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A B S T R A C T   

Research on theoretical prediction methods for the mixture toxicity of engineered nanoparticles (ENPs) faces 
significant challenges. The application of in silico methods based on machine learning is emerging as an effective 
strategy to address the toxicity prediction of chemical mixtures. Herein, we combined toxicity data generated in 
our lab with experimental data reported in the literature to predict the combined toxicity of seven metallic ENPs 
for Escherichia coli at different mixing ratios (22 binary combinations). We thereafter applied two machine 
learning (ML) techniques, support vector machine (SVM) and neural network (NN), and compared the differ-
ences in the ability to predict the combined toxicity by means of the ML-based methods and two component- 
based mixture models: independent action and concentration addition. Among 72 developed quantitative 
structure–activity relationship (QSAR) models by the ML methods, two SVM-QSAR models and two NN-QSAR 
models showed good performance. Moreover, an NN-based QSAR model combined with two molecular de-
scriptors, namely enthalpy of formation of a gaseous cation and metal oxide standard molar enthalpy of for-
mation, showed the best predictive power for the internal dataset (R2

test = 0.911, adjusted R2
test = 0.733, RMSEtest 

= 0.091, and MAEtest = 0.067) and for the combination of internal and external datasets (R2
test = 0.908, adjusted 

R2
test = 0.871, RMSEtest = 0.255, and MAEtest = 0.181). In addition, the developed QSAR models performed better 

than the component-based models. The estimation of the applicability domain of the selected QSAR models 
showed that all the binary mixtures in training and test sets were in the applicability domain. This study 
approach could provide a methodological and theoretical basis for the ecological risk assessment of mixtures of 
ENPs.   

1. Introduction 

The unique physicochemical features of nanostructured materials 
make them particularly appealing for specific applications (Wyrzy-
kowska et al., 2022). Developments go with a fast pace, with first- 
generation nanomaterials (NMs) already embedded in a variety of 
products and advanced NMs such as nanocomposites continuously 
generated (Jayaramulu et al., 2022). With the continuous development 
and application of NMs, different types of engineered nanoparticles 
(ENPs) will now be co-discharged into the environment. Municipal 
wastewater treatment facilities and sewage systems are becoming 
crucial intermediary routes for the release of the mixtures of ENPs into 
the environment (Georgantzopoulou et al., 2020; Simelane and Dlamini, 

2019; Singh and Kumar, 2020). It is expected that industrial and 
municipal wastewater are a major source of mixtures of ENPs of 
different compositions. As a consequence, a wide range of structurally 
and chemically diverse ENPs will unavoidably be released into the 
environmental compartments (Hong et al., 2021), raising worries about 
potential ENPs-induced human and ecological impacts (Avellan et al., 
2021). This requires to explore the scientific challenge of assessing 
mixture toxicity of multiple ENPs (Zhang et al., 2022a). 

Fortunately experimental data on the mixture toxicity of ENPs is 
expanding quite recently, while progress on methods for evaluating and 
predicting the mixture toxicity of ENPs is lagging (Zhang et al., 2022a). 
Enabling ENPs’ mixture predictions, classical component-based mixture 
models have been used (Lopes et al., 2016; Martín-de-Lucía et al., 2019). 
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However, these mixture models such as concentration addition (CA), 
independent action (IA), and a combination of the two models rely on 
the assessment of the concentration–response relationship of the single 
components and on the identification of the toxic mode of action of the 
single components (Zhang et al., 2021). In silico predictive toxicology 
appears to be a promising alternative to the mixture modeling. Among 
the novel approach methodologies based on in silico predictions, quan-
titative structure–activity relationships (QSAR) modeling proves to be a 
useful tool for the prediction of the biological activity or property of a 
compound by providing a mathematical correlation with its structural 
features (Tropsha, 2010). Recently, QSAR methods are being applied in 
methodological studies for the quantitative prediction of the toxicity of 
mixtures of ENPs (Kar et al., 2022; Mikolajczyk et al., 2016; Na et al., 
2023; Zhang et al., 2022b). Meanwhile, machine learning (ML) 
methods, which seek to construct an explicit or implicit model based on 
current data (known as training data) to make predictions or decisions 
on complicated issues (Wang et al., 2021), have already stepped into the 
spotlight for in silico prediction of toxicology. ML methods to date have 
shown unprecedented predictive power in predicting the toxicity of 
ENPs (Balraadjsing et al., 2022; Ji et al., 2022; Jia et al., 2021; Trinh 
et al., 2022). Thus, ML-powered QSAR modeling approaches could be a 
strong tool to deal with the problem of predicting the toxicity of mix-
tures of ENPs, and would perform better and more cost-effective than 
the classical mixture models. However, there is still a scarcity of QSAR 
models based on ML approaches for predicting the mixture toxicity of 
multiple ENPs. 

The present study aimed at rebuilding existing QSAR for use with 
NMs (nano-QSAR) by incorporating ML methods to describe the toxicity 
of a mixture of ENPs and comparing the performance with the mixture 
models. This enables the understanding of the link between the physi-
cochemical properties describing the components in the mixture and the 
cytotoxicity of 22 binary mixtures of metal oxide nanoparticles (MOX 
NPs) against Escherichia coli, a commonly used bacterium species in 
toxicity screening. Toxicity data for 12 binary mixtures with two 
different mixing ratios from our laboratory were used as an internal 
dataset. Toxicity data for 10 binary mixtures with another mixing ratio 
from the literature were used as an external dataset. The selected ML 
methods, namely support vector machine (SVM) (Ban et al., 2022; Liu 
et al., 2013) and neural network (NN) (Yang et al., 2022), are well- 
known and commonly utilized ML algorithms. The study involves 
eight indicative physicochemical parameters implicated in the mecha-
nism of toxicity of MOX NPs: surface charge, dispersion stability, 
dissolution, oxidative stress, and particle reactivity. Then, for the first 
time, SVM- and NN-based QSAR models for predicting the cytotoxicity 
of mixtures of individual MOX NPs with diverse metal elements and 
different mixture ratios were developed. The goal of this study is to 
develop a rapid and cost-effective model for predicting the toxicity of 
mixtures of ENPs and provide a more suitable method for the risk 
assessment of multiple ENPs. 

2. Materials and methods 

2.1. Experimental sections 

2.1.1. Test materials 
CuO NPs with a primary size of 40 nm (advertised specific surface 

area > 10 m2/g; purity 99 %), ZnO NPs with a primary size of 14 nm 
(advertised specific surface area of 30 ± 5 m2/g; purity > 99 %), TiO2 
NPs with a primary size of 21 ± 5 nm (advertised specific surface area 50 
± 10 m2/g; purity > 99.5 %), and ZrO2 NPs with a primary size of 5–25 
nm (advertised specific surface area 130 ± 20 m2/g; purity > 97.2 %) 
were purchased from PlasmaChem GmbH (Berlin, Germany). The MOX 
stock suspensions were freshly prepared in pure water after 30 min 
sonication in a water bath sonicator and then stored at 4 ◦C until use. 

2.1.2. Physicochemical analysis 
Zeta potential (ζP) and hydrodynamic diameters (DH) of the MOX NP 

suspensions at 10 mg/L were analyzed in water using a ZetaSizer in-
strument (Nano ZS90, Malvern Instruments Ltd., Worcestershire, UK). 

2.1.3. Toxicity testing 
Cytotoxicity tests were performed with E. coli using the micro-

titration plate assay (Patton et al., 2006). The initial number of bacteria 
was set at 1 × 108 cells/mL. Bacterial solution after exposure to the test 
materials was added into a 96-well white flat-bottom microplate, which 
subsequently was maintained at 37 ◦C with shaking incubation for 12 h 
in a constant temperature shaker. Bacteria were exposed to increasing 
concentrations of the suspensions of CuO NPs (from 1.26 × 10-4 to 3.02 
× 10-3 mol/L), ZnO NPs (from 6.14 × 10-5 to 6.76 × 10-4 mol/L), TiO2 
NPs (from 3.76 × 10-4 to 3.76 × 10-3 mol/L), and ZrO2 NPs (from 4.06 ×
10-4 to 9.74 × 10-3 mol/L). Each test concentration was replicated four 
times. The optical density (OD) values corresponding to the cell number 
of E. coli were monitored using an enzyme-labeled instrument (Thermo 
Multiskan FC, USA), and the inhibition rate was calculated from the 
measured OD values. The cytotoxicity of the tested materials was 
expressed in terms of effect concentrations (EC50 and EC10: the effective 
concentration of a toxicant that induces 50 and 10 % bacteria inhibi-
tion), which were calculated using a concentration–response curve 
(CRC). For the binary mixtures in the internal dataset, E. coli cells were 
treated with various concentrations of MOX NPs with a fixed mixture 
ratio, where the first and second mixtures were based on the initial EC50 
and the EC10 of each MOX NP, respectively. Thus, the two mixtures were 
named Int (R1) mixture and Int (R2) mixture. 

2.2. Computational methods 

2.2.1. Determination of concentration–response curve 
The Logistic regression model, as shown in Eq. (1), was used to fit the 

CRCs for single and binary MOX NPs. 

E =
100

(

1 +
(

C
EC50

)θ
) (1)  

where E is the effect confined to the range of 0–100 %, C is the exposure 
concentration of the test materials, and θ represents the slope parameter. 

2.2.2. Joint effect modeling 
As the most representative approaches used are the IA and CA models 

(Bliss, 1939; Loewe and Muischneck, 1926), which were applied to 
predict the toxicity (denoted EC50 values) of the mixtures of MOX NPs. 
Throughout the modeling EC50 values were transformed to inverted 
logarithm i.e., log1/EC50. 

The general equation shown in Eq. (2) was used for the IA model, 

E(Cmix) = 1 −
∏n

i=1
(1 − E(Ci)) (2)  

where E(Cmix) is the effect expected at the total concentration of the 
mixture (scaled between 0 and 100 %) and E(Ci) is the effect that the ith 
mixture component would provoke if applied singly at concentration Ci. 

The total concentration of a mixture causing x % effect (ECxmix) was 
calculated from the CRC of the individual component using the CA 
model, as shown in Eq. (3), 

ECxmix =

(
∑n

i=1

Pi

ECxi

)− 1

(3)  

where Pi is the fraction of component i in the mixture and ECxi is the 
concentration of component i that would result in x % effect if used 
alone. 
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2.2.3. Construction of datasets 
Two datasets were constructed for the development and validation of 

the predictive models. The dataset was chosen not only to take into 
account data sample diversity (i.e., diversity of mixed components and 
mixed concentration ratios), but also to reduce the variability of inter- 
laboratory toxicity testing conditions. The first dataset (named inter-
nal dataset) consists of experimental data from our laboratory. The in-
ternal dataset consists of 12 data rows, consisting of the binary mixtures 
of four MOX NPs (CuO, ZnO, TiO2, and ZrO2) at two different mixture 
ratios. The results of physicochemical analysis which included the 
assessment of the ζP and the DH of MOX NPs in the single and binary 
mixture systems and the CRCs for the mixtures obtained from the E. coli 
toxicity testing and predicted by the IA and CA models are described in 
the Supplementary material. 

The second dataset (named combined dataset) comprised both in-
ternal data and external data. The external data of the toxicity of 10 
binary mixtures of five MOX NPs (Al2O3, Fe2O3, SiO2, TiO2, and ZnO) to 
E. coli was collected from Kar et al. (2022). The binary nano-mixtures in 
the external dataset and the internal dataset have both different kinds of 
combinations and different mixture ratios of components between them. 
The external dataset was named Ext (R3) mixture. The combined dataset 
has a total of 22 data rows. 

2.2.4. Calculation of mixture descriptors 
A mixture descriptor (Dmix) is a weighted descriptor that quantifies 

how much each component contributes to the overall activity of a 
mixture (Altenburger et al., 2003). Dmix has been practically applied in 
the toxicity prediction studies of ENP mixtures (Kar et al., 2022; Trinh 
et al., 2022). Dmix is expressed by arithmetic mean (Eq. (4)): 

Dmix = xiDi + xjDj (4)  

where xi and xj are the mole fractions of constituent i and j in the mix-
tures, and Di and Dj are descriptors of the individual MOX NPs. The 
selected descriptors of the individual MOX NPs and the calculated Dmix 
based on Eq. (4) are shown in Table S1 and in Table S2, respectively. In 
the selection of descriptors for the individual MOX NPs, we referred to 
the qualities summarized by Roy et al. (2015). Moreover, the selected 
descriptors are universal descriptors, which are effectively used to 
construct QSAR models of individual MOX NPs. Furthermore, these de-
scriptors not only reflect the characteristics of nanostructures but also 
directly respond to toxicologically relevant properties. In details, there 
were eight descriptors of the individual MOX NPs from three different 
types: two periodic table-based descriptors (electronegativity of metal 
atoms, χme and sum of metal electronegativity for an individual metal 
oxide divided by the number of oxygen atoms present in a particular 
metal oxide, Σχme/nO) derived from the publicly available periodic table 
information (Kar et al., 2014), two experimental descriptors (ζP and DH) 
determined in our laboratory (CuO, ZnO, TiO2, and ZrO2 NPs) and ob-
tained from a previous study (Al2O3, Fe2O3, SiO2, TiO2, and ZnO NPs) 
(Kar et al., 2022), three metal oxide energy descriptors including the 
enthalpy of formation of a gaseous cation having the same oxidation 
state as the oxidation state of the metal in the metal oxide structure 
(ΔHme+) (Puzyn et al., 2011), the metal oxide standard molar enthalpy 
of formation (ΔHsf) (Haynes, 2011), and the energy of the conduction 
band (EC) (Zhang et al., 2012) of the nanoparticle, as well as the ionic 
index of the metal cation (Z2/r) (Walker et al., 2003). Stepwise multiple 
linear regression in SPSS 23.0 was used to perform a preliminary 
screening of the descriptions obtained, and the t value was selected to 
determine the comparative importance of the descriptors on the toxic 
effect concentrations (log1/EC50) of binary mixtures of MOX NPs. 

2.2.5. Machine learning-based modeling 
Two popular ML algorithms, namely SVM and NN, were used to 

develop the QSAR models for predicting the toxicity of binary mixtures 
of MOX NPs. The datasets were divided into training (60 % data) and test 

(40 % data) sets at random. For the SVM algorithm, the Gaussian radial 
basis function (RBF) was used. For the NN algorithm, the hyperbolic tan 
function for the hidden layer and the quasi-Newton method for weight 
optimization were applied. We used the data mining toolbox in Python 
for developing the ML-based predictive models (Demšar et al., 2013). To 
validate the models, the squared correlation coefficient (R2) and the 
adjusted squared correlation coefficient (R2

adj) between observed and 
predicted log1/EC50, the root mean square error (RMSE), and the mean 
absolute error (MAE) of the training and test datasets were used. These 
statistical parameters are commonly used in current nano-QSAR studies 
and are widely accepted (Gajewicz et al., 2015; Kar et al., 2022; Trinh 
et al., 2022). Randomization tests proposed for testing the robustness of 
the selected models were performed using the metric cR2

P (Kar et al., 
2014). If the cR2

P value is more than the stipulated threshold value of 0.5 
then an acceptable model has been developed. The second-order bias- 
corrected Akaike Information Criterion (AICc) index as an additional 
statistical measure was employed on the full set to evaluate the rela-
tionship between variables. The AICc value was calculated using R 
software. 

2.2.6. Applicability domain 
The OECD principles of QSAR validation recommend that: A (Q)SAR 

should be associated with a defined domain of applicability (OECD, 2014). 
The function of the applicability domain (AD) is to define the com-
pounds that can be reliably predicted by the QSAR model, which can 
also be understood as the set of compounds to which the model applies. 
The AD in this work was generated by using the Student’s t-distribution 
on Euclidean distances (structural domain) and standardized residuals 
(response domain) of a training dataset to define the space where ac-
curate predictions can be made with a specified level of confidence 
(Gajewicz, 2018). 

3. Results and discussion 

3.1. Toxicity of binary ENP mixtures 

CRCs established for the binary mixtures of CuO, ZnO, TiO2, and 
ZrO2 NPs are shown in Figure S1. Based on the curves, the log1/EC50 
values were determined and these are summarized in Table 1. For the 
binary mixtures with a certain mixture ratio, TiO2 and ZrO2 NPs induced 
the least toxicity in the combined exposure setting. Comparative anal-
ysis also revealed that the toxicity of CuO NPs combined with ZnO or 
TiO2 NPs was higher than for other binary combinations. 

3.2. Machine learning-based QSAR prediction 

Based on the ML methods, 72 QSAR models integrating different Dmix 
(Fig. 1) were developed. The performance of 36 SVM- and 36 NN-based 
QSAR models is shown in Tables S3 and S4, respectively. We selected a 
good prediction model according to the following three criteria: (i) R2 ≥

0.81 for in vitro data (Kubinyi, 1993); (ii) adjusted R2 > 0.60 (Olasupo 
et al., 2020); (iii) the above two conditions need to be satisfied not only 
for both the training and the test sets but also for both the internal and 
combined datasets, as well as for both the SVM- and NN-based models 
when applying the same descriptors. Among the developed QSAR 
models, two SVM-based models (S12 and S31) and two NN-based 
models (N12 and N31) performed comparably better than other 
models for both the internal and combined datasets. This also means that 
the selected QSAR models can reliably predict the toxicity of mixtures of 
individual MOX NPs under multiple different experimental conditions. 

Moreover, the predicted log1/EC50 values by the good models (S12, 
S31, N12, and N31) are shown in Table 1 (the internal dataset) and in 
Table 2 (the combined dataset). The percental difference averaged be-
tween the experimental and predicted values by the selected models for 
the internal and combined datasets was 2.34, 2.50, 1.08, 1.04 and 7.16, 
7.29, 2.87, 2.61 % respectively. In addition, the obtained cR2

P values for 
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the selected models via the Y-randomization test are higher than 0.5 
(Tables S5 and S6), demonstrating that the models were not created 
randomly and that they are robust. 

Experimentally determined log1/EC50 are plotted against predicted 
log1/EC50 for the internal and combined datasets (Fig. 2 and Fig. 3, 
respectively). The green dotted line indicates that the experimental and 
the predicted values correspond exactly. The blue straight line depicts a 
linear relationship between the experimental and predicted values based 
on the training sets. In general, the selected QSAR models exhibited 
good agreement (R2 ≥ 0.81) between the observed and predicted 
toxicity for the binary mixtures of MOX NPs from the training set (blue 
circle) and those from the test sets (red circle). It can also be seen that the 
lines of the regression for the N12 and N31 models overlap with the line 
of perfection, implying that the NN-based models showed better con-
sistency between the experimental and predicted values compared to the 
SVM-based models. Furthermore, the percental difference averaged 
between the experimental and predicted values by the NN-based models 
was 2.17–2.40 and 2.49–2.79 times lower than the percental difference 
averaged between the experimental and predicted values by the SVM- 
based models in the internal (Table S7) and combined datasets 
(Table S8), respectively. Note that the N31 model had the lowest 

average difference between the experimental and predicted values 
among the selected QSARs. 

In addition, the results for the statistics of the selected models are 
shown in the insets of Figs. 2 and 3. In the internal dataset (Fig. 2), the 
S12 model with higher R2

adj and lower RMSE and MAE performed better 
than the S31 and N12 models for predicting the test data. In addition to 
this, the NN-based models showed better than the SVM-based models for 
predicting both the training and test data. Further comparisons revealed 
that the N31 model with higher R2

adj and lower RMSE and MAE per-
formed better than the N12 model for predicting the test data. In the 
combined dataset (Fig. 3), the NN-based models with higher R2

adj and 
lower RMSE and MAE outperformed the SVM-based models for both the 
training and test data. Of the four models validated, the N31 model with 
the highest R2

adj and the lowest RMSE and MAE had the best performance 
capability for predicting the test data. Current research on biological 
effect prediction also indicates that NN-based models outperform SVM- 
based models empirically resulting from the training process and overall 
data prediction (Almansour et al., 2019; Bennett-Lenane et al., 2022), 
while other studies have shown that the SVM-based modeling approach 
often shows a better performance than the NN-based approach (Li et al., 
2021; Zhao et al., 2006). In theory, both ML algorithms have advantages 

Table 1 
Toxicity data of binary mixtures of MOX NPs for the internal dataset a.  

Mixture 
system 
of MOX NPs 

Observed log1/ 
EC50 

(mol/L) 

Predicted log1/EC50 (mol/L) 
QSAR models Mixture 

models 

S12 S31 N12 N31 IA CA 

Int (R1)   
CuO + ZnO 

NPs  
2.72  2.68  2.70  2.72  2.72  2.85  3.05 

TiO2 + ZrO2 

NPs  
2.10  2.14  2.13  2.10  2.10  2.32  2.44 

ZnO + TiO2 

NPs  
2.17  2.20  2.18  2.18  2.18  2.96  3.00 

ZnO + ZrO2 

NPs*  
2.30  2.23  2.14  2.37  2.37  2.39  2.54 

CuO + TiO2 

NPs*  
2.77  2.81  2.80  2.88  2.80  2.70  2.80 

CuO + ZrO2 

NPs  
2.29  2.25  2.27  2.29  2.29  2.30  2.46 

Int (R2)   
CuO + ZnO 

NPs*  
2.82  2.68  2.70  2.69  2.66  2.92  3.15 

TiO2 + ZrO2 

NPs*  
2.11  2.14  2.13  2.11  2.10  2.32  2.44 

ZnO + TiO2 

NPs  
2.20  2.21  2.18  2.19  2.18  2.77  3.05 

ZnO + ZrO2 

NPs  
2.37  2.23  2.14  2.37  2.37  2.39  2.54 

CuO + TiO2 

NPs  
2.74  2.71  2.72  2.75  2.75  2.70  2.80 

CuO + ZrO2 

NPs  
2.14  2.21  2.18  2.14  2.15  2.31  2.41  

a * indicates the test data. 

Fig. 1. SVM (S1-S36)- and NN (N1-N36)-based QSAR 
models prepared from the pool of different mixture 
descriptors. χme — metal electronegativity, Σχme/nO — 
sum of metal electronegativity for individual metal 
oxide divided by the number of oxygen atoms present 
in particular metal oxide, ζP — zeta potential, DH — 
hydrodynamic diameters, ΔHme+ — enthalpy of for-
mation of a gaseous cation, ΔHsf — metal oxide 
standard molar enthalpy of formation, EC — nano-
particle energy of conduction band, and Z2/r — ionic 
index of metal cation.   

Table 2 
Toxicity data of binary mixtures of MOX NPs for the combined dataset a.  

Mixture system 
of MOX NPs 

Observed log1/EC50 

(mol/L) 
Predicted log1/EC50 (mol/L) 

QSAR models 

S12 S31 N12 N31 

Int (R1)   
CuO + ZnO NPs  2.72  2.80  2.89  2.72  2.72 
TiO2 + ZrO2 NPs  2.10  2.18  2.05  2.10  2.11 
ZnO + TiO2 NPs*  2.17  1.92  2.09  2.21  2.18 
ZnO + ZrO2 NPs  2.30  2.22  2.13  2.30  2.30 
CuO + TiO2 NPs  2.77  2.82  2.94  2.77  2.77 
CuO + ZrO2 NPs  2.29  2.27  2.47  2.27  2.26 
Int (R2)   
CuO + ZnO NPs*  2.82  2.88  2.92  2.74  2.75 
TiO2 + ZrO2 NPs*  2.11  2.18  2.05  2.11  2.11 
ZnO + TiO2 NPs  2.20  1.92  2.10  2.19  2.18 
ZnO + ZrO2 NPs*  2.37  2.22  2.13  2.30  2.30 
CuO + TiO2 NPs*  2.74  2.27  2.58  2.05  2.50 
CuO + ZrO2 NPs  2.14  2.22  2.31  2.17  2.19 
Ext (R3)   
Al2O3 + ZnO NPs  4.26  3.93  3.88  4.26  4.26 
Al2O3 + Fe2O3 NPs  2.06  2.14  2.01  2.06  2.07 
Al2O3 + SiO2 NPs*  1.71  1.86  1.85  1.88  1.54 
Al2O3 + TiO2 NPs  1.70  1.95  1.87  1.71  1.70 
ZnO + Fe2O3 NPs  3.89  3.81  3.72  3.89  3.89 
ZnO + SiO2 NPs  4.13  3.62  3.57  4.13  4.13 
Fe2O3 + SiO2 NPs  2.25  2.17  2.08  2.25  2.25 
Fe2O3 + TiO2 NPs*  1.99  1.75  2.10  1.72  2.28 
SiO2 + TiO2 NPs  1.80  1.88  2.01  1.81  1.80 
ZnO + TiO2 NPs*  4.59  3.76  3.69  4.46  4.01  

a * indicates the test data. 
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and disadvantages. This is reflected in that the training time for NN- 
based technique is higher than the training time for SVM, while the 
prediction time for NN models is generally lower than for SVM models. 
Taken together, the performance indicators of the selected QSARs 
indicate that both the NN and the SVM were practical tools for the 
prediction of the toxicity of mixtures of ENPs. 

To compare the differences between the developed QSAR models and 
the classical mixture models in predicting the toxicity of mixtures of 
MOX NPs, we also constructed the IA and CA prediction models 
(Figure S1). As shown in Fig. 2, the selected QSAR models gave better 

predictions of log1/EC50 (R2 ≥ 0.873) compared to those models based 
on mixture modeling making use of IA (R2 = 0.326) and CA (R2 =

0.330). This implies that the QSAR models are low-cost approach to risk 
assessment of multiple ENP mixtures, due to the fact that the QSAR 
models do not need concentration–response information on each 
mixture component as with the commonly applied mixture models 
either using IA or CA. For the CuO + ZrO2 NPs mixture at ratio 1 and the 
ZnO + ZrO2 NPs mixture at ratio 2, the percental difference averaged 
between the experimental and predicted values by the IA model was 
lower than the percental difference averaged between the experimental 

Fig. 2. Performance of the selected SVM- and NN-based QSAR models and the component-based mixture models developed based on the internal dataset.  
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and predicted values by the SVM-based models (Table S7). This means 
that for a particular mixture the mixture model has the ability to predict 
the toxicity of the mixture of MOX NPs. The mixture model has become a 
prevailing approach for the quantitative prediction of mixture toxicity 

with concentration addition being a conservative measure of addition of 
stress and independent action as assuming induced effects not at the 
same target and affecting a percentage at the overall response, which 
strengthens the theorization from the basic principles of mixture 

Fig. 3. Performance of the selected SVM- and NN-based QSAR models developed based on the combined dataset.  

Fig. 4. Applicability domains of the selected SVM- and NN-based QSAR models developed based on the internal dataset.  
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toxicology. However, the interactions between the joint chemicals are 
not taken into consideration in the mixture models. Especially, the 
distinctive physicochemical features of ENPs, which have a high surface 
area for adsorption, may hinder the mixture models from accurately 
estimating the toxicological effects of mixtures containing ENPs (Mar-
tinez et al., 2022). A previous study indicated that the IA and CA models 
did not perform well in predicting the toxicity of mixtures comprising 
TiO2 NPs and other pollutants to Daphnia magna (Trinh et al., 2022). 
Thus, it is reasonable to assume that the ML-integrated QSAR approach 
can be considered a highly promising tool for the assessment of the 
toxicity of a mixture of multiple ENPs. 

3.3. Applicability domains of QSAR models 

The AD of a QSAR is the physicochemical, structural, or biological 
space, knowledge or information on which the training set of the model 
has been developed, and for which it is applicable to make predictions 
for new compounds (Jaworska et al., 2005). The AD of the SVM-based 
models (S12 and S31) and NN-based models (N12 and N31) con-
structed from the internal and combined datasets is shown in Figs. 4 and 
5, respectively. The light and dark green elliptical boundaries corre-
spond to the 95 and 99 % confidence intervals, respectively. Reliable 
predictions can only be generated within these confidence intervals. In 
the internal dataset (Fig. 4), all the training data fall inside the 95 % 
confidence area, while two test data for the S12 model and only one test 
data for the S31 and N31 models falls between 95 and 99 % confidence 
area. In the combined dataset (Fig. 5), all the training and test data fall 
inside the 95 % confidence area. Generally, all the studied binary mix-
tures of MOX NPs were located within the 99 % confidence area of the 
selected QSAR models. Thus, the mixture toxicity predictions for each 
training and test mixtures of MOX NPs are highly reliable for the selected 
QSAR models. This suggests that the QSAR models can be used to predict 
the toxicity of any other binary combinations of MOX NPs, especially 
because the predominant first-generation ENPs are within this training 
set as well as the mechanistically relevant descriptors. 

A QSAR model should have a well-defined AD to reflect its reliability 

in order to be applicable for chemical assessment and management. The 
dataset with 22 binary combinations has proven to be large and robust to 
effectively built ML-driven QSAR models for toxicity prediction. This is 
in line with previous conclusions confirming that ML-assisted QSAR 
models have good predictive power for relatively small datasets (Gaje-
wicz et al., 2015; Puzyn et al., 2011; Zhong et al., 2022a). These findings 
do give prospects of application to move the field on mixture toxicity 
predictions further especially when ENPs mixtures are considered in 
which chemicals as well as particles influence fate and responses. The 
characterization of the AD reflects the dependence of a QSAR model on 
training data (Zhong et al., 2022b). Thus, only nanostructured materials 
that are similar to the ENPs constituting the training set, can be reliably 
predicted. While artificial intelligence, ML, and big data analytics pro-
vide powerful algorithms and tools for QSAR modeling, high-quality 
toxicity data remain the driving force for constructing QSAR models 
for the prediction of the toxicity of nano-mixtures. Therefore, further 
research needs to expand the amount of high-quality data available on 
the toxicity of mixtures of ENPs in the training set and enlarge the AD of 
QSAR models. 

3.4. Importance of descriptors and mechanistic knowledge 

Table S9 shows the comparative importance of the proposed de-
scriptors for the toxicity prediction of binary mixtures of MOX NPs. The 
magnitude of the relative importance of ΔHsf (62 %) and ΔHme+ (47 %) 
is the highest in the internal and combined datasets studied respectively, 
suggesting that the two descriptors are very important in explaining the 
QSAR models. As an efficient descriptor, ΔHme+ was previously 
employed to explain the cytotoxicity of MOX NPs to E. coli based on their 
chemical stability. The chemical stability of MOX NPs is associated with 
the release of metal cation from the particles as well as the catalytic 
properties and redox modifications of the surface (Puzyn et al., 2011). 
For a given size, ΔHsf might be also used as an indicator of “the ability of 
releasing metal cation”, since it is proportional to the energy of a single 
metal–oxygen bond in the oxides (Gajewicz et al., 2015). The cellular 
damage caused by MOX NPs may be attributed to the release of metal 

Fig. 5. Applicability domains of the selected SVM- and NN-based QSAR models developed based on the combined dataset.  
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cations. The metal ions present in suspension can not only chelate with 
specific ligands of biological macromolecules to affect the toxicity of 
MOX NPs to biological cells, but also can instigate the generation of free 
radicals such as hydroxyl radicals in both cells and mitochondria, 
causing DNA and mitochondrial DNA breakage (Roy et al., 2019). 

In addition, χme was a significant descriptor in developing the S12 
and N12 models, and indicates the energy needed to separate the metal 
cation from the metal oxides as part of the mechanisms underlying the 
toxic effects of the metal oxides. MOX NPs with a higher χme tend to gain 
electrons from the bonding pair of the electrons. This indicates an in-
crease in the catalytic capabilities of cationic metal (Roy et al., 2019). 
Thus, the toxicity of MOX NPs may be enhanced in accordance with the 
Haber-Weiss-Fenton cycle (Koppenol, 2001). χme is also independent of 
the size range of MOX NPs (Kar et al., 2014). Following the release of 
metal cations, redox interactions with the molecules in biological media 
frequently result in the production of reactive oxygen species (ROS) 
(Puzyn et al., 2011). Thus, the released cations themselves, ROS-induced 
oxidative damage, or both may be responsible for the observed cyto-
toxicity. Our results indicated that these descriptors could indicate 
possible mechanism for the mixture toxicity of individual MOX NPs. 
What is more, the descriptors used in the models are well-defined and 
can be derived quickly from the chemical composition information (χme) 
and chemical stability (ΔHme+ and ΔHsf). 

The AICc values were further applied to evaluate the relationship 
among the proposed descriptors (χme, ΔHme+, and ΔHsf). As shown in 
Table S10, in both the internal dataset and the combined dataset, the 
AICc value of the model developed by applying ΔHme+ and ΔHsf was the 
smallest among all the models combined with the binary descriptors. 
This indicates that the fitting ability of the model incorporating ΔHme+
and ΔHsf was higher than the fitting ability of the other models using the 
combination of two descriptors. This is generally consistent with the 
results of the screening and comparative analysis regarding the perfor-
mance of ML models as described previously. The models developed by 
applying ΔHsf and ΔHme+ to the internal and combined datasets, 
respectively, had the lowest AICc (Table S10). However, the predictive 
power of the ML models developed by both single descriptors cannot 
ensure equal predictive power for the internal dataset and the combined 
dataset (Tables S3 and S4). Furthermore, we found that the AICc values 
of models developed by the combination of three descriptors (χme, 
ΔHme+, and ΔHsf) were the highest in the internal dataset, while the 
AICc values of the models developed by the combination of three de-
scriptors in the combined dataset were higher than those of the models 
developed by the single descriptor (ΔHme+) and the combination of 
ΔHme+ and ΔHsf (Table S10). This implies that applying more de-
scriptors (n = 3) to the model in this study could not significantly 
improve the predictive performance of the model. Furthermore, using 
fewer descriptors in QSAR analysis not only allows for avoiding over- 
fitting, but also establishes meaningful models with understandable 
chemical mechanisms (Wang and Chen, 2020). Thereupon, the sug-
gested QSAR models with few utilized nano-descriptors can be regarded 
as robust and simple to use for predicting the mixture toxicity of ENPs. 

4. Conclusions 

Our results show that the ML methods present unprecedented op-
portunities and challenges for the assessment of the mixture toxicity of 
ENPs. The nano-QSAR models that we developed and validated, out-
performed conventional mixture models. The χme, ΔHme+, and ΔHsf 
were found to be the key nano-descriptors capable of predicting the 
mixture toxicity. At the present stage, the synthesis of new NMs and the 
advanced complexity of materials has a more rapid pace than the science 
to predict the fate and effects of those complexes and mixtures of ENPs. 
Knowledge on the mixture impacts of various shaped and chemically 
diverse ENPs as well as the evaluation of the environmental hazards of 
combinations of ENPs is a necessity to work on. 
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