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Abstract
It is known that to achieve efficient scalability of an Evolutionary Algorithm (EA), de-
pendencies (also known as linkage) must be properly taken into account during varia-
tion. In a Gray-Box Optimization (GBO) setting, exploiting prior knowledge regarding
these dependencies can greatly benefit optimization. We specifically consider the set-
ting where partial evaluations are possible, meaning that the partial modification of a
solution can be efficiently evaluated. Such problems are potentially very difficult, for
example, non-separable, multimodal, and multiobjective. The Gene-pool Optimal Mix-
ing Evolutionary Algorithm (GOMEA) can effectively exploit partial evaluations, lead-
ing to a substantial improvement in performance and scalability. GOMEA was recently
shown to be extendable to real-valued optimization through a combination with the
real-valued estimation of distribution algorithm AMaLGaM. In this article, we defini-
tively introduce the Real-Valued GOMEA (RV-GOMEA), and introduce a new variant,
constructed by combining GOMEA with what is arguably the best-known real-valued
EA, the Covariance Matrix Adaptation Evolution Strategies (CMA-ES). Both variants
of GOMEA are compared to L-BFGS and the Limited Memory CMA-ES (LM-CMA-ES).
We show that both variants of RV-GOMEA achieve excellent performance and scalabil-
ity in a GBO setting, which can be orders of magnitude better than that of EAs unable
to efficiently exploit the GBO setting.

Keywords
Linkage, gray-box optimization, real-valued optimization, multiobjective optimiza-
tion.

1 Introduction

Evolutionary Algorithms (EAs) are frequently used to solve optimization problems
that are considered too difficult for more efficient algorithms such as local search in
case of discrete problems or gradient descent in case of real-valued problems. This
is the case when, for example, the problem is multimodal or when plateaus in the
problem landscape prevent gradient information from directing the search toward the
global optimum. Furthermore, EAs are known to be among the state-of-the-art for
the optimization of Multi-Objective (MO) optimization problems (Deb, 2001). In most
cases, the optimization problem is considered to be a Black-Box Optimization (BBO)
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problem, where only function evaluations can reveal information about the structure of
the optimization problem at hand.

Considering problems in a BBO setting is, however, not always a necessity, and
the exploitation of problem-specific information, when possible, could substantially in-
crease the performance of an EA. Some exploitable form of problem information can be
available even when the optimization problem is considered very difficult. For exam-
ple, an EA with problem-specific recombination and mutation operators has been able
to find near-optimal solutions for a binary optimization problem with a billion variables
(Deb and Myburgh, 2016). Near-linear scalability in the number of problem variables
was achieved, despite the problem being non-separable due to a combination of equal-
ity and inequality constraints. In comparison, conventional integer linear programming
solvers were unable to solve a 2000-variable version of this problem.

Partition crossover (Whitley et al., 2009) is a more general instance of a custom bi-
nary crossover operator that exploits problem information. This operator has access
to a variable interaction graph, describing whether or not interactions exist between
pairs of problem variables. Partition crossover was previously applied to the Traveling
Salesman Problem (TSP) (Whitley et al., 2009) and NK-landscapes (Tinós et al., 2015). It
substantially outperformed state-of-the-art local-search solvers for the Maximal Satisfi-
ability (MAXSAT) problem (Chen et al., 2018).

Partial evaluations are a way to exploit problem-specific information in the domain
of either discrete or real-valued optimization, allowing efficient evaluation of the ob-
jective value(s) of a solution for which only a small number of problem variables have
been modified. When such partial evaluations are possible, we speak of a Gray-Box
Optimization (GBO) setting.

In real-valued optimization, which our work is focused on, proper use of partial
evaluations has been shown to lead to a substantial increase in performance and scala-
bility on a wide range of benchmark problems (Bouter, Alderliesten et al., 2017), as well
as the real-world problems of medical deformable image registration (Bouter, Alderli-
esten, and Bosman, 2017) and the optimization of brachytherapy treatment plans for
prostate cancer (Luong, Alderliesten et al., 2018), when combined with a real-valued
version of GOMEA (RV-GOMEA) (Bouter, Alderliesten, Witteveen et al., 2017; Bouter,
Luong et al., 2017). The two aforementioned real-world problems are both instances
of non-separable, multimodal, multiobjective problems, making them very suitable for
optimization with an EA. Despite the complexity of these problems, their definitions
allow for the application of partial evaluations, leading to substantial improvements
in performance and scalability. To the best of our knowledge, RV-GOMEA is the first
real-valued EA to exploit partial evaluations.

In this article, we highlight the benefits of a GBO setting in which partial
evaluations are possible, and the requirements for such a setting. Furthermore, we
definitively introduce RV-GOMEA, extending previously published work (Bouter,
Alderliesten, Witteveen et al., 2017; Bouter, Luong et al., 2017) by comparisons with
state-of-the-art large-scale optimization algorithms including the well-known gradient-
based optimization method L-BFGS (Liu and Nocedal, 1989), and the Limited-Memory
CMA-ES (LM-CMA-ES) (Loshchilov, 2014), a large-scale variant of CMA-ES, on vari-
ous types of single-objective and multiobjective problems. Furthermore, we introduce
a novel variation of RV-GOMEA, by making a new combination with the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen and Ostermeier, 2001), ar-
guably the most well-known and state-of-the-art EA for real-valued optimization.
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Achieving Scalable Evolutionary Real-Valued Optimization

The remainder of this article is organized as follows. In Section 2, we discuss work
on Model-Based EAs (MBEAs) related to GOMEA. Section 3 then gives a general in-
troduction to GOMEA, and Section 4 describes how linkage structure is modeled in
GOMEA. Section 5 describes the GBO setting that we consider, which allows for the
use of partial evaluations, and the benefits and restrictions of such a setting are dis-
cussed. The extension of GOMEA to the real-valued domain, that is, RV-GOMEA, is
introduced in Section 6, after which two instantiations (one novel instance and one pre-
viously introduced) of RV-GOMEA are discussed in Section 7. Multiobjective variants of
these algorithms are subsequently designed in Section 8. In Section 9, the performance
of all discussed algorithms, combined with a variety of different linkage models, is then
analyzed through scalability experiments on a set of well-known benchmark problems.
Results are then discussed in Section 10, followed by stating a number of conclusions
drawn from said experiments in Section 11.

2 Related Work

In the standard Genetic Algorithm (GA) (Holland, 1975), variation is performed com-
pletely at random. In comparison, the goal of MBEAs is to perform variation in a
more informed manner, so as to substantially improve performance. MBEAs exploit the
problem structure or the optimization landscape throughout the optimization process
guided by an explicit model that describes key characteristics of the problem at hand.
This model may be learned online, while optimization is being performed, or it may be
(partially) instantiated with problem-specific knowledge.

In the domain of real-valued optimization, which this work focuses on, a Gaussian
distribution is frequently used to describe how to generate the values for the problem
variables of new solutions. This is done in, e.g., the Covariance Matrix Adaptation Evo-
lution Strategies (CMA-ES) (Hansen and Ostermeier, 2001), the Adapted Maximum-
Likelihood Gaussian Model Iterated Density Estimation Algorithm (AMaLGaM-IDEA
or AMaLGaM for short) (Bosman et al., 2013), and Natural Evolution Strategies (NES)
(Wierstra et al., 2014).

Akey aspect of problem structure is the linkage structure, which describes the struc-
ture of an optimization problem in terms of the dependencies between problem vari-
ables. Linkage information, which is generally derived from the population or known
beforehand due to problem-specific knowledge, is used in many MBEAs to estimate
a statistical model that captures the underlying linkage structure of the optimization
problem. In Estimation of Distribution Algorithms (EDAs) (Lozano et al., 2006; Pelikan
et al., 2007), a specific type of MBEA, a probability distribution is used to model the link-
age structure. In discrete optimization, the Bivariate Marginal Distribution Algorithm
(BMDA) (Pelikan and Mühlenbein, 1999), an extension of the Univariate Marginal Dis-
tribution Algorithm (UMDA) (Mühlenbein, 1997), incorporates bivariate dependencies
between problem variables in order to model dependencies. Models of larger capacity
were later introduced, with the Extended Compact Genetic Algorithm (ECGA) (Harik
et al., 2006) using a marginal product model, and the Estimation of Bayesian Network
Algorithm (EBNA) (Etxeberria and Larrañaga, 1999), Bayesian Optimization Algorithm
(BOA) (Pelikan, 2005a), and the hierarchical Bayesian Optimization Algorithm (hBOA)
(Pelikan, 2005b) using Bayesian networks to model linkage structure. In the aforemen-
tioned Gaussian-based MBEAs, CMA-ES (Hansen and Ostermeier, 2001), AMaLGaM
(Bosman et al., 2013), and NES (Wierstra et al., 2014), a covariance matrix describes the
linkage structure.
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Recently, there has been an increasing focus on MBEAs explicitly modeling and ex-
ploiting linkage information to guide mixing operators, rather than using the linkage
information to guide a statistical model that samples new problem variables. This trend
was first observed for discrete optimization (Thierens, 2010; Hsu and Yu, 2015; Thierens
and Bosman, 2011; Goldman and Punch, 2014), and more recently for real-valued op-
timization (Bouter, Alderliesten, Witteveen et al., 2017). Of these new types of MBEAs,
we focus on GOMEA (Thierens and Bosman, 2011) here, because GOMEA is so far the
only one among these MBEAs to be extended beyond discrete optimization.

3 Gene-Pool Optimal Mixing

GOMEA has its roots in the Linkage Tree Genetic Algorithm (LTGA) (Thierens, 2010)
for binary variables, which was later generalized and renamed (Thierens and Bosman,
2011). Subsequent efficiency enhancements, restart mechanisms, and multiobjective ex-
tensions, adapted GOMEA to its current state (Bosman and Thierens, 2013; Luong, La
Poutré et al., 2018), which is considered to be among the state-of-the-art for discrete
optimization.

A central concept in GOMEA that is the key to its performance, is to exploit link-
age information by applying variation not to all problem variables simultaneously, but
instead to apply variation to small subsets of dependent variables, and accepting a vari-
ation operation only if it leads to an improved offspring solution. This latter concept is
called optimal mixing. A so-called linkage model is used to describe (small) subsets of
variables that are considered to be dependent. Moreover, when the entire population is
used as potential donor information during optimal mixing, the procedure is generally
called Gene-pool Optimal Mixing (GOM).

After its introduction in GOMEA, optimal mixing was included also in other state-
of-the-art EAs, such as DSMGA-II (Hsu and Yu, 2015) and P3 (Goldman and Punch,
2014). Moreover, even though GOMEA was originally introduced in the domain of dis-
crete optimization, the concept of linkage information exploitation of GOMEA is more
widely applicable, as was recently shown through RV-GOMEA (Bouter, Alderliesten,
Witteveen et al., 2017). RV-GOMEA combines key aspects of GOMEA with those of the
real-valued EDA known as AMaLGaM (Bosman et al., 2013). The dependency model
of GOMEA is used in order to exploit linkage information, and the distribution-based
sampling methods used by AMaLGaM are used in order to match the continuous nature
of the search space.

The use of AMaLGaM as the method of sampling new problem-variable values
is, however, not an absolute necessity. Instead, other real-valued EAs could be com-
bined with GOMEA in order to benefit from its model-building capabilities. This not
only applies to real-valued optimization, but could apply to EAs in other domains of
optimization. Indeed, novel variants of GOMEA have recently appeared, for example,
for permutation spaces (Bosman et al., 2016) and genetic programming (Virgolin et al.,
2017).

4 Modeling Linkage Structure

In GOMEA, the linkage structure of a problem is modeled as a Family Of Subsets (FOS),
denoted F , which is a subset of the power set of I, which contains the indices of all
� problem variables, that is, F ⊆ P (I ), where I = {0, 1, . . . , � − 1}. Each element Fi ∈
F contains a number of indices of problem variables, all of which are considered to
be mutually dependent by this linkage model. Such an element of a FOS is named a
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Achieving Scalable Evolutionary Real-Valued Optimization

linkage set, as it describes a set of problem variables between which linkage information
is modeled. Virtually any FOS can be used to model linkage structure, though generally
speaking, each index i ∈ I appears in at least one linkage set Fj .

The linkage model can either be determined prior to optimization, and be fixed
throughout optimization, or it can be learned based on the population at the start of
every generation. We refer to linkage models that are fixed as static linkage models, and
to linkage models that change throughout optimization as dynamic linkage models.

In the remainder of this section, we discuss four potentially useful FOS models.
Depending on the optimization problem, and how much domain-specific knowledge is
available, one can select the linkage model that is the most appropriate.

4.1 Marginal Product FOS

The marginal product FOS is a FOS where each problem variable index exists in exactly
one linkage set, that is, Fi ∩ Fj = ∅ for each Fi ,Fj ∈ F with i �= j , and

⋃
Fi∈F Fi = I. A

simple instance of a marginal product FOS is the univariate FOS, which contains each
problem variable index in a separate linkage set, that is, F = {{0}, {1}, . . . , {� − 1}}.

We also define the k-block FOS as a specific marginal product FOS where each link-
age set consists of blocks of k subsequent variables, that is, F = {{0, 1, . . . , k − 1}, {k, k +
1, . . . , 2k − 1}, . . .}. This FOS structure is defined to match the problem structure of the
Sum of Rotated Ellipsoid Blocks (SoREB) benchmark problem discussed in Section 9.1.

4.2 Linkage Tree

The linkage tree FOS, first introduced in Thierens (2010), is a hierarchical linkage model.
It contains linkage sets of varying sizes, including all linkage sets of one problem vari-
able, and the linkage set that includes all problem variables. Moreover, each linkage set
with a size larger than one consists of the elements of two smaller linkage sets com-
bined, that is, for any Fi ∈ F with |Fi | > 1 there exist Fj ,Fk ∈ F such that i �= j �= k,
Fi = Fj ∪ Fk , and Fj ∩ Fk = ∅.

The linkage tree FOS can be learned through agglomerative bottom-up hierarchical
clustering. For this, a similarity notion is required between problem variables. In the dy-
namic case, an often used similarity notion is mutual information (Kraskov et al., 2004),
which is estimated from the population. In real-valued optimization, when estimating
Gaussian distributions, the mutual information between a pair of problem variables can
for instance be estimated through the Pearson product-moment correlation coefficient.
The Unweighted Pair Grouping Method with Arithmetic-mean (UPGMA) clustering
approach, whereby the similarity between two sets is the average similarity of all pair-
wise combinations, is then used for the construction of the linkage tree. This approach
has a complexity of O(�2) (Gronau and Moran, 2007).

4.3 Bounded Fixed Linkage Tree

For certain problems, and arguably many large-scale real-valued problems, using a link-
age tree that models dependencies up to the set of all problem variables is a waste of
resources, because only relatively low-order dependencies are present in the problem.
In this case, the Bounded Fixed Linkage Tree (BFLT) model, which was introduced by
Bouter, Alderliesten, Witteveen et al. (2017), can be used. The BFLT model is constructed
in the same way as any linkage tree, but any merge of two linkage sets that would lead
to a linkage set of a size larger than k is avoided, and the construction of the BFLT is
terminated when no two available linkage sets can be merged into a new linkage set of
size up to k.

Evolutionary Computation Volume 29, Number 1 133

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/29/1/129/1888432/evco_a_00275.pdf by U
N

IVER
SITEIT LEID

EN
 user on 15 Septem

ber 2023



A. Bouter, T. Alderliesten, and P.A.N. Bosman

A BFLT can be determined using a problem-specific notion of similarity between
problem variables, for example, Euclidean distance in various real-world problems
(Bouter, Alderliesten, and Bosman, 2017; Luong, Alderliesten et al., 2018). For this rea-
son, a BFLT is not learned at the start of each generation, but prior to optimization.

Even though bounding the linkage tree can have a large impact on the efficiency of
optimization, the construction of a BFLT with any k > 1 has the same complexity as the
construction of a full linkage tree, i.e.,O(�2), as the calculation of all pairwise similarities
is still required.

5 Partial Evaluations in Gray-Box Optimization

We speak of a GBO setting when the optimization problem allows for the application
of partial evaluations, because in contrast to the BBO setting, this requires some knowl-
edge of the optimization problem. A partial evaluation efficiently calculates the objec-
tive function(s) of a solution after the modification of a small number of problem vari-
ables, by subtracting the contribution of these variables to the objective function before
modification, and adding their contribution after modification.

5.1 Definition

An optimization problem must be suitable for the application of partial evaluations.
This is the case when it consists of k subfunctions, and it is known which variables each
subfunction depends on. A given I = {I0, I1, . . . , Ik−1} defines that subfunction f M

j has
a dependency on all variables for which the index is included in Ij . Other than this, each
subfunction is considered to be a black box. A function to which partial evaluations can
be applied, can be formulated in the following way (Bouter et al., 2018):

f (x) = f P
(
f M

0 (x|I0 ) ⊕ f M
1 (x|I1 ) ⊕ . . . ⊕ f M

k−1(x|Ik−1 )
) = f P

(⊕k−1
j=0 f M

j (x|Ij
)
)

, (1)

where for each j ∈ [0, . . . , k − 1], f M
j : R|Ij | → R is a function of x|Ij

, a restricted number
of elements of x. The indices of x that x|Ij

is restricted to are defined by a given Ij ⊆ I =
{0, 1, . . . , � − 1}. The operator ⊕ can be any commutative binary operator for which we
know an inverse operator 
, for example the summation or multiplication operators,
though using the multiplication operator requires extra care to avoid division by zero
(Bouter et al., 2018).

In the case that f P : R → R is the identity function, the partial evaluation of a so-
lution x′ that is the result of a solution x following the modification of xi , requires the
calculation of each subfunction that has a dependency with xi , that is:

fpart(x, fx, x′, i) = fx 
 ⊕
Ij �i f

M
j (x|Ij

) ⊕ ⊕
Ij �i f

M
j (x′|Ij

), (2)

with fx the given objective function of x, and Ij � i shorthand for {Ij ∈ I|i ∈ Ij }.
If f P is any non-invertible function, the application of a partial evaluation requires

maintaining the sum of all subfunctions � in memory. This � is updated following each
partial evaluation. Given a solution x and

� = ⊕k−1
j=0 f M

j (x|Ij
), (3)

a partial evaluation following the modification of xi can be performed as follows:

fpart(x,�, x′, i) = f P
(
� 
 ⊕

Ij �i f M
j (x|Ij

) ⊕ ⊕
Ij �i f M

j (x′|Ij
)
)

. (4)

Note that the definition of a function can reveal information about its separability,
because a variable interaction graph can be built based on I.
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5.2 Application

Because variation is applied to small subsets of variables by GOMEA, followed by an
evaluation to determine whether the variation step should be accepted or rejected, the
possibility of applying partial evaluations substantially improves the performance of
GOMEA. Partial evaluations are used to efficiently update the objective value of a par-
ent solution that is modified during GOM. If the parent solution is now in a state that
achieves a better objective value than before its modification, this state of the parent
solution is maintained in the population. Otherwise, the parent solution is returned to
the state before its modification.

Knowing the separability of a problem, and how partial evaluations can be applied,
does, however, not necessarily mean that the optimal linkage structure is immediately
clear. For example, some non-separable problems can best be solved with a marginal
product FOS due to relatively weak interactions between variables.

In contrast to GOMEA, state-of-the-art EAs such as CMA-ES (Hansen and Oster-
meier, 2001) and some of its variants (Ros and Hansen, 2008; Loshchilov, 2014) cannot
take full advantage of the possibility of partial evaluations, because solutions are only
ever evaluated after all of their variables have been sampled anew. CMA-ES can benefit
from a GBO scenario by using a covariance matrix that is restricted based on the de-
composability of the problem, as this can be derived from the GBO problem definition.
However, this benefit is marginal compared to the full potential of partial evaluations,
because sep-CMA-ES (Ros and Hansen, 2008) performed multiple orders of magnitude
worse than RV-GOMEA on various decomposable benchmark problems in a GBO set-
ting, in terms of time and number of function evaluations (Bouter, Alderliesten, Wit-
teveen et al., 2017).

In Section 9.1, we discuss how partial evaluations can be applied to a series of bench-
mark problems. This includes problems that are non-separable, multimodal, or multiob-
jective. Furthermore, partial evaluations have previously been applied to the real-world
problems of medical deformable image registration (Bouter, Alderliesten, and Bosman,
2017) and the optimization of brachytherapy treatment plans for prostate cancer (Lu-
ong, Alderliesten et al., 2018). Both of these problems are non-separable, multiobjective,
and multimodal, making them very well suited for optimization with an EA. The possi-
bility of applying partial evaluations to these problems then gives GOMEA a substantial
advantage compared to different algorithms that cannot benefit as much from partial
evaluations.

6 Real-Valued GOMEA

RV-GOMEA (Bouter, Alderliesten, Witteveen et al., 2017) was introduced as a combi-
nation of GOMEA (Thierens and Bosman, 2011) and AMaLGaM (Bosman et al., 2013).
The use of AMaLGaM as the method of sampling new problem-variable values is how-
ever not an absolute necessity. Instead, other real-valued EAs could be combined with
GOMEA in order to benefit from its model-building capabilities. In this section, we
present a general outline of RV-GOMEA, and we show how a different EA can be com-
bined with GOMEA to form variations of RV-GOMEA. In Section 7.2, we then apply
this to combine GOMEA with CMA-ES.

In RV-GOMEA, a population of solutions is maintained, and a linkage model is
used to describe the linkage structure of the optimization problem (see Section 4). Un-
til any one of the termination criteria are satisfied, possibly a budget in terms of time
or number of evaluations, generations are performed, each consisting of variation and
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selection. The general outline of a generation of RV-GOMEA consists of applying GOM
with each linkage set to each solution in the population P of size n, apart from the one
elitist solution from the previous generation that is copied to the current generation.
At the end of each generation, the parameters of the sampling model, for example, the
covariance matrix, are updated in a way defined by the sampling model itself. The ap-
plication of GOM with some linkage set Fj to some parent solution x then consists of
sampling a new partial solution o, which contains values for all variables described by
linkage set Fj . All values of the partial solution o are then inserted into the parent x,
and the parent is evaluated by applying partial evaluations.

Partial evaluations can lead to numerical errors in the objective values of solutions,
of which the magnitude depends on the optimization problem and the dimensional-
ity of the instance being solved. Therefore, whenever a solution seems to have reached
the Value-To-Reach (VTR), it is completely reevaluated to remove any numerical errors
caused by partial evaluations. Moreover, errors in the objective values of solutions can
have an impact on the overall optimization process. For this reason, the entire popula-
tion is reevaluated every 50 generations by default.

Pseudocode of the general outline of RV-GOMEA is shown in Algorithm 1, and
pseudocode of the GOM procedure is given in Algorithm 2. How GOM is performed,
and how a sampling model is initialized and updated, strictly depends on how this
sampling model is defined. The Anticipated Mean Shift (AMS) (see Section 7.3) and
forced-improvement procedures (see Section 7.4) are used for the real-valued instan-
tiation of GOMEA, as these procedures are specifically targeted at real-valued opti-
mization, and proved to be successful (Bouter, Alderliesten, Witteveen et al., 2017).
The forced-improvement procedure is only applied to solutions that have not been im-
proved for a number of generations larger than the maximum No-Improvement Stretch
(NIS) (Bosman et al., 2013).

7 Single-Objective Optimization

In this section, we describe the application of two different sampling models to RV-
GOMEA. The first application uses a sampling model based on AMaLGaM, as was
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introduced in Bouter, Alderliesten, Witteveen et al. (2017), and the second application
uses a sampling model based on CMA-ES (Hansen and Ostermeier, 1996, 2001). We re-
fer to the former as RV-GOMEAA, and to the latter as RV-GOMEAC. The combination
of GOMEA and CMA-ES was selected because CMA-ES is a well-known algorithm that
is arguably the state-of-the-art of EAs for real-valued BBO. Both in AMaLGaM and in
CMA-ES a multivariate normal probability distribution is used to sample new variables,
but a different approach to determining the parameters of this probability distribution
is taken in these algorithms. The AMS and forced improvement procedures are applied
to both variants of RV-GOMEA, as displayed in Algorithm 1.

7.1 AMaLGaM Sampling Model

We now define the structure and parameters of the sampling model used by this in-
stance of RV-GOMEA, based on AMaLGaM (Bosman et al., 2013). For the sampling
model of each FOS element, a multivariate normal probability distribution is main-
tained, with each of the dimensions of this probability distribution corresponding to
one of the variables included in the linkage set. This probability distribution N

(
μj , Cj

)
is defined in terms of the mean vector μj and the covariance matrix Cj , describing
the means of all variables in Fj , and the covariances of all pairs of variables in Fj , re-
spectively. Each such a probability distribution is estimated with maximum-likelihood
based on the selection, and then multiplied by the distribution multiplier cMulj , which
is described in Section 7.1.3. The selection S consists of the τn best solutions in the
population, with τ = 0.35, as in Bosman et al. (2013). Selection and the estimation
of the probability distribution are performed during the initialization of each sam-
pling model, and during the update procedure of each sampling model. Pseudocode
of this instance of RV-GOMEA is included in supplementary material, available at
https://www.mitpressjournals.org/doi/suppl/10.1162/evco_a_00275.

7.1.1 Gene-Pool Optimal Mixing
The normal probability distribution that is maintained, is used to sample new partial so-
lutions, that is, values for subsets of variables, during the GOM phase. In this phase, for
each linkage set, GOM is applied to all but nelitist = 1 solutions in the population.
During the GOM phase of a linkage set Fj , partial variation is applied to all solutions in
the population by sampling new partial solutions describing new values for all variables
in Fj . In order to sample from the distribution N

(
μj , Cj

)
, a Cholesky decomposition
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is applied to Cj to find Cj = Lj L∗
j . A sample o ∼ N

(
μj , Cj

)
is then obtained through

o = μj + Lj · N (0, I ). (5)

The resulting offspring solution is then evaluated, and the modification of the parent so-
lution is accepted if the offspring has a better objective value than the parent. If no better
objective value is achieved by the offspring, the modification is accepted with a proba-
bility of paccept = 0.05, based on preliminary experiments, because this encourages
exploration and increases the likelihood of escaping local optima.

7.1.2 Anticipated Mean Shift
A fraction 0.5τ , corresponding to Bosman et al. (2013), of newly sampled partial solu-
tions is subject to the AMS, moving them in the direction of generational improvement.
This is done by adding the difference between the means of consecutive generations,
times a multiplicative factor, to the partial solution o, that is,

oAMS = o + δAMScMulj

(
μ

(g)
j − μ

(g−1)
j

)
, (6)

where δAMS = 2, μ(g)
j is the mean vector of all variables in Fj in generation g, and cMulj

is the distribution multiplier that is described in Section 7.1.3.

7.1.3 Adaptive Variance Scaling
Each covariance matrix is scaled by a distribution multiplier that is used to adaptively
control the kernel size of the probability distribution. The procedure of adapting the
distribution multiplier is called Adaptive Variance Scaling (AVS) (Bosman et al., 2013).
Parameters of the AVS are set corresponding to Bosman et al. (2013). The value of the
distribution multiplier is initialized to 1 and scaled by either the factor ηDEC = 0.9 or
the factor ηINC = 1/ηDEC at the end of each generation, depending on the success of the
optimization procedure. More specifically, to update the distribution multiplier cMulj of

a sampling model Mj , we first find the set of solutions XImprovedj . This set contains
the offspring solutions that were produced by the GOM phase of Mj and obtained an
objective value better than that of the elitist solution at the start of the GOM phase of

Mj . If no such improvements were found, i.e., XImprovedj = ∅, cMulj is multiplied by
the factor ηDEC to narrow down the size of the search space.

If XImprovedj is non-empty, cMul is first reset to 1 if it was smaller than 1. Subse-

quently, cMul is adapted if improvements were found far away from the sample mean,
determined by the Standard Deviation Ratio (SDR) approach. For this purpose, the

vector xAvg-impj defines, for all variables in Fj , the average values of all solutions

in XImprovedj . A transformation is applied to xAvg-impj in order to find the vector

of standard deviation ratios zAvg-impj = L−1
j

(
xAvg-impj − μj

)
, which describes the

average direction of improvement in terms of the standard normal probability distribu-

tion N (0, 1) for each variable. If any dimension of zAvg-impj is larger than θSDR = 1 in
absolute terms, the average improvement is considered to be far away from the sample
mean, resulting in the multiplication of cMulj by the factor ηINC, because the kernel
of the probability distribution should be enlarged to find solutions far away from the
mean.
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7.2 CMA-ES Sampling Model

In this section we describe our implementation of a CMA-ES-based (Hansen and Os-
termeier, 1996, 2001) sampling model in RV-GOMEA. Pseudocode of this instance of
RV-GOMEA is included in supplementary material.

Each sampling model Mj consists of all parameters of CMA-ES as in Hansen and
Ostermeier (2001), modeling the probability distribution of the set of variables in Fj .
Each of these sampling models based on CMA-ES maintains the parameters that define
the Fj -dimensional normal probability distribution N (μj , σ

2
j Cj ) from which new so-

lutions are sampled, where μj is the mean vector, Cj is the covariance matrix, and σj is
the step size parameter. All these parameters are updated at the start of each generation,
separately for each sampling model.

7.2.1 Parameter Adaptation
In order to update μ and C , truncation selection is performed to find the selection S
consisting of the best �τn� individuals in P . The vectors 〈x〉w and 〈z〉w are the weighted
average of the solutions in S and the weighted average of the N (0, I )-distributed sam-
ples z of these individuals, respectively, which are computed based on the selection. The
weight of a solution with rank 0 ≤ r ≤ n − 1 is log(|S| + 1) − log(r + 1), and all weights
are normalized such that their sum is equal to 1.

The evolution path pc is then adapted, which determines how the covariance matrix
C is adapted. This is done according to Hansen and Ostermeier (2001), that is,

p(g+1)
c = (1 − cc ) · p(g)

c + cu
c · cw

σ (g)

(
〈x〉(g+1)

w − 〈x〉(g)
w

)
, (7)

C (g+1) = (1 − ccov) · C (g) + ccov · p(g+1)
c

(
p(g+1)

c

)T
, (8)

with cc the cumulation constant, and cu
c and cw normalization factors. These parameters

are set corresponding to an |Fj |-dimensional instance of CMA-ES Hansen and Oster-
meier (2001).

The step size parameter σ is adapted based on a separate evolution path pσ in the
following way, according to Hansen and Ostermeier (2001):

p(g+1)
σ = (1 − cσ ) · p(g)

σ + cu
σ · cw B(g)〈z〉(g+1)

w , (9)

σ (g+1) = sσ (g) · exp

(
1
dσ

· ‖ p(g+1)
σ ‖ − χ̂j

χ̂j

)
, (10)

with cσ the cumulation constant, cu
σ a normalization factor, dσ the damping parame-

ter, and χ̂j (an approximation of) the expected length of a vector drawn from the |Fj |-
dimensional normal distribution N (0, I ). These parameters are set corresponding to an
|Fj |-dimensional instance of CMA-ES (Hansen and Ostermeier, 2001).

The update rule for the evolution path of σ is dependent on B〈z〉w, that is, the ro-
tation matrix B and the weighted mean of the sample vector z, because this indicates
the direction of improvement. However, B is updated every generation, while z could
have been sampled more than one generation ago, because later samples were rejected.
Additionally, the weight of each solution that contributes to 〈z〉w changes every gen-
eration, because it depends on the relative quality of the solution. This means that, if
B and z originate from a different generation, the product z B results in a vector unre-
lated to the direction of improvement. Instead z and B, both originating from the same
generation, would have to be stored until all values of z have been replaced by newer
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Figure 1: Convergence plots of typical runs of RV-GOMEAC on the 80960-dimensional
sphere problem, with different settings for the number of generations after which the
complete population is reevaluated.

samples. This would increase the overall memory complexity to O(n�2), which should
be avoided. Therefore we set the value of z to 0 if the sample in the current generation
is rejected, because this would lead to a mismatch between z and B.

7.2.2 Gene-Pool Optimal Mixing
To sample from the distribution with covariance matrix C, an eigendecomposition is
applied to find C = B D2 BT , where B is an orthogonal matrix that determines the coor-
dinate system, and D is a diagonal matrix that scales the dimensions of this coordinate
system accordingly. For a sampling model Mj , a |Fj |-dimensional partial solution o is
sampled from N (μ, σ 2C ) as follows:

o(g+1) = 〈x〉(g)
w + σ (g) B(g) D(g) z(g+1), (11)

with z(g+1) ∼ N (0, I ).
As discussed in Section 6, the population has to be periodically reevaluated to avoid

large numerical errors. However, reevaluating the population once every 50 genera-
tions, as is done in RV-GOMEAA, appeared insufficient in preliminary experiments to
efficiently solve high-dimensional problems with RV-GOMEAC, because the numerical
errors have too much of an influence on the optimization process. This can be seen in
the convergence plots in Figure 1. Figure 1 shows runs of RV-GOMEAC with three dif-
ferent settings for the number of generations after which the complete population is
reevaluated. Note that all runs took fewer than 50 generations, so the population was
never reevaluated for the setting with reevaluation every 50 generations. If the pop-
ulation is reevaluated every 50 generations, RV-GOMEAC gets “stuck” near the VTR,
because each solution that appears to reach the VTR is reevaluated, but then turns out
to be worse than the VTR due to numerical errors. This is the cause of a large ineffi-
ciency, most notably in highly dimensional problems, and can even cause premature
convergence. For RV-GOMEAC we therefore choose to reevaluate the population every
10 generations, as this is a reasonable setting given the results in Figure 1.

7.3 Anticipated Mean Shift

Similar to the AMS applied to partial solutions in Section 7.1.2, AMS is applied to
all variables of a fraction 0.5τ of the population directly following GOM, with the
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purpose of moving solutions in the direction of generational improvement for all prob-
lem variables simultaneously. This application of AMS is accepted only when it leads
to an improvement, or with a probability of paccept. AMS is applied as follows:

xAMS = x + δAMS
(
μ(g) − μ(g−1)

)
, (12)

where δAMS = 2, and μ
(g)
j is the mean vector of all variables in generation g.

7.4 Forced Improvements

A phase of forced improvements was introduced in the discrete GOMEA to force solu-
tions out of local optima if they have not improved for a certain number of generations.
For each solution x, the number of generations of no improvement NIS(x) is kept track
of. This counter is reset whenever GOM or AMS resulted in an improvement of x. Note
that NIS(x) is not reset when a step of GOM is accepted due to paccept. Whenever
NIS(x) reaches NISMAX = 100, the forced improvement phase is applied to x. This phase
consists of multiple rounds, during each of which GOM is applied to x for each linkage
set. However, all new partial solutions that are inserted into x are a weighted average
of the variables of x and the elitist solution xelitist, where the weight of x is α and
the weight of xelitist is 1 − α. If the modification of x leads to an improvement of its
objective value, this modification is accepted and the forced improvement phase termi-
nates. After one round of GOM operations has been applied to x, but no improvements
have been found, the value of α is multiplied by 0.5, and the next round of GOM op-
erations starts. This process continues until α has reached a value below 0.01, at which
point a copy of xelitist replaces x in the population.

8 Multiobjective Optimization

Optimization problems often involve multiple conflicting objective functions that re-
quire optimization. Again, without loss of generality, we assume that all objective func-
tions need to be minimized. A weighted average of multiple objective functions could
be optimized by a single-objective algorithm, but such an approach might not always
result in the desired outcome, because such weights can be difficult to tune. Instead,
the goal of multiobjective optimization is finding a set of solutions, each of which has a
different optimal trade-off between each of the objective functions.

In the setting of multiobjective optimization, a solution x is considered to dominate
a solution y, denoted x � y, if it is better than y in at least one objective function, and at
least as good as y in all other objective functions. If neither x � y nor y � x holds, x and
y are said to be non-dominating. A solution is Pareto optimal if no solution exists that
dominates it. All Pareto-optimal solutions comprise the so-called Pareto set. In objective
space, the solutions in a Pareto set form a so-called Pareto front. EAs are known to be
among the state-of-the-art in multiobjective optimization (Deb, 2001). Multiobjective
EAs produce a so-called approximation set, a set of solutions that is as close as possible
to the Pareto front, and is spread across all regions of the Pareto front.

8.1 Multiobjective RV-GOMEA

Extending the RV-GOMEAintroduced in Section 3 from single-objective optimization to
multiobjective optimization is relatively simple with the multiobjective framework in-
troduced by Bosman and Alderliesten (2012). This framework employs selection based
on non-dominated sorting and a clustering procedure in order to spread the search ef-
fort across different regions of the objective space, because the goal of multiobjective

Evolutionary Computation Volume 29, Number 1 141

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/29/1/129/1888432/evco_a_00275.pdf by U
N

IVER
SITEIT LEID

EN
 user on 15 Septem

ber 2023



A. Bouter, T. Alderliesten, and P.A.N. Bosman

optimization is to find many solutions, presumably consisting of widely varying prob-
lem variable values, near each region of the Pareto front. Clustering was previously
shown to be beneficial for finding a good spread of solutions across the regions of the
Pareto front (Pelikan et al., 2005). Bosman and Alderliesten (2012) applied the aforemen-
tioned multiobjective framework to AMaLGaM, resulting in the Multiobjective AMaL-
GaM (MAMaLGaM) where basically each cluster is provided its own AMaLGaM esti-
mation and sampling procedure. Cluster registration, that is, the one-to-one matching
of clusters in generation g and those in generation g + 1, is performed, in order to apply
various mechanisms that rely on parameter settings from multiple generations, such as
AMS and AVS.

Similar to how the multiobjective framework is applied to AMaLGaM, we can ap-
ply it to RV-GOMEA by maintaining a sampling model for each cluster. Each cluster
should also have the possibility of having a different linkage model, because different
dependencies could be of importance in different regions of the Pareto front. Moreover,
even if the same linkage model is used by each cluster, the optimal distribution variable
values of a specific linkage set are presumably different at different regions of the Pareto
front. Therefore, a model Mij is maintained for each linkage set Fj in each cluster Ci .

8.1.1 Clustering
To distinguish the different regions of the Pareto front that are to be approached by
different clusters, the selection S is clustered into q possibly overlapping clusters, each
consisting of c = 2τ n

q
solutions. All distances in the clustering procedure are Euclidean

distances in objective space, where each dimension is normalized by the range of the
current selection. A so-called single-objective cluster is first created for each objective,
each consisting of the best c solutions in that objective. To establish the remaining q − m

clusters, q − m far apart cluster leaders are heuristically chosen from the selection. The
first cluster leader is a solution that is the maximum in a randomly chosen dimension.
All q − m − 1 remaining cluster leaders are then iteratively selected by choosing the
solution that is furthest away from all previously selected cluster leaders. The process
of selecting a subset of far apart solutions is further on referred to as scattered subset
selection. Cluster members are then determined by assigning the closest c solutions in
the selection to each cluster leader, meaning that some solutions in the selection can be
assigned to more than one cluster, or to no cluster.

In contrast to MAMaLGaM, where only the selection S is clustered, the applica-
tion of the multiobjective framework to RV-GOMEA will require the clustering of the
entire population, because each solution in the population must receive new samples
from a sampling model that is directly associated with a cluster. After clusters consist-
ing of solutions in S have been established, all solutions in the population (including
the selection) are assigned to exactly one cluster. To ensure a minimum size of each clus-
ter, we first assign c = 2τ n

q
solutions to each cluster in a round robin fashion. In each

round, for each cluster, the closest (with respect to the cluster mean) non-assigned so-
lution is assigned to the cluster, starting with the single-objective clusters. This process
is repeated until c solutions are assigned to each cluster. All non-assigned solutions are
then assigned to their closest (again with respect to the cluster mean) cluster.

8.1.2 Elitist Archive
An adaptive elitist archive, introduced in Luong and Bosman (2012), is used to keep
track of a set of non-dominated solutions with a desired target size. This elitist archive
is set to a maximum capacity of 125% of its target size, and the elitist archive is adapted
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when the maximum capacity is exceeded. This adaptation condition is checked at the
end of each generation. While the elitist archive has not been adapted yet, this condi-
tion is also checked after each application of GOM, to prevent the elitist archive from
growing substantially beyond its maximum capacity. The objective space of the elitist
archive is then discretized into a regular grid, and no more than one solution is allowed
in each grid cell. Different grid resolutions are attempted in a binary search manner to
find a grid resolution such that the size of the elitist archive is close to 75% of its target
size. Whenever a solution would be added to the elitist archive, and it would be located
in an already occupied grid cell, either the new solution or the solution preexisting in
this cell is selected to be stored in the archive. If either of the solutions is dominating the
other, the dominating solution is selected. Otherwise, the preexisting solution remains
in the archive.

8.1.3 Mixing
Accepting or rejecting the modification of a solution during GOM is based on whether
the modification resulted in an improvement of the solution in question. Contrary to
single-objective optimization, however, an improvement is not clearly defined in mul-
tiobjective optimization. A modified solution that dominates the previous state of the
solution clearly counts as an improvement, but little can be said when the two solu-
tions are non-dominating. A modification leading to a non-dominating state could very
well lead to a solution that is further from the Pareto front. We therefore adopt the ac-
ceptation criteria that were previously used in the (discrete) Multi-Objective GOMEA
(MO-GOMEA) (Luong et al., 2014). This means that a modification is accepted only if
it leads to a solution that dominates the parent solution, or if the resulting solution is
not dominated by any solution in the elitist archive. In the multiobjective framework,
we set paccept = 0, as the acceptation of sideways (non-dominating) steps serves the
same purpose.

8.2 AMaLGaM Sampling Model

The adaptation of GOMEA for multiobjective real-valued optimization was previously
introduced by Bouter, Luong et al. (2017) as the Multi-Objective RV-GOMEA (MO-RV-
GOMEA) and uses the AMaLGaM sampling model.

8.3 CMA-ES Sampling Model

Extending RV-GOMEAC to its multiobjective variant, MO-RV-GOMEAC, is done
through the straightforward application of the multiobjective framework discussed
in Section 8.1 and thus in the same way that RV-GOMEAA is extended to MO-
RV-GOMEAA. Aseparate linkage model is used for each cluster, and each linkage model
in each cluster maintains a sampling model for each of its linkage sets. All methods dis-
cussed in Section 8.1 are then applied.

9 Experiments

9.1 Benchmark Problems

This section introduces the set of single-objective and multiobjective benchmark prob-
lems used in this article. Definitions and further details of these problems are included
as supplementary material.
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9.1.1 Single-Objective
The set of single-objective optimization problems consists of the sphere (De Jong, 1975),
Rosenbrock (Rosenbrock, 1960), Rastrigin (Rastrigin, 1974), Michalewicz (Michalewicz
and Janikow, 1991), SoREB (Bouter, Alderliesten, Witteveen et al., 2017) functions, and
a step function, all subject to minimization. The partial evaluation of these functions
is generally performed by subtracting the previous contribution of the modified vari-
ables from the objective value, and adding the new contribution of such variables to the
objective value.

From this set of functions, the sphere function is clearly the easiest to optimize,
because it has no (non-global) local optima, and it is completely dimension-wise de-
composable. The second benchmark problem that we consider is the Rosenbrock func-
tion, because this is a relatively difficult function to which partial evaluations can be
applied despite the fact that it is not dimension-wise decomposable. The Rastrigin and
Michalewicz functions are multimodal problems that are dimension-wise decompos-
able. The SoREB function, previously used by Bouter, Alderliesten, Witteveen et al.
(2017), is also used, as this is a decomposable problem with relatively difficult sub-
problems. Finally, we use a step-function variant of the sphere function, because the
landscape of this function has many plateaus, a landscape characteristic that may well
occur in real-world problems that should still be possible to overcome with population-
based optimizers, but pose difficulty for gradient-based solvers.

9.1.2 Multiobjective
The set of multiobjective benchmark problems includes the convex generalized Multi-
ple Euclidean Distances (genMED) problem (Bosman, 2012), the well-known ZDT1 and
ZDT3 problems (Deb, 1999), and a multiobjective variant of the SoREB function, named
MOSoREB.

The genMED problem is a relatively simple problem with a convex Pareto front. We
specifically selected the ZDT1 and ZDT3 problems for their distinct properties, as the
Pareto fronts for these problems are convex and discontinuous, respectively. Both the
ZDT1 and ZDT3 problems are non-separable (Li et al., 2016).

Finally, the MOSoREB problem consists of the objective function f0 for which each
value is optimal, and an objective function f1 that is similar to the SoREB function, but
conflicts with f0. The Pareto front of the MOSoREB problem is a straight line between
(0,1) and (1,0).

9.2 Experimental Setup

For all variants of GOMEA, we use the Interleaved Multi-start Scheme (IMS) (Bouter,
Alderliesten, Witteveen et al., 2017) to avoid tuning the population size and the num-
ber of clusters. With this scheme, one run of an EA consists of several independent in-
stances of the EA with population sizes exponentially growing in size. The generations
of these independent instances are interleaved, such that the instance with population
size 2n performs one generation for each cIMS generations of the instance with popu-
lation size n. For the multiobjective EAs, the number of clusters is increased by 1 for
each new population that is started. The IMS starts with one instance of an EA with a
relatively small population size nbase and qbase clusters (in MO optimization). Each con-
secutive instance that is started has a population size that is a factor 2 larger, and has one
more cluster (in MO optimization). For all experiments cIMS = 8, and qbase = 5 (for MO
problems) are used. For the SoREB problem we use nbase = 50, and for the MOSoREB
problem we use nbase = 50qbase, conform to the AMaLGaM population-size guideline
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for a 5-dimensional problem (Bosman et al., 2013). For all other Single-Objective (SO)
experiments nbase = 10 is used, and for all other MO experiments nbase = 10qbase is used.

Random restarts are used with L-BFGS, that is, a run is restarted when convergence
is observed while the computational budget has not yet been expended.

An initialization range of [−115,−100] is used for all SO benchmark problems, as
this range does not bracket the optimum. An initialization range of [0,1] is used for
all MO benchmark problems, as some of these problems are constrained to this range.
Boundary repair is used as a constraint handling mechanism (Orvosh and Davis, 1994).

For the sphere, Rosenbrock, Rastrigin, and SoREB problems we use a VTR of 10−10.
For the Michalewicz problem the VTR is set to 95% of the global optimum. In MO opti-
mization, we use the DPf →S metric (Bosman and Thierens, 2003), also known as the in-
verted generational distance, to evaluate the quality of an approximation set. The DPf →S

is the average distance in objective space computed over each point in an approxima-
tion set of 5000 equally spread out points on the Pareto front Pf with its associated
nearest point in a given approximation set S. Using this metric requires that the Pareto
front is known, but this is the case for all used MO benchmark problems. For all MO
benchmark problems, we use a VTR of DPf →S < 5 · 10−3. An adaptive elitist archive is
used with a target size of 1000.

For all problems except the SoREB and MOSoREB problems, the partial evaluation
of k variables is counted as a fraction k/� of an evaluation, because the computational
effort for such a partial evaluation takes O(k/�). For the SoREB and MOSoREB prob-
lems, the computational effort of a partial evaluation depends on the number of blocks
that have to be evaluated. Therefore, the partial evaluation of any number of variables
in k different blocks of size β is counted as kβ/� ≤ 1 evaluations. Note that the partial
evaluation of a set of variables consists of the calculation of their contribution to the
objective value before modification, and the calculation of their contribution to the ob-
jective value after modification. However, if the objective function is computationally
expensive, one can choose to save partial contributions to the objective function in mem-
ory, which has no impact on the overall memory complexity. For this reason, a partial
evaluation is counted as a fraction k/� of an evaluation instead of 2k/�.

Experimental results for RV-GOMEAA were obtained by running experiments on an
Intel(R) Core(TM) i7-2600 CPU @ 3.40 GHz. Experimental results for MO-RV-GOMEAA,
(MO-)RV-GOMEAC, L-BFGS, and LM-CMA-ES were obtained by running experiments
on an Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20 GHz. Reported times of RV-GOMEAA are
scaled by a constant to compensate for the difference in CPU clock speed.

9.3 Comparison to Gradient-Based Optimization

If each subfunction has a dependency with up to k problem variables, the gradient can
be estimated in up to k evaluations in a GBO setting. This makes gradient-based op-
timization methods, such as L-BFGS (Liu and Nocedal, 1989), very efficient in a GBO
setting. However, though a GBO setting provides information on the separability of the
optimization problem, each subfunction is considered as a black box. As any such sub-
function can have a landscape that is arbitrarily difficult to optimize, gradient-based
methods can still have difficulties optimizing such problems.

Figure 2 shows convergence plots of L-BFGS for the 40-dimensional Rastrigin prob-
lem, given different step sizes for the estimation of the gradient. The open source Python
library SciPy (Jones et al., 2001) was used for the implementation of L-BFGS. Figure 2
shows that L-BFGS is unable to reach the global optimum of the Rastrigin function,
caused by the multimodality of this problem. In contrast, EAs are generally well-suited
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Figure 2: Convergence plot for the 40-dimensional Rastrigin problem using L-BFGS
with different step size (eps) values for the estimation of the gradient. The vertical axis
shows the best objective value found following random restarts of L-BFGS. A total time
limit of 30 seconds was used.

Figure 3: Resulting approximation fronts for L-BFGS and MO-RV-GOMEAA for the 10-
dimensional ZDT3 problem. A time limit of 60 seconds was used. The front found by
L-BFGS was constructed through repeated optimization of linear combinations of the
two objectives.

for such multimodal problems. This is also the case for the variants of GOMEA, as
shown in Figure 4.

L-BFGS can also be used for MO through repeated optimization of linear combi-
nations of the objectives. This, however, makes it difficult to achieve good coverage of
the Pareto front for problems such as ZDT3, as shown in Figure 3. In this case, weights
of the initial two runs were set to 0.99 and 0.01, and weights of subsequent runs were
set to the middle of the largest range of weights not yet covered, as to perform the op-
timization with a wide range of different weights. Additionally, also in MO, L-BFGS
has trouble optimizing difficult problem landscapes, for example, multimodal problem
landscapes.

9.4 Scalability Analysis

As computing power increases and the demand for the optimization of large-scale prob-
lems increases, it becomes increasingly important to analyze how well algorithms scale
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to high-dimensional optimization problems. For this reason, we perform a scalability
analysis of all discussed algorithms in a GBO setting using different linkage models on
a set of well-known single-objective and multiobjective benchmark problems.

We analyze the scalability of RV-GOMEAA, RV-GOMEAC, MO-RV-GOMEAA, and
MO-RV-GOMEAC in a GBO setting by applying these algorithms to all benchmark
problems introduced in Section 9.1, with exponentially increasing dimensionality. We
compare these variants of GOMEA to the Limited Memory CMA-ES (LM-CMA-ES)
(Loshchilov, 2014), as it was shown that this EA scales the best to high dimensions com-
pared to various large-scale variants of CMA-ES (Varelas et al., 2018). All default param-
eter settings are used, and the EA is restarted with double the population size when the
convergence criterion has been reached. The comparison to LM-CMA-ES should give
an indication of the benefits of a GBO setting compared to a BBO setting in terms of
scalability, as LM-CMA-ES is also designed to perform well on large-scale optimiza-
tion problems. We also compare to L-BFGS (Liu and Nocedal, 1989), as implemented
in the SciPy (Jones et al., 2001) library. This implementation was modified to allow for
the more efficient estimation of the gradient through partial evaluations. For the appli-
cation of L-BFGS to MO benchmark problems, we repeatedly optimize weighted linear
combinations of the objective functions.

All variants of GOMEA are tested with the Univariate factorization (Uni) and a
BFLT linkage model (see Section 4.1) with an upper bound of 100 on the size of each
linkage set. The LT model is not used, because including the linkage set of size � should
be avoided to achieve good scalability. A 5-Block FOS (5B) linkage model is also tested
on the SoREB and MOSoREB problems. For each dimensionality, 30 independent runs
of each EA are performed with a time limit of one hour. A run is considered successful
when the EA finds the VTR within this time limit. As long as an EA is successful in all 30
runs for a problem of a certain dimensionality, we keep increasing the problem dimen-
sionality by a factor 2 until the algorithm is no longer successful in all 30 runs, up to a
dimensionality of 107 for the SO benchmark problems and 105 for the MO benchmark
problems.

9.4.1 Results
The results of all SO and MO scalability experiments are displayed in Figure 4.

RV-GOMEAA and RV-GOMEAC achieve very similar performance on most bench-
mark problems. Some differences in scalability can be observed for the Michalewicz and
SoREB problems.

On the Michalewicz problem, the univariate RV-GOMEAA scales relatively poorly
up to approximately 103-dimensional problems. On higher-dimensional instances,
RV-GOMEAA, however, achieves scalability similar to the sphere problem. This is
caused by the fact that a VTR equal to a fraction (95%) of the global optimum is used,
which becomes easier to reach as the dimension of the Michalewicz problems increases,
counteracting the fact that the optimization problem becomes more difficult as its di-
mensionality increases. A changing trend in the scalability of RV-GOMEAC is not ob-
served, because RV-GOMEAC is able to consistently solve the Michalewicz problem
with a relatively small population size, whereas RV-GOMEAA requires a larger popula-
tion size to efficiently solve this problem for medium-sized dimensionalities. This can
also be observed through generally smaller variance in the results of RV-GOMEAC com-
pared to RV-GOMEAA.
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Figure 4: Medians and interdecile ranges of all GBO scalability experiments with each
data point being the median of 30 successful runs.

148 Evolutionary Computation Volume 29, Number 1

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/29/1/129/1888432/evco_a_00275.pdf by U
N

IVER
SITEIT LEID

EN
 user on 15 Septem

ber 2023



Achieving Scalable Evolutionary Real-Valued Optimization

Table 1: Statistical comparison of RV-GOMEAA and RV-GOMEAC for all single-
objective benchmark problems, for the highest dimensionality achieved by both al-
gorithms in Figure 4. A cell marked by a letter (A or C) indicates that this variant of
RV-GOMEA performed statistically significantly better (in terms of function evalua-
tions) than the other variant, for the given linkage model and benchmark problem. The
number of asterisks indicates the level of significance, with 0 to 3 asterisks indicating
p-values smaller than 10−2, 10−3, 10−4, and 10−5, respectively.

Sphere Rosenbrock Rastrigin Michalewicz SoREB Step

Uni A∗∗∗ C∗∗∗ A∗∗∗ C∗∗∗ C
BFLT A∗∗∗ C∗∗∗ C∗∗∗ C∗∗∗ C∗∗∗

B5 A∗∗∗

On the SoREB problem, the scalability of RV-GOMEAA and RV-GOMEAC is largely
the same when a 5B linkage model is used. RV-GOMEAC, however, scales better than
RV-GOMEAA when a BFLT model is used, due to the fact that CMA-ES inherently scales
better than AMaLGaM in case a full covariance matrix is used and the BFLT has linkage
sets up to 100 variables.

LM-CMA-ES was unsuccessful at consistently solving the Rastrigin and
Michalewicz problems for any dimensionality. Both of these problems are highly
multimodal. On all other problems, the scalability of LM-CMA-ES was substantially
worse than that of all GOMEA variants, showing the benefits of a GBO setting for
GOMEA.

L-BFGS unsurprisingly had the best performance on the sphere function, but failed
to solve the Rastrigin, Michalewicz and step functions for any number of dimensions.
On the Rosenbrock problem, L-BFGS was very efficient, but suffered from errors in nu-
merical precision for high-dimensional problems. The performance of L-BFGS on the
SoREB problem was very similar to RV-GOMEA variants with a 5B FOS in terms in
time. Note that a Python implementation of L-BFGS is used, whereas the competing al-
gorithms are implemented in C, affecting computation time results in an absolute sense,
but not in terms of scalability. A more efficient implementation of L-BFGS may there-
fore be expected to achieve better computation times than RV-GOMEA on the SoREB,
genMED, and possibly ZDT1 problems.

On the set of MO benchmark problems, MO-RV-GOMEAC achieves the best
performance on the genMED, ZDT1, and ZDT3 problems. MO-RV-GOMEAC and
MO-RV-GOMEAA generally achieve the same scalability when the same linkage
model is used. MO-RV-GOMEAA achieves slightly better performance than MO-
RV-GOMEAC on the MOSoREB problem, but both achieve the same scalability. Though
the ZDT1 and ZDT3 problems are non-separable (Li et al., 2016), the performance of
different linkage models is very similar for these problems.

L-BFGS performs very well on the easy genMED problem, but is outperformed by
GOMEA on the ZDT1 and ZDT3 problems. L-BFGS was unable to reach the VTR on
the ZDT3 and MOSoREB problems for any tested problem dimensionality. These re-
sults show that EAs are generally better at optimizing MO problems than repeated SO
approaches.

In Tables 1 and 2 we show a statistical comparison of results shown in Figure 4.
In particular, we compare the RV-GOMEAA and RV-GOMEAC variants of RV-GOMEA
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Table 2: Statistical comparison of RV-GOMEAA and RV-GOMEAC for all multiobjective
benchmark problems, for the highest dimensionality achieved by both algorithms in
Figure 4. A cell marked by a letter (A or C) indicates that this variant of RV-GOMEA
performed statistically significantly better (in terms of function evaluations) than the
other variant, for the given linkage model and benchmark problem. The number of as-
terisks indicates the level of significance, with 0 to 3 asterisks indicating p-values smaller
than 10−2, 10−3, 10−4, and 10−5, respectively.

genMED ZDT1 ZDT3 MOSoREB

Uni A∗∗∗ C∗∗∗ C∗ C∗∗∗

BFLT A∗∗∗ C∗∗∗ C∗∗∗

B5 C∗∗∗

given identical linkage models. We restrict the analysis to these comparisons, because
comparisons to L-BFGS and LM-CMA-ES are generally directly clear from Figure 4. For
each linkage model and each benchmark problem, a t-test is performed to compare the
number of evaluations of the two variants of RV-GOMEA for the highest dimensionality
reached by both algorithms. Though the absolute differences in the number of evalua-
tions are generally small between the two variants, as shown in Figure 4, RV-GOMEAC is
statistically significantly better (p < 0.01) than RV-GOMEAA in 13 of 22 cases. In 6 of 22
cases RV-GOMEAA is statistically significantly better (p < 0.01) than RV-GOMEAC.

10 Discussion

First and foremost, we have shown that the exploitation of partial evaluations in a GBO
setting can substantially improve the performance and scalability of EAs compared
with a BBO setting. For this reason, exploiting what a GBO setting has to offer should
be strongly considered if possible when optimizing a real-world problem, as substan-
tial gains in performance can be achieved if the problem supports partial evaluations.
Such partial evaluations are certainly not restricted to trivial problems, as they have
previously been applied to real-world problems that are multiobjective, non-separable,
and multimodal (Luong, Alderliesten et al., 2018; Bouter, Alderliesten, and Bosman,
2017). For such difficult problems, gradient-based optimizers are likely to converge to
a local optimum. In contrast, EAs are considered state-of-the-art for such optimization
problems.

In particular, we have introduced two variants of the real-valued version of
GOMEA, based on previous work (Bouter, Alderliesten, Witteveen et al., 2017; Bouter,
Luong et al., 2017), which is designed to exploit partial evaluations in a GBO setting.
To the best of our knowledge, RV-GOMEA is the only real-valued EA capable of ex-
ploiting partial evaluations in a GBO setting. Different real-valued EAs are not directly
suitable to get the most out of a GBO setting. For example, variants of CMA-ES can use
a restricted covariance matrix to account for available problem information. Using the
optimal restriction of the covariance matrix however still leads to worse performance
than RV-GOMEA in a GBO setting (Bouter, Alderliesten, Witteveen et al., 2017).

Based on the results of comparisons between (MO-)RV-GOMEAA and (MO-)
RV-GOMEAC, we conclude that both algorithms are valid and attractive alternatives
to employ for optimization in a GBO setting. Our results show that the core principles
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of GOMEA have been successfully applied to CMA-ES, as we were able to achieve re-
sults similar, and in some cases superior, to the results of (MO-)RV-GOMEAA that were
previously shown to be excellent compared to the state-of-the-art (Bouter, Alderliesten,
Witteveen et al., 2017; Bouter, Luong et al., 2017).

Future work includes research into automatically determining the best linkage
structure for GBO problems. Though this may be trivial for problems such as SoREB,
it may be difficult for others. For instance, we found that a univariate linkage structure
achieved the best performance on the non-separable Rosenbrock problem. It is further
not immediately clear what the best linkage structure would be, for example, when
all pairs of variables have some degree of dependence, but some relations are clearly
stronger than others. Various techniques could be considered to learn problem struc-
ture, such as techniques used in cooperative coevolution (Potter and Jong, 2000). Such
techniques analyze interactions between problem variables to decompose the optimiza-
tion problem, for example using adaptive weighting (Yang et al., 2008), delta grouping
(Omidvar et al., 2010), or differential grouping (Omidvar et al., 2014).

Further future work consists of trying to improve the performance of RV-GOMEAin
a BBO setting. This could require fundamental changes to GOM, because GOM requires
evaluations to be done after only a small number of variables have been modified. For
this reason, GOM is very efficient in a GBO setting, but not as efficient in a BBO setting.
Potentially, combinations with surrogate models that are efficient to evaluate could have
an impact here.

11 Conclusions

Effectively exploiting linkage information can lead to substantial improvements in the
performance of EAs, including for problems with real-valued variables. In this article,
we showed that exploiting such information in a GBO setting, specifically one that al-
lows for partial evaluations, can lead to substantial improvements in performance and
scalability.

We described combinations of the state-of-the-art real-valued EAs AMaLGaM
and CMA-ES (Hansen and Ostermeier, 2001), with GOMEA, a state-of-the-art EA
framework designed around effectively mixing partial solutions. The new GOMEA
variants, referred to as RV-GOMEA, were also extended to be suitable for multi-
objective optimization. Scalability analyses were performed on a set of well-known
benchmark problems.

The performance of RV-GOMEA was compared to that of LM-CMA-ES, a state-of-
the-art EA for large-scale BBO, and L-BFGS, a well-known gradient-based optimization
method. This showed that using RV-GOMEA in a GBO setting leads to substantially bet-
ter performance than the state-of-the-art EAs in BBO and the ability to scalably solve a
much richer class of optimization problems than L-BFGS, while achieving similar, or for
MO, even better scalability in a GBO setting. Therefore, RV-GOMEA can be considered
a valuable addition to the field of EAs, in particular for the purpose of solving complex
(large-scale) optimization problems when facing a GBO scenario that permits efficient
partial evaluations.
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