s
ea

rc
h

sp
ac

e)

L=0.7D

D=
50

24

25

26

27
L=0.4D

21

22

23

24

25
L=0.1D

26

27

28

29

 (s
ea

rc
h

sp
ac

e)
D=

10
0

25

26

27

28

22

23

24

25

26

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
27

28

29

210

 (s
ea

rc
h

sp
ac

e)
D=

20
0

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
26

27

28

29

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
23

24

25

26

27

PCA KPCA AEs VAEs

Figure 3.19: The difference in the quality: DQ, between the optimal solutions
obtained from the low dimensional Polynomial surrogates, and the corresponding
baseline. The difference in the quality is based on the distance in the search space.

75

3. SURROGATE-ASSISTED ROBUST OPTIMIZATION

3.3 Summary and Discussion

In this chapter, we focused on the applicability of surrogate modeling to find
robust solutions, which are solutions that are still optimal and useful in the face
of uncertainty and noise. Note that the uncertainty and noise in this context refer
to the deviation in the nominal values of the decision variables. Our aim is to
find such solutions in an efficient manner, for which we employ an optimization
framework based on surrogate modeling.

To answer the key research question outlined earlier in the chapter, we perform two
empirical investigations. Through our investigations, we find that in general, a lin-
ear sample size1 is sufficient to construct a good quality surrogate model based on
Kriging, Polynomials, and Support Vector Machines. These modeling techniques
are promising, and provide a good quality approximation in most test scenarios
considered. Furthermore, we observe that noise level does not have a detrimental
impact on the quality of the surrogate models. Note, however, that it is quite
possible that noise level can affect the quality of solutions in other optimization
frameworks, e.g., the SMBO approach where noise can propagate through the ac-
quisition function. Our results also indicate that dimensionality can have a signif-
icant impact on the quality of the solution, especially for “composite robustness”.
Similarly, we find that “composite robustness” has a higher variation/sensitivity
in performance. Overall, we conclude that surrogate modeling is a viable approach
to find robust solutions for black-box optimization problems.

In practical scenarios of continuous optimization, problems may also exhibit the
issue of high dimensionality, which can hinder the computational efficiency. This
issue is based on the so-called “curse of dimensionality”, which refers to the fact
that constructing a surrogate model becomes much costlier as the dimensionality
increases. This is due to the fact that more training data is needed to construct the
surrogate model, if the dimensionality increases. The algorithmic complexity for
constructing the surrogate model depends on the training data, and the number
of search variables, among others.

To address the issue of high dimensionality, we propose to perform dimensionality
reduction. For choosing the most suitable dimensionality reduction in this context,
we empirically evaluate and compare four of the most important DRTs, namely

1Linearity is defined in terms of the dimensionality of the problem.

76

3.3 Summary and Discussion

PCA, KPCA, AEs, and VAEs. The results from our study indicate the promising
aspects of AEs and PCA to perform dimensionality reduction in surrogate mod-
eling. Note that the LDSMs based on AEs provide good approximation of the
search space, whereas the ones based on PCA find better solutions as opposed
to their competitors. From these results, we also observe that Kriging is more
sensitive to performance variation in high dimensions than RSMs.

77

ch
ap

te
r

4
Robust Bayesian Optimization

This chapter is devoted to the applicability of the so-called “Bayesian optimiza-
tion” algorithm (Močkus, 2012; Jones et al., 1998) to efficiently solve expensive
to evaluate blck-box problems, which are subject to uncertainty and noise in
the search variables. The Bayesian optimization algorithm is based on the so-
called “sequential model-based optimization” approach, which updates the surro-
gate model in an iterative manner, in order to find a globally optimal solution
on the model surface (cf. Section 2.3.4). We consider the scenario of finding ro-
bust solutions via Bayesian optimization. Note that in this context, the standard
(nominal) Bayesian optimization algorithm cannot be utilized directly, and must
be extended to care for robustness, in order to find robust solutions (Rehman, 2016;
Ullah et al., 2021). Pertaining to find robust solutions via Bayesian optimization,
we attempt to answer the following questions in this chapter.

1. How can we extend the Bayesian optimization algorithm to find robust solu-
tions: solutions which are still optimal and useful in the face of parametric
uncertainties in the search variables?

2. What is the performance of the Bayesian optimization algorithm in this
context, and which factors1 influence its performance?

In Section 4.1, we introduce the Bayesian optimization algorithm, which is fol-
lowed by three of the most important sampling infill criteria considered in this
chapter: the so-called “Lower Confidence Bound”, “Expected Improvement” cri-
terion, and the “Moment-Generating Function of the Improvement” (Wang et al.,
2017). Following this, we extend the Bayesian optimization algorithm to care for

1Note that the factors considered in this context include scale/severity of the uncertainty,
dimensionality, sampling infill criterion, and computational budget among others.

79

4. ROBUST BAYESIAN OPTIMIZATION

parametric uncertainties in the search variables. Note that this section also de-
scribes the practical difficulties and potential pitfalls for extending the Bayesian
optimization algorithm to the robust scenario (ur Rehman et al., 2014; Jurecka,
2007). We then move forward to benchmark the empirical performance of the
Bayesian optimization algorithm to find robust solutions. Lastly, we provide the
discussion on the empirical results and summary of the chapter.

4.1 Bayesian Optimization

Bayesian optimization (BO) is a global search strategy, designed to optimize expen-
sive to evaluate black-box problems in an efficient manner (Močkus, 2012; Jones
et al., 1998). The basic idea behind BO is to treat the objective function as a
random function, and place a prior over it (Močkus, 1975). The prior information
captures our beliefs about the anticipated behavior of the function, e.g., smooth-
ness. After observing the function response at well-specified sampling locations,
the prior is updated to form the posterior distribution over the objective func-
tion (Močkus, 1975). The posterior distribution, in turn, is used to construct
a utility function, which determines the next query point (where the function
response is to be observed). Note that the utility function, also referred to as
the acquisition function (AF) or the sampling infill criterion (SIC), quantifies the
potential “gain” in the objective value, by evaluating the potential of each new
solution (Liu et al., 2012). It therefore selects the next query point which maxi-
mizes this gain. Once the next query point is determined, the function response
is observed at that location, and the posterior distribution is updated (Frazier,
2018).

The BO algorithm is based on the SMBO approach, which is already described in
Chapter 2 (cf. Fig. 2.3). The main points of the BO algorithm are summarized
as follows. We start by generating an initial design data set: D = {X, y}, on the
objective function f . The next step involves constructing the Kriging model Kf ,
based on the available data set D. Once the Kriging model is constructed, we
can utilize the strategy of adaptive sampling (based on the AF), to estimate the
global optimum of the objective function f (ur Rehman et al., 2014).

The AF is constructed by assuming that the function response at any untried
position x can be modeled in terms of a normally distributed random variable
Y (x), whose mean is given by the predicted value: f̂(x), and the variance is given

80

4.1 Bayesian Optimization

by the MSE: s2(x) (as described in Eq. (2.11)) (Rasmussen and Williams, 2006;
Woodard, 2000).

The potential improvement to query the position x with respect to the best-so-far
observed valued of the function: fmin, can be described as:

I(x) = max{0, fmin − Y (x)}. (4.1)

The utility function of the improvement is denoted as A , and can be employed to
find the next query point xnew:

xnew = argmax
x∈S

A (x). (4.2)

Once the next query point is determined, the data set D is extended by appending
the pair (xnew, f(xnew)) to it (Jones et al., 1998). The Kriging model Kf

1 is then
reconstructed based on the extended data set. This process is repeated until either
a satisfactory solution is obtained, or a predefined computational budget, or other
termination criterion is reached. Since at each iteration, the next query point xnew

brings the maximum anticipated improvement to the current solution according
to the chosen infill criterion, the algorithm can find the optimal solution in an
efficient manner (Wang, 2018).

4.1.1 Sampling Infill Criteria

When employing the surrogate model to perform optimization, it is important to
determine how the search should be balanced with respect to exploration and ex-
ploitation (Snoek et al., 2012). To this end, we can introduce the notion of “gain”
to assess the potential of untried points, i.e., to assess the potential improvement
with respect to the current best known solution. Since in BO, the surrogate
model is stochastic in nature, the resulting “gain” function also becomes stochas-
tic (Wang, 2018). Consequently, it is important to use some statistical properties,
e.g., the expectation, of the this function to assess the potential of untried loca-
tions. Utilizing such a function, we can determine the location of the next query
point (to observe the function response).

1While other modeling techniques, e.g., Random Forest, Support Vector Machines, can also
be employed, the theoretical quantification of the uncertainty in the Kriging prediction makes it
an ideal candidate in this context (cf. Eq. (2.11)). Furthermore, Kriging arises naturally in the
context of non-parametric Bayesian inference, and therefore has a natural Bayesian interpreta-
tion (Rasmussen and Williams, 2006; Wang, 2018).

81

4. ROBUST BAYESIAN OPTIMIZATION

In the literature, several different types of AFs exist, each with its own merits
and demerits (Hoffman et al., 2014). Examples of some of the most important
AFs, based on the notion of “improvement”, include “Expected Improvement” cri-
terion (Jones et al., 1998), “Bootstrapped Expected Improvement” criterion (Klei-
jnen et al., 2012), “Probability of Improvement” (Žilinskas, 1992), “Weighted
Expected Improvement” (Sóbester et al., 2005), “Generalized Expected Improve-
ment”, and “Multiple Generalized Expected Improvement” (Ponweiser et al., 2008)
among others. This chapter, however, only concentrates on “Upper Confidence
Bound”, “Expected Improvement” criterion, and the “Moment-Generating Func-
tion of the Improvement”, to find robust solutions in an efficient manner.

The “Upper Confidence Bound” (Srinivas et al., 2010; Parr et al., 2010), also
referred to as the “Lower Confidence Bound” (LCB) in the case of minimization,
is defined as:

LCB (x; β) = f̂(x)−
√

βs2(x), (4.3)

where β is a carefully chosen learning rate, which explicitly controls the trade-
off between exploitation and exploration (Auer, 2002). Note that a high setting
of β concentrates more on model uncertainty (s2(x)), and thus performs explo-
ration (Bubeck et al., 2009).

“Expected Improvement” (EI) criterion is a widely utilized sampling infill criterion
in BO (Močkus, 2012; Jones et al., 1998). This infill criterion is based on the first
moment, i.e., the expectation, of the improvement. In the context of Gaussian
processes (where the Kriging response can be represented as a Gaussian random
variable: Y (x) ∼ (f̂(x), s2(x))), the expectation of the improvement has a closed
form expression1:

E[I(x)] = (fmin − f̂(x))Φ

(
fmin − f̂(x)

s

)
+ sϕ

(
fmin − f̂(x)

s

)
, (4.4)

where Φ(·) and ϕ(·) are cumulative distribution function and probability density
function of the standard normal random variable respectively.

“Moment-Generating Function of the Improvement” (MGFI) (Wang et al., 2017) is
another important infill criterion discussed in this chapter, where all the moments

1Recall that the potential “gain” or “improvement”, which is defined with respect to the best
known function value: fmin (cf. Eq. (4.1)), is a stochastic process over the search space S, as it
depends on the stochastic modeling of the function value.

82

4.1 Bayesian Optimization

of the improvement are linearly combined. MGFI is based on the intuition of
utilizing the higher moments of the improvement, and can be thought of as an
alternative way of defining its probability distribution.

Formally speaking, MGFI can be defined as:

∀t ∈ R, M(x, t) := E[etI(x)] =
∫ ∞

−∞
etu PI(u; x) du, (4.5)

where u = (fmin − f̂(x))/s, PI indicates the probability density function of the
improvement, and t is a real-valued parameter which controls the behavior of the
search, i.e., balances the trade-off of exploration and exploitation. Note that in
this context, the parameter t is referred to as the “temperature”, similar to the
simulated annealing algorithm (Kirkpatrick et al., 1983), and can be updated for
each iteration of the BO algorithm based on a “linear” or an “exponential” cooling
strategy (Wang et al., 2018).

The MGFI can also be calculated using the density function of I(x) as:

M(x, t) = 1 + Φ

(
fmin − f̂

′(x)
s

)
exp

(
(fmin − f̂)t + s2t2

2

)
− Φ

(
fmin − f̂

s

)
,

(4.6)
where f̂

′ = f̂ − s2t, and MGFI is well-defined for all t ∈ R in this context.

From a different perspective, the Taylor expansion of the MGFI is:

M(x, t) = 1 + tE[I(x)] + t2

2!
E[I2(x)] + t3

3!
E[I3(x)] + · · · =

∞∑
n=0

tn

n!
E[In(x)]. (4.7)

As Wang notes (Wang, 2018), for an arbitrary distribution, this series might not
converge for all t ∈ R, even if all the moments exist. The functional form in
Eq. (4.7) can be considered a linear combination of all the moments, where each
moment E[In(x)] is weighted by tn

n! . In this context, the weight of each moment
can be controlled with parameter t. Note that these weights can also be normal-
ized, since

∑∞
n=0

tn

n! = et. Normalizing the weights in this manner leads to the
convergence for all t ∈ R.

Finally, by incorporating the probability of improvement PI(x) as the “zero-order”

83

4. ROBUST BAYESIAN OPTIMIZATION

moment, and replacing the constant 1 by it in Eq. (4.6), we have:

M(x; t) = M(x, t)− 1 + PI(x)
et

= PI(x) + t

et
E[I(x)] + t2

2!et
E[I2(x)] + t3

3!et
E[I3(x)] + . . .

= Φ

(
fmin − f̂

′(x)
s

)
exp

(
(fmin − f̂ − 1)t + s2t2

2

)
.

(4.8)

4.2 Robustness in Bayesian Optimization

In the previous chapter, we defined five of the most common robustness criteria
(cf. Section 3.1.1), which can be employed to achieve robustness in practical sce-
narios. When aiming to find a robust solution based on these robustness criteria,
we note that the standard BO algorithm cannot be utilized.

As Rehman notes (ur Rehman et al., 2014), there are two main reasons for
that.

• The potential “improvement”, which is defined in the nominal scenario
(cf. Eq. (4.1)), renders inapplicable in the context of RO. This is due to
the fact that this improvement is defined with respect to the “best-so-far”
observed value of the function: fmin, which has no clear meaning and usage
when aiming for a robust solution. Rather, in the case of RO, the improve-
ment must be defined with respect to the current best known “robust” value
of the function: f̂∗(x), which by implication can only be estimated on the
Kriging surface (as opposed to observed or fully known in the nominal case).

• The posterior process: Y (x) ∼ N (f̂(x), s2(x)), does not model the robust
(effective) response of the function1, which is desirable when aiming for a
robust solution.

Therefore, the standard BO approach must be extended to the robust scenario,
which is henceforth referred to as “Robust Bayesian optimization” (RBO) in this
thesis. Following the approach of Rehman (ur Rehman et al., 2014), the adapta-
tion of the BO algorithm to RBO is done in the following manner.

1The robust or effective function response has already been defined in Section 3.1.1 for five
of the most common robustness criteria.

84

4.2 Robustness in Bayesian Optimization

• We substitute the “best-so-far” observed value of the function: fmin, with
its robust Kriging counterpart: f̂∗(x), which is defined as:

f̂∗(x) = min
x∈S

f̂eff(x), (4.9)

where f̂eff(x) is the robust (effective) Kriging response of the function, which
depends on the robustness criterion chosen. Note that f̂eff(x) is the approxi-
mation of the true robust response of the function: feff(x). In the context of
deterministic uncertainty: MMR and MMRR, this estimation merely refers
to the substitution of true function responses with their Kriging predictions
in Eqs. (3.1) – (3.3). On the other hand, in the context of probabilistic
uncertainty: EBR, DBR, and CR, it also encompasses the monte-carlo ap-
proximations for the corresponding statistical quantities of interests, e.g., in
Eq. (3.4), f̂eff(x) is approximated with monte-carlo samples based on the
Kriging prediction at each search point x + ∆x.

• We extend the nominal posterior process: Y (x) ∼ N (f̂(x), s2(x)) to model
the true robust response of the function: feff(x), by assuming that the true
robust response of the function at each search point is also normally dis-
tributed with mean f̂eff(x) and variance s2

eff(x): Yeff(x) ∼ N (f̂eff(x), s2
eff(x)).

Note that the assumption that Yeff(x) is normally distributed is not entirely
rigorous, but rather a practical compromise (ur Rehman et al., 2014). Ide-
ally, we should have attempted to estimate the true posterior distribution of
the robust Kriging response of the function: f̂eff(x), which would require ad-
ditional assumptions on the joint distribution of all search points. However,
the computational costs of finding this generally non-Gaussian distribution
several times on the original (nominal) Kriging surface Kf are prohibitively
high. Additionally, numerically computing the integral for the expectation
of the improvement for this generally non-Gaussian distribution would also
be computationally expensive. To add to that, we note that the Kriging
surface Kf only ever provides an approximation, and hence the true distri-
bution of the robust response of the function for each robustness criterion
can never be described with certainty in BO.

Modeling the true robust response of the function with a normally distributed
random variable: Yeff(x), we note that in the context of deterministic uncertainty,
the value s2

eff(x) merely refers to the Kriging MSE at point x + ∆∗
x, where ∆∗

x

85

4. ROBUST BAYESIAN OPTIMIZATION

indicates the worst setting of the uncertainty, i.e., which maximizes Eq. (3.1)
or (3.3), as the case may be.

In the context of EBR, s2
eff(x) has a closed form expression as:

s2
eff = 1

J2

J∑
i,j

C, (4.10)

where C is a co-variance matrix with elements C(x′

i, x′

j). The entries C(x′

i, x′

j)
in the matrix C are computed with the help of posterior Kernel (with optimized
hyper-parameters), and the point x′

j is defined as: x′

j = x+∆j
x, where ∆j

x indicates
the j-th sample for ∆x. In the context of DBR and CR, s2

eff(x) does not have a
closed form expression, and should be computed numerically.

After substituting the “best-so-far” observed value of the function: fmin, with its
robust Kriging counterpart: f̂∗(x), and modeling the true robust response of the
function with a normally distributed random variable: Yeff(x) ∼ N (f̂eff(x), s2

eff(x)),
we can define the improvement in the robust scenario as:

Ieff(x) = max{0, f̂∗(x)− Yeff(x)}, (4.11)

In the following, we extend the LCB, EIC, and MGFI to the robust scenario based
on the improvement in Eq. (4.11).

4.2.1 Robust Infill Criteria

The adaptation of the LCB to the robust scenario is referred to as LCBeff , and
can be formulated to be:

LCBeff (x; β) = f̂eff(x)−
√

βs2
eff(x), (4.12)

where f̂eff(x) and s2
eff(x) describe the robust Kriging response of the function, and

the uncertainty therein. An important thing to note here is that the search point
induced by the uncertainty: x + ∆x, can become infeasible with respect to the
original search space S, if x is already close to the boundary of S (Ullah et al.,
2021). In this case, we simply clip the infeasible point with the boundary it breaks,
similar to the approach of Rehman (ur Rehman et al., 2014).

86

4.2 Robustness in Bayesian Optimization

Like LCB, the adaptation of the EI criterion to the robust scenario can be written
as:

E[Ieff(x)] := (f̂∗(x)− f̂eff(x))Φ

(
f̂∗(x)− f̂eff(x)

seff(x)

)
+ seff(x)ϕ

(
f̂∗(x)− f̂eff(x)

seff(x)

)
,

(4.13)

where Φ(·) and ϕ(·) in Eq. (4.13) represent the cumulative distribution function
and probability density function of the standard normal random variable respec-
tively.

Lastly, the MGFI is extended to the robust scenario as (Ullah et al., 2021):

Meff(x; t) = Φ

(
f̂∗(x)− f̂

′′(x)
seff

)
exp

(
(f̂∗(x)− f̂eff(x)− 1)t + s2

efft2

2

)
, (4.14)

where f̂
′′(x) = f̂eff(x)−s2

efft, and Φ(·) denotes the cumulative distribution function
of the standard normal random variable, same as above.

Algorithm 1: Robust Bayesian Optimization
1: procedure (f,S, Aeff , ∆x) ▷ f : objective function, S: search space, Aeff :

robust acquisition function, ∆x: uncertainty in the search variables
2: Generate the initial data set D = {X, y} on the objective function.
3: Construct the Kriging model Kf on D = {X, y}.
4: while the stop criteria are not fulfilled do
5: Find robust optimum on the Kriging surface Kf as:

f̂∗(x) = min
x∈S

f̂eff(x).

6: Choose a new sample xnew by maximizing the robust (effective)
acquisition function:

xnew ← argmax
x∈S

Aeff(x).

7: Compute function response f(xnew).
8: Extend the data set D by appending the pair (xnew, f(xnew)) to

D = {X, y}.
9: Reconstruct the Kriging model Kf on D = {X, y}.

10: end while
11: end procedure

87

4. ROBUST BAYESIAN OPTIMIZATION

4.3 Empirical Investigation

So far in this chapter, we have provided the basic working mechanism of the BO
algorithm, alongside three of the most important AFs: LCB, EI criterion, and the
MGFI. Furthermore, we have extended the BO algorithm to the robust scenario,
to account for parametric uncertainties in the search variables (Ullah et al., 2021).
Extending the BO algorithm in this context is a rather difficult task, since the
Kriging model only ever provides an approximation to the nominal response of
the function, making the modeling of the true robust (effective) response of the
function computationally intractable (Rehman, 2016). This is due to the fact that
modeling the true robust response of the function requires additional assumptions
on the joint probability distribution of all search points, which are induced by
the uncertainty (ur Rehman et al., 2014). Furthermore, computing the utility
function, e.g., the expectation, of this generally non-Gaussian distribution would
also require us to evaluate analytically intractable integrals, which would result in
prohibitively high computational demand.

Practically, following the approach by Rehman (ur Rehman et al., 2014), we model
the true robust (effective) response of the function with a Gaussian process over
the search points induced by the uncertainty: x + ∆x, similar to the nominal
scenario. This approach enables us to study the performance of the BO algorithm
in a comprehensive manner, as we can take into account the variability in external
factors, such as severity of the uncertainty, robustness criterion, and infill crite-
rion among others. The BO algorithm extended in this context is presented in
Algorithm 1.

We are now interested in benchmarking the performance of the extended BO
algorithm (cf. Algorithm. 1) to find robust solutions. We follow an empirical
approach, based on a broad spectrum of test cases, to assess the performance of
this algorithm. Following are the most important research question which we aim
to answer with our study.

• Is the extended BO algorithm suitable to find robust solutions in an efficient
manner?

• What factors influence the performance of the BO algorithm in this context?

• What impact does the infill criterion have on the quality of the robust solu-
tions?

88

4.3 Empirical Investigation

• How does the noise level and dimensionality affect the quality of the robust
solutions?

• Which infill criterion is recommended to practitioners for practical scenarios,
i.e., with regards to computational efficiency?

Answering these questions in a comprehensive manner is important because of
the associated practical reasons, as it will enable us to find robust solutions in an
efficient manner, with the help of the BO algorithm.

In the following, we describe the experimental setup of our study.

Experimental Setup

We select ten multi-modal test functions: F = {f15−f24}, from BBOB (Hansen
et al., 2021) for our study. The uni-modal functions in BBOB are skipped be-
cause the BO algorithm is designed for multi-modal functions, and utilizing a high
temperature in MGFI (high explorative effect) usually leads to inefficient conver-
gence on the uni-modal function (Wang, 2018). All test functions are subject to
minimization, and are evaluated on three different settings of dimensionality as:
D = {2, 5, 10}.

Apart from the test functions and dimensionality, we also vary the uncertainty level
based on two distinct settings as: L = {0.05, 0.1}, which indicate the maximum
% deviation in the nominal values of the search variables. For the deterministic
setting of the uncertainty, i.e., MMR and MMRR, the compact set U is defined
as: U = [−(L×R), (L×R)], where L ∈ L denotes the choice of the uncertainty
level, and R serves as the absolute range of the search variables. For the test
functions in F , the absolute range of the search variables is 10, since all test
functions are defined from -5 to 5. For the probabilistic setting of the uncertainty,
i.e., EBR, DBR and CR, the uncertainty is modeled according to a continuous
uniform probability distribution: ∆x ∼ U(a, b), where the boundaries a and b are
defined similar to the boundaries of the the set U in the deterministic case.

In our study, the size of the initial training data is set to be 2×D, where D ∈ D

denotes the corresponding setting of the dimensionality. Likewise, the maximum
number of iterations for BO is set to be 50×D. Note that our Kriging surrogate
is based on the popular Matérn 3/2 kernel (Rasmussen and Williams, 2006), and
we standardize the function responses: y = [f(x1), f(x2), . . . , f(xN)]⊤, before
constructing the Kriging surrogate Kf . In addition, we utilize the three robust

89

4. ROBUST BAYESIAN OPTIMIZATION

AFs discussed in our study: LCBeff , E[Ieff(x)], andMeff(x; t), as the infill criteria
for our experiments.

The hyper-parameters β and t in LCBeff and Meff(x; t) respectively, are set in
a similar fashion, as we monotonically decrease them with increasing number of
iterations of the BO algorithm. This is due to the fact that we mainly want to
emphasize on exploration at the beginning of the search. As the search progresses,
we want to be more and more exploitative to be able to retain the good candi-
date solutions. To monotonically decrease β and t, we perform a linear cooling
strategy (Wang et al., 2018) as:

ti+1 = ti − η, (4.15)

and
η = t0 − tf

Nmax
, (4.16)

where t0 and tf indicate the initial and final temperature settings respectively, and
Nmax serves as the maximum number of iterations of the BO algorithm.

We set the parameter β by adapting the Eqs. (4.15) and (4.16) for LCBeff . In our
experiments, β0 and βf are set to be 25 and 1 respectively, whereas t0 and tf are
set to be 2 and 0.1, following the setup of Wang (Wang, 2018). For the parallel
execution of RBO for each of the 360 test cases considered, we utilize the Dis-
tributed ASCI Supercomputer 5 (DAS-5) (Bal et al., 2016), where each standard
node has a dual 8-core 2.4 GHz (Intel Haswell E5-2630-v3) cpu configuration and
64 GB memory. We implement our experiments in python 3.7.0 with the help
of “scikit-learn” module (Pedregosa et al., 2011). The performance assessment
of the robust solutions in our experiments is based on 15 independent runs R of
the RBO algorithm for each of the 360 test cases considered. Note that for each
trial, i.e., the unique combination of the independent run and the test case, we
ensure the same configuration of hardware and software to account for fairness.
Furthermore, in each trial, we measure the cpu time for all iterations of the RBO
algorithm to measure the efficiency.

After the successful parallel execution of all trials, we evaluate the quality differ-
ence of our robust solutions from the baseline (cf. Eq. (3.12))). Note that DQ
in this case is based on the space of objective function values1. After this, we

1In this study, we do not divide DQ with the number of independent runs R as Eq. (3.12)
suggests, but rather report all trials.

90

4.3 Empirical Investigation

perform six different analyses to answer the questions outlined earlier. The first
two type of analyses are referred to as the fixed cpu time analysis, and the fixed
iteration analysis respectively. In fixed cpu time analysis, we fix 50 different set-
tings of the cpu time, and report the best DQ (the lowest) for each trial. The DQ
in this context is averaged over all 50 settings of the cpu time. For fixed iteration
analysis, we fix 30 different settings of the iterations (checkpoints) to report the
best DQ (the lowest) for each trial. The DQ in this context is also averaged over
all 30 checkpoints.

After fixed cpu time and fixed iteration analysis, we perform a fixed target analysis.
The fixed target analysis is also based on two different settings: by fixing a target
DQ and reporting the cpu time as well as the number of iterations taken to reach
that target. We fix ten different settings for the target in this context, and the
corresponding cpu time and iterations are averaged over these target values. Note
that each target describes the minimum desirable quality threshold of the robust
solution. If such a quality is never achieved, we report the penalized cpu time and
penalized number of iterations respectively. The penalized cpu time is set to be
D × Tmax, whereas penalized number of iterations is set to be D × Nmax. Here
D is the corresponding setting of the dimensionality, and Nmax and Tmax indicate
the maximum number of iterations of the BO algorithm and the cpu time taken
to execute it. After the fixed budget and fixed target analyses, we also report the
average cpu time per iteration for the BO algorithm. In addition, we also report
Tmax, the accumulated cpu time at the last iteration of the BO algorithm, for each
trial.

4.3.1 Results

We share the results originating from our study in Figs. 4.1 – 4.6. Each of these
figures contains the graphs for a particular type of analysis. In particular, Fig. 4.1
shares the results based on fixed cpu time analysis. The figure contains six dif-
ferent plots corresponding to two noise levels, and three different settings of the
dimensionality. Each plot shares the empirical cumulative distribution function
(ecdf) of DQ for three different robust AFs considered. Note that each ECDF
curve (for each AF in a plot) is based on 300 data points, owing to the combina-
tion of ten test functions, two robustness criteria, and fifteen independent runs of
the algorithm.

91

4. ROBUST BAYESIAN OPTIMIZATION

2 3 2 1 21 23 25 27 29 211

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 tr
ia

ls
(

 ,
,

,
)

D = 2

No
ise

 L
ev

el
 =

 0
.0

5

2 6 2 3 20 23 26 29 212 215

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

D = 5

2 3 20 23 26 29 212 215

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

D = 10

2 3 20 23 26 29 212

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 tr
ia

ls
(

 ,
,

,
)

No
ise

 L
ev

el
 =

 0
.1

2 6 2 3 20 23 26 29 212 215

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

2 3 20 23 26 29 212 215

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

EI MGFI LCB

Figure 4.1: Fixed cpu time analysis. Rows distinguish between noise levels,
whereas columns identify different settings of dimensionality. Each plot contains
three ECDF curves based on three infill criteria discussed. Each ECDF curve is
based on 300 data points.

Likewise, Fig. 4.2 shares the ECDF plots corresponding to fixed iteration analysis,
whereas the analyses based on fixed targets are presented in Figs. 4.3 and 4.4.
The average cpu time per iteration of the BO algorithm to find robust solutions
is presented in Fig. 4.5. Lastly, we present the maximum accumulated cpu time:
Tmax, for each trial in the form of box plots in Fig. 4.6.

In the following, we report the major findings of these results.

• Applicability of the Bayesian Optimization

Based on the results presented in Figs. 4.1 – 4.2, we deem BO as a promising
heuristic to find robust solutions in an efficient manner. This is due to the
fact that the empirical success rate of the BO algorithm is high. For instance,
if we cut-off the DQ values at 8, the empirical success rate is around 60 %.

• Factors with Significant Influence

Based on the results presented in Figs. 4.1 – 4.4, we find that dimensional-
ity significantly affects the quality of the robust solutions. Furthermore, we
observe that this affect is much clearer to notice for LCBeff and Meff(x; t),

92

4.3 Empirical Investigation

2 3 2 1 21 23 25 27 29 211

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 tr
ia

ls
(

 ,
,

,
)

D = 2

No
ise

 L
ev

el
 =

 0
.0

5

2 6 2 3 20 23 26 29 212 215

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

D = 5

2 3 20 23 26 29 212 215

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

D = 10

2 3 20 23 26 29 212

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 tr
ia

ls
(

 ,
,

,
)

No
ise

 L
ev

el
 =

 0
.1

2 6 2 3 20 23 26 29 212 215

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

2 3 20 23 26 29 212 215

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

EI MGFI LCB

Figure 4.2: Fixed iteration analysis. Rows distinguish between noise levels,
whereas columns identify different settings of dimensionality. Each plot contains
three ECDF curves based on three infill criteria discussed. Each ECDF curve is
based on 300 data points.

unlike E[Ieff(x)] whose performance is not significantly compromised in the
face of higher dimensionality. Because of the dimensionality, the computa-
tional budget, i.e., whether measured in cpu time or number of iterations,
also affects the quality of the robust solutions in a significant manner. For
instance, in Fig. 4.3, we see that the empirical success measured at 210 sec-
onds (cpu time) is more than 85 % for trials belonging to two-dimensional
problems. On the other hand, the empirical success rate drops to under
40 % when dimensionality is increased from 2 to 5. If, on the other hand,
the dimensionality is further increased to 10, the observed empirical success
rate drops below 20 %. When measuring the impact of noise level, i.e., the
scale/severity of the uncertainty, on the performance of the BO algorithm,
we do not observe any clear patterns. However, in some individual cases,
the performance of the BO algorithm is compromised with a higher settings
of the noise level.

• Impact of Infill Criterion

In the context of fixed budget analyses, the performance of all three AFs

93

4. ROBUST BAYESIAN OPTIMIZATION

2 2 21 24 27 210 213

CPU Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 tr
ia

ls
(

 ,
,

,
)

D = 2

No
ise

 L
ev

el
 =

 0
.0

5

2 1 22 25 28 211 214 217

CPU Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

D = 5

25 28 211 214 217 220

CPU Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

D = 10

2 2 21 24 27 210 213

CPU Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 tr
ia

ls
(

 ,
,

,
)

No
ise

 L
ev

el
 =

 0
.1

20 23 26 29 212 215

CPU Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

25 28 211 214 217 220

CPU Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

EI MGFI LCB

Figure 4.3: Fixed target analysis based on cpu time. Rows distinguish between
noise levels, whereas columns identify different settings of dimensionality. Each plot
contains three ECDF curves based on three infill criteria discussed. Each ECDF
curve is based on 300 data points.

is comparable in most trials. For a higher setting of the dimensionality,
i.e., D = 10, however, we observe a higher variance in the performance of
LCBeff and Meff(x; t). In the context of fixed target analyses, we observe
similar patterns, i.e., for most trials, we do not observe a significant difference
in the performance. Hence, we cannot find a clear winner in this case, albeit
we can say that E[Ieff(x)] is better suited for higher dimensionality.

• Infill Criterion for Practical Scenarios

For choosing an AF for practical scenarios, we emphasize on the average
running cpu time per iteration (ARCTPI), as well as the maximum cpu
time required for an independent run: Tmax, in addition to the fixed budget
and fixed target analyses. In the context of ARCTPI, i.e.,Figs. 4.5, we find
Meff(x; t) as clearly superior to its competitors in most trials. Likewise,
in the context of Tmax, i.e., we find Meff(x; t) as clearly superior to its
competitors. Combining the performance for all type of analyses, we find
E[Ieff(x)] andMeff(x; t) as suitable AF to be employed in the BO algorithm
to find robust solutions.

94

4.4 Summary and Discussion

20 21 22 23 24 25 26 27

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 tr
ia

ls
(

 ,
,

,
)

D = 2

No
ise

 L
ev

el
 =

 0
.0

5

21 23 25 27 29

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

D = 5

21 23 25 27 29 211

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

D = 10

20 21 22 23 24 25 26 27

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 tr
ia

ls
(

 ,
,

,
)

No
ise

 L
ev

el
 =

 0
.1

21 23 25 27 29

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

21 23 25 27 29 211

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

EI MGFI LCB

Figure 4.4: Fixed target analysis based on number of iterations. Rows distinguish
between noise levels, whereas columns identify different settings of dimensionality.
Each plot contains three ECDF curves based on three infill criteria discussed. Each
ECDF curve is based on 300 data points.

4.4 Summary and Discussion

To employ the Bayesian optimization algorithm to find robust solutions, we face
several technical issues. Chief among them is the issue that the “best-so-far”
observed value of the function, which acts as a baseline to compute “improve-
ment/gain” in nominal Bayesian optimization algorithm, renders inapplicable,
when we are interested in robust solutions. This is due to the fact that this
value has no clear meaning/usage in the context of robust solutions. Therefore,
we substitute this value with the current best known “robust” value of the function,
which by implication can only be estimated on the Kriging surface (as opposed to
observed or fully known in the nominal case).

The second issue that we face is that the Kriging model only ever provides an
approximation to the nominal function response, and therefore cannot be utilized
directly to model the “robust” function response, without which we cannot pro-
ceed. To solve this issue, we assume that the true “robust” response of the function
is also normally distributed with Kriging prediction and MSE acting as the pa-

95

4. ROBUST BAYESIAN OPTIMIZATION

25 27 29 211

CPU Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 tr
ia

ls
(

 ,
,

,
)

D = 2

No
ise

 L
ev

el
 =

 0
.0

5

27 29 211 213 215

CPU Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

D = 5

210 212 214 216

CPU Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

D = 10

24 25 26 27 28 29 210 211

CPU Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 tr
ia

ls
(

 ,
,

,
)

No
ise

 L
ev

el
 =

 0
.1

27 29 211 213

CPU Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

210 211 212 213 214 215 216 217

CPU Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

EI MGFI LCB

Figure 4.5: Average cpu time per iteration for the BO algorithm. Rows distinguish
between noise levels, whereas columns identify different settings of dimensionality.
Each plot contains three ECDF curves based on three infill criteria discussed. Each
ECDF curve is based on 300 data points.

EI

M
GF

I

LC
B

25

26

27

28

29

210

211

212

T m
ax

 (S
ec

on
ds

)

D = 2

No
ise

 L
ev

el
 =

 0
.0

5

EI

M
GF

I

LC
B

28

29

210

211

212

213

214

215

T m
ax

 (S
ec

on
ds

)

D = 5

EI

M
GF

I

LC
B

210

211

212

213

214

215

216

217

T m
ax

 (S
ec

on
ds

)

D = 10

EI

M
GF

I

LC
B

25

26

27

28

29

210

211

212

T m
ax

 (S
ec

on
ds

)
No

ise
 L

ev
el

 =
 0

.1

EI

M
GF

I

LC
B

28

29

210

211

212

213

214

215

T m
ax

 (S
ec

on
ds

)

EI

M
GF

I

LC
B

211

212

213

214

215

216

217

T m
ax

 (S
ec

on
ds

)

Figure 4.6: Maximum accumulated cpu time: Tmax for each trial. Rows dis-
tinguish between noise levels, whereas columns help identify different settings of
dimensionality.

96

4.4 Summary and Discussion

rameters of the distribution. Note that the assumption that the true “robust”
response of the function is normally distributed is not a rigorous one, but a prac-
tical compromise. This is due to the fact that modeling the true robust response
of the function with a non Gaussian distribution is computationally intractable in
our opinion.

After solving these issues, we extend the Bayesian optimization algorithm to
find robust solutions. We consider three sampling infill criteria in this chapter:
the “Lower Confidence Bound”, the “Expected Improvement” criterion, and the
“Moment-Generating Function of the Improvement”, which are also extended to
care for robustness, in order to find robust solutions. Following this, we perform a
comprehensive empirical investigation to answer fundamental research questions
on this topic. These questions deal with the applicability of the Bayesian optimiza-
tion algorithm to find robust solutions, the factors that influence its performance,
the impact of the sampling infill criterion, and the preferred choice of the sampling
infill criterion in practical scenarios.

The key findings from our study provide new insights on this topic. For instance,
we find that the Bayesian optimization algorithm is suitable to find robust solu-
tions, which implies that our adaptation of the Bayesian optimization algorithm
works well in practice. This is an important aspect to know since we are unaware
of any empirical investigation which answers this question in a comprehensive
manner, i.e., by taking into account the variability in external factors such as
dimensionality, robustness criterion, and uncertainty level.

We also find that dimensionality, and consequently the computational budget,
plays a significant role in the performance of the Bayesian optimization algorithm.
This finding validates our understanding on the so-called “Curse of Dimensionality”
discussed in Chapter 3, and the dimensionality reduction techniques discussed
therein become even more important. Apart from that, we also validate that the
noise level, i.e. the scale/severity of the uncertainty, does not directly affect the
quality of the robust solution in an adverse manner.

Lastly, we find that the performance of the “Expected Improvement” criterion,
and the “Moment-Generating Function of the Improvement” enables them to be
employed in practical scenarios. While the performance of the “Lower Confidence
Bound” is deemed satisfactory in most cases, it does not show promising aspects

97

4. ROBUST BAYESIAN OPTIMIZATION

with respect to a higher setting of the dimensionality, and the average cpu time
per iteration is also higher.

98

ch
ap

te
r

5
Computational Cost of Robustness

Solving a robust optimization problem entails re-formulating the original optimiza-
tion problem into a robust counterpart, e.g., by taking an average of the function
values over different perturbations to a specific input (Chapter 3) (Kruisselbrink,
2012). Consequently, solving the robust counterpart is much more costlier as
opposed to the original optimization problem. We refer to this aspect as the
“computational cost of robustness”. The “computational cost of robustness” has
been overlooked in the literature to the best of our knowledge. Such an extra
cost brought by robust optimization might depend on the problem landscape, the
dimensionality, the severity of the uncertainty, and the formulation of the robust
counterpart itself. This chapter devotes to such an extra cost brought by robust-
ness in practical scenarios, as it can hinder the aim of computational efficiency set
by the designer (Ullah et al., 2022).

Some of the most important questions that we will attempt to answer in this
chapter are:

1. How can we rank commonly employed robustness criteria with respect to
the trade-off of the “computational cost of robustness” and the quality of
the robust solutions?

2. Which robustness criteria are recommended to practitioners for practical
scenarios, in order to find robust solutions in an efficient manner?

Note that these questions are based on the fourth foundational question intro-
duced in the first chapter. We will attempt to answer these questions with the
help of an empirical investigation, which will focus on a broad spectrum of test
cases. The test cases concentrate on the variability in problem landscape, di-
mensionality, severity of the uncertainty, and robustness criteria, among others.

100

5.1 Cost of Robustness

The five robustness criteria discussed in this chapter have already been defined in
Chapter 3. These include “mini-max robustness”, “mini-max regret robustness”,
“expectation-based robustness”, “dispersion-based robustness”, and “composite
robustness” respectively.

5.1 Cost of Robustness

Solving a numerical black-box problem subject to uncertainty and noise is chal-
lenging due to several reasons. These reasons include high dimensionality, problem
landscape, and robustness criterion among others. We have already seen the im-
pact of high dimensionality and problem landscape in Chapters 3 and 4 (Ullah
et al., 2019, 2020a, 2021). This Chapter concentrates on the choice of the robust-
ness criterion, which can also have a significant impact in efficiently solving the
problem.

The choice of the robustness criterion is important for two main reasons.

• The chosen robustness criterion can have a significant impact on the effi-
ciency. This is due to the fact that obtaining a robust solution requires
additional computational resources as opposed to a nominal one, since the
optimizer has to take into account the impact of uncertainty and noise as
well. This need for additional computational resources is based on the robust-
ness criterion1 chosen, e.g., RO based on the “mini-max” principle requires
an internal optimization loop to compute the worst impact of the uncer-
tainty, whereas RO based on the “expectation” of a noisy function requires
computing an integral (Beyer and Sendhoff, 2007; Ullah et al., 2019).

• The chosen robustness criterion can also have a significant impact on the per-
formance, i.e., optimality. Recall that the aim for robustness can be achieved
from two different schools of thought, which are often conflicting: Perfor-
mance/Quality and Robustness/Stability (Kruisselbrink, 2012) (cf. 3.1.1).
The former measures the robustness of a solution from the perspective of
the overall performance, i.e.,optimality, under the variation of the uncertain
parameters of the solution. As opposed to that, the latter measures the

1An underlying assumption in this context is the non-existence of hard constraints on the
choice of RF. In some practical scenarios of RO, this assumption is not valid. Note, however,
that, there are plenty of situations where the assumption is valid, and the lack of information
on the computational aspects of the RFs makes it harder for practitioners to choose a suitable
robustness criterion.

101

5. COMPUTATIONAL COST OF ROBUSTNESS

robustness of a solution from the perspective of the minimal performance
variation under the variation of the uncertain parameters of the solution.
Consequently, when choosing a robustness criteria, it is important to know
that we maybe compromising on optimality to ensure robustness/stability,
e.g., in the case of “mini-max” robustness.

In this Chapter, we only focus on the aspect of computational efficiency, based
on the choice of robustness criterion. This is due to the fact that the “compu-
tational cost of robustness” (CCoR), i.e., the need for additional computational
resources to find the “robust” instead of a “nominal” solution, depends on the
robustness criterion chosen. Consequently, it is desirable to evaluate and compare
commonly-employed robustness criteria with regards to computational cost, where
the computational cost is mainly based on the cpu time taken to find the robust
solution.

5.2 Empirical Investigation

Our aim in this Chapter is to understand the impact of robustness criterion in
RBO with regards to computational efficiency. Intuitively, robustness criterion
can have a significant impact on the performance of the RBO algorithm, since
steps 5 and 6 in Algorithm 1 (cf. 1) require much more computational resources as
opposed to the nominal BO algorithm (Jones et al., 1998). This need for additional
computational resources is based on the chosen robustness criterion. Through our
empirical investigation, we aim to better understand this impact for each of the
five robustness criteria discussed in the thesis. To make our setup comprehensive,
we take into account the variability in external factors such as problem landscape,
dimensionality, and the scale/severity of the uncertainty.

For our study, we select ten unconstrained, noiseless, single-objective optimization
problems from BBOB (Hansen et al., 2021). The set of selected test functions is
given as: F = {f2, f3, f7, f9, f10, f13, f15, f16, f20, f24}. An important thing to
note is that each of the test functions in F is subject to minimization, and is
evaluated on three different settings of dimensionality as: D = {2, 5, 10}. Apart
from the test functions and dimensionality, we also vary the uncertainty level
based on two distinct settings as: L = {0.05, 0.1}, which indicate the maximum
% deviation in the nominal values of the search variables.

102

5.2 Empirical Investigation

For the deterministic setting of the uncertainty: MMR and MMRR, the compact
set U is defined as: U = [−(L×R), (L×R)], where L ∈ L denotes the choice of
the uncertainty level, and R serves as the absolute range of the search variables.
For the test functions in F , the absolute range of the search variables is 10,
since all test functions are defined from -5 to 5. For the probabilistic setting of
the uncertainty: EBR, DBR and CR, the uncertainty is modeled according to a
continuous uniform probability distribution: ∆x ∼ U(a, b), where the boundaries
a and b are defined similar to the boundaries of the the set U in the deterministic
case.

In our study, the size of the initial training data is set to be 2×D, where D ∈ D

denotes the corresponding setting of the dimensionality. Likewise, the maximum
number of iterations for the BO algorithm is set to be 50×D. Note that our Kriging
surrogate is based on the popular Matérn 3/2 kernel (Rasmussen and Williams,
2006), and we standardize the function responses: y = [f(x1), f(x2), . . . , f(xN)]⊤,
before constructing the Kriging surrogate. In addition, we utilize the robust EI
(cf. Eq. (4.13)) as the sampling infill criterion for our experiments.

For the parallel execution of the BO algorithm for each of the 300 test cases
considered, we utilize the DAS-5 supercomputer (Bal et al., 2016), similar to the
experimental setup discussed in the previous chapter. The performance assessment
of the solutions in our experiments is based on 15 independent runs R of the RBO
algorithm for each of the 300 test cases considered. Note that for each trial, i.e., the
unique combination of the independent run and the test case, we ensure the same
configuration of hardware and software to account for fairness. Furthermore, in
each trial, we measure the cpu time for all iterations of the RBO algorithm.

After the successful parallel execution of all trials, we evaluate the performance
of our robust solutions based on the quality difference DQ from the baseline
(cf. Eq. (3.12))). Note that DQ in this case is based on the space of objective
function values1. After this, we perform six different analyses to answer the ques-
tions outlined earlier. The first two type of analyses are referred to as the fixed
cpu time analysis, and the fixed iteration analysis respectively. In fixed cpu time
analysis, we fix 50 different settings of the cpu time, and report the best DQ (the
lowest) for each trial. The DQ in this context is averaged over all 50 settings
of the cpu time. For fixed iteration analysis, we fix 30 different settings of the

1In this study, we do not divide DQ with the number of independent runs R as Eq. (3.12)
suggests, but rather report all trials.

103

5. COMPUTATIONAL COST OF ROBUSTNESS

iterations (checkpoints) to report the best DQ (the lowest) for each trial. The
DQ in this context is also averaged over all 30 checkpoints.

After fixed cpu time and fixed iteration analysis, we perform a fixed target analysis.
The fixed target analysis is also based on two different settings: by fixing a target
DQ and reporting the cpu time as well as the number of iterations taken to reach
that target. We fix ten different settings for the target in this context, and the
corresponding cpu time and iterations are averaged over these target values. Note
that each target describes the minimum desirable quality threshold of the robust
solution. If such a quality is never achieved, we report the penalized cpu time and
penalized number of iterations respectively. The penalized cpu time is set to be
D × Tmax, whereas penalized number of iterations is set to be D × Nmax. Here
D is the corresponding setting of the dimensionality, and Nmax and Tmax indicate
the maximum number of iterations of the BO algorithm and the cpu time taken
to execute it. After the fixed budget and fixed target analyses, we also report the
average cpu time per iteration for the BO algorithm. In addition, we also report
Tmax, the accumulated cpu time at the last iteration of the BO algorithm, for each
trial.

5.2.1 Results

We share the results originating from our study in Figs. 5.1 – 5.5. Each of these
figures contains the graphs for a particular type of analysis. In particular, Fig. 5.1
shares the results based on fixed cpu time analysis. The figure contains six dif-
ferent plots corresponding to two noise levels, and three different settings of the
dimensionality. Each plot shares the empirical cumulative distribution function
(ecdf) of DQ for five different robustness criteria considered. Note that each ecdf
curve (for each robustness criterion in a plot) is based on 150 data points, ow-
ing to the combination of ten test functions and fifteen independent runs of the
algorithm.

Likewise, Fig. 5.2 shares the ecdf plots corresponding to fixed iteration analysis,
whereas the analyses based on fixed target is presented in Figs. 5.3. The average
cpu time per iteration of the BO algorithm to find robust solutions is presented in
Fig. 5.4. Lastly, we present the maximum accumulated cpu time: Tmax, for each
trial in the form of box plots in Fig. 5.5.

In the following, we discuss the major findings of these results.

104

5.2 Empirical Investigation

10 4 10 3 10 2 10 1 100 101 102 103

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

tio
n

of
 tr

ia
ls

(
 ,

,
,

)

D = 2

No
ise

 L
ev

el
 =

 0
.0

5

10 4 10 3 10 2 10 1 100 101 102

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

D = 5

10 5 10 4 10 3 10 2 10 1 100 101 102

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

D = 10

10 3 10 2 10 1 100 101 102

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 tr
ia

ls
(

 ,
,

,
)

No
ise

 L
ev

el
 =

 0
.1

10 4 10 3 10 2 10 1 100 101

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

10 4 10 3 10 2 10 1 100

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

MMR MMRR EBR DBR CR

Figure 5.1: Fixed cpu time analysis. Rows distinguish between noise levels,
whereas columns identify different settings of dimensionality. Each plot contains
five Ecdf curves based on five robustness criteria discussed.

10 3 10 2 10 1 100 101 102 103

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 tr
ia

ls
(

 ,
,

,
)

D = 2

No
ise

 L
ev

el
 =

 0
.0

5

10 4 10 3 10 2 10 1 100 101 102

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

D = 5

10 4 10 3 10 2 10 1 100 101 102

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

D = 10

10 3 10 2 10 1 100 101 102

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 tr
ia

ls
(

 ,
,

,
)

No
ise

 L
ev

el
 =

 0
.1

10 4 10 3 10 2 10 1 100 101

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

10 4 10 3 10 2 10 1 100

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

MMR MMRR EBR DBR CR

Figure 5.2: Fixed iteration analysis. Rows distinguish between noise levels,
whereas columns identify different settings of dimensionality. Each plot contains
five Ecdf curves based on five robustness criteria discussed.

105

5. COMPUTATIONAL COST OF ROBUSTNESS

10 1 100 101 102 103 104

CPU Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

tio
n

of
 tr

ia
ls

(
 ,

,
,

)

D = 2
No

ise
 L

ev
el

 =
 0

.0
5

10 1 100 101 102 103

CPU Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

D = 5

10 1 100 101 102 103 104 105

CPU Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

D = 10

10 1 100 101 102 103

CPU Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 tr
ia

ls
(

 ,
,

,
)

No
ise

 L
ev

el
 =

 0
.1

10 1 100 101 102 103

CPU Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

10 1 100 101 102 103

CPU Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

MMR MMRR EBR DBR CR

Figure 5.3: Fixed target analysis based on cpu time. Rows distinguish between
noise levels, whereas columns identify different settings of dimensionality. Each plot
contains five Ecdf curves based on five robustness criteria discussed.

M
M

R

M
M

RR EB
R

DB
R CR

24

26

28

210

 A
CP

UT
PI

 (S
ec

on
ds

)

D = 2

No
ise

 L
ev

el
 =

 0
.0

5

M
M

R

M
M

RR EB
R

DB
R CR

28

29

210

211

212

213

214

215

AC
PU

TP
I (

Se
co

nd
s)

D = 5

M
M

R

M
M

RR EB
R

DB
R CR

211

212

213

214

215

216

217

218

AC
PU

TP
I (

Se
co

nd
s)

D = 10

M
M

R

M
M

RR EB
R

DB
R CR

24

26

28

210

AC
PU

TP
I (

Se
co

nd
s)

No
ise

 L
ev

el
 =

 0
.1

M
M

R

M
M

RR EB
R

DB
R CR

29

210

211

212

213

214

215

AC
PU

TP
I (

Se
co

nd
s)

M
M

R

M
M

RR EB
R

DB
R CR

211

213

215

217

AC
PU

TP
I (

Se
co

nd
s)

Figure 5.4: Average cpu time per iteration for the BO algorithm. Rows distinguish
between noise levels, whereas columnsidentify different settings of dimensionality.

106

5.2 Empirical Investigation

M
M

R

M
M

RR EB
R

DB
R CR

25

27

29

211

T m
ax

 (S
ec

on
ds

)

D = 2

No
ise

 L
ev

el
 =

 0
.0

5

M
M

R

M
M

RR EB
R

DB
R CR

210

211

212

213

214

215

216

T m
ax

 (S
ec

on
ds

)

D = 5

M
M

R

M
M

RR EB
R

DB
R CR

213

214

215

216

217

218

219

T m
ax

 (S
ec

on
ds

)

D = 10

M
M

R

M
M

RR EB
R

DB
R CR

25

27

29

211

T m
ax

 (S
ec

on
ds

)
No

ise
 L

ev
el

 =
 0

.1

M
M

R

M
M

RR EB
R

DB
R CR

210

211

212

213

214

215

216

T m
ax

 (S
ec

on
ds

)

M
M

R

M
M

RR EB
R

DB
R CR

213

214

215

216

217

218

219

T m
ax

 (S
ec

on
ds

)

Figure 5.5: Maximum accumulated cpu time Tmax for each trial. Rows distinguish
between noise levels, whereas columns identify different settings of dimensionality.

In terms of performance comparison with respect to the fixed cpu time analysis,
we note the promising nature of all RFs except DBR, which performs poorly
compared to its competitors in most trials. Furthermore, we also note the highest
variation in quality (DQ) for DBR. Although no RF is deemed a clear winner for
this analysis, we note that MMR, MMRR and CR have high empirical success
rates. Likewise, we note the highest variation in quality for DBR also in the
context of fixed iteration analysis. In this case, MMRR and CR perform superior
to the other RFs as we observe a high empirical success rate for both. For the
performance measure with respect to the fixed target analysis, we observe that
MMR outperforms the competitors, albeit the variation in the running cpu time
for MMR is also deemed higher. Here, we note a clear distinction in the empirical
success rate between MMRR and other RFs. For instance, if we cut-off the running
cpu time at 100 seconds, we observe that MMRR has an empirical success rate of
around 40 %, whereas MMR, DBR, and CR achieve a success rate of more than
80 %.

In terms of average cpu time per iteration (ACPUTPI), we note that MMR and
EBR perform excellently in most cases, whereas MMRR has the worst perfor-
mance. In this case, none of the MMR and EBR can be deemed a clear winner,
although both perform superior to other RFs in most trials.

107

5. COMPUTATIONAL COST OF ROBUSTNESS

When comparing the performance of RFs in the context of maximum cpu time
spent: Tmax, we note that MMR and EBR in general perform superior to other
RFs, whereas MMRR performs the worst for each setting of dimensionality. Fur-
thermore, we deem that Tmax increases rapidly with respect to dimensionality in
the context of deterministic uncertainty, i.e., MMR and MMRR, when compared
with the probabilistic uncertainty, i.e., EBR, DBR, and CR. Lastly, we note that
in general, the variance in Tmax for the probabilistic setting is also significantly
lower when compared to the deterministic case.

5.2.2 Analysis

Based on the observations from the fixed budget analyses – fixed cpu time and
fixed iteration analyses, we deem MMR, MMRR, EBR and CR to be suitable
RFs with regards to the computational cost involved to find the robust solution.
This validates their applicability in practical scenarios where the computational
resources are limited, and the designer cannot spend more than a fixed amount
of computational budget (whether measured in terms of cpu time or the number
of iterations). Note that MMR appears to be the most promising RF also in the
scenarios where the designer aims for a fixed quality solution – where the designer
cannot compromise on the quality below a certain threshold. In those situations,
MMR can yield the desired quality robust solution with considerably less cpu time.
Apart from these analyses, we note that the ACTPI and Tmax for MMR are also
excellent alongside EBR.

In terms of performance, we find that MMRR poses an interesting situation as it
performs competitively in the context of fixed budget analyses. However, its per-
formance is significantly worse to other RFs in the context of fixed target analysis,
the ACTPI, and the maximum cpu time Tmax for running KB-RO. We believe this
is aligned with the intuition of MMRR (as discussed in Chapter 3), since within an
iterative optimization framework, we have to employ a quadrupled nested loop to
find the robust solution based on MMRR, which in turn exponentially increases
the computational cost per iteration. The MMRR, therefore, has the highest
CCoR, and takes much more cpu time to reach the same target value as opposed
to other RFs.

In terms of performance variance, we note that stochastic RFs, in particular EBR
and DBR, have a higher variance in quality – when measured in terms of NMAE,
and a comparatively lower variance in computational cost – when measured in

108

5.3 Summary and Discussion

terms of the ACTPI and Tmax. This can mainly be attributed to their intrinsic
stochastic nature as they rely on numerical approximations. Since the sample
size of the numerical approximations is fixed with respect to the corresponding
setting of the dimensionality, we observe relatively lower variance in the cpu time.
However, since we only ever approximate the robust response of the function, the
quality of the solution may be deteriorated.

5.3 Summary and Discussion

This chapter analyzes the computational cost of robustness in Bayesian optimiza-
tion for five of the most commonly employed robustness criteria. In a first ap-
proach of such kind, we attempt to evaluate and compare the robustness formula-
tions with regards to the associated computational cost, where the computational
cost is based on the cpu time taken to find the optimal solution under uncertainty.
Our experimental setup constitutes 300 test cases, which are evaluated for 15
independent runs of Bayesian optimization.

A fixed budget analysis on our experimental results suggests the applicability of
“mini-max robustness”, “mini-max regret robustness”, “expectation-based robust-
ness”, and “composite robustness” in practical scenarios where the designer cannot
afford the computational budget beyond a certain threshold. On the other hand, a
fixed target analysis deems the ‘mini-max robustness” as the most efficient robust-
ness criterion in the scenario where the designer cannot compromise the quality of
the optimal solution below a certain threshold. The analysis on the average cpu
time per iteration and maximum cpu timer per run also determines “mini-max
robustness” as one of the most efficient robustness criteria. Overall, “mini-max ro-
bustness” is understood to be the most suitable robustness criterion with regards
to the associated computational cost.

A limitation of our study is that we fix the internal computational budget for
each robustness formulation in Kriging-based robust optimization. Visualizing
the impact of variability in the internal computational budget, e.g., the internal
optimization loop in the context of “mini-max robustness”, is also an important
thing to do. Additionally, we note that each robustness formulation is intrinsically
associated with another cost, namely the cost of compromising on optimality to
ensure robustness or stability (cf. 5.1). Focusing on this cost of robustness will

109

5. COMPUTATIONAL COST OF ROBUSTNESS

advance the state-of-the-art in this area, and help practitioners choose the most
suitable formulation with regards to optimality.

110

ch
ap

te
r

6
Engineering Applications

So far in this thesis, we have focused on two different but related research streams.
The first one (Chapter 3) deals with the applicability of surrogate modeling to
find robust solutions. The manifestation of surrogate modeling focused in this
research stream is based on “one-shot optimization” strategy (Ullah et al., 2019).
In this research stream, we emphasize on the fundamental questions regarding
the applicability of surrogate modeling in robust optimization, and the related
difficulties thereof, e.g., high dimensionality (Ullah et al., 2020a).

The second research stream (Chapters 4 and 5) emphasizes on the applicability
of the Bayesian optimization algorithm, and the related difficulties thereof (Ullah
et al., 2021). As part of the second research stream, we made an attempt to find a
suitable robustness criterion in practical scenarios with regards to the associated
computational cost (Ullah et al., 2022). We are now interested in benchmarking
our earlier findings for both research streams on a real-world engineering applica-
tion.

To this end, we consider a benchmark engineering case study based on the design of
car hood frames. The associated data set contains over 10,000 3D mesh geometries
for variants of card hood frames. This data set is generated through an automated,
industry-grade Computer Aided Design (CAD) workflow, described in (Ramnath
et al., 2022), and further benchmarked in (Wollstadt et al., 2022). The data set
provides realistic designs of car hood frames, which were validated by experts
with respect to realism, manufacturability, variability, and performance. Each
geometry is described by a subset of design variables, such as cut-outs and ribs on
the hood frame as well as their properties, for example, rib location and height,
or cut-out location.

112

6.1 Car Hood Design

Starting in Section 6.1, we provide an overview on the case study with the most
important details, such as the description of the data set, the data pre-processing,
and the targeted tasks. In Section 6.2, we apply the data set to validate our
findings for the first research stream. This is followed by benchmarking the per-
formance of the Bayesian optimization algorithm on the data set. Lastly, we
provide a short summary and discussion on the results.

6.1 Car Hood Design

We consider a case study inspired from a real-world design optimization sce-
nario (Ramnath et al., 2022), where the aim is to optimize the design of a car
hood frame with respect to three performance metrics. These performance met-
rics are the “Geometry Mass (kg)”, “Directional Deformation Maximum (mm)”,
and “Equivalent Stress Maximum (MPa)”. Each geometry is represented as a sur-
face mesh (STL file), and is described by a subset of 38 design variables, such as
“Rear Rib Depth”, “Rear Rib Offset”, “Pocket Offset”, and “Front Curve Height”
among others.

The data set in this context was generated using a feature-based modeling ap-
proach (Ramnath et al., 2019). In the context of automotive car hoods, features
describe components that contribute to desirable properties of the design, e.g., ribs
to add stiffness during driving or impact, or cut-outs and pockets to reduce over-
all weight. Real car hood designs were simplified by removing features that were
irrelevant for the hood’s performance. Remaining features were created indepen-
dent of the base surface to allow for the generation of a sufficiently large variety
of hoods by combining features and feature patterns with a set of 100 base geome-
tries. Features were parameterized and generated using an automated workflow
in computer-aided three-dimensional interactive application (CATIA) v5 (König
and Wintermantel, 2004). It is important to note that some parametrizations led
to invalid geometries, such that in total 10,478 unique hood geometry files were
generated. CAD models were converted to watertight STL surface meshes in the
STL format (Ramnath et al., 2022).

For each car hood, structural mechanics performance values were simulated using
finite element analysis (FEA) (Szabó and Babuška, 2021). FEA was performed
for a hood lift load case under driving conditions, which is an important structural
requirement when designing car hood frames (Vyas et al., 2020). The obtained

113

6. ENGINEERING APPLICATIONS

Figure 6.1: Example of variability in car hood designs in the data set. The
variability is due to the introduction of features, e.g., pockets, cut outs, and ribs.

performance values are “Maximum Equivalent Stress (MPa)” and “Maximum Di-
rectional Deformation (mm)”. Additionally the “Geometry Mass (kg)” is provided
for each design. FEA was performed using a standardized setup over all geome-
tries to allow for automated generation of simulation results. Fig. 6.1 illustrates
the variability in geometries considered in our case study.

6.1.1 Data Set

We start with the data set provided by Ramnath et al. (Ramnath et al., 2022),
which includes geometries, i.e., surface meshes, for 10,070 different designs for car
hood frames. Each geometry contains values of the design variables, e.g., “Rear
Rib Depth”, used to run the FEA simulation for assessing the performance of the
corresponding design with respect to structural mechanics indicators, e.g., “Max-
imum Equivalent Stress (MPa)” and “Maximum Directional Deformation (mm)”.
Note that the entire data set contains 38 unique design variables, but each geome-
try is accompanied with a subset of these variables. The average number of design
variables per geometry is found to be 14, whereas the maximum number of design
variables is found to be 27.

6.1.2 Data Wrangling

Since the geometries in the data set have irregular and asynchronous design
schema1, our first task is to identify the most common design variables. For
this purpose, we count the frequency of each design variable in the entire data set,
and select the top five most commonly appearing design variables. They are “Rib
Depth”, “Rear Rib Width”, “Rear Rib Offset”, “Rear Rib Depth”, and “Rear Rib

1Irregular in this context refers to the fact that geometries are provided with varying number
of design variables. Asynchronous refers to the fact that not all design variables are present in
each geometry (Ullah et al., 2020b)

114

6.1 Car Hood Design

Figure 6.2: Some of the most commonly appearing features considered in the opti-
mization of car hood design. The design variables considered in our study indicate
the properties for these features, e.g., “Rear Rib Depth” and “Pocket Offset”.

End Point Y”. We then scan the entire data set to identify designs where these five
variables appear together. As a results, we are left with 1176 geometries where
these five variables appear together. We then extend this data set by scanning
these 1176 designs so as to search for other design variables, which maybe present
in all of these 1176 geometries. This increases the number of design variables to
18.

We are interested in benchmarking our previous findings on a real-world engineer-
ing case study. For this purpose, we have to formulate optimization scenarios with
three settings of dimensionality as: D = {2, 5, 10}. This means we have to select
two, five, and ten design variables among the set of available design variables. For
this purpose, we construct a benchmark Kriging surrogate model (Rasmussen and
Williams, 2006) with all 18 variables and 1176 training instances, for all three
performance indicators: Mass (kg), Deformation (mm), and Stress (MPa). Then,
we remove each one of the 18 variables in the model, and see the potential impact
on the accuracy of the model. Based on this, we rank all 18 variables for all three
performance indicators, and select the top two, five, and ten variables that have
the most significant effect on the model accuracy (Fan, 2007). These variables
for all three performance indicators are presented in Table 6.1. Furthermore, we
present an example of some of the most important features for car hood designs
in Fig. 6.2 for further clarification.

115

6. ENGINEERING APPLICATIONS

Table 6.1: A summary of the selected design variables and tasks to be performed.
“Performance Indicators” indicates the three output variables (tasks), which are to
be minimized in optimization. “Variables” indicates the design variables which are
included for a particular choice of task and dimensionality (based on the data wran-
gling discussed earlier). The abbreviations for these design variables are presented
in Table 6.2.

Performance Indicators Dimensionality Variables

M
as

s
(k

g)

2 “RRO”, “RRD”

5
“RRO”, “RRD”
“P1O”, “P2O”

“P3O”

10

“RRO”, “RRD”
“P1O”, “P2O”

“P3O”, “RREPY”
“P2R”, “P3R”
“P4O”, “SRW”

D
ef

or
m

at
io

n
(m

m
)

2 “RRO”, “RCH”

5
“RRO”, “RCH”

“RREPY”, “P4O”
“RRW”

10

“RRO”, “RCH”
“PREPY”, “P4O”
“RRW”, “1SRL”
“P2O”, “P3O”
“ARW”, “P3R”

St
re

ss
(M

Pa
)

2 “RRO”, “ARW”

5
“RRO”, “ARW”
“RCH”, “P4O”

“SRW”

10

“RRO”, “ARW”
“RCH”, “P4O”
“SRW”, “P2O”
“P3O”, “RRD”

“1SRL”, “2SRL”

116

6.1 Car Hood Design

Table 6.2: Abbreviations of the 18 design variables discussed in Section 6.1.2.
Some of these variables are presented in Table 6.1 to formulate the optimization
tasks with three settings of the dimensionality.

Design Variable Abbreviation Range

“1SRL” “1st Subsidiary Rib Length” [140, 200]
“2SRL” “2nd Subsidiary Rib Length” [120, 240]
“ARW” “Angled Rib Width” [30, 180]
“MRW” “Middle Rib Width” [40, 200]
“P1O” “Pocket1 Offset” [0, 10]
“P1R” “Pocket1 Radius” [18, 35]
“P2O” “Pocket2 Offset” [0, 10]
“P2R” “Pocket2 Radius” [18, 45]
“P3O” “Pocket3 Offset” [0, 10]
“P3R” “Pocket3 Radius” [13, 45]
“P4O” “Pocket4 Offset” [0, 10]
“RCH” “Rear Curve Height” [20, 120]
“RRD” “Rear Rib Depth” [8, 14]

“RREPY” “Rear Rib End Point Y” [400, 620]
“RRO” “Rear Rib Offset” [-50, 10]
“RRW” “Rear Rib Width” [20, 30]
“RD” “Rib Depth” [15, 30]

“SRW” “Subsidiary Rib Width” [25, 50]

6.1.3 Tasks

We are interesting in design optimization scenarios with three performance indi-
cators illustrated in Table 6.1. For each one of the indicators, we consider three
settings of dimensionality as described earlier. This gives rise to a total of 9
optimization tasks. Furthermore, we consider two different goals of robust opti-
mization for these 9 tasks. These two goals emphasize on benchmarking “one-shot
optimization” strategy (Chapter 3) and Bayesian optimization algorithm (Chap-
ter 4) (Ullah et al., 2019, 2021).

It is pertinent to mention that we try to maintain the same experimental setup,
wherever possible, for these two goals, as discussed previously in the thesis (Chap-
ter 3 and Chapter 4), to account for fairness. Nonetheless, the nature of the

117

6. ENGINEERING APPLICATIONS

industrial data, as well as the realism, manufacturability, and variability associ-
ated with the data generation process means we might have to compromise on
some settings of our previous experimental setups. This would be explained in
further details in experimental setup, wherever applicable.

6.2 One-shot Optimization

We begin with the goal of benchmarking the “one-shot optimization” strategy
based on our data set. This refers to the fact that we consider a surrogate model,
which after construction, is directly utilized by a benchmark numerical optimiza-
tion algorithm, e.g., L-BFGS-B (Wright et al., 1999), without any adaptive sam-
pling, i.e., updating the surrogate model (Ta’asan et al., 1992). This strategy has
been explained in detail in Chapter 2 (cf. Fig. 2.2). This goal has two objectives:
evaluating the surrogate model based on the modeling accuracy, and the quality
of the optimal solution obtained from surrogate modeling. Experimental setup as
well as results for both of these manifestations are provided in the following.

6.2.1 Experimental Setup

In the context of modeling accuracy, our aim is to determine which of the pop-
ular modeling techniques (Bishop, 2007) is most suitable to model the objec-
tive function effectively. In this experimental setup, we consider five model-
ing techniques: Kriging, Polynomial (degree=2), K Nearest-Neighbour (KNN),
Random Forest (RF), and Support Vector Machines (SVMs). Furthermore, for
each one of these techniques, we consider ten different sample sizes as: K × D,
where D refers to the corresponding setting of the dimensionality, and K ∈
{5, 10, 15, 20, 25, 30, 35, 40, 45, 50}. This gives rise to a total of 450 test cases, owing
to the unique combinations of 9 optimization tasks, 10 different sample sizes, and
5 modeling techniques. For each one of these cases, we measure the modeling ac-
curacy according to the RMAE criterion introduced earlier (cf. Eq. (3.11)).

In terms of data pre-processing, we first extract the information about the quan-
tity of interest, e.g., Mass (kg), as per the task, and the corresponding design
variables, e.g., “RRD”, according to the setting of the dimensionality. We then
identify the duplicates in the newly formed data set and remove them. Following
this, we construct a design for each setting of the sample size according to the LHS
scheme (Montgomery, 2017). This, however, poses a practical problem, since we

118

6.2 One-shot Optimization

do not have direct access to the FEA simulation, but rather a pre-computed evalu-
ation of the FEA simulation for the corresponding quantity of interest. Therefore,
for each location in the LHS design, we look for the nearest pre-computed evalu-
ation available. The nearest evaluation is identified based on cosine similarity of
the design variables. In this way, we sample the search space according to the LHS
scheme based on the nearest available point. Note, however, that, this might also
give rise to duplicates, since a pre-computed evaluation could be nearest to more
than one location retrieved from LHS. In this case, we do not allow a duplicate,
and rather select the second nearest point available point, from the data set. After
the generation of the training data for a particular choice of sample size, we look
for testing data points in the remaining data set. These data points are randomly
selected based on a size, which is half of the training data size. We then feed the
corresponding training and testing data set to all five modeling techniques, and
report the RMAE.

In the context of the quality of the optimal solutions, we consider 180 test cases, ow-
ing to the combinations of 5 modeling techniques described above, 9 optimization
tasks discussed, 2 noise levels, and 2 robustness formulations. An important thing
to note in this context is that all design variables take integer values. Therefore,
we employ the Mixed-Integer Surrogate Models, where-ever possible, to find robust
solutions, similar to the approach by (Garrido-Merchán and Hernández-Lobato,
2020)1. The two noise levels in this context characterize 0.5 and 1 % (max) devia-
tion in the nominal values of the design variables as: L = {0.005, 0.01}, whereas
the two robustness formulation considered are MMR and CR.

For the deterministic setting of the uncertainty, i.e., MMR, the compact uncer-
tainty set U is defined as: U = [−(L × R), (L × R)], where L ∈ L denotes the
choice of the noise level, and R serves as the absolute range of the search variables
provided in Table 6.2. Note that in this context, the uncertainty set U is a sub-
set of integer values: U ⊆ Z, since all design variables take integer values2. For

1Only the Kriging and Polynomials are transformed to “Mixed-Integer Surrogate Models”
in this context since current implementations do not allow other modeling techniques to be
extended.

2It is not difficult to verify that the internal optimization loop of the MMR in this context
refers to the complete enumeration over a full factorial design of all unique noise combinations.
Hence, the noise levels in this experimental setup are significantly reduced to be 0.5 and 1 %
respectively, as opposed to the 5 and 10 % (and sometimes even 20 %), discussed previously in
the thesis. Increasing the noise levels to 5 and 10 % makes solving the problem infeasible since
the size of the full factorial design increases rapidly with each new level.

119

6. ENGINEERING APPLICATIONS

the probabilistic setting of the uncertainty, i.e., CR, the uncertainty is modeled
according to a discrete uniform probability distribution: ∆x ∼ U(a, b), where the
boundaries a and b are defined similar to the boundaries of the the set U in the
deterministic case.

The sample size is set to be 50×D, and the resulting surrogate model each time is
directly utilized to find robust solution according to the noise level and the robust-
ness formulation chosen. For the purpose of data generation, we utilize the same
procedure applied for modeling accuracy. Moreover, the numerical optimization
algorithm employed to find robust solution is L-BFGS-B (Morales and Nocedal,
2011).

6.2.2 Results

Graphs showing the quality of the surrogate models, based on the criterion of
RMAE (lower is better), and by varying the training sample size, are presented in
Figs. 6.3 – 6.5. Each figure contains three subplots corresponding to three settings
of the dimensionality, whereas each subplot indicates the RMAE values for five
modeling techniques and ten sample sizes, i.e., S1 – S10. In particular, Fig. 6.3
illustrates the quality in this context for predicting “Mass (kg)”. Fig. 6.4 shows
the quality regarding “Deformation (mm)”, whereas Fig. 6.5 indicates the quality
for “Stress (MPa)”.

Similar to RMAE, the difference in the quality of the optimal solution, obtained
from OSO strategy, to that of the baseline (DQ cf. Eq. (3.12)), is presented in
Figs. 6.6 – 6.8. Similar to modeling accuracy, each figure in this context also con-
tains three subplots corresponding to three settings of the dimensionality, whereas
each subplot indicates the DQ values (lower is better) for five modeling techniques,
two noise levels, i.e., NL 1 and 2, and two robustness formulations, i.e., MMR
and CR. Note that in this context, DQ values are computed based on objective
function values. The baseline values are computed by solving the corresponding
optimization problem – with corresponding settings of task, noise level, robustness
formulation, and modeling technique – with a baseline surrogate model, which is
trained with all 18 design variables for all car hood designs available. In the
following, we report the major findings from our investigation.

• Sample Size

120

6.2 One-shot Optimization

Kri
gin

g

Po
lyn

om
ial KN

N RF
SV

R

S1
S2
S3
S4
S5
S6
S7
S8
S9

S10

6 10 6 6 10
9 12 8 9 15
9 7 6 8 7
4 6 8 7 3
8 7 7 6 7
10 5 5 7 9
4 4 6 7 6
5 7 6 5 6
9 7 5 7 7
6 6 6 5 6

D = 2

Kri
gin

g

Po
lyn

om
ial KN

N RF
SV

R

12 10 7 11 10
12 11 5 6 11
7 7 11 6 9
6 10 8 7 9
7 9 8 7 8
9 8 7 7 9
9 10 8 7 9
7 9 6 6 8
8 7 8 8 9
8 9 7 7 8

D = 5

Kri
gin

g

Po
lyn

om
ial KN

N RF
SV

R

8 19 12 8 9
11 11 9 10 8
8 10 11 6 9
8 10 9 7 10
8 9 9 7 9
8 9 10 6 9
8 9 10 6 10
7 9 9 6 9
7 9 9 7 10
7 8 9 6 9

D = 10

4

6

8

10

12

14

5

6

7

8

9

10

11

12

6

8

10

12

14

16

18

Figure 6.3: Quality of the surrogate models for all five modeling techniques, and
ten sample sizes, i.e., S1 – S10, evaluated based on the criterion of RMAE (lower is
better). The surrogate models are trained to predict “Mass (kg)” of the car hood
designs.

Kri
gin

g

Po
lyn

om
ial KN

N RF
SV

R

S1
S2
S3
S4
S5
S6
S7
S8
S9

S10

18 42 10 12 13

15 9 14 13 10

11 13 9 12 13

14 9 12 15 9

11 9 13 9 10

8 10 12 12 14

15 9 10 11 9

13 10 10 13 10

15 11 11 9 11

11 9 12 10 9

D = 2

Kri
gin

g

Po
lyn

om
ial KN

N RF
SV

R

12 33 26 13 21

17 22 17 13 16

20 14 18 14 19

19 19 16 16 19

24 20 19 14 24

20 23 20 16 18

19 19 20 14 22

24 20 21 18 23

19 21 19 18 21

19 18 20 21 18

D = 5

Kri
gin

g

Po
lyn

om
ial KN

N RF
SV

R

21 40 15 12 15

18 20 20 14 17

19 21 19 15 20

19 20 18 14 18

16 17 16 15 19

18 16 17 15 20

14 18 16 14 20

15 18 18 16 19

16 15 17 13 17

17 15 18 13 19

D = 10

10

15

20

25

30

35

40

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

15

20

25

30

35

40

Figure 6.4: Quality of the surrogate models for all five modeling techniques, and
ten sample sizes, i.e., S1 – S10, evaluated based on the criterion of RMAE (lower
is better). The surrogate models are trained to predict “Maximum Directional
Deformation (mm)” of the car hood designs.

Kri
gin

g

Po
lyn

om
ial KN

N RF
SV

R

S1
S2
S3
S4
S5
S6
S7
S8
S9

S10

18 7 19 37 20

22 19 22 32 12

14 27 17 17 17

26 25 20 18 16

21 31 19 25 16

19 15 24 21 23

24 26 23 30 15

23 20 20 22 20

23 20 23 25 20

23 21 20 24 17

D = 2

Kri
gin

g

Po
lyn

om
ial KN

N RF
SV

R

30 35 22 13 15

24 22 11 16 15

16 24 21 18 23

21 18 20 25 25

22 19 17 20 22

20 19 18 20 19

21 19 26 23 17

21 21 18 19 19

23 19 21 18 15

20 17 23 19 18

D = 5

Kri
gin

g

Po
lyn

om
ial KN

N RF
SV

R

30 53 14 25 23

17 20 20 18 19

18 22 19 22 19

24 20 22 21 18

20 21 17 18 19

20 21 20 22 19

20 20 22 20 18

20 22 19 19 16

24 20 23 21 17

21 20 23 21 19

D = 10

10

15

20

25

30

35

15

20

25

30

35

15

20

25

30

35

40

45

50

Figure 6.5: Quality of the surrogate models for all five modeling techniques, and
ten sample sizes, i.e., S1 – S10, evaluated based on the criterion of RMAE (lower is
better). The surrogate models are trained to predict “Maximum Equivalent Stress
(MPa)” for the car hood designs.

121

6. ENGINEERING APPLICATIONS

Kri
gin

g
ELN KN

N RF
SV

R

MMR - NL 1

CR - NL 1

MMR - NL 2

CR - NL 2

1 40 100 3 5

2 29 95 5 5

0 104 4 0 113

7 109 1 99 105

D = 2

Kri
gin

g
ELN KN

N RF
SV

R

170 75 93 3 115

177 98 24 0 0

173 107 126 131 5

3 0 129 17 157

D = 5

Kri
gin

g
ELN KN

N RF
SV

R

3 44 96 142 126

0 34 100 4 125

4 100 0 4 2

6 3 3 104 4

D = 10

0

20

40

60

80

100

0

20

40

60

80

100

120

140

160

0

20

40

60

80

100

120

140

Figure 6.6: Quality of the surrogate models for all five modeling techniques, and
for all four cases based on the combinations of two noise levels, i.e., NL 1 and
2, and two robustness formulations, i.e., MMR and CR. The quality is measured
according to the criterion of DQ (lower is better), introduced in Chapter 3. The
goal of optimization in this context is to minimize the “Mass (kg)” of the geometry.

An analysis of the averaged results in Figs. 6.3 – 6.5 w.r.t. sample size
indicates that we can achieve a good approximation quality with reasonable
sample size in most test scenarios. Increasing the sample size does not
strictly increase the approximation quality of the surrogate model. However,
the surrogate models with the highest number of training points, i.e., S10,
usually produce one of the best averaged results. In a loosely speaking
manner, our observations re-affirm the generally employed heuristic in model-
assisted optimization, which states that the initial sample size can be set
linearly in terms of dimensionality (Forrester et al., 2008; Jurecka, 2007).

• Modeling Technique

An analysis of the averaged results in Figs. 6.3 – 6.5 w.r.t. modeling tech-
niques indicates that, in general, all five modeling techniques, produce good
approximations, for most test scenarios. RF produces the best averaged re-
sult in terms of the first and second tasks, i.e., “Mass (kg)” and “Deformation
(mm)”, whereas KNN performs best in terms of the third task, i.e., “Stress
(MPa)”. This gives us a new perspective of considering RF and KNN as well,
when modeling the real-world complex objective functions.

In terms of the averaged results in Figs. 6.6 – 6.8 w.r.t. modeling techniques,
we find that the optimal solutions obtained from RF achieve the highest
quality for the first task, whereas Kriging produces the best solutions in
terms of the second task. Optimal solutions obtained from KNN perform

122

6.3 Bayesian Optimization

Kri
gin

g
ELN KN

N RF
SV

R

MMR - NL 1

CR - NL 1

MMR - NL 2

CR - NL 2

0 4 108 130 106

1 3 3 133 110

2 0 99 4 92

3 111 1 2 4

D = 2

Kri
gin

g
ELN KN

N RF
SV

R

4 1 0 1 103

5 4 0 9 16

10 143 95 1 92

130 32 5 0 4

D = 5

Kri
gin

g
ELN KN

N RF
SV

R

136 182 149 5 103

117 110 114 116 110

122 4 52 115 40

4 114 113 90 130

D = 10

0

20

40

60

80

100

120

0

20

40

60

80

100

120

140

20

40

60

80

100

120

140

160

180

Figure 6.7: Quality of the surrogate models for all five modeling techniques, and
for all four cases based on the combinations of two noise levels, i.e., NL 1 and
2, and two robustness formulations, i.e., MMR and CR. The quality is measured
according to the criterion of DQ (lower is better). The goal of optimization in this
context is to minimize the “Maximum Directional Deformation (mm)” of the car
hood design.

the best in terms of the third task. Overall, in terms of the quality of the
optimal solutions, we conclude Kriging produces excellent results in most
test scenarios. An important thing to note here is that we do not achieve
the higher quality expected from polynomial surrogates.

• Applicability

Based on the overall performance of the surrogate models in terms of model-
ing accuracy, and quality of the robust optimal solutions, we deem surrogate
modeling to be applicable for efficiently solving optimization problems under
uncertainty. This is due to the fact that in most cases, the quality of the
approximation obtained from Kriging, SVM, RF and KNN is good enough
to employ a surrogate to find robust solution. The quality of the optimal
solutions in most cases is also satisfactory, since the optimal function value
found on the model surface is close to the baseline/ground truth in most
cases.

6.3 Bayesian Optimization

We are interested in benchmarking the performance of the Bayesian optimization
algorithm (cf. Alg. 1), which is based on the “sequential model-based optimization”
framework, to find the optimal solutions in an efficient manner (Jones et al., 1998).
In Chapter 4, we extended the Bayesian optimization algorithm to the robust

123

6. ENGINEERING APPLICATIONS

Kri
gin

g
ELN KN

N RF
SV

R

MMR - NL 1

CR - NL 1

MMR - NL 2

CR - NL 2

0 105 133 108 100

45 111 117 39 0

50 0 8 162 130

0 3 8 134 102

D = 2

Kri
gin

g
ELN KN

N RF
SV

R

119 1 1 23 5

68 1 0 97 156

74 6 114 1 129

4 4 115 2 101

D = 5

Kri
gin

g
ELN KN

N RF
SV

R

117 7 5 116 6

64 158 4 95 3

59 123 110 6 126

117 129 19 5 97

D = 10

0

20

40

60

80

100

120

140

160

0

20

40

60

80

100

120

140

20

40

60

80

100

120

140

Figure 6.8: Quality of the surrogate models for all five modeling techniques, and
for all four cases based on the combinations of two noise levels, i.e., NL 1 and 2, and
two robustness formulations, i.e., MMR and CR. The quality is measured according
to the criterion of DQ (lower is better). The goal of optimization in this context is
to minimize the “Maximum Equivalent Stress (MPa)” of the car hood design.

scenario, in order to efficiently find the robust solutions (Ullah et al., 2021). We
now emphasize on the performance of the Bayesian optimization algorithm, as
well as the choice of the sampling infill criterion. To this end, we study three
sampling infill criterion: LCB, EIC, and MGFI, which have been introduced earlier
(cf. Chapter 4) in the thesis.

6.3.1 Experimental Setup

We start with 9 optimization tasks, introduced earlier in this Chapter. These 9
optimization tasks refer to the minimization of three structural mechanics perfor-
mance indicators: “Mass (kg)”, “Maximum Directional Deformation (mm)”, and
“Maximum Equivalent Stress (MPa)”, each for three settings of the dimensional-
ity as: D = {2, 5, 10}. Furthermore, we consider two levels of additive noise as:
L = {0.005, 0.01}, and two robustness formulations: MMR and CR, respectively.
In addition, we consider three sampling infill criteria for the Bayesian optimiza-
tion algorithm: LCB, EIC, and MGFI, respectively. This gives rise to a total of
108 test cases, owing to the unique combinations of 9 optimization tasks, 2 noise
levels, 2 robustness formulations and 3 sampling infill criteria.

In our study, the size of the initial training data is set to be 5×D, where D ∈ D

denotes the corresponding setting of the dimensionality. Likewise, the maximum
number of iterations for Bayesian optimization is set to be 30×D. Note that our
Kriging surrogate is based on the “absolute exponential” kernel (Rasmussen and
Williams, 2006), and we standardize the function responses: y = [f(x1), f(x2), . . . ,

124

6.3 Bayesian Optimization

f(xN)]⊤, before constructing the Kriging surrogate Kf . Furthermore, the Kriging
surrogate is based on the implementation of (Garrido-Merchán and Hernández-
Lobato, 2020), which transforms the model to handle variables that take integer
values. The hyper-parameters β and t for LCB and MGFI are set similar to the
setup described in Section 4.3.

For the parallel execution of Bayesian optimization for each of the 108 test cases
considered, we utilize Das-5 (Bal et al., 2016), where each standard node has
a dual 8-core 2.4 GHz (Intel Haswell E5-2630-v3) cpu configuration and 64 GB
memory. We implement our experiments in python 3.7.0 with the help of scikit-
learn module (Pedregosa et al., 2011). The performance assessment of the robust
solutions in our experiments is based on 15 independent runs R of the Bayesian
optimization algorithm for each of the 108 test cases considered. Note that for
each trial, i.e., the unique combination of the independent run and the test case,
we ensure the same configuration of hardware and software to account for fair-
ness. Furthermore, in each trial, we measure the cpu time for all iterations of the
algorithm to measure the efficiency.

After the successful parallel execution of all trials, we evaluate the performance of
our robust solutions based on quality differenceDQ from the baseline (cf. Eq. (3.12))).
Note that DQ in this case is based on the space of objective function values1. Af-
ter this, we perform six different analyses to answer the questions outlined earlier.
The first two type of analyses are referred to as the fixed cpu time analysis, and
the fixed iteration analysis respectively. In fixed cpu time analysis, we fix 50 dif-
ferent settings of the cpu time, and report the best DQ (the lowest) for each trial.
The DQ in this context is averaged over all 50 settings of the cpu time. For fixed
iteration analysis, we fix 30 different settings of the iterations (checkpoints) to
report the best DQ (the lowest) for each trial. The DQ in this context is also
averaged over all 30 checkpoints.

After fixed cpu time and fixed iteration analysis, we perform a fixed target analysis.
The fixed target analysis is also based on two different settings: by fixing a target
DQ and reporting the cpu time as well as the number of iterations taken to reach
that target. We fix ten different settings for the target in this context, and the
corresponding cpu time and iterations are averaged over these target values. Note
that each target describes the minimum desirable quality threshold of the robust

1In this study, we do not divide DQ with the number of independent runs R as Eq. (3.12)
suggests, but rather report all trials.

125

6. ENGINEERING APPLICATIONS

2 1 21 23 25 27 29 211

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 tr
ia

ls
(

 ,
,

)

D = 2

21 23 25 27 29 211

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

D = 5

21 23 25 27 29

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

D = 10
EI MGFI LCB

Figure 6.9: Fixed cpu time analysis for car hood design optimization. Each
subplot contains 3 Ecdf curves based on 3 infill criteria discussed. Each Ecdf curve
is based on 180 data points owing to the combinations of 6 optimization tasks
F (3 optimization scenarios and 2 robustness criteria), 2 noise levels L , and 15
independent runs R.

solution. If such a quality is never achieved, we report the penalized cpu time and
penalized number of iterations respectively. The penalized cpu time is set to be
D × Tmax, whereas penalized number of iterations is set to be D × Nmax. Here
D is the corresponding setting of the dimensionality, and Nmax and Tmax indicate
the maximum number of iterations of the BO algorithm and the cpu time taken
to execute it. After the fixed budget and fixed target analyses, we also report the
average cpu time per iteration for the BO algorithm. In addition, we also report
Tmax: the accumulated cpu time at the last iteration of the BO algorithm, for
each trial.

6.3.2 Results

The results originating from this are shown in Figs. 6.9 – 6.13. Each of these figures
contains the graphs for a particular type of analysis. In particular, Fig. 6.9 shares
the results based on a fixed cpu time analysis. The figure contains 3 different
subplots corresponding to 3 different settings of the dimensionality. Each subplot
shares the empirical cumulative distribution function (ecdf) of DQ for 3 different
sampling infill criteria considered.

Likewise, Fig. 6.10 shares the ecdf plots corresponding to fixed iteration analysis,
whereas the analysis based on fixed targets is presented in Fig. 6.11. The average
cpu time per iteration of the BO algorithm to find robust solutions is presented

126

6.3 Bayesian Optimization

2 3 2 1 21 23 25 27 29

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

tio
n

of
 tr

ia
ls

(
 ,

,
)

D = 2

2 2 20 22 24 26 28 210

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

D = 5

2 3 2 1 21 23 25 27 29 211

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

D = 10
EI MGFI LCB

Figure 6.10: Fixed Iteration analysis. Each subplot contains 3 Ecdf curves based
on 3 infill criteria discussed. Each Ecdf curve is based on 180 data points owing to
the combinations of 6 optimization tasks F (due to 2 optimization scenarios and 2
robustness criteria), 2 noise levels L , and 15 independent runs R.

22 24 26 28 210

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 tr
ia

ls
(

 ,
,

)

D = 2

24 26 28 210 212 214

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

D = 5

25 27 29 211 213 215 217 219

 (function values)

0.0

0.2

0.4

0.6

0.8

1.0

D = 10
EI MGFI LCB

Figure 6.11: Fixed Target analysis. Each subplot contains 3 Ecdf curves based on
3 infill criteria discussed. Each Ecdf curve is based on 180 data points owing to the
combinations of 6 optimization tasks F (3 optimization scenarios and 2 robustness
criteria), 2 noise levels L , and 15 independent runs R.

100 150 200 250 300 350
CPU Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 tr
ia

ls
(

 ,
,

)

D = 2

2200 2400 2600 2800 3000
CPU Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

D = 5

10000 11000 12000 13000 14000 15000 16000
CPU Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

D = 10
EI MGFI LCB

Figure 6.12: Average cpu time per iteration for the BO algorithm. Each subplot
contains 3 Ecdf curves based on 3 infill criteria discussed.

127

6. ENGINEERING APPLICATIONS

EI

M
GF

I

LC
B

100

150

200

250

300

350

T m
ax

 (S
ec

on
ds

)

D = 2

EI

M
GF

I

LC
B

2200

2400

2600

2800

3000

T m
ax

 (S
ec

on
ds

)

D = 5

EI

M
GF

I

LC
B

10000

11000

12000

13000

14000

15000

16000

T m
ax

 (S
ec

on
ds

)

D = 10

Figure 6.13: Maximum accumulated cpu time: Tmax for each trial, for each setting
of the dimensionality.

in Fig. 6.12. Lastly, we present the maximum accumulated cpu time: Tmax, for
each trial in the form of box plots in Fig. 6.13.

In the following, we report the major findings of these results.

• Applicability of the Bayesian Optimization

Based on the results presented in Figs. 6.9 – 6.10, we deem Bayesian op-
timization as a promising heuristic to efficiently find robust solutions in
practical scenarios. This is due to the fact that the empirical success rate
of the Bayesian optimization algorithm is satisfactory. For instance, if we
cut-off the DQ values at 8, the empirical success rate is between 35-40 %.

• Factors with Significant Influence

Based on the results presented in Figs. 6.9 – 6.11, we find that dimensionality
affects the quality of the robust solutions. Because of the dimensionality,
the computational budget, i.e., whether measured in cpu time or number
of iterations, also affects the quality of the robust solutions in a significant
manner. For instance, in Fig. 6.9, we see that the empirical success measured
at 24 seconds (cpu time) is more than 40 % for trials belonging to two-
dimensional problems. On the other hand, the empirical success rate drops
to under 35 % when dimensionality is increased (for five and ten-dimensional
cases).

• Impact of Infill Criterion

In the context of fixed budget analyses, the performance of LCBeff and
Meff(x; t) is superior to that of the E[Ieff(x)]. In the context of fixed target
analysis, we we do not observe a significant difference in the performance
for most trials. Hence, we cannot find a clear winner in this case.

128

6.4 Summary and Discussion

• Infill Criterion for Practical Scenarios

For choosing a sampling infill criteria for practical scenarios, we emphasize
on the average running cpu time per iteration (ARCTPI), as well as the maxi-
mum cpu time required for an independent run: Tmax, in addition to the fixed
budget and fixed target analyses. In the context of ARCTPI, i.e., Fig. 6.12,
we deem Meff(x; t) and LCBeff performing better than E[Ieff(x)]. In the
context of Tmax, i.e., we deem LCBeff performing superior to its competitors
for two and five-dimensional problems. Combining the performance in the
context of fixed budget analyses, fixed target analysis, ARCTPI, and Tmax,
we deem LCBeff and Meff(x; t) as suitable sampling infill criteria.

6.4 Summary and Discussion

In this chapter, we benchmarked the applicability of surrogate modeling on a real-
world engineering case study. To this end, we considered a benchmark engineering
case study based on the design of car hood frames. The associated data set
contains over 10,000 3D mesh geometries for variants of card hood frames. This
data set was generated through an automated, industry-grade CAD workflow,
described in (Ramnath et al., 2019), and further benchmarked in (Wollstadt et al.,
2022). The data set provided realistic designs of car hood frames, which were
validated by experts with respect to realism, manufacturability, variability, and
performance.

Based on this data set, we focused on two goals, which emphasized on benchmark-
ing the performance of “one-shot optimization” strategy (Ta’asan et al., 1992) and
the Bayesian optimization algorithm (Jones et al., 1998) for finding robust solu-
tions. Our findings validate the performance of Kriging (Morales and Nocedal,
2011) as one of the most important modeling techniques in surrogate modeling.
Furthermore, we observed the promising nature of ensemble methods, i.e., Ran-
dom Forest, to effectively model the objective function in practical scenarios. We
also validated the commonly-employed heuristic of utilizing a linear sample size
to construct the model (Jurecka, 2007). Finally, in this context, we were satisfied
with the quality of the optimal solutions obtained from surrogate modeling.

In the context of Bayesian optimization (Jones et al., 1998), we validated the
impact of dimensionality, and consequently, the computational budget, on the
performance of the algorithm. Furthermore, We validated the performance of the

129

6. ENGINEERING APPLICATIONS

“Moment-Generating Function of the Improvement” as an effective sampling infill
criterion in Bayesian optimization, in addition to the “Lower Confidence Bound”.
However, we could not validate the highly competitive nature of the “Expected-
Improvement” Criterion. We believe this is due to the fact that the our design
variables and noise settings take integer (rather than continuous) values1.

It is important to note that our study has certain limitations. Ideally, we should
have constructed the surrogate models (in both cases) from the continuous (latent)
variables, derived from the 3D point cloud auto-encoders (Wollstadt et al., 2022),
which in turn could have been constructed from the car hood geometries. This,
however, would have given rise to further difficulties, since such design variables are
generally not interpretable. Furthermore, defining the bounds and the constraints
for such latent variables is a difficult task, i.e., again, due to the fact that they are
not interpretable in the nominal sense. This, in turn, would also have meant that
we cannot specify uncertainty and noise since that requires a precise understanding
of the bounds of the design variables. Combining these points, we believe our
methodology in the experimental setups makes more sense from a practical point of
view, since it validates some of our earlier findings, and offers us a new perspective
to learn from.

1We believe the performance of the ensemble methods is also excellent due to the same
reason, i.e., integer values for design and noise variables

130

ch
ap

te
r

7
Conclusion and Outlook

In this thesis, several important aspects of robust optimization (Ben-Tal et al.,
2009) are empirically investigated in depth. Chapter 1 introduces the fundamen-
tal research questions of the thesis. The first three questions are related to each
other, in that they deal with the applicability of surrogate modeling to find robust
solution in an efficient manner, by taking into account a list of factors such as noise
level, problem landscape, dimensionality, and design of experiment. Note that the
notion of efficiency in this context is based on the utilization of computational
resources.

We made two attempts to answer these questions in a comprehensive manner. The
first one is based on “one-shot optimization” and described in detail in Chapter 3.
The key findings from this investigation indicate the following points.

1. Kriging, Response Surface Models (Polynomials), and Support Vector Ma-
chines construct good quality surrogate models with linear sample sizes.
These models can then be utilized to estimate robust solution. The robust
solutions estimated with these models are very close to the baseline.

2. Dimensionality is a detrimental factor on the quality of the surrogate models,
whereas the noise level does not play a significant role in this context.

Due to the significant impact of dimensionality on the quality of surrogate mod-
els, we devote the rest of Chapter 3 to find dimensionality reduction techniques
that can be utilized for efficient surrogate modeling. To this end, we empirically
compare the performance of Principal Component Analysis, Kernel Principal Com-
ponent Analysis, Autoencoders, and Variational Autoencoders. Following points
summarize the key findings from this study.

132

1. Based on the criteria of modeling accuracy, Autoencoders are the most
promising dimensionality reduction technique.

2. Based on the quality of optimal solutions obtained from low dimensional
surrogate models, Principal Component Analysis perform superior to the
other competitors.

3. The quality of the optimal solutions obtained after dimensionality reduction
can be very low in some cases. Therefore, dimensionality reduction is not
always feasible.

In Chapter 4, we attempt to answer the first and the third research questions
of our thesis with “sequential model-based optimization” framework (Jones et al.,
1998). We refer to it as the “Bayesian optimization” framework, since we always
employ Kriging (or Gaussian process) as the modeling technique. Here, we also
consider the impact of the acquisition function to find robust solution.

Following points summarize the applicability of the Bayesian optimization ap-
proach to find robust solution.

1. The Bayesian optimization algorithm is to be extended to account for para-
metric uncertainty in the search variables. The extended Bayesian optimiza-
tion algorithm is computationally tractable, and able to find robust solutions
efficiently as backed by the empirical investigation.

2. Dimensionality and computational budget play a significant role in the per-
formance of our extended version.

3. Noise level does not directly affect the quality of the robust solution in an
adverse manner.

4. “Expected Improvement” criterion and “Moment-Generating Function of
the Improvement” prove to be excellent choices for the acquisition function,
as opposed to the “Lower Confidence Bound”, which is affected adversely if
the dimensionality increases.

5. The evaluation of the “Lower Confidence Bound” is also computationally
costlier when compared with the other two sampling infill criteria.

Chapter 5 focuses on the fourth research question of our thesis – What is the im-
pact of robustness formulation/criterion in efficiently solving black-box problems

133

7. CONCLUSION AND OUTLOOK

subject to uncertainty and noise, and which robustness formulations are recom-
mended to practitioners with regards to computational efficiency?

An empirical study (Ullah et al., 2022) is conducted to answer this questions. The
major findings from this study are as follows.

1. In the situations where the designer cannot afford the computational bud-
get beyond a certain threshold, “mini-max robustness”, “mini-max regret
robustness”, “expectation-based robustness”, and “composite robustness”
can be utilized to find robust solutions in an efficient manner.

2. On the other hand, if the designer cannot compromise on the quality of the
solution, “mini-max robustness” is the most efficient robustness criterion to
be employed.

3. The average cpu time per iteration of the Bayesian optimization algorithm
is lowest when “mini-max robustness” is employed.

Chapter 6 emphasizes on benchmarking the surrogate modeling approaches, de-
scribed earlier in the thesis, on a real-world engineering application. To this end,
we emphasize on the design optimization of car hood frames, obtained from (Ram-
nath et al., 2019). Our findings from this case study validate some of our earlier
results, and also provide a new perspective in the applicability of surrogate model-
ing. For instance, we observe that Kriging and Random Forest generally perform
excellently in the context of “one-shot optimization”, and the sample size can
be set linearly in terms of dimensionality. Furthermore, we note that “Moment-
Generating Function of the Improvement” and “Lower Confidence Bound” perform
competitively as the sampling infill criteria, and that dimensionality affects the
quality of the optimal solutions in an adverse manner.

7.1 Challenges and Opportunities

Robust optimization (Ben-Tal et al., 2009) has received a lot of attention in the last
two decades due to the advancements in several field of engineering. For instance,
shortening the product-development cycle, reducing the resource consumption dur-
ing the complete process, and creating more balanced and innovative products
has become a desirable outcome in the field of product engineering. To achieve
this, designers have to account for uncertainties and noise in an efficient manner.
Therefore, a practical approach to robust optimization is necessitated.

134

7.1 Challenges and Opportunities

When accounting for uncertainties and noise, we believe “environmental variables”
(or operating conditions of the product) have been overlooked in the literature.
As stated earlier, they can impact the quality of an optimal design in an adverse
manner. Therefore, effectively modeling the uncertainties surrounding these “en-
vironmental variables” is of huge significance.

In the context of parametric uncertainties in the search variables, the choice of
robustness criterion is very important due to three main reasons: “computational
cost of robustness”, “price of robustness”, and “problem landscape induced by the
robustness criterion”. We believe all three of these aspects have been overlooked
in the literature. The first one of these, namely the “computational cost of robust-
ness” has been studied in an empirical fashion in Chapter 5, but the findings
need to be validated with real-world engineering case studies. Furthermore, the
“price of robustness”: the aspect of compromising on the performance/optimality
to achieve robustness/stability, also needs to be systematically studied. Lastly,
it may be the case that the “problem landscape induced by the robustness cri-
terion” encompasses certain attributes, making the robust counterpart easier or
more difficult to solve. We believe this aspect of robustness criterion also needs
to be systematically studied.

In practical scenarios, high dimensionality poses a major obstacle in the appli-
cability of surrogate modeling. Albeit we discuss the issue of high dimensional-
ity at great length in Chapter 3, further research is necessary to validate our
findings for the robust scenario. In particular, answering the following is very
important:

“In the face of high dimensionality, what can be done to find robust solutions in
an efficient and effective manner via surrogate modeling? Which dimensionality
reduction techniques are most suitable in this context? What factors influence the
performance of the dimensionality reduction techniques in this context?”

When extending the Bayesian optimization algorithm to the robust scenario, cer-
tain practical compromises have to be made, in order to effectively model the true
“robust” response of the function. For instance, we assumed in Chapter 4 that
the true “robust” response of the function can also be modeled according to a
Gaussian process, similar to the nominal scenario. However, this approach is not
entirely rigorous, as we are not estimating the true joint posterior distribution of

135

7. CONCLUSION AND OUTLOOK

all search points induced by the uncertainty. Estimating this posterior distribu-
tion would be a significant contribution to the literature, as it would enable us to
extend the Bayesian optimization algorithm to the robust scenario in a seamless
fashion (from the nominal case).

Benchmarking the empirical performance of the Bayesian optimization algorithm
in robust optimization also entails an interesting opportunity for researchers. To
this end, we made an attempt in Chapter 4, which includes the variability in
problem landscape, dimensionality, noise level, robustness and sampling infill cri-
teria. Note, however, that, further research is necessary to cover a broad spectrum
of test scenarios.

Lastly, observing the synergies between surrogate modeling and machine learning,
we note that “robustness” also needs to be incorporated in machine learning. This
is due to the fact that learning and mining in the presence of uncertain (indus-
trial) data poses additional challenges for the modeling techniques. Therefore,
these modeling techniques need to be extended to care for “robustness”, in or-
der to effectively account for the uncertainties present in the training data. A
major contribution in this direction is to extend the Support Vector Machines
to the robust scenario, based on the conceptual framework proposed in (Ben-Tal
et al., 2009). Similarly, the adaptation of the “Variational Recurrent Models” to
account for irregular, highly-sporadic, and asynchronous sequential data is also
an important contribution (Ullah et al., 2020b) in this direction.

136

Bibliography

Alarie, S., C. Audet, A. E. Gheribi, M. Kokkolaras, and S. Le Digabel (2021).
Two decades of blackbox optimization applications. EURO Journal on Compu-
tational Optimization 9, 100011.

Audet, C. and W. Hare (2017). Derivative-free and blackbox optimization, Vol-
ume 2. Springer.

Audet, C. and M. Kokkolaras (2016). Blackbox and derivative-free optimization:
theory, algorithms and applications.

Auer, P. (2002). Using confidence bounds for exploitation-exploration trade-offs.
Journal of Machine Learning Research 3 (Nov), 397–422.

Averbakh, I. and Y.-B. Zhao (2008). Explicit reformulations for robust opti-
mization problems with general uncertainty sets. SIAM Journal on Optimiza-
tion 18 (4), 1436–1466.

Bäck, T., D. B. Fogel, and Z. Michalewicz (2018). Evolutionary computation 1:
Basic algorithms and operators. CRC press.

Bäck, T. and H.-P. Schwefel (1993). An overview of evolutionary algorithms for
parameter optimization. Evolutionary computation 1 (1), 1–23.

Bagheri, M., M. Miri, and N. Shabakhty (2016). Fuzzy reliability analysis using a
new alpha level set optimization approach based on particle swarm optimization.
Journal of Intelligent & Fuzzy Systems 30 (1), 235–244.

Bal, H., D. Epema, C. de Laat, R. van Nieuwpoort, J. Romein, F. Seinstra,
C. Snoek, and H. Wijshoff (2016). A medium-scale distributed system for com-
puter science research: Infrastructure for the long term. Computer 49 (5), 54–63.

138

BIBLIOGRAPHY

Balakrishnan, A. V. (2012). Introduction to optimization theory in a Hilbert space,
Volume 42. Springer Science & Business Media.

Barthelemy, J.-F. and R. T. Haftka (1993). Approximation concepts for optimum
structural designa review. Structural optimization 5 (3), 129–144.

Beasley, D., D. R. Bull, and R. R. Martin (1993). A sequential niche technique for
multimodal function optimization. Evolutionary computation 1 (2), 101–125.

Belkin, M. and P. Niyogi (2002). Laplacian eigenmaps and spectral techniques
for embedding and clustering. In Advances in neural information processing
systems, pp. 585–591.

Bellman, R. E. and L. A. Zadeh (1970). Decision-making in a fuzzy environment.
Management science 17 (4), B–141.

Belotti, P., C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Mahajan
(2013). Mixed-integer nonlinear optimization. Acta Numerica 22, 1–131.

Ben-Tal, A., L. El Ghaoui, and A. Nemirovski (2009). Robust optimization, Vol-
ume 28. Princeton University Press.

Ben-Tal, A., L. E. Ghaoui, and A. Nemirovski (2009). Robust Optimization, Vol-
ume 28 of Princeton Series in Applied Mathematics. Princeton University Press.

Ben-Tal, A., A. Goryashko, E. Guslitzer, and A. Nemirovski (2004). Adjustable
robust solutions of uncertain linear programs. Mathematical programming 99 (2),
351–376.

Bengio, Y., L. Yao, G. Alain, and P. Vincent (2013). Generalized denoising auto-
encoders as generative models. In Advances in neural information processing
systems, pp. 899–907.

Bergstra, J., R. Bardenet, Y. Bengio, and B. Kégl (2011). Algorithms for hyper-
parameter optimization. In Advances in Neural Information Processing Systems
24: 25th Annual Conference on Neural Information Processing Systems 2011.
Proceedings of a meeting held 12-14 December 2011, Granada, Spain, pp. 2546–
2554.

Bergstra, J., R. Bardenet, Y. Bengio, and B. Kégl (2011). Algorithms for hyper-
parameter optimization. In Proceedings of the 24th International Conference on
Neural Information Processing Systems, NIPS’11, USA, pp. 2546–2554. Curran
Associates Inc.

139

BIBLIOGRAPHY

Bergstra, J., D. Yamins, and D. Cox (2013a). Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision architectures.
In International conference on machine learning, pp. 115–123. PMLR.

Bergstra, J., D. Yamins, and D. D. Cox (2013b). Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision architectures.
In ICML.

Berlinet, A. and C. Thomas-Agnan (2011). Reproducing kernel Hilbert spaces in
probability and statistics. Springer Science & Business Media.

Bertsimas, D., D. B. Brown, and C. Caramanis (2011). Theory and applications
of robust optimization. SIAM review 53 (3), 464–501.

Bertsimas, D. and N. Koduri (2022). Data-driven optimization: A reproducing
kernel hilbert space approach. Operations Research 70 (1), 454–471.

Bertsimas, D., O. Nohadani, and K. M. Teo (2010). Robust optimization for
unconstrained simulation-based problems. Operations research 58 (1), 161–178.

Beyer, H.-G. and B. Sendhoff (2007). Robust optimization–a comprehensive sur-
vey. Computer methods in applied mechanics and engineering 196 (33-34), 3190–
3218.

Bhosekar, A. and M. Ierapetritou (2018). Advances in surrogate based model-
ing, feasibility analysis, and optimization: A review. Computers & Chemical
Engineering 108, 250–267.

Bishop, C. M. (2007). Pattern recognition and machine learning, 5th Edition.
Information science and statistics. Springer.

Boggs, P. T. and J. W. Tolle (1995). Sequential quadratic programming. Acta
numerica 4, 1–51.

Bossek, J., P. Kerschke, A. Neumann, F. Neumann, and C. Doerr (2019). One-shot
decision-making with and without surrogates. CoRR abs/1912.08956.

Box, G. E. and N. R. Draper (1987). Empirical model-building and response
surfaces. John Wiley & Sons.

Bubeck, S., R. Munos, and G. Stoltz (2009). Pure exploration in multi-armed
bandits problems. In International conference on Algorithmic learning theory,
pp. 23–37. Springer.

140

BIBLIOGRAPHY

Chen, S., J. Montgomery, and A. Bolufé-Röhler (2015). Measuring the curse of
dimensionality and its effects on particle swarm optimization and differential
evolution. Applied Intelligence 42 (3), 514–526.

Chowdhury, S. and S. Taguchi (2016). Robust Optimization: World’s Best Prac-
tices for Developing Winning Vehicles. John Wiley & Sons.

Coello, C. C. and M. S. Lechuga (2002). Mopso: A proposal for multiple objective
particle swarm optimization. In Proceedings of the 2002 Congress on Evolu-
tionary Computation. CEC’02 (Cat. No. 02TH8600), Volume 2, pp. 1051–1056.
IEEE.

Conn, A. R., K. Scheinberg, and L. N. Vicente (2009). Introduction to derivative-
free optimization. SIAM.

Cox, G. and W. Cochran (1957). Experimental designs. New York.

Cristianini, N. and J. Shawe-Taylor (2004). Support Vector Machines and other
kernel-based learning methods. Cambridge.

Dantzig, G. B. (1955). Linear programming under uncertainty. Management
science 1 (3-4), 197–206.

Das, I. (2000). Robustness optimization for constrained nonlinear programming
problems. Engineering Optimization+ A35 32 (5), 585–618.

Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan (2002). A fast and elitist
multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary
computation 6 (2), 182–197.

Demartines, P. and J. Hérault (1997). Curvilinear component analysis: A self-
organizing neural network for nonlinear mapping of data sets. IEEE Transac-
tions on neural networks 8 (1), 148–154.

Der Kiureghian, A. and O. Ditlevsen (2009). Aleatory or epistemic? does it
matter? Structural safety 31 (2), 105–112.

El Ghaoui, L. and H. Lebret (1997). Robust solutions to least-squares problems
with uncertain data. SIAM Journal on matrix analysis and applications 18 (4),
1035–1064.

141

BIBLIOGRAPHY

Emmerich, M. (2005). Single-and multi-objective evolutionary design optimization
assisted by gaussian random field metamodels. Ph. D. thesis, Dortmund, Univ.,
Diss., 2005.

Emmerich, M. T. and A. H. Deutz (2018). A tutorial on multiobjective opti-
mization: fundamentals and evolutionary methods. Natural computing 17 (3),
585–609.

Fan, J. (2007). Variable screening in high-dimensional feature space. In Proceed-
ings of the 4th international congress of chinese mathematicians, Volume 2, pp.
735–747.

Ferreira, S. C., R. Bruns, H. Ferreira, G. Matos, J. David, G. Brandão, E. P.
da Silva, L. Portugal, P. Dos Reis, A. Souza, et al. (2007). Box-behnken design:
an alternative for the optimization of analytical methods. Analytica chimica
acta 597 (2), 179–186.

Fisher, R. A. (1936). Design of experiments. Br Med J 1 (3923), 554–554.

Forrester, A., A. Sobester, and A. Keane (2008). Engineering design via surrogate
modelling: a practical guide. John Wiley & Sons.

Frazier, P. I. (2018). Bayesian optimization. In Recent advances in optimization
and modeling of contemporary problems, pp. 255–278. Informs.

Gabrel, V., C. Murat, and A. Thiele (2014). Recent advances in robust optimiza-
tion: An overview. European journal of operational research 235 (3), 471–483.

Garrido-Merchán, E. C. and D. Hernández-Lobato (2020). Dealing with categor-
ical and integer-valued variables in bayesian optimization with gaussian pro-
cesses. Neurocomputing 380, 20–35.

Goh, T. (1993). Taguchi methods: some technical, cultural and pedagogical per-
spectives. Quality and Reliability Engineering International 9 (3), 185–202.

Golub, G. H. and C. F. Van Loan (2013). Matrix computations. JHU press.

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep learning. MIT press.

Gramacy, R. B. (2020). Surrogates: Gaussian process modeling, design, and opti-
mization for the applied sciences. Chapman and Hall/CRC.

142

BIBLIOGRAPHY

Gregory, C., K. Darby-Dowman, and G. Mitra (2011). Robust optimization and
portfolio selection: The cost of robustness. European Journal of Operational
Research 212 (2), 417–428.

Hansen, N., A. Auger, R. Ros, O. Mersmann, T. Tusar, and D. Brockhoff (2021).
COCO: a platform for comparing continuous optimizers in a black-box setting.
Optim. Methods Softw. 36 (1), 114–144.

Hastie, T., R. Tibshirani, J. H. Friedman, and J. H. Friedman (2009). The ele-
ments of statistical learning: data mining, inference, and prediction, Volume 2.
Springer.

Herrmann, J. W. (1999). A genetic algorithm for minimax optimization problems.
In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat.
No. 99TH8406), Volume 2, pp. 1099–1103. IEEE.

Hinton, G. E. and R. S. Zemel (1994). Autoencoders, minimum description length
and helmholtz free energy. In Advances in neural information processing sys-
tems, pp. 3–10.

Hoffman, M., B. Shahriari, and N. Freitas (2014). On correlation and budget
constraints in model-based bandit optimization with application to automatic
machine learning. In Artificial Intelligence and Statistics, pp. 365–374. PMLR.

Hutter, F., H. H. Hoos, and K. Leyton-Brown (2011). Sequential model-based
optimization for general algorithm configuration. In Learning and Intelligent
Optimization - 5th International Conference, LION 5, Rome, Italy, January 17-
21, 2011. Selected Papers, Volume 6683 of Lecture Notes in Computer Science,
pp. 507–523. Springer.

Hutter, F., H. H. Hoos, and K. Leyton-Brown (2011). Sequential model-based
optimization for general algorithm configuration. In International conference
on learning and intelligent optimization, pp. 507–523. Springer.

Hutter, F., H. H. Hoos, K. Leyton-Brown, and T. Stützle (2009). Paramils: an
automatic algorithm configuration framework. Journal of Artificial Intelligence
Research 36, 267–306.

Ionescu-Bujor, M. and D. G. Cacuci (2004). A comparative review of sensitivity
and uncertainty analysis of large-scale systemsi: Deterministic methods. Nu-
clear science and engineering 147 (3), 189–203.

143

BIBLIOGRAPHY

Jiang, R., J. Wang, M. Zhang, and Y. Guan (2013). Two-stage minimax regret
robust unit commitment. IEEE Transactions on Power Systems 28 (3), 2271–
2282.

Jin, R., X. Du, and W. Chen (2003). The use of metamodeling techniques for
optimization under uncertainty. Structural and Multidisciplinary Optimiza-
tion 25 (2), 99–116.

Jin, Y. and J. Branke (2005). Evolutionary optimization in uncertain
environments-a survey. IEEE Transactions on evolutionary computation 9 (3),
303–317.

Johnson, D. H. (2006). Signal-to-noise ratio. Scholarpedia 1 (12), 2088.

Johnson, M. E., L. M. Moore, and D. Ylvisaker (1990). Minimax and maximin
distance designs. Journal of statistical planning and inference 26 (2), 131–148.

Jolliffe, I. T. (1986). Principal components in regression analysis. In Principal
component analysis, pp. 129–155. Springer.

Jolliffe, I. T. and J. Cadima (2016). Principal component analysis: a review
and recent developments. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences 374 (2065), 20150202.

Jones, D. R., M. Schonlau, and W. J. Welch (1998). Efficient global optimization of
expensive black-box functions. Journal of Global optimization 13 (4), 455–492.

Jurecka, F. (2007). Robust design optimization based on metamodeling techniques.
Ph. D. thesis, Technische Universität München.

Kall, P., S. W. Wallace, and P. Kall (1994). Stochastic programming. Springer.

Kalman, D. (1984). The generalized vandermonde matrix. Mathematics Maga-
zine 57 (1), 15–21.

Keane, A., A. Forrester, and A. Sobester (2008). Engineering design via surrogate
modelling: a practical guide. American Institute of Aeronautics and Astronau-
tics, Inc.

Kim, M., T. Hiroyasu, M. Miki, and S. Watanabe (2004). SPEA2+: improving
the performance of the strength pareto evolutionary algorithm 2. In Parallel

144

BIBLIOGRAPHY

Problem Solving from Nature - PPSN VIII, 8th International Conference, Birm-
ingham, UK, September 18-22, 2004, Proceedings, Volume 3242 of Lecture Notes
in Computer Science, pp. 742–751. Springer.

Kingma, D. P. and M. Welling (2014). Auto-encoding variational bayes. In 2nd
International Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceedings.

Kingma, D. P., M. Welling, et al. (2019). An introduction to variational autoen-
coders. Foundations and Trends® in Machine Learning 12 (4), 307–392.

Kirkpatrick, S., C. D. Gelatt Jr, and M. P. Vecchi (1983). Optimization by simu-
lated annealing. science 220 (4598), 671–680.

Kleijnen, J. P., W. Van Beers, and I. Van Nieuwenhuyse (2012). Expected improve-
ment in efficient global optimization through bootstrapped kriging. Journal of
global optimization 54 (1), 59–73.

König, O. and M. Wintermantel (2004). Cad-based evolutionary design optimiza-
tion with catia v5. Proceedings of 1st Weimar Optimization and Stochastic Days
WOST, Weimar , 1–30.

Korte, B. H., J. Vygen, B. Korte, and J. Vygen (2011). Combinatorial optimization,
Volume 1. Springer.

Kruisselbrink, J. W. (2012). Evolution strategies for robust optimization. Ph. D.
thesis, Leiden University.

Lee, K.-H. and G.-J. Park (2001). Robust optimization considering tolerances of
design variables. Computers & Structures 79 (1), 77–86.

Lewis, R. M., V. Torczon, and M. W. Trosset (2000). Direct search methods:
then and now. Journal of computational and Applied Mathematics 124 (1-2),
191–207.

Liu, J., Z. Han, and W. Song (2012). Comparison of infill sampling criteria in
kriging-based aerodynamic optimization. In 28th congress of the international
council of the aeronautical sciences, pp. 23–28.

Maaten, L. v. d. and G. Hinton (2008). Visualizing data using t-sne. Journal of
machine learning research 9 (Nov), 2579–2605.

145

BIBLIOGRAPHY

McIlhagga, M., P. Husbands, and R. Ives (1996). A comparison of search tech-
niques on a wing-box optimisation problem. In International Conference on
Parallel Problem Solving from Nature, pp. 614–623. Springer.

Merkuryeva, G. and V. Bolshakovs (2011). Benchmark fitness landscape analysis.
International Journal of Simulation Systems, Science and Technology 12 (2),
38–45.

Močkus, J. (1975). On bayesian methods for seeking the extremum. In Optimiza-
tion techniques IFIP technical conference, pp. 400–404. Springer.

Močkus, J. (2012). Bayesian approach to global optimization: theory and applica-
tions, Volume 37. Springer Science & Business Media.

Montgomery, D. C. (2017). Design and analysis of experiments. John wiley &
sons.

Morales, J. L. and J. Nocedal (2011). Remark on algorithm 778: L-bfgs-b: Fortran
subroutines for large-scale bound constrained optimization. ACM Transactions
on Mathematical Software (TOMS) 38 (1), 1–4.

Mulvey, J. M., R. J. Vanderbei, and S. A. Zenios (1995). Robust optimization of
large-scale systems. Operations research 43 (2), 264–281.

Myers, R. H., D. C. Montgomery, and C. M. Anderson-Cook (2016). Response sur-
face methodology: process and product optimization using designed experiments.
John Wiley & Sons.

Nissen, V. and J. Propach (1998). Optimization with noisy function evaluations.
In International Conference on Parallel Problem Solving from Nature, pp. 159–
168. Springer.

Olsson, A., G. Sandberg, and O. Dahlblom (2003). On latin hypercube sampling
for structural reliability analysis. Structural safety 25 (1), 47–68.

Orr, M. J. et al. (1996). Introduction to radial basis function networks.

Pareto, V., A. S. Schwier, A. N. Page, et al. (1971). Manual of political economy.
Macmillan London.

Parr, J., C. M. Holden, A. I. Forrester, and A. J. Keane (2010). Review of efficient
surrogate infill sampling criteria with constraint handling. In 2nd International
conference on engineering optimization, pp. 1–10.

146

BIBLIOGRAPHY

Parr, W. C. (1989). Introduction to quality engineering: designing quality into
products and processes.

Paté-Cornell, M. E. (1996). Uncertainties in risk analysis: Six levels of treatment.
Reliability Engineering & System Safety 54 (2-3), 95–111.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research 12, 2825–
2830.

Persson, J. and J. Ölvander (2013). Comparison of different uses of metamodels for
robust design optimization. In 51st AIAA Aerospace Sciences Meeting Including
the New Horizons Forum and Aerospace Exposition, pp. 1039.

Pignatiello Jr, J. J. (1988). An overview of the strategy and tactics of taguchi.
IIE transactions 20 (3), 247–254.

Pignatiello Jr, J. J. and J. S. Ramberg (1991). Top ten triumphs and tragedies of
genichi taguchi. Quality Engineering 4 (2), 211–225.

Plackett, R. L. and J. P. Burman (1946). The design of optimum multifactorial
experiments. Biometrika 33 (4), 305–325.

Ponweiser, W., T. Wagner, and M. Vincze (2008). Clustered multiple generalized
expected improvement: A novel infill sampling criterion for surrogate models.
In 2008 IEEE congress on evolutionary computation (IEEE World Congress on
Computational Intelligence), pp. 3515–3522. IEEE.

Pošík, P., W. Huyer, and L. Pál (2012). A comparison of global search algorithms
for continuous black box optimization. Evolutionary computation 20 (4), 509–
541.

Queipo, N. V., R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and P. K.
Tucker (2005). Surrogate-based analysis and optimization. Progress in aerospace
sciences 41 (1), 1–28.

Ramnath, S., P. Haghighi, J. H. Kim, D. Detwiler, M. Berry, J. J. Shah, N. Aulig,
P. Wollstadt, and S. Menzel (2019). Automatically generating 60,000 cad vari-
ants for big data applications. In International Design Engineering Technical

147

BIBLIOGRAPHY

Conferences and Computers and Information in Engineering Conference, Vol-
ume 59179, pp. V001T02A006. American Society of Mechanical Engineers.

Ramnath, S., J. J. Shah, P. Wollstadt, M. Bujny, S. Menzel, and D. Detwiler
(2022). Osu-honda automobile hood dataset (carhoods10k). [Online].

Ranzato, M., C. Poultney, S. Chopra, and Y. L. Cun (2007). Efficient learning
of sparse representations with an energy-based model. In Advances in neural
information processing systems, pp. 1137–1144.

Rao, C. R. (1946). Hypercubes of strength’d’leading to confounded designs in
factorial experiments. Bull. Calcutta Math. Soc. 38, 67–78.

Rasmussen, C. E. and C. K. I. Williams (2006). Gaussian processes for machine
learning. Adaptive computation and machine learning. MIT Press.

Rehman, S. U. (2016). Robust optimization for computationally expensive systems:
With applications to integrated photonics. Ph. D. thesis, Technical University,
Delft.

Rezende, D. J., S. Mohamed, and D. Wierstra (2014). Stochastic backpropagation
and approximate inference in deep generative models. In Proceedings of the 31st
International Conference on Machine Learning, ICML 2014, Beijing, China,
21-26 June 2014, pp. 1278–1286.

Rifai, S., P. Vincent, X. Muller, X. Glorot, and Y. Bengio (2011). Contractive
auto-encoders: Explicit invariance during feature extraction. In Proceedings of
the 28th International Conference on Machine Learning, ICML 2011, Bellevue,
Washington, USA, June 28 - July 2, 2011, pp. 833–840. Omnipress.

Robinson, T., M. Eldred, K. Willcox, and R. Haimes (2008). Surrogate-based
optimization using multifidelity models with variable parameterization and cor-
rected space mapping. Aiaa Journal 46 (11), 2814–2822.

Roux, W., N. Stander, and R. T. Haftka (1998). Response surface approximations
for structural optimization. International journal for numerical methods in
engineering 42 (3), 517–534.

Roweis, S. T. (1998). Em algorithms for pca and spca. In Advances in neural
information processing systems, pp. 626–632.

Roweis, S. T. and L. K. Saul (2000). Nonlinear dimensionality reduction by locally
linear embedding. science 290 (5500), 2323–2326.

148

BIBLIOGRAPHY

Sacks, J., W. J. Welch, T. J. Mitchell, and H. P. Wynn (1989). Design and analysis
of computer experiments. Statistical science 4 (4), 409–423.

Sahinidis, N. V. (2004). Optimization under uncertainty: state-of-the-art and
opportunities. Computers & Chemical Engineering 28 (6-7), 971–983.

Santner, T. J., B. J. Williams, W. I. Notz, and B. J. Williams (2003). The design
and analysis of computer experiments, Volume 1. Springer.

Schmit Jr, L. and B. Farshi (1974). Some approximation concepts for structural
synthesis. AIAA journal 12 (5), 692–699.

Schölkopf, B., A. Smola, and K.-R. Müller (1998). Nonlinear component analysis
as a kernel eigenvalue problem. Neural computation 10 (5), 1299–1319.

Shahraki, A. F. and R. Noorossana (2014). Reliability-based robust design opti-
mization: a general methodology using genetic algorithm. Computers & Indus-
trial Engineering 74, 199–207.

Shan, S. and G. G. Wang (2010). Survey of modeling and optimization strategies to
solve high-dimensional design problems with computationally-expensive black-
box functions. Structural and multidisciplinary optimization 41 (2), 219–241.

Sharma, S., S. Sharma, and A. Athaiya (2017). Activation functions in neural
networks. towards data science 6 (12), 310–316.

Shcherbakov, M. V., A. Brebels, N. L. Shcherbakova, A. P. Tyukov, T. A.
Janovsky, V. A. Kamaev, et al. (2013). A survey of forecast error measures.
World applied sciences journal 24 (24), 171–176.

Snoek, J., H. Larochelle, and R. P. Adams (2012). Practical bayesian optimization
of machine learning algorithms. In Advances in Neural Information Processing
Systems 25: 26th Annual Conference on Neural Information Processing Systems
2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada,
United States, pp. 2960–2968.

Sóbester, A., A. I. Forrester, D. J. Toal, E. Tresidder, and S. Tucker (2014).
Engineering design applications of surrogate-assisted optimization techniques.
Optimization and Engineering 15 (1), 243–265.

Sóbester, A., S. J. Leary, and A. J. Keane (2005). On the design of optimization
strategies based on global response surface approximation models. Journal of
Global Optimization 33 (1), 31–59.

149

BIBLIOGRAPHY

Srinivas, N., A. Krause, S. M. Kakade, and M. W. Seeger (2010). Gaussian process
optimization in the bandit setting: No regret and experimental design. In
Proceedings of the 27th International Conference on Machine Learning (ICML-
10), June 21-24, 2010, Haifa, Israel, pp. 1015–1022. Omnipress.

Stork, J., M. Friese, M. Zaefferer, T. Bartz-Beielstein, A. Fischbach, B. Breiderhoff,
B. Naujoks, and T. Tušar (2020). Open issues in surrogate-assisted optimization.
In High-Performance Simulation-Based Optimization, pp. 225–244. Springer.

Svanberg, K. (1987). The method of moving asymptotesa new method for struc-
tural optimization. International journal for numerical methods in engineer-
ing 24 (2), 359–373.

Szabó, B. and I. Babuška (2021). Finite element analysis: Method, verification
and validation.

Ta’asan, S., G. Kuruvila, and M. Salas (1992). Aerodynamic design and optimiza-
tion in one shot. In 30th aerospace sciences meeting and exhibit, pp. 25.

Taguchi, G. (1995). Quality engineering (taguchi methods) for the development of
electronic circuit technology. IEEE Transactions on Reliability 44 (2), 225–229.

Taguchi, G. and M. S. Phadke (1989). Quality engineering through design op-
timization. In Quality Control, Robust Design, and the Taguchi Method, pp.
77–96. Springer.

Tan, M. H. (2013). Minimax designs for finite design regions. Technometrics 55 (3),
346–358.

Tanaka, H. and K. Asai (1984). Fuzzy linear programming problems with fuzzy
numbers. Fuzzy sets and systems 13 (1), 1–10.

Tanaka, H., T. Okuda, and K. Asai (1973). Fuzzy mathematical programming.
Transactions of the society of instrument and control engineers 9 (5), 607–613.

Tenenbaum, J. B., V. De Silva, and J. C. Langford (2000). A global geometric
framework for nonlinear dimensionality reduction. science 290 (5500), 2319–
2323.

Tipping, M. E. and C. M. Bishop (1999a). Mixtures of probabilistic principal
component analyzers. Neural computation 11 (2), 443–482.

150

BIBLIOGRAPHY

Tipping, M. E. and C. M. Bishop (1999b). Probabilistic principal component
analysis. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology) 61 (3), 611–622.

Toropov, V. V., A. Filatov, and A. Polynkin (1993). Multiparameter structural
optimization using fem and multipoint explicit approximations. Structural op-
timization 6 (1), 7–14.

Ullah, S., H. Wang, S. Menzel, B. Sendhoff, and T. Bäck (2019). An empirical
comparison of meta-modeling techniques for robust design optimization. In
2019 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 819–
828. IEEE.

Ullah, S., H. Wang, S. Menzel, B. Sendhoff, and T. Bäck (2021). A new acquisition
function for robust bayesian optimization of unconstrained problems. In 2021
Genetic and Evolutionary Conference Companion.

Ullah, S., H. Wang, S. Menzel, B. Sendhoff, and T. Bäck (2022). A systematic
approach to analyze the computational cost of robustness in model-assisted
robust optimization. In Parallel Problem Solving from Nature - PPSN VIII,
17th International Conference, Dortmund, Germany, September 10-14, 2022,
Proceedings, Lecture Notes in Computer Science. Springer.

Ullah, S., Z. Xu, H. Wang, S. Menzel, B. Sendhoff, and T. Bäck (2020a). Explor-
ing clinical time series forecasting with meta-features in variational recurrent
models. In 2020 International Joint Conference on Neural Networks (IJCNN),
pp. 1–9. IEEE.

Ullah, S., Z. Xu, H. Wang, S. Menzel, B. Sendhoff, and T. Bäck (2020b). Explor-
ing clinical time series forecasting with meta-features in variational recurrent
models. In 2020 International Joint Conference on Neural Networks (IJCNN),
pp. 1–9. IEEE.

ur Rehman, S., M. Langelaar, and F. van Keulen (2014). Efficient kriging-based
robust optimization of unconstrained problems. J. Comput. Sci. 5 (6), 872–881.

Van Der Maaten, L., E. Postma, and J. Van den Herik (2009). Dimensionality
reduction: a comparative. J Mach Learn Res 10 (66-71), 13.

Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE transactions
on neural networks 10 (5), 988–999.

151

BIBLIOGRAPHY

Vyas, G. M., A. Andre, and R. Sala (2020). Toward lightweight smart automotive
hood structures for head impact mitigation: Integration of active stiffness con-
trol composites. Journal of Intelligent Material Systems and Structures 31 (1),
71–83.

Wang, H. (2009). Forward regression for ultra-high dimensional variable screening.
Journal of the American Statistical Association 104 (488), 1512–1524.

Wang, H. (2018). Stochastic and deterministic algorithms for continuous black-box
optimization. Ph. D. thesis, Leiden University.

Wang, H., M. Emmerich, and T. Bäck (2018). Cooling strategies for the moment-
generating function in bayesian global optimization. In 2018 IEEE Congress on
Evolutionary Computation (CEC), pp. 1–8. IEEE.

Wang, H., B. van Stein, M. Emmerich, and T. Back (2017). A new acquisition
function for bayesian optimization based on the moment-generating function. In
2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC),
pp. 507–512. IEEE.

Wang, H., B. van Stein, M. Emmerich, and T. Bäck (2017). A new acquisition
function for bayesian optimization based on the moment-generating function. In
2017 IEEE International Conference on Systems, Man, and Cybernetics, SMC
2017, Banff, AB, Canada, October 5-8, 2017, pp. 507–512. IEEE.

Wets, R. J.-B. (1966). Programming under uncertainty: the equivalent convex
program. SIAM Journal on Applied Mathematics 14 (1), 89–105.

Wollstadt, P., M. Bujny, S. Ramnath, J. J. Shah, D. Detwiler, and S. Menzel
(2022). Carhoods10k: An industry-grade data set for representation learning
and design optimization in engineering applications. IEEE Transactions on
Evolutionary Computation.

Woodard, R. (2000). Interpolation of spatial data: Some theory for kriging. Tech-
nometrics 42 (4), 436–437.

Wright, S., J. Nocedal, et al. (1999). Numerical optimization. Springer Sci-
ence 35 (67-68), 7.

Yang, P., K. Tang, and X. Yao (2017). Turning high-dimensional optimization into
computationally expensive optimization. IEEE Transactions on Evolutionary
Computation 22 (1), 143–156.

152

BIBLIOGRAPHY

Ying, X. (2019). An overview of overfitting and its solutions. In Journal of Physics:
Conference Series, Volume 1168, pp. 022022. IOP Publishing.

Žilinskas, A. (1992). A review of statistical models for global optimization. Journal
of Global Optimization 2 (2), 145–153.

Zimmermann, H.-J. (1975). Description and optimization of fuzzy systems. Inter-
national journal of general System 2 (1), 209–215.

Zou, H. and T. Hastie (2005). Regularization and variable selection via the elas-
tic net. Journal of the royal statistical society: series B (statistical methodol-
ogy) 67 (2), 301–320.

153

Index

modeling accuracy, 51

acquisition function, 29, 33, 34, 53, 76,
80, 87

adaptive sampling, 80
additive noise, 18, 49, 50
additive uncertainty, 16, 37, 38
Aleatory and Epistemic uncertainties,

18
Algorithm Configuration, 25
Analysis of Variance, 3
Artificial Neural Networks, 45
Autoencoders, 60, 63, 132
average cpu time per iteration,

107
average running cpu time per iteration,

94, 129

Bayesian Optimization, 4, 79
Bayesian optimization, 7, 80, 95, 97, 112,

113, 117, 133–136
bi-objective optimization problem,

40
black-box, 9, 11
black-box functions, 10
black-box optimization, 4, 19, 29,

76
black-box problems, 1, 79, 80
BOX-BEHNKEN Designs, 41

classical set, 18

composite robustness, 49, 50, 76, 101,
134

computational budget, 5
computational complexity, 5, 36
computational cost of robustness,

5
computational resources, 41
Computer Aided Design, 112
constrained optimization problem,

12
continuity, 10
continuous optimization, 10, 42, 59,

76
controllable parameters, 3
correlation, 25
correlation matrix, 26
cosine similarity, 119
crisp sets, 18
cross-validation, 25, 51
cumulative distribution function, 82,

87
Curse of Dimensionality, 59, 97

data normalization, 44
data pre-processing, 44, 69
data preparation, 32
data set, 113
data-generating process, 44
decision variable, 62

154

INDEX

decision variables, 13, 22, 32, 37, 38, 43,
44, 48, 50

deep generative models, 63
derivative-free methods, 22
Design and Analysis of Computer

Experiments, 25
Design of Experiments, 3
design optimization, 21, 117
design variables, 112, 114–120
deterministic set, 37, 47
deterministic uncertainty, 38
differentiability, 10
dimensionality reduction, 33, 43, 44,

60–62, 65–67, 69, 76, 77
dimensionality reduction techniques, 44,

48, 60, 135
direct-search methods, 1, 22
Discrete spaces, 10
dispersion-based robustness, 101
Domain, 9

ecdf, 91–96, 104–106
elastic-net penalty, 25
empirical success rate, 92
environmental conditions, 13
environmental variables, 29, 135
Euclidean metric, 42
Evidence Lower Bound, 65
expectation-based robustness, 39, 101,

134
Expected Improvement, 27, 33, 79, 88,

97, 133
Expected Improvement Criterion, 6,

82
experimental design, 40

factor space, 42
feasible solutions, 20
feature space, 62, 66, 67, 69, 71
feed-forward neural networks, 60,

64
finite element analysis, 113

fixed budget analyses, 108
fixed cpu time analysis, 91, 103, 104,

125
fixed iteration analysis, 91, 92, 103, 104,

125
fixed target analysis, 91, 104, 108,

125
flexible programming, 4
fractional factorial design, 41
free parameters, 25
full factorial design, 41
fuzzy programming, 4
fuzzy sets, 19
fuzzy statement, 19

Gaussian process, 88
generalized least square estimator,

26
global minimum, 10, 11
Global Optimization, 25

hard constraints, 17
high dimensional, 59
high dimensionality, 22, 32, 33, 59, 60,

66, 76, 112
Hilbert spaces of functions, 10
Hyper-parameter optimization,

47
hyper-parameter optimization, 37
hyper-parameters, 37, 47, 69, 70

infill criteria, 92–96
infill criterion, 29, 82, 88, 89, 97

K Nearest-Neighbour, 118
K-Nearest Neighbors, 50
kernel function, 25
kernel Hilbert space, 62
Kernel Principal Component Analysis,

62, 132
Kriging, 24, 25, 36, 42, 45, 50, 52, 53, 67,

71, 76, 77, 80, 81, 85, 87, 88,

155

INDEX

95, 103, 115, 118, 122, 123,
133

Kriging , 69
Kullback-Leibler divergence, 65

Lasso and Ridge regularization,
25

latent space, 62
latin hype-cube design, 43
latin hyper-cube sampling, 42
least upper bound, 38
linear cooling strategy, 90
Lower Confidence Bound, 88, 97,

133

machine learning, 136
manufacturing tolerances, 13
Matérn 3/2 kernel, 25
mathematical modeling of uncertainty,

34
mathematical programming, 4
maxi-min design, 42
maximum likelihood principle, 24
mean squared error, 26
membership function, 18
meta-model, 23
mini-max design, 42
Mini-max Regret Robustness, 38
mini-max regret robustness, 101,

134
Mini-max robustness, 37
mini-max robustness, 33, 49, 50, 101,

102, 134
Mixed-integer spaces, 10
model-assisted optimization, 122
model-assisted optimization, 42, 45, 52,

59, 61, 66
model-based optimization, 48
modeling accuracy, 53
modeling accuracy, 45, 46, 51, 52, 59,

69–72, 118, 123

modeling technique, 32, 34, 36, 37, 40,
44, 45, 48–50, 52, 67, 69, 76,
120

modeling techniques, 119–124,
136

Moment-Generating Function of the
Improvement, 6, 79, 82, 88, 97,
133, 134

Moore-Penrose pseudo-inverse, 25
MOPSO, 11
multi-modal functions, 89
multi-modality, 22
multi-objective optimization, 17

nature inspired heuristics, 11
neural networks, 64
noise level, 2, 34, 50, 76, 89, 119,

120
noise level„ 52
noise levels, 120
noise parameters, 3
non-deterministic, 17
non-deterministic simulator, 12
non-linearity, 69
NSGA-II, 11

objective function, 10, 37–39, 46, 53, 80,
87, 90, 103, 120, 125

one-shot optimization, 7, 30, 48, 112,
117, 118

operations research, 4
optimization under uncertainty, 21,

23
optimizer, 14
orthogonal array, 3
over-fitting, 25, 45

Pareto optimal solutions, 11
PLACKETT-BURMAN Designs,

41
polynomial approximation, 25

156

INDEX

Polynomial Regression, 45, 50, 69,
71

polynomial regression models, 24
possibilistic programming, 4
practical goal of optimization, 12
Principal Component Analysis, 44, 60,

61, 132
probability density function, 47, 82,

87
probability density functions, 3,

19
probability distribution, 50, 64
probability distributions, 65
problem description, 34
problem landscape, 2, 32, 34, 44, 49, 53,

67
process mean, 3

quasi-Newton methods, 23

Radial Basis Function Network,
50

Random Forest, 50, 118
real parameter optimization problems,

10
regret, 38
regularization, 25
Relative Mean Absolute Error, 46
reliability-based robustness, 20
Response Surface Approximation,

23
Response Surface Models, 24
robust black-box optimization, 22
robust counterpart, 38, 39, 100,

135
robust counterpart approach, 37
robust design, 3
robust objective function, 39
robust optimization, 1, 7, 20, 29, 100,

112, 132, 136
robust solution, 6, 36, 37, 48, 49, 51, 76,

80, 84

robust solutions, 32, 76, 89, 112
robustness, 37
robustness criteria, 100–102
robustness criterion, 38, 39, 49, 88, 97,

112
robustness formulation, 2, 6, 7, 32, 34,

37, 39, 47, 49, 119, 120
robustness formulations, 120

sample size, 5, 34, 50, 51, 67
samples size, 48
sampling infill criteria, 133, 136
sampling infill criterion, 80, 103
sampling locations, 48, 69, 80
sampling plan, 36
sampling plans, 5, 36
sampling points, 40–42, 48
sampling points„ 42
scale of the uncertainty, 32, 49
scale of uncertainty, 34
screening experiments, 41
search point, 37, 38
search space, 9, 24, 36, 42–44, 46, 47, 61,

77, 82, 87, 119
search variables, 13, 29, 34, 39, 76, 87–89,

102, 103, 119, 135
sensitivity robustness, 20
Sequential Least Square Programming,

51
sequential model-based optimization, 30,

133
severity of the uncertainty, 88, 93,

97
signal-to-noise-ratio, 3
smoothness, 10
space-filling designs, 43
space-filling property, 42
SPEA2, 11
standardizing, 43
statistical learning, 36, 44
stochastic programming, 4

157

INDEX

structural mechanics, 113, 114
structure of the uncertainty, 37
Support Vector Machines, 50, 76, 118,

136
Support Vector Regression, 45
surface mesh, 113
surrogate modeling, 123
surrogate model, 32, 36, 37, 40, 43,

45–48, 51, 52, 59, 61, 66, 67,
69, 76, 79, 81, 115, 118, 120,
122

surrogate modeling, 4, 7, 25, 29, 30, 32,
40, 47, 49, 53, 59, 76, 77, 112,
118, 135, 136

surrogate models, 23, 34, 49, 52, 53, 60,
61, 66, 120–124

Surrogate-Assisted Evolutionary
Algorithms, 25

Surrogate-Assisted Optimisation,
23

surrogate-assisted optimization, 1,
33

surrogate-assisted robust optimization,
34

system constants, 3

Taylor series expansion, 25
testing data set, 46
training data set, 43
Tree Parzen Estimator algorithm,

47

uncertainty and noise, 18, 32, 53, 59,
79

uncertainty and robustness specification,
34

uncertainty assessment, 34
uncertainty handling, 38
uncertainty level, 89, 97, 103
uncertainty specification, 34
Under-complete Autoencoders, 64
unexpected drifts and changes, 22
uniform probability distribution, 89, 103,

120

Vandermonde matrix, 24
Variational Autoencoders, 132
Variational autoencoders, 64
variational distribution, 64

worst-case, 38, 39
worst-case scenario, 38

158

English Summary

While solving real-world optimization problems, e.g., in the area of automotive
engineering, building construction, and steel production, the issue of uncertainty
and noise is frequently-encountered. Common sources of uncertainty and noise
include search/decision variables (that describe the system to be optimized), the
environmental variables or operating conditions the system is subject to, the eval-
uation of the (physical) system (or model of the system), and the preference in
objectives and vagueness in constraints when modeling the (physical) system. It
is therefore intuitive that uncertainty and noise surround the system in most prac-
tical scenarios of continuous optimization, and can significantly compromise the
applicability of the optimization algorithms and the (nominal) optimal solutions
obtained from these algorithms. In the ECOLE (Experience-based COmputation:
Learning to optimisE) project, the focus of this thesis is on the parametric un-
certainties in the search/decision variables that are assumed to be structurally
symmetric, additive in nature, and can be modeled in a deterministic or a prob-
abilistic fashion. Accounting for these uncertainties and noise leads us to robust
optimization, which emphasizes on the solutions that are still optimal and useful
in the face of such uncertainties and noise.

Some of the most important performance indicators in the area of product engi-
neering include shortening the product-development cycle, reducing the resource
consumption during the complete process, and creating more balanced and innova-
tive products. These practical aspects necessitate solving the robust optimization
problem in an efficient manner. Since it is very costly to assess candidate solutions,
we substitute the expensive function evaluations with a statistical model, which is
referred to as the “surrogate model”, or the “meta model”. In this way, the model
predicts the function response, and the optimization algorithm can query the func-
tion response instead of actually running the real production process.

160

Solving robust optimization problems with surrogate models, we answer some of
the most important research questions in Chapter 3. This chapter implements
surrogate modeling with the help of a “one-shot optimization” strategy, and dis-
cusses the practical applicability of surrogate modeling to find robust solutions,
and the related difficulties thereof. In this chapter, it is found that we can con-
struct surrogate models with Kriging, Polynomials, and Support Vector Machines,
with a reasonable (linear) sample size. The resulting surrogate model can find the
robust solution in most situations, which is very close to the true baseline robust
solution.

Since in practical scenarios, high dimensionality can affect the performance of
surrogate modeling, we devote the second half of Chapter 3 to focus on dimen-
sionality reduction techniques. The dimensionality reduction techniques discussed
include Principal Component Analysis, Kernel Principal Component Analysis, Au-
toencoders, and Variational Autoencoders. An empirical performance assessment
indicates the suitability of Autoencoders and Principal Component Analysis to
help construct a low dimensional surrogate model.

A major manifestation of surrogate modeling, which is referred to as the “Bayesian
optimization” algorithm, is discussed in Chapter 4. The major research results in
this chapter include adapting the Bayesian optimization algorithm to find robust
solutions in an efficient manner, as well as benchmarking its performance. To this
end, it is found that the “Expected Improvement” criterion, and the “Moment-
Generating Function of the Improvement” are good choices of sampling infill cri-
teria to be utilized in the Bayesian optimization algorithm. Furthermore, the
performance of the Bayesian optimization algorithm is deemed satisfactory in the
light of a fixed budget and a fixed target analysis.

A major point of concern in the context of robust optimization is the choice of a
robustness criterion, which can have tremendous implications for the designers in
the area of product engineering. This is due to the fact that the choice of robust-
ness criterion can dictate the computational budget and quality of the optimal
solution to a large degree. In Chapter 5, we focus on the computational aspect
concerning the choice of the robustness criterion. Based on a broad spectrum of
test cases, we assess and rank commonly employed robustness criteria with respect
to a fixed budget and a fixed target analysis, in addition to the analysis on the
average running time per iteration.

161

The major findings from these analyses provide a novel perspective on the choice
of the robustness criteria. For instance, it is found that the robustness criterion
based on the “worst-case scenario” is also the most suitable criterion in terms
of computational cost. Furthermore, the probabilistic robustness criteria have a
higher variance in terms of quality of the solution, but lower variance in terms of
utilization of the computational resources. Lastly, it is found that the probabilistic
robustness criteria scale well with the dimensionality, whereas the deterministic
criteria become inapplicable as the dimensionality increases.

Some of our findings, reported above, are validated, when benchmarking our ap-
proaches on a real-world design optimization scenario based on car hood frames.
These findings include the promising nature of Kriging as the modeling technique,
as well as the heuristics commonly employed for determining the initial sample
size. Furthermore, the “Moment-Generating Function of the Improvement” is cor-
roborated as an effective sampling infill criterion for the Bayesian optimization
algorithm.

162

Nederlandse Samenvatting

Bij het oplossen van optimalisatieproblemen in de echte wereld, zoals in de automo-
bieltechniek, bouwconstructie en staalproductie, wordt vaak geconfronteerd met
het probleem van onzekerheid en lawaai. Veelvoorkomende bronnen van onzeker-
heid en ruis zijn onder meer zoek-/beslissingsvariabelen (die het te optimaliseren
systeem beschrijven), de omgevingsvariabelen of bedrijfsomstandigheden waaraan
het systeem is onderworpen, de evaluatie van het (fysieke) systeem (of model van
het systeem), en de voorkeur in doelstellingen en vaagheid in beperkingen bij het
modelleren van het (fysieke) systeem. Het is daarom intuïtief dat onzekerheid en
ruis het systeem omringen in de meeste praktische scenario’s van continue opti-
malisatie, en de toepasbaarheid van de optimalisatie-algoritmen en de (nominaal)
optimale oplossingen die uit deze algoritmen worden verkregen. In het ECOLE-
project (Experience-based COMputation: Learning to optimisE) focussen we op
de parametrische onzekerheden in de zoek-/beslissingsvariabelen waarvan wordt
aangenomen dat ze structureel symmetrisch, additief van aard zijn en op een de-
terministische of probabilistische manier kunnen worden gemodelleerd. Rekening
houdend met deze onzekerheden en ruis leidt ons tot robuuste optimalisatie, die
de nadruk legt op de oplossingen die nog steeds optimaal en bruikbaar zijn in het
licht van dergelijke onzekerheden en ruis.

Enkele van de belangrijkste aspecten op het gebied van productengineering zijn het
verkorten van de productontwikkelingscyclus, het verminderen van het verbruik
van hulpbronnen tijdens het volledige proces en het creëren van meer evenwichtige
en innovatieve producten. Deze praktische aspecten maken het noodzakelijk om
het robuuste optimalisatieprobleem op een efficiënte manier op te lossen. Om-
dat het erg kostbaar is om kandidaat-oplossingen te beoordelen, vervangen we de
dure functie-evaluaties door: een statistisch model, dat het “surrogaatmodel” of

164

het “metamodel” wordt genoemd. Op deze manier voorspelt het model de func-
tierespons en kan het optimalisatiealgoritme de functierespons opvragen in plaats
van daadwerkelijk het echte productieproces leiden.

Door robuuste optimalisatieproblemen met surrogaatmodellen op te lossen, proberen
we een beantwoord enkele van de belangrijkste onderzoeksvragen in hoofdstuk 3.
Dit hoofdstuk surrogaatmodellering implementeren met behulp van een "one-shot-
optimalisatie"-strategie egy, en bespreekt de praktische toepasbaarheid van surro-
gaatmodellering om robuust te vinden oplossingen en de daarmee samenhangende
moeilijkheden. In dit hoofdstuk blijkt dat we kan surrogaatmodellen bouwen met
Kriging, Polynomials en Support Vector Machines, met een redelijke steekproe-
fomvang. Het resulterende surrogaatmodel, kan vinden de robuuste oplossing in
de meeste situaties, die zeer dicht bij de baseline ligt.

Omdat in praktische scenario’s een hoge dimensionaliteit de prestaties van sur-
rogaatmodellering, besteden we de tweede helft van dit hoofdstuk aan de men-
sionaliteit reductie technieken. De dimensionaliteitsreductietechnieken die in dit
hoofdstuk worden behandeld, zijn onder meer Analyse van hoofdcomponenten,
Kernel-principal Componentanalyse, auto-encoders en variabele auto-encoders. een
empirische prestatiebeoordeling geeft de geschiktheid van Autoencoders en Prin-
cipal aan Componentenanalyse om een laagdimensionaal surrogaatmodel te con-
strueren.

Een belangrijke manifestatie van surrogaatmodellering, waarnaar wordt verwezen
als de "Bayesiaanse" optimalisatie-algoritme, wordt uitgebreid besproken in hoofd-
stuk 4. De belangrijkste punten van overweging in dit hoofdstuk zijn onder meer
het aanpassen van de Bayesiaanse optimalisatie-algoritme ritme om op een effi-
ciënte manier robuuste oplossingen te vinden en de uitvoering. Hiertoe blijkt dat
het criterium "Verwachte verbetering", en de "Momentgenererende functie van de
verbetering" zijn goede keuzes van bemonsteringsinfill-criteria die moeten worden
gebruikt in het Bayesiaanse optimalisatie-algoritme. Verder wordt de prestatie
van het Bayesiaanse optimalisatie-algoritme geacht bevredigend in het licht van
een vast budget en een analyse van een vast doel.

Een belangrijk aandachtspunt in het kader van robuuste optimalisatie is de keuze
voor: robuustheidscriterium, dat enorme gevolgen kan hebben voor de ontwerpers
in het gebied van productengineering. Dit komt doordat de keuze voor robuuste
ness-criterium kan het rekenbudget en de kwaliteit van de optimale oplossing voor

165

een groot deel. In dit proefschrift richten we ons op het computationele aspect over
de keuze van het robuustheidscriterium. Gebaseerd op een breed spectrum van
testgevallen beoordelen en rangschikken we veelgebruikte robuustheidscriteria met
respect naar een vast budget en een analyse van een vast doel, naast de analyse
op de gemiddelde looptijd per iteratie.

De belangrijkste bevindingen van deze analyses bieden een nieuw perspectief op
de keuze van de robuustheidscriteria. Zo blijkt dat het robuustheidscriterium
op basis van het worst case scenario is ook qua termen het meest geschikte cri-
terium van rekenkosten. Verder hebben de probabilistische robuustheidscriteria
een hogere variantie in termen van kwaliteit van de oplossing, maar lagere vari-
antie in termen van gebruik van de rekenhulpmiddelen. Ten slotte blijkt dat de
probabilistische robuustheidscriteria passen goed bij de dimensionaliteit, terwijl
de deterministische criteria worden niet meer van toepassing naarmate de dimen-
sionaliteit toeneemt.

Sommige van onze bevindingen, hierboven gerapporteerd, zijn gevalideerd bij het
benchmarken van onze benaderingen van een realistisch ontwerpoptimalisatiesce-
nario op basis van autokapframes. Deze bevindingen omvatten de veelbelovende
aard van Kriging als modelleringstechniek, evenals de heuristieken die gewoonlijk
worden gebruikt voor het bepalen van de initiële steekproef maat. Bovendien is
de Moment-Generating Function of the Improvement: bevestigd als een effectief
bemonsteringsinvulcriterium voor de Bayesiaanse optimalisatie algoritme.

166

Acknowledgements

I would like to express my deepest gratitude to my supervisors Thomas Bäck,
Bernhard Sendhoff, and Hao Wang for their invaluable guidance and support
throughout my PhD journey. Their constant encouragement, insightful feedback,
and constructive criticism have been instrumental in shaping the direction of my
research and improving the quality of my work. Their expertise and unwavering
commitment to excellence have been an inspiration to me and have helped me to
become a better researcher. I am truly grateful for the privilege of having such
remarkable mentors.

I would also like to extend my heartfelt appreciation to my family for their un-
wavering love, support, and encouragement throughout my academic pursuits.
A special thanks to my parents Qazi Naimat Ullah and Farah Deeba for their
constant presence, understanding, and encouragement during challenging times.
Their unwavering belief in me and my abilities has been the cornerstone of my
success, and I cannot thank them enough for their sacrifices and contributions
to my achievements. My Ph.D. would not have been possible without their love,
support, and encouragement, and I am eternally grateful for having them. Last
but not least, I would like to express my love towards my wife Tehreem and my
son Daniyal. I love you both very much and find it privileged to have you by my
side.

168

About the Author

Sibghat Ullah was born in 1995 in Dera Ghazi Khan, Pakistan. In 2011, he
started his Bachelor in computer science at National University of Computer and
Emerging Sciences, Islamabad. In 2016, he moved to Europe to study data sci-
ence and machine learning at Sapienza University of Rome. After completing his
Master in data science, he started as a PhD candidate in the Natural Comput-
ing group of Prof. Thomas Bäck in November 2018. During his time as a PhD
candidate, he traveled to Germany for research collaborations at NEC Labs Eu-
rope GmbH and Honda Research Institute Europe GmbH. His research interests
include optimization under uncertainty, model-assisted optimization, explainable
artificial intelligence, and learning and mining in the presence of uncertain (indus-
trial) data.

170

