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Abstract
Purpose.Recently, we introduced a bi-objective optimization approach based on dose-volume indices
to automatically create clinically goodHDRprostate brachytherapy plans. To calculate dose-volume
indices, a reconstruction algorithm is used to determine the 3Dorgan shape from2D contours,
inevitably containing settings that influence the result.We augment the optimization approach to
quicklyfind plans that are robust to differences in 3D reconstruction.Methods. Studied reconstruction
settings were: interpolation between delineated organ contours, overlap between contours, and organ
shape at the top and bottom contour. Two options for each setting yields 8 possible 3D organ
reconstructions per patient, over which the robustmodel definesminimax optimization. For the
originalmodel, settings were based on our treatment planning system. Bothmodels were tested on
data of 26 patients and compared by re-evaluating selected optimized plans both in the originalmodel
(1 organ reconstruction, the difference determines the cost), and in the robustmodel (8 organ
reconstructions, the difference determines the benefit).Results. Robust optimization increased the
run time from3 to 6min. Themedian cost for robust optimization as observed in the originalmodel
was−0.25% in the dose-volume indices with a range of [−0.01%,−1.03%]. Themedian benefit of
robust optimization as observed in the robustmodel was 0.93%with a range of [0.19%, 4.16%]. For 4
patients, selected plans that appeared goodwhen optimized in the originalmodel, violated the clinical
protocol withmore than 1%when considering different settings. This was not the case for robustly
optimized plans.Conclusions. Plans of high quality, irrespective of 3Dorgan reconstruction settings,
can be obtained using our robust optimization approach.With its limited effect on total runtime, our
approach therefore offers away to account for dosimetry uncertainties that result from choices in
organ reconstruction settings that is viable in clinical practice.

1. Introduction

In current clinical practice in high-dose-rate (HDR) prostate brachytherapy the dwell times are optimized in a
treatment planning system. Two commonly used optimization algorithms are inverse planning simulated
annealing (IPSA) (Lessard and Pouliot 2001) and hybrid inverse planning optimization (HIPO) (Karabis et al
2009). In order to performoptimization, the clinical requirements for determining the quality of a treatment
plan have to be given as input. These requirements are among others often defined in terms of dose-volume
indices. In both IPSA andHIPO these dose-volume indices are used indirectly to optimize the dwell times of a
treatment plan.
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In the past years,multiple approaches have been proposed for optimizing directly on dose-volume indices
(Siauw et al 2011,Deist andGorissen 2016, Bouter et al 2019). One of these approaches, explored in our group,
uses themulti-objective real-valued gene-pool optimalmixing evolutionary algorithm (MO-RV-GOMEA)
(Bouter et al 2019). In this approach, the clinical requirements are combined into two optimization objectives,
one for covering the targets and one for sparing the organs at risk (OARs). By optimizing directly on dose-
volume indices, it was shown that withMO-RV-GOMEAbetter trade-offs between target coverage and organ
sparing could be obtained thanwith IPSA andHIPO, both in a clinical-practice situation aswell as in a direct
comparison between the optimization algorithms (Maree et al 2019, 2020). As ofMarch 2020, the bi-objective
dwell time optimization has been introduced clinically at our hospital.

While the dose-volume indices of a treatment plan are uniquely defined, computation of the values for these
indices in practice, is not. A key reason is that dose-volume indices are computed from3Dorgan volumes.
However, clinical delineations usually comprise 2D organ contours onmedical scans. The 3Dorgan shapes are
then reconstructed from these 2D contours. Such a reconstruction is however not uniquely defined.
Reconstruction algorithms can be configured in variousways, depending on a particular implementation in a
treatment planning system. The resulting dose-volume indices of a treatment plan therefore depend on the
treatment planning system inwhich they are evaluated (Kirisits et al 2007, van derMeer et al 2019).

It has been shown that several key choices (settings) in the reconstruction algorithm can have a large
influence on the calculated values for the dose-volume indices (van derMeer et al 2019). Therefore, optimizing
directly on these indices likely results in treatment plans being overfit to the particular settings of the treatment
planning system that is used. If in reality another setting resulted in shapes closer to the true shapes of the
volumes of interest, then the true plan qualitymay be different fromwhat is shown in the system inwhich the
planwas optimized. In general, the settings of the organ reconstruction algorithm leading to shapes closest to the
real organ shapes are unknown andmay differ per patient.

An approach to deal with these uncertainties is to take them into account in the optimization problem.
Robust optimization has previously already been applied in radiotherapy bymeans of stochastic programming
andminimax optimization (e.g. in the context of proton planning (Fredriksson andBokrantz 2014) and
intensity-modulated radiation therapy (Unkelbach et al 2018)). Stochastic programming requires knowledge on
the probability distribution(s) of the uncertain parameter(s), which is often unavailable. In contrast,minimax
optimization only requires a set of optimization scenarios, and is thereforemore flexible. In the context ofHDR
prostate brachytherapy,minimax optimization has previously been applied to delineation uncertainties (Balvert
et al 2019).

In this work, wewill applyminimax optimization over different (key) organ reconstruction settings,
meaning that during optimization the quality of a plan is determined not for a single, but formultiple organ
reconstruction settings. This way, treatment plans can be obtainedwith good quality for all settings, or at least,
the potentially large negative effect of overfitting to one particular settingwill beminimized. In this work, we
extendMO-RV-GOMEA in an efficient way to perform such a robust optimization, and compare this extension
to the original optimization. Beyond this novel extension itself, the aim is to study the added value of such robust
dwell time optimization.

2.Materials andmethods

2.1. Patient data
Patient data (from a previous study (van derMeer et al 2019))was used retrospectively. The patient data
consisted of 26 consecutive patients who underwent prostateHDRbrachytherapy between February 2015 and
April 2017.Magnetic resonance imaging (MRI) scanswere acquiredwith a resolution in the axial planes of
0.52×0.52mmand a slice thickness of 3.3mm (including a 0.3mmgap). Amedian number of 16 catheters
were placed (range 14–20). Delineation of catheters and organs (prostate, bladder, rectum, urethra, base of
seminal vesicles)was performedmanually on nearly all of the axial slices, using the delineations suggested by the
interpolation algorithmof the clinical treatment planning system (Oncentra Brachy, version 4.5, Elekta,
Sweden) on the other axial slices.

A treatment planwas createdwith either IPSA (for 5 patients treated beforemid-2015) orHIPO (aftermid-
2015). ThemHDR-v2 source description of the 192-Iridium sourcewas used in clinical treatment planning.
Manualfine-tuningwas then performed using graphical optimization. Themedian number of activated dwell
positionswas 454.5with a range of 250–668.

For 6 patients (patients 3 and 14–18), a second set ofmanual delineations was available, created
retrospectively by an independent observer and corrected and approved by an experienced radiation oncologist
(to examine the inter-observer variability).
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2.2.Organ reconstruction settings
Software for computing the dose-volume indices of a patient was previously in-house developed and validated
(van derMeer et al 2019). The input of our in-house developed software was the treatment date, delineated
contours, catheter information, and source information, all retrieved from theDICOMdata. In this work, we
study three different organ reconstruction algorithm settings (van derMeer et al 2019), as illustrated infigure 1.
Different treatment planning systemsmake different choices for these settings. For each of the settings, there are
two options:

1. Delineated contours fill the volume spanned by their axial slice to reconstruct the 3D organ volume, or
interpolation is used to add contours in between slices. In previous work, one interpolated contourwas
added half-way between each consecutive pair of delineated contours (van derMeer et al 2019). In a later
study, three interpolated contours were added between consecutive pairs of contours (Bouter et al 2019), so
this approach is followed.

2. The urethra is either considered to be part of the organs it intersects, or not. For our patient data, the urethra
was delineated as the part of the urinary catheter through the prostate into the bladder, since part of the
urethra itself is often notwell visible on theMRI. Therefore, intersections exist between the prostate and the
urethra, as well as between the bladder and the urethra.

3. Top/bottom (superior/inferior) contours fill the volume spanned only by the half-slice-thickness towards
the other contours, or the full-slice thickness.

In our clinical treatment planning system, interpolation is applied between slices (1), the urethra is
considered as part of the prostate (2), and top/bottom contours are extendedwith a half-slice-thickness (3). It is
possible for differently reconstructed shapes of two organs to slightly overlapwith each other.

2.3.Original optimizationmodel
In the previous works regarding optimizationwithMO-RV-GOMEA (Luong et al 2018, Bouter et al 2019,Maree
et al 2019,Maree et al 2020), the optimizationmodel was based on the clinical protocol used at our clinic at the
time. Before undergoing brachytherapywith the planning-aim dose of 13Gy (1 fraction), patients had received
20 external beam radiation therapy fractions of 2.20Gy. The following notation is used:

V :x
o
% the volume of organ o that receives at least x% of the planning-aim dose.

D :x
o
cm3 the lowest dose to themost irradiated x cm3 of organ o.

The constraints on the EQD2 of the combined treatment, calculated for an a b/ -ratio of 3Gy and a half-
time repair of 1.5 h, were <D 78 Gy,1 cm

bladder
3 <D 70 Gy,2 cm

bladder
3 <D 73 Gy,1 cm

rectum
3 <D 70 Gy,2 cm

rectum
3 and

<D 95 Gy.0.1 cm
urethra

3 Based on these constraints, the corresponding planning-aims for brachytherapy are shown in
table 1.

There is an inherent trade-off between the planning aims of the targets (i.e. the prostate and the seminal
vesicles should receive enough dose) and those of theOARs (i.e. the bladder, the rectum, and the urethra should
not receive toomuch dose). The dose-volume indices of the protocol were therefore combined into two
objectives: least coverage index (LCI) and least sparing index (LSI), and a hard optimization constraintC, as
follows.

Figure 1.An illustration of the three organ reconstruction settings studied. Examples of organ shapes for prostate (red), urethra
(green), and seminal vesicles (yellow) are shown. Setting 1 shows how interpolation between 2Ddelineated organ contours (left)
results in a 3Dorgan shape (right). Setting 2 shows howoverlap between contours can be ignored (left) or taken into account (right).
Setting 3 shows an exaggerated case of how the organ shape at the top and bottom contour can use partial slice thickness (left) or full
slice thickness (right).
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{ }= - -V VLCI min 95, 95100%
prostate

80%
vesicles

{ }= - - - - -D D D D DLSI min 86 , 74 , 78 , 74 , 1101 cm
bladder

2 cm
bladder

1 cm
rectum

2 cm
rectum

0.1 cm
urethra

3 3 3 3 3

{ }= - -C V Vmin 50 , 20 .150%
prostate

200%
prostate

Only planswith a positiveCwere considered feasible. For feasible plans, the clinical protocol was satisfied if the
LCI and LSIwere positive.

In order to performoptimization, first a number of dose-calculation points were uniformly randomly
sampled in each region of interest (ROI). These points were used to calculate a dose-ratematrix according to the
TG-43 formalism (Beaulieu et al 2012), describing the dose rate in awatermedium from each dwell position to
each dose-calculation point. The optimization could then be performedwith the evolutionary algorithmMO-
RV-GOMEA,which previously showed excellent results for the optimization of the bi-objectivemodel (Luong
et al 2018) and has recently beenGPU-accelerated, allowing dwell time optimization on 100 000 dose-
calculation points in 3 min (Bouter et al 2019).

In this bi-objective approach, optimization results in a set of plans, each of which has a different trade-off
between the LCI and the LSI. This set of plans is called the (approximation) front. The selection of a single
treatment plan from this front is left to the physician and can be based on additional information such as tumor
characteristics, co-morbidity, and previous treatments.

In the original optimizationmodel, the organ reconstruction settings were based on the standard of our
treatment planning system. Ifmultiple sets ofmanual delineations were available, then the setmade at the time
of clinical treatment planningwas used.

2.4. Robust optimizationmodel
The goal of robust optimization is to take into accountmultiple organ reconstructions per patient. Let N be the
number of organ reconstructions, then there are N combinations of ( )CLCI, LSI, values per plan.We defined
the robust optimizationmodel as

{ } { } { }= = =
= ¼ = = ¼

C CLCI min LCI , LSI min LSI , min .
i N

i
i N

i
i N

i
1, , 1,.., 1, ,

A straightforward implementationwould be to generate N dose-ratematrices, calculate the dose in all dose-
calculation points N times, and compute the LCI, LSI, andC a total of N times. This would lead to
approximately N timesmore computational effort, as calculating the dose in all dose-calculation points is the
most time-consuming component of the optimization approach. Therefore, to reduce computation time,
advantagewas taken of the large overlap between the different organ reconstructions. A single dose-ratematrix
was calculated, where for eachROI the dose-calculation points were sampled in the union of all organ
reconstructions. In addition, a reconstructionmatrix was created, which described for each dose-calculation
point towhich subset of the N organ reconstructions it belonged (i.e. for which organ reconstructions the point
was inside).When evaluating the quality of a treatment plan, the dose in all dose-calculation points was
calculated only once, instead of the previously described N times.

For volume indices, the number of dose-calculation points with a dose above a certain threshold inside that
volume has to be counted. Therefore, this countingwas performed N times, each time based only on the dose-
calculation points that belonged to that particular organ reconstruction. For dose indices, dose-calculation
points have to be sorted on dose value in descending order. This sortingwas performed only once, keeping track
of which dose-calculation points belonged towhich organ reconstructions. Next, for a given organ
reconstruction and dose index D ,v

o
cm3 we take thefirst n dose-calculation points in organ o that together

comprise an equivalent volume of v cm3, where the equivalent volume of a dose-calculation point that does not
belong to organ o in this reconstruction is zero. Then the value of Dv

o
cm3 is equal to the dose in the nth point.

We extended theGPU-acceleration of the original optimization implementation (Bouter et al 2019) to the
robust case inCUDA (NVIDIACorporation, Toolkit v8.0.61). In the parallelization, the dose in all dose-

Table 1.The dose-volume indices (planning-aims) and the clinical protocol forHDRprostate brachytherapy
used at our center. The unit of each dose-volume index is either percentage of total organ volume for volume
indicesV, or percentage of planning-aimdose (13Gy) for dose indicesD.

Targets OARs

Prostate Seminal vesicles Bladder Rectum Urethra

>V 95%100% >V 95%80% <D 86%1cm3 <D 78%1cm3 <D 110%0.1cm3

>D 100%90% <D 74%2cm3 <D 74%2cm3

<V 50%150%

<V 20%200%
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calculation points of all organ reconstructions ofmultiple treatment planswas calculated in parallel, exactly as in
the original optimization.Moreover, the evaluation of volume and dose indices was performed in parallel, in
particular the sorting and counting of dose-calculation points. Codewas added to keep track of which dose-
calculation points belonged towhich organ reconstruction during these operations. Optimizationwas
performed on anNVIDIATitanXp, which contained 12GBofmemory.

When applied to organ reconstruction settings, all combinations of the organ reconstruction settings were
taken into account, which yielded 8 possible 3D organ reconstructions per patient.

2.5. Experiments
In this section, a distinction ismade between themodel and the optimization. The originalmodel is the
evaluation of a treatment planwhich takes into account a single organ reconstruction per patient, the original
optimization is the application ofMO-RV-GOMEA to the originalmodel. The robustmodel is the evaluation of
a treatment planwhich takes into accountmultiple organ reconstructions per patient, the robust optimization is
the application ofMO-RV-GOMEA to the robustmodel.

Both the original optimization approach and the robust optimization approach over organ reconstruction
settingswere tested on the patient data. Optimizationwas performed on 100 000 dose-calculation points, and
final re-evaluationwas performed on 500 000 points to avoid overfitting and obtainmore accurate dose-volume
indices. The original optimizationwas run for 3 min. For robust optimization, performing afixed number of
treatment plan evaluations was approximately twice as slow as for the original optimization. A time limit of
6 minwas therefore used, as no substantial improvements were found for longer time limits. AsMO-RV-
GOMEA is a stochastic algorithm, each front that is shown represents the best solutions of 30 runs.

For each treatment plan in an optimization front, theminimumof LCI and LSI can be calculated. For
example, if theminimumof LCI and LSI of a treatment plan is 1%, then theV V,100%

prostate
80%
vesicles are both at least

1%higher than the planning aim in the clinical protocol, and the D D D D D, , , ,1 cm
bladder

2 cm
bladder

1 cm
rectum

2 cm
rectum

0.1 cm
urethra

3 3 3 3 3

are all at least 1% lower than the planning aim in the clinical protocol. For each optimization front, we select the
treatment plan forwhich theminimumof LCI and LSI is the highest, i.e. the treatment plan forwhich the dose-
volume indices are furthest from the planning aims in the clinical protocol (higher for volume indices and lower
for dose indices). Theminimumof LCI and LSI for this selected plan is called L. To compare the twomodels, all
fronts were re-evaluated in twoways. First, the fronts were re-evaluated in the originalmodel, taking into
account a single organ reconstruction per patient. Second, the fronts were re-evaluated in the robustmodel,
taking into accountmultiple organ reconstructions per patient. This way, the cost and benefit of robust
optimization can be calculated by comparing the value L from the original optimization frontwith the value L
from the robust optimization front.

First, we consider the value L as calculated in the original optimizationmodel (i.e. with a single organ
reconstruction setting). This value, calculated for the front resulting from the original optimization, can be
compared to the value calculated for the front resulting from the robust optimization. The cost of robust
optimizationwas defined as the difference in L between the robust optimization and the original optimization as
evaluated in the originalmodel (a negative number).

Second, we consider the value L as calculated in the robustmodel (i.e. where each dose-volume index is the
worst case over all 8 organ reconstruction settings). This value, calculated for the front resulting from the
original optimization, can be compared to the value calculated for the front resulting from the robust
optimization. The benefit of robust optimizationwas defined as the difference in L between the robust
optimization and the original optimization as evaluated in the robustmodel (a positive number).

Finally, to study theflexibility of the robust optimization approach, for the 6 patient cases with a second set
of delineations, the optimization software was also run overmultiple delineations instead ofmultiple organ
reconstructions settings. In both scenarios, the organ reconstruction settings were based on the standard of our
treatment planning system. Amore in-depth study of robust optimization over delineations has already been
performed in recent work (Balvert et al 2019).

3. Results

The resulting fronts for the organ reconstruction settings are shown infigure 2. For each patient, four fronts are
shown: the results of the original optimization re-evaluated in the originalmodel (original–original) and re-
evaluated in the robustmodel (original–robust), and the results of the robust optimization re-evaluated in the
originalmodel (robust–original) and re-evaluated in the robustmodel (robust–robust). Twomain groups of
cases can be distinguished from the results. For some patients, all four fronts are close to each other. This
indicates that the influence of the organ reconstruction settingswas small. For other patients, three fronts are
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close to each other, and the original–robust front is significantly lower. This indicates that the influence of the
organ reconstruction settingswas large, and the original optimizationwas sensitive to it.

The corresponding costs (i.e. the difference between robust–original and original–original) and benefits (i.e.
the difference between robust–robust and original–robust) of robust optimization are shown infigure 3. The
median cost for robust optimization as observed in the originalmodel was−0.25%with a range of [−0.01%,
−1.03%]. Themedian benefit of robust optimization as observed in the robustmodel was 0.93%with a range of
[0.19%, 4.16%]. For 4 patients (patient 3, 8, 12, and 15), selected plans that appeared to be goodwhen optimized
in the originalmodel, violated the clinical protocol withmore than 1%when considering different settings. This
was not the case for robustly optimized plans.

Figure 2.Original and (new) robust bi-objectiveHDRprostate brachytherapy planning results over organ reconstruction settings for
26 patient cases. All plans, optimized for either the original or robust bi-objectivemodel, are re-evaluated in the original and the
robust bi-objectivemodel. Plans in the so-calledGoldenCorner where the LCI and LSI are both larger than zero satisfy the clinical
protocol. The green squares show the clinically used treatment plan, evaluated in the original (light green) and the robustmodel (dark
green, connected by a line for improved visualization). For some patients (3, 12, and 20), the clinical planwas out of range of thefigure.

6

Phys.Med. Biol. 66 (2021) 055001 MCvan derMeer et al



The resulting fronts for themultiple organ delineations are shown infigure 4. They show that the technique
of robust optimization ismore generally applicable than only for the uncertainty of the organ reconstruction
settings, since it works for delineation uncertainties as well. The largest benefit of robust optimization is
observed for patient 17,mainly due to differences in the delineation of the base of the seminal vesicles.

4.Discussion

We studied robust dwell time optimization forHDRprostate brachytherapy overmultiple organ reconstruction
settings, including its costs and benefits. For 5 patients, the benefit was larger than 2%, ranging up to 4.2%
(whichwould be 0.5Gy for a dose index). Hence, for some patients, the clinical benefit will be large. For all
patients, the (absolute value of the) cost was atmost 1%.

Patients with a larger clinical benefit are those forwhom the dose-volume indices aremore sensitive to organ
reconstruction settings. The indications for a large sensitivity in the dose-volume indices to organ
reconstruction settings were studied in previous work (van derMeer et al 2019). In particular, a small volume of

Figure 3.The cost and benefit of robust optimization determined by comparing selected plans from the original and robust bi-
objectiveHDRprostate brachytherapy planning. The cost is defined as the difference between the twoplans, evaluated in the original
optimizationmodel. The benefit is defined as the difference between the two plans, evaluated in the robust optimizationmodel. For
patient 7, the cost is positive, which indicates that the selected plan from the original planningwas suboptimal (caused by the stochastic
nature of the optimization).

Figure 4.To study theflexibility of the robust optimization approach, for the 6 patient cases for which a second set of delineationswas
available, the optimization software was also run overmultiple delineations instead ofmultiple organ reconstruction settings. The
green squares show the clinically used treatment plan, evaluated in the original (light green) and the robustmodel (dark green). For
patient 3, the clinical planwas out of range of thefigure.

7

Phys.Med. Biol. 66 (2021) 055001 MCvan derMeer et al



the seminal vesicles in combinationwith a large surface of the top and/or bottom contour, as well as a high
amount of radiation at the bottom contour of the bladder, were shown to have a large influence.

For robust optimization on 100 000 dose-calculation points on 8 organ reconstruction settings, the required
run time increased from3 to 6 min. Although the run time increases, the impact on the total treatment time of a
patient isminor. If the number of settings further increases, then so does the run time, formultiple reasons.
First, the dose-volume indices of a treatment plan have to be calculated for each of the settings. On a single Titan
XpGPU, having already parallelized the calculations ofmultiple treatment plans and their dose-calculation
points, the run time increases approximately linearly with the number of settings. Second, the lower the amount
of overlap in the organ reconstructions based on different settings, themore dose-calculation pointsmight be
needed, further increasing the run time.

The benefit (and the cost) of robust optimization considering organ reconstructions depends on the
influence of the organ reconstruction settings on the dose-volume indices. The use of a smaller slice thickness,
combinedwith delineation ofmore contours, would lead to a smaller influence of the organ reconstructions
settings andwould therefore reduce the benefit (and the cost) of robust optimization.However, this would also
increase the time and effort required for themanual delineations.With respect to organ intersections, it would
be preferable to achieve a consensus within the brachytherapy community onwhether or not the urethra should
be included in the volume of the prostate, since this ismore a question of definition than reconstruction.

The approach of robust optimization ismore general than this optimizationmethod (MO-RV-GOMEA). It
has been shown to beflexible, working not only for organ reconstruction settings but also formultiple contour
delineations. Itmay be evenmore beneficial in combinationwith the recent advancements in automatic organ
segmentation algorithms. Extensions to changes in organ positions and/or shape (for example due to swelling)
would be interesting aswell, but would requiremore data on the scenarios to be considered.

5. Conclusions

Robust optimization generated plans of high quality, irrespective of organ reconstruction settings.With the
limited effect on total runtime that follows fromour approach, robust optimization therefore offers a practically
viable way to account for dosimetry uncertainties that result from choices in organ reconstruction settings.
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