

Electrical and magnetic properties of ferritin: electron transport phenomena and electron paramagnetic resonance Labra Muñoz, J.A.

Citation

Labra Muñoz, J. A. (2023, September 26). *Electrical and magnetic properties of ferritin: electron transport phenomena and electron paramagnetic resonance. Casimir PhD Series.* Retrieved from https://hdl.handle.net/1887/3641953

Version:	Publisher's Version
License:	<u>Licence agreement concerning inclusion of doctoral</u> <u>thesis in the Institutional Repository of the University</u> <u>of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/3641953

Note: To cite this publication please use the final published version (if applicable).

ELECTRICAL AND MAGNETIC PROPERTIES OF FERRITIN: ELECTRON TRANSPORT PHENOMENA AND ELECTRON PARAMAGNETIC RESONANCE

ELECTRICAL AND MAGNETIC PROPERTIES OF FERRITIN: ELECTRON TRANSPORT PHENOMENA AND ELECTRON PARAMAGNETIC RESONANCE

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Leiden, op gezag van rector magnificus prof. dr. ir. H. Bijl, volgens besluit van het college voor promoties te verdedigen op dinsdag 26 september 2023 klokke 12:30 uur

door

Jacqueline Andrea LABRA MUÑOZ

geboren te Santiago, Chile in 1992 **Promotores:**

Dr. M. I. Huber Prof. dr. ir. H. S. J. van der Zant (Technische Universiteit Delft)

Promotiecommissie:

Prof. dr. J. Aarts Prof. dr. M. Fittipaldi (Università degli Studi di Firenze) Prof. dr. C. A. Nijhuis (Universiteit Twente) Prof. dr. E. J. J. Groenen Prof. dr. ir. S. J. van der Molen Prof. dr. J. M. van Ruitenbeek

 Printed by:
 Gilderprint, Enschede

 Front & Back:
 J. A. Labra Muñoz

Copyright © 2023 by J. A. Labra Muñoz Casimir PhD series, Delft-Leiden, 2023-21

ISBN 978-90-8593-569-8

An electronic version of this dissertation is available at https://openaccess.leidenuniv.nl.

The associated experimental data for this dissertation are available at http://doi.org/10.4121/cd853165-9cc9-4b70-9d09-12b33bba4e1e.

In loving memory of my father. Con amor, en memoria de mi padre.

CONTENTS

Sı	ummary xii							
Sa	Samenvatting xv							
1	Intr	troduction						
	1.1	Protein-based bioelectronics and magnetism	2					
	1.2	Ferritin: a promising candidate	2					
	1.3	Bridging the single-particle and multi-particle-ensemble descriptions of						
		ferritin	3					
	1.4	Dissertation outline	5					
	Refe	erences	xw agnetism. 2					
2	Imp	elementation of a local gate in wide self-aligned nanogap devices	11					
	2.1	Introduction	12					
	2.2	Materials and Methods	13					
		2.2.1 Chip design and device fabrication	13					
	2.3	Results and discussion	15					
		2.3.1 Device characterization	15					
		2.3.2 Room temperature: NP trapping	17					
		2.3.3 Low temperatures: <i>IV</i> characteristics	18					
		2.3.4 Low temperatures: Gating	19					
	2.4	Conclusions	22					
	2.5	Appendix	23					
		2.5.1 Current-voltage characteristics at room T	23					
		2.5.2 Silicon back gate	23					

	Refe	erences		25	
3	Ferr	rritin single-electron devices 2			
	3.1 Introduction			28	
	3.2	Materi	als and Methods	29	
		3.2.1	Ferritin characterization	29	
		3.2.2	Device fabrication	29	
		3.2.3	Ferritin trapping	30	
	3.3	Results	s	30	
	3.4	Capaci	itance and resistance estimations	34	
		3.4.1	Capacitance estimates	34	
		3.4.2	Resistance estimates	36	
	3.5	Discus	sions	38	
	3.6	Appen	dix	39	
		3.6.1	Ferritin purity assessment	39	
		3.6.2	<i>IV</i> types (low temperature)	40	
		3.6.3	Reference measurements	40	
		3.6.4	CB experimental data and fits	41	
		3.6.5	Charge offset variations	42	
		3.6.6	Room temperature measurements	43	
	Refe	erences		44	
л	A fo	rritin ci	ngle electron transistor	17	
4 A territin single-electron transistor			Τ 19		
	4.1	Materi	als and Methods	50	
	7.2	1 2 1		50	
		4.2.1		50	
		4.2.2	Ferritin tranning	51	
	13	T.2.J	and discussion	51	
	4.3	A 3 1	Closing Coulomb diamonds	52	
		430	Non-closing CB diamonds	55	
		T.J.L		50	

		4.3.3	Comparison of C and R with respect to previous reported values .		58
	4.4	Discu	ssion		59
		4.4.1	Capacitance estimates		61
	4.5	Concl	lusions		63
	4.6	Apper	ndix		64
		4.6.1	Coulomb blockade experimental data and fits		64
		4.6.2	Extra three-terminal measurements		66
	Refe	erences	3	•	67
5	EPF	t chara	cterization of human-liver ferritin		71
	5.1	Abstra	act		72
	5.2	Intro	luction		72
	5.3	Mater	rials and methods		75
		5.3.1	Properties and characterization of the human-liver ferritin \ldots		75
		5.3.2	Magnetometry		76
		5.3.3	Electron Paramagnetic Resonance		76
		5.3.4	Theoretical background of Magnetometry analysis		77
		5.3.5	Magnetic phases proposed for ferritin in the literature		77
		5.3.6	The magnetic signature of idealized spin structures		78
		5.3.7	The role of distributed parameters		84
		5.3.8	Surface-spin model for ferritin.		86
	5.4	Resul	ts	•	88
		5.4.1	Electron Paramagnetic Resonance		88
		5.4.2	DC susceptibility and hysteresis		91
		5.4.3	AC susceptibility		93
		5.4.4	Equilibrium magnetization	•	93
		5.4.5	Coercivity distributions		97
	5.5	Discu	ssion	•	101
		5.5.1	EPR simulations		102
		5.5.2	Ferritin properties derived from magnetometry		104
		5.5.3	Comparison between EPR and magnetometry		108

	5.6	Concl	usions
	5.7	Apper	ndix
		5.7.1	TEM description
		5.7.2	Ferritin purity assessment
		5.7.3	EPR baseline correction
		5.7.4	EPR simulation with one component $\ldots \ldots 116$
		5.7.5	EPR simulations, from 20 K to 210 K
		5.7.6	EPR simulations of individual components $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 118$
		5.7.7	EPR simulations parameters
		5.7.8	EPR simulations with different scaling factors
		5.7.9	EPR S-D inverse compensation $\ldots \ldots 121$
		5.7.10	Sensitivity of EPR parameters
		5.7.11	Ferritin core and mononuclear Fe(III) EPR intensities
		5.7.12	$EPR \ Model \ Simulations \ \ \ldots \ \ \ \ $
		5.7.13	EPR alternative fitting approach
		5.7.14	Equilibrium magnetization models
		List of	Symbols and Acronyms
	Refe	erences	
6	EPR	l study	of lyophilized ferritin 147
Ū	61	Introd	luction 148
	6.2	Mater	ials and methods
	0.2	6.2.1	Ferritin material
		6.2.2	Brain material
		623	Sample preparation and instrumentation 150
	6.3	Result	s and Discussion: Role of lyophilization
	0.0	631	Extension of the available temperature range compared to liquid
		0.011	solutions 150
		632	Enhancement of the ferritin FPR signal
		6.3.3	Inspecting possible iron leakage from the ferritin core of lyonbilized
		0.0.0	forritin 152
			ютнин

CONTENTS

	6.3.4	Comparison of the temperature dependence of the EPR intensities	
		between lyophilized and non-lyophilized ferritin	154
	6.3.5	Comparison of the EPR lineshape between lyophilized and non-	
		lyophilized ferritin	155
	6.3.6	Inspecting differences in the electron-spin structure between lyophiliz	zed
		and non-lyophilized ferritin	155
	6.3.7	Can the difference in the spin structure be attributed to an increase	
		in the ferritin-ferritin dipole-dipole interaction?	157
6.4	Result	ts and Discussion: Ferritin EPR characterization of lyophilized brain	
	sampl	les	159
	6.4.1	Acquired EPR spectra from lyophilized brain tissues from an aceru-	
		loplasminemia patient	159
	6.4.2	Comparison of the EPR lineshape of the three-different brain re-	
		gions	160
	6.4.3	Temperature dependence of the red nucleus (RN) spectra	160
	6.4.4	Method to isolate the ferritin signal from the brain spectra \ldots .	161
	6.4.5	Comparison of the broad-signal lineshape from the three brain sam-	
		ples and the Lyo-HuLi	163
	6.4.6	EPR simulation of the broad signal at 80 K	164
6.5	Concl	usion	166
6.6	Apper	ndix	167
	6.6.1	ExponentialfitoftheEPRintensityvs.temperatureofmono-nuclear	
		iron in the Non-Lyo-HuLi sample	167
	6.6.2	Ferritin diameter distribution	168
Refe	erences		169
Acknow	vledge	ments	171
Curric	Curriculum Vitæ 173		
List of	Publica	ations	175