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Abstract
While inner ear disorders are common, our ability to intervene and recover their sensory function is limited. In vitro models
of the inner ear, like the organoid system, could aid in identifying new regenerative drugs and gene therapies. Here, we
provide a perspective on the status of in vitro inner ear models and guidance on how to improve their applicability in
translational research. We highlight the generation of inner ear cell types from pluripotent stem cells as a particularly
promising focus of research. Several exciting recent studies have shown how the developmental signaling cues of embryonic
and fetal development can be mimicked to differentiate stem cells into “inner ear organoids” containing otic progenitor cells,
hair cells, and neurons. However, current differentiation protocols and our knowledge of embryonic and fetal inner ear
development in general, have a bias toward the sensory epithelia of the inner ear. We propose that a more holistic view is
needed to better model the inner ear in vitro. Moving forward, attention should be made to the broader diversity of neuroglial
and mesenchymal cell types of the inner ear, and how they interact in space or time during development. With improved
control of epithelial, neuroglial, and mesenchymal cell fate specification, inner ear organoids would have the ability to truly
recapitulate neurosensory function and dysfunction. We conclude by discussing how single-cell atlases of the developing
inner ear and technical innovations will be critical tools to advance inner ear organoid platforms for future pre-clinical
applications.

Introduction

Over 6% of people worldwide suffer from hearing loss [1]
and likewise 6% suffer from balance disorders [2]. Both
these sensory systems are located in the inner ear, which can
be affected by the aging process, genetic mutations, infec-
tious diseases, chronic infections, noise exposure, and oto-
toxic drugs [1, 2]. Despite the prevalence of inner ear
sensory dysfunction, which in the case of hearing loss is
irreversible, there are currently no approved medications
specifically targeting sensory recovery. Devices, such as
hearing aids or cochlear implants, are commonly used to
manage—not cure—moderate to severe hearing loss cases.
In the hunt for new therapies, in vitro human, three-
dimensional and multicellular systems mimicking the inner
ear, that is inner ear organoids, could be a useful tool to
accelerate therapeutic discovery. Such models could be
used to test virus-mediated gene therapies for congenital
hearing loss disorders [3, 4], and screen for compounds to
regenerate sensory cells following ototoxic degeneration
[5]. Additionally, human organoid models will provide
insight into unique human aspects of inner ear development
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and pathologies, which are impossible to gain from animal
studies. Despite several recent breakthroughs, application of
cellular models of the inner ear have been slow to gain
momentum for disease models and as drug discovery plat-
forms. In this perspective article we will briefly discuss
progress toward in vitro inner ear modeling approaches,
which has been thoroughly covered in recent reviews
[3, 6–11]. Then, we will focus on diagnosing key barriers to
progress and discuss advances from other fields that shed
light on how more complete, scalable, and reproducible
inner ear organoid models can be built.

The challenge of modeling inner ear
development in vitro

Different approaches of modeling the human inner ear
in vitro have been demonstrated using human pluripotent
stem cells (hPSCs) [12–24], adult tissue resident stem cells
[25], or fetal progenitor stem cells [26, 27]. Unlike some
other organ systems (e.g., the intestines), the routine use of
patient-derived tissue for research is not scalable, because
the inner ear is difficult to biopsy and refractory to long-
term culture [28, 29]. Furthermore, the use of fetal tissue is
tightly regulated in some countries and the unpredictability
of specimen collection complicates downstream analysis
[27]. In contrast, hPSCs are potentially an endless source of
cellular tissue for experimentation and can be genetically
manipulated (e.g., introduction of pathologic genetic
mutations, or the generation of reporter cell lines). There are
two types of hPSCs: embryonic stem cells (ESCs) derived
from pre-implantation embryos and induced pluripotent
stem cells (iPSCs) derived from reprogrammed adult cells.
hPSCs can be differentiated to otic progenitor cells and
more mature inner ear cell types by mimicking embryonic
and fetal development. These differentiation approaches
have been recently reviewed [7, 8, 10]. In the embryo, inner
ear development requires the assembly of diverse cell types
from multiple cell lineages: the epithelial, neuronal, and
glial cells of the inner ear are derived from the ectoderm
germ layer, whereas the specialized periotic mesenchyme
(POM) that surrounds the inner ear arises from the meso-
derm germ layer and cranial neural crest—a population of
cells that generate neurons, glia, melanocytes, and
mesenchyme in the head and neck [30]. A major long-term
bioengineering challenge is to incorporate all of these
multiple cell lineages into an inner ear organoid in vitro.

During early embryogenesis, pluripotent cells in the
epiblast generate the ectoderm germ layer, which splits into
the non-neural (also called surface) ectoderm and neu-
roectoderm. The otic placode arises at the border region
between the cranial non-neural ectoderm and neuroecto-
derm, known as the otic-epibranchial placode domain

(OEPD) [31, 32]. Several signaling pathways, including
fibroblast growth factors (FGFs), WNT, transforming
growth factor-beta (TGF), bone morphogenetic proteins
(BMPs), sonic hedgehog (SHH), and retinoic acid (RA), are
involved in this early otic cell fate specification. TGF, FGF,
and WNT signaling appear to be the most essential mor-
phogenic cues to form the OEPD in the embryo [33–35].
During otic placode formation, WNTs secreted from cranial
mesenchyme and neural tube activate NOTCH pathway
signaling in the surface ectoderm [36]. A negative feedback
loop in turn, downregulates FGF signaling to further specify
otic progenitors within the placode [37]. The otic placode
subsequently invaginates to form the otocyst (also known as
the otic vesicle), which gives rise to the majority of epi-
thelial cell types in the vestibular and cochlear compart-
ments of the inner ear. In addition to otic placode derived-
cells, lineage tracing experiments in chickens and mice have
shown that a limited number of neural crest cells contribute
to the otocyst epithelium; however, it remains unclear what
contribution these cells have to non-sensory and sensory
epithelia in the inner ear later in development [38, 39].
Based on these developmental biology studies, a consensus
model of otic induction from PSCs has emerged in recent
years (Fig. 1a). Induction of otic and other cranial placodes,
however, show limited efficiency in comparison to other
ectodermal lineages in two-dimensional monolayer cultures
[40–42]. In our previous study, we have shown that mul-
tiple otic placodes and otocyst-like structures can be gen-
erated in vitro from a three-dimensional (3D) hPSC
aggregate by modulating TGF, BMP, FGF, and WNT sig-
naling and extracellular matrix-related mechanical interac-
tions (Fig. 1a) [21]. The floating 3D culture appears to be
ideal for allowing differentiating ectoderm and otic lineage
cells to undergo the complex morphogenetic changes
required for placode generation. Interestingly, using a
modified version of our otocyst culture system, we recently
demonstrated the generation of hair-bearing skin organoids
—like the inner ear, hair follicle induction involves for-
mation of epithelial placodes [43]. Our understanding of the
biomechanics of epithelial placode induction is limited and
worthy of future exploration to gain insight into how to
improve in vitro placode induction approaches [44–46].

Upon embryonic otocyst formation, asymmetric gene
expression leads to dorsoventral and anteroposterior pat-
terning that sets up the coordinates for subsequent devel-
opment of the semicircular canals, endolymphatic sac,
vestibular organs, and cochlea [47]. Signals from sur-
rounding tissues—the notochord, neural tube, and cranial
mesenchyme—are crucial for setting up the axes of the
otocyst [48]. SHH secreted from the notochord and neural
tube floor plate has been shown to establish the ventral part
of the otocyst, giving rise to the cochlea, saccule and ves-
tibulocochlear ganglion [49–51]. The graded dorsoventral
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Fig. 1 Schematic overview of embryonic inner ear development
and inner ear cell types generated from hPSCs in vitro. a
Embryonic development of the inner ear (top) is mimicked in vitro to
generate IEOs from PSCs (bottom) [21]. Top: during gastrulation of
the blastula, neuroectoderm and non-neural ectoderm arises. Decreased
TFGß expression and increased BMP and FGF signaling stimulate
non-neural ectoderm formation. Within the non-neural ectoderm, the
OEPD is formed due to diminished BMP expression, in addition to
elevated FGF and WNT signaling levels. Continuing WNT activation
as well as decreased FGF signaling gives rise to the otic placode within
the OEPD. After invagination and formation of the otocyst, further
patterning occurs by a combination of FGF, RA, WNT, and SHH
signaling modulations, eventually giving rise to the inner ear. Bottom:
PSCs are differentiated in a similar way, in which TFGß inhibition,
together with FGF and BMP signaling activation, give rise to a non-
neural ectoderm on the surface of the hPSC aggregate. With BMP
inhibition and FGF signaling, the OEPD is formed in this surface
ectoderm. Subsequent stimulation of WNT signaling gives rise to the
otic placode within the OEPD. The placode invaginates to form

otocysts that subsequently mature to IEOs. Other types of tissue,
including cartilage and skin, are also induced within the aggregate.
CNCC: cranial neural crest cells. b Schematic of the vestibular and
cochlear cell types. Cell types described to be generated from hPSCs
are colored. Ampulla: cross-section of one of the three ampullae of the
semicircular canals as an example of the vestibular system. Vestibular
hair cells in purple [21, 22, 24], supporting cells in aqua [15, 21–24],
and neurons in red [12–14, 16, 19, 21–24] are described to be gen-
erated from hPSCs. The non-sensory cell types (in gray) are not
described. Cochlea: a cross-section of the basal turn of the cochlea
showing multiple cell types, with only neurons [12–14, 16, 19, 21–24],
outer hair cells [22] and outer sulcus cells [20] reportedly generated
from hPSCs. BLB: blood-labyrinth barrier, the barriers between the
vasculature and inner ear fluids are present in both the vestibular
system and cochlea, which have not been generated yet. Hair cells:
Both type I [22] and type II [21, 24] vestibular hair cells, as well as
outer cochlear hair cells are described [22]. Synaptic processes are also
depicted [12, 13, 19, 21, 22].
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SHH signaling is accomplished by a competing mechanism
between GLI activators and GLI repressors. SHH knockout
experiments have shown that attenuation of SHH within the
mouse otocyst has little effect on the development of dorsal
tissues, such as the semicircular canals, ampullae and utri-
cle, but in contrast has a detrimental effect on ventral
induction, highlighting the importance of SHH signaling for
cochlea formation [52]. Meanwhile, the WNT and BMP
signaling molecules have been shown to act as dorsalizing
cues in the mouse otocyst [53]. The neurosensory region of
the otocyst gives rise to delaminating neuroblasts and the
sensory epithelia. Formation of this region is mediated by
NOTCH and SOX2 activity downstream of WNT signaling
[54]. Division of the neurogenic and prosensory zones of
the otocyst is mediated by transcription regulators, such as
TBX1––a negative regulator of neurogenesis that acts
downstream of SHH, WNT, and RA signals [55]. Following
otocyst patterning, the anteroventral prosensory domain
begins to elongate to form the cochlear duct, and eventually
forms the basal portion of the organ of Corti in the cochlea.
During elongation and coiling of the cochlear duct, elabo-
rate signaling dynamics fine tune the cellular diversity of the
organ of Corti. The boundary between organ of Corti’s
Kölliker organ (neural) and outer sulcus is regulated by
levels of BMP4 expression; cells exposed to moderate
levels of BMP4 signaling will adopt a prosensory cell fate,
whereas under higher levels, cells will adopt a non-sensory
cell fate [56]. Extrinsic SHH signaling arises from the
cochleovestibular ganglion, and the inhibition of this signal
stimulates cochlear prosensory expansion [57]. In addition,
FGF signaling is essential to regulate the width of the
prosensory domain [58], and NOTCH plays a role in lateral
induction of cochlear sensory cells [59, 60]. A recent study
has also revealed a role for Hippo signaling in progenitor
cell renewal, thus controlling the size of the organ of Corti
[61]. Similarly, it has been shown that patterning of the
vestibular system occurs by coordinated interactions of the
NOTCH, WNT, BMP, FGF, and RA signaling pathways
[62–66]. Strikingly little is known about the signaling
mechanisms that underlie non-sensory epithelial specifica-
tion in the ear; however, retinoic acid seems to be involved
in the formation of non-sensory ionic regulatory epithelia in
both the cochlea and vestibular end organs [67, 68].

Thus, the inner ear is patterned through the integration of
a multitude of signaling pathways across space and time.
These signals arise from within epithelia and from sur-
rounding tissues, which enables the differentiation of otic
progenitor cells to subsequent cochlear and vestibular fates.
Our collective knowledge of these mechanisms has come
from animal models and few, if any, mechanistic studies
have been performed on human fetal inner ear tissues (see
Roccio et al. [27] for an exception). To some degree, spa-
tiotemporal signaling cues can be mimicked in hPSC three-

dimensional cultures using bath application of recombinant
proteins and small molecules, which can stimulate self-
assembly of inner ear epithelia and neuron complexes (as
demonstrated in Koehler et al. [21]); however, this approach
is difficult to control and the generated organoids take on
irregular shapes/sizes and contain an unpredictable mix of
sensory and non-sensory cells. In future studies, more
sophisticated 3D bioprinting and/or microfluidic-based
approaches may be necessary to establish spatially con-
trolled cellular structures that can be acted on by signaling
gradients—resulting in an inner ear organoid-on-chip.
Recent studies using microfluidic or microwell systems to
pattern hPSCs into multilineage embryo-like, renal, or
intestinal structures could be a guide toward improving
control and reproducibility of otic induction [69–72].

Constructing inner ear organoids: what cells
are missing?

The cellular composition of the inner ear is remarkably
diverse, containing over fifty distinct cellular subtypes,
including hair cells, supporting cells, non-sensory epithelial
cells, as well as unique neurons and mesenchymal popula-
tions [73, 74]. Current hPSC-derived models only appear to
contain a small subset of these cell types or, perhaps,
enclose greater cellular diversity that has not been suffi-
ciently characterized [12–24] (Fig. 1b). Due to their pre-
valence in human inner ear disorders, the main focus of
characterization has been on neurosensory cell types. For
instance, the hair cells generated from hPSCs to date are
predominantly vestibular in character [13, 15–17, 21–24].
In correspondence with the neurosensory bias in defining
these models, neurons [12–14, 16, 19, 21–24] and glial cells
are described [12, 19, 21], with some studies describing
synapse formation between the generated hair cells and
neurons [12, 13, 19, 21, 22]. However, a clear distinction
between vestibular and cochlear neurons has not been
made; thus, we do not yet have a complete picture of native
inner ear cell types that are recapitulated in inner ear
models.

We contend that fully defining the cell populations of
inner ear organoid models will be important for properly
mimicking human inner ear disorders in vitro. Although
a large subset of the >150 genes associated with hereditary
deafness impact the function of hair cells, many of these
genes are expressed in non-sensory or mesenchymal cell
populations [75]. Recent studies using mPSCs prove the
capability of studying hearing loss caused by dysfunction of
Gap Junction Protein Beta 2 (GJB2) [76], BarH Like
Homeobox 1 [77], and Transmembrane Protease Serine
3 (TMPRSS3) [78]. Moreover, hiPSCs have been used
to study MYO15A [79] and MYO7A [80], as well as
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SLC26A4 [20, 81]. These studies, however, focus on spe-
cific neurosensory-related cell types, including hair cells
[77, 79, 80], cochlear supporting cells [76], and cochlear
outer sulcus cells [20], rather than describing a functional
unit containing multiple inner ear cell types. Overall, the
neurosensory bias of the PSC-related literature makes it
unclear to what extent PSC-derived inner ear cells or
organoids reflect the true cellular diversity of the inner ear.
Thus, the potential disease modeling applications are lim-
ited. For instance, there are cochlear and vestibular diseases,
as well as certain ototoxic agents, that have their patholo-
gical impact—either directly or indirectly—on non-sensory
cells of the inner ear [4, 75, 82–85]. Therefore, it will be
essential to generate inner ear models that contain a diverse
functional unit of inner ear cell types to capture complex
genetic or drug-related mechanisms. In the following sec-
tions, we will provide more insight into the different cell
types forming the functional unit of the inner ear and give
directions for future organoid research.

Epithelia

A primary goal of inner ear organoid generation is the
production of hair cells. Although the majority of hair cells
are reported to be vestibular-like [21, 22, 24], one report
suggests the presence of cochlear-like outer hair cells based
on the expression of SLC26A5 [22]. Further investigation
into the specific subtype of these presumptive cochlear outer
hair cells must be established by functional analysis or
reviewing additional protein expression, bearing in mind the
temporal and spatial expression of certain hair cell markers
[86]. Additionally, hair cells do not function on their own;
normal hair cell function is dependent on the endolymphatic
electrical potential, which is maintained by the surrounding
ionic regulatory epithelia [87], a subset of non-sensory
epithelial cells. These epithelia include the stria vascularis
in the cochlea and the dark cell area in the vestibular organs,
which function together with surrounding epithelia and
POM in ion recycling and endolymph homeostasis [87].
Cell types within these ionic regulatory epithelia have dis-
tinct embryonic origins, which will complicate our ability to
model them in vitro. In the stria vascularis, marginal cells
arise from the otocyst, intermediate cells from the neural
crest, and basal cells from the POM [88–90]. Similarly, the
vestibular dark cells arise from the otocyst and associated
melanocytes from the neural crest [91]. Dysfunction of
these epithelia can lead to metabolic hearing loss and ves-
tibular dysfunction [92, 93]. The ionic regulatory cell types
have not been described yet in hPSC-derived inner ear
models. Our group recently showed that melanocytes arise
in a skin organoid model that shares many induction steps
and cellular components with the inner ear organoid model
[43]; thus, it may be possible to co-induce the otocyst-

derived and neural crest-derived components of ionic reg-
ulatory epithelia.

Cochlear outer sulcus-like cells, as part of the non-
sensory epithelia, could be derived from human iPSCs [20].
The sulcus-like cells were identified by their expression of
various markers, including the anion exchanger SLC26A4.
However, these markers are expressed in a variety of epi-
thelial cells throughout the inner ear, such as the endo-
lymphatic sac, the vestibular transitional cells, and outer-
sulcus cells [94]. Moreover, cell type-specific proteins
might be expressed by different cell types during fetal
development before becoming restricted to a specific cell
type at a later developmental stage [89, 91, 95]. In future
work, it will be beneficial to find markers that differentiate
between these cell populations before assigning a definitive
cochlear, vestibular, or endolymphatic identity. In general,
the field should make use of techniques, such as single-cell
RNA sequencing or mass cytometry, instead of relying on
single marker genes or proteins to define inner ear cell fates
that undergo dynamic spatiotemporal changes during
development.

Neurons and glia

The formation and maintenance of synapses between hair
cells and spiral ganglion neurons (the cochlear neurons)
plays an important role in functional development and is
linked with noise-induced hearing loss [96]. Recent studies
have demonstrated that inner ear spiral ganglion-like neu-
rons can be generated from hPSCs in 2D culture [19] as
well as the organoid model [21]. However, it remains
unclear how closely neurons in these systems mimic the
gene expression and functional signatures of bone fide
spiral ganglion neurons. The inner ear arises in a milieu rich
with sensory neurons (cranial nerves V, VII, VIII, IX, and
X) derived from placodes (the otic, epibranchial, and tri-
geminal placodes) and cranial neural crest cells; thus, it is
critical to distinguish between these other possible neuron
subtypes during the PSC derivation process. To date, a lack
of reference data and limited markers has made it difficult to
discern neurons of otic, epibranchial, and neural crest ori-
gin. Recent single-cell RNA-sequencing studies on various
head and neck peripheral neurons should be a valuable
resource to better define PSC-derived otic neurons relative
to other cranial neurons [97–99]. Beyond characterizing
molecular signatures, it will be important to elucidate the
function properties of organoid neurons. It is well known
that spontaneous activity occurs in the auditory and ves-
tibular organs during development [100]. Recently, inde-
pendent research groups linked spontaneous activity in hair
cells to cell fate specification in nascent spiral ganglion
neurons [101, 102]. It will be insightful to confirm that
spontaneous activity is present during organoid maturation
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and also to validate that organoid-derived neurons undergo
subtype specification in a similar manner to the native
inner ear.

Schwann cells are the myelinating cells of peripheral
nerves, including the VIII cranial nerve in the inner ear.
Unlike inner ear neurons, which arise from the otocyst,
Schwann cells arise from the cranial neural crest. Remark-
ably, the inner ear organoid model appears to co-produce
S100B+ Schwann cells that closely associate with sensory
neurons in the culture (Fig. 1a) [21]. The characterization of
Schwann cells in this model remains limited. For instance, it
is not known whether organoid Schwann cells actually
begin to express myelin basic protein (MBP) and myelinate
organoid neurons. It will be important to further elucidate
the identity and function of Schwann cells in the inner ear
organoid system.

Organoids could also be used to investigate neural
pathfinding and synapse formation of otic afferent neurons
with central nervous system targets. A co-culture system of
a developing inner ear organoid paired with developing
hindbrain tissue, would potentially mimic elements of the
otic ganglion-to-cochlear nucleus circuit [103]. The type of
complex interactions between the developing inner ear and
hindbrain could be captured in this system in a similar
manner to that performed with dorsal and ventral cerebral
organoids in recent studies [104]. A key barrier to building
an inner ear-hindbrain organoid system is our lack of
knowledge about the mechanisms needed for brainstem and,
specifically, cochlear nucleus induction from pluripotent
stem cells. Efforts toward single-cell mapping of neurons in
the brainstem nuclei over developmental time, like a recent
study on dorsal raphe neurons, will be critical for future
progress [105].

Periotic mesenchyme (POM)

In addition to the role of POM in endolymph ionic home-
ostasis, it plays an important role in otocyst patterning [48].
Shortly after invagination of the otic placode, at around
E9.5 in mice or fetal week 4–5 in humans, the POM begins
to form at the anteroventral pole of the otocyst [106]. The
POM is a specialized type of cranial paraxial mesoderm and
neural crest [30], which expresses specific transcription
factors, TBX1, TBX18, and POU3F4 [106–109]. Many of
these genes are associated with deafness and/or vestibular
dysfunction [67, 108, 110]. Over five different types of
fibrocytes with unique protein expression and spatial loca-
lization arise from the POM [92, 93]. The POM gives rise to
the cartilaginous and, later, bony otic capsule, as well as the
temporal bone. Clearly, the POM is a critical component of
normal inner ear morphogenesis. A detailed understanding
of what types of mesenchymal cells arise in inner ear
organoid cultures is lacking. Our published data suggest that

inner ear organoid epithelia co-develop with a neural crest-
derived mesenchyme that produces fibrocyte-like cells and
cartilage, similar to the POM [21] (Fig. 1a). However, it is
not known whether authentic POM—expressing the tran-
scription factors mentioned above—arise in these cultures
or whether the mesoderm-derived components of the POM
are present. It will be important to define the organoid
mesenchyme for future progress. Notably, the importance of
organ-specific mesenchyme for higher-order organoid
development and maturation has been highlighted in several
recent publications on kidney, gut, and skin organoids
[43, 111–113]. In particular, the organoid model could be
used to study how reciprocal interactions between POM and
epithelia impact specification and maturation of cochlear
versus vestibular cell fates and cell type specification.

Vasculature and immune cells

The inner ear has a unique relationship to the rest of the
body. In many ways it is isolated: largely immune privi-
leged and with a vascular barrier system called the blood-
labyrinth barrier (akin to the blood-brain barrier (BBB) in
the central nervous system) [114]. It is unclear what role the
vasculature plays in inner ear organogenesis; however,
blood flow through capillaries in the stria vascularis appears
to be integral to maintenance of the endocochlear potential
[115]. An often-cited weakness of organoid models is the
lack of vasculature; however, recent work has led to blood
vessel organoids and incorporation of a BBB in cerebral
organoids [116–118]. Likewise, these novel platforms could
be leveraged to infuse inner ear organoids with endothelial
cells and pericytes to investigate the role of vasculature in
inner ear organ maturation. Incorporation of vasculature
seems to enhance maturation of intestinal and kidney
organoid systems [119–121]. Homan et al. shows that the
introduction of endothelial cells and media flow actually
enhances maturation in kidney organoids compared to static
controls; however, the presence of vasculature alone was
not enough to achieve maturation [119]. Additionally,
Palikuqi et al. recently described an organoid-compatible
system with perfusable vessels [121]. Such a system could
be adapted to create, for instance, a stria vascularis-on-chip
system. Introduction of endothelial cells and pericytes will
alter cell–cell and cell–matrix interactions, and the addi-
tional supply of nutrients to areas deprived of physiological
levels (due to the growth and large size of organoids), might
beneficially affect maturation in an inner ear organoid
system.

Most recently, it has been shown that forms of genetic
hearing loss are linked to autoinflammation in the inner ear
[122]. Like many other organoid models, the utility of
in vitro inner ear organoid systems may be expanded
by incorporating key immune cell populations, perhaps
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generated from autologous iPSCs. A prime example of
immune cell incorporation into organoid models has been
the use of microglia in cerebral organoids [123, 124].
Microglia are the resident immune cells of the brain, and
recently, researchers have successfully derived microglial
cells by guiding hPSCs into the mesodermal lineage. In
parallel, brain organoids were induced and seeded with
microglia using a simple co-culture approach. The timing of
seeding was chosen to reflect the timing of microglial
migration to the brain during normal development. Simi-
larly, a parallel-induction and seeding approach of immune
cells could be employed to incorporate macrophages into
inner ear organoids and set the stage for inflammation stu-
dies [125].

Conclusions and future directions

As we have discussed, major breakthroughs have been
made in inner ear modeling using hPSCs, yet current
models are limited in their applications for translational
research. To induce greater cell diversity in inner ear
organoid models, it is essential to identify key regulatory
pathways that play a role in determination of vestibular
versus cochlear, epithelial versus mesenchymal, and sen-
sory versus non-sensory cell fate decisions. Manipulation of
these pathways should be systematically incorporated into
current differentiation protocols (Fig. 2). More fundamen-
tally, cell type specific markers that can distinguish between
vestibular versus cochlear cell populations at every stage of
development are lacking. In this regard, single-cell resolu-
tion atlases of the developing inner ear will be an important
tool to advance inner ear organoid platforms. Initial single-
cell mapping efforts have focused on maturation of the
cochlea, specifically, the organ of Corti epithelium

[73, 126–129]. To improve PSC-based otic induction stra-
tegies, however, it will be beneficial to have broader single-
cell reference atlases for the inner ear at various develop-
mental timepoints. For instance, researchers should perform
single-cell analysis on earlier stages of development (i.e.,
E8.5–E11.5) to encompass the critical period of otocyst
axial and sensory versus non-sensory patterning. In addi-
tion, single-cell atlases including both cochlear and vestib-
ular compartments of the inner ear would allow for
comparative analysis between the two organ systems.
Recent work on foregut differentiation has demonstrated
how single-cell RNA-sequencing data from critical periods
of development can be used to construct more refined cell
lineages and infer epithelial–mesenchymal cell interactions
[113]. A similar approach could be applied to better define
otic induction in the mouse embryo. Moreover, single-cell
genomics data from human fetuses—as have been gener-
ated recently for the human fetal liver, skin, and inner ear
[73, 130]––could be used to refine human otic induction
methods. Together with the introduction of technical inno-
vations, such as co-cultures and microfluidics, a more
complete, scalable, and reproducible inner ear organoid
model could be used to study inner ear dysfunction and
sensory recovery for tomorrow’s medicine.
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Fig. 2 A roadmap to improve current inner ear organoid models.
Firstly, there is a great need for basic knowledge on the patterning of
the otocyst to further control inner ear organoid (IEO) development.
The signaling molecules and pathways involved in the patterning
processes of vestibular versus cochlear (top), and cell type fate
determination (bottom), should be unraveled. These processes should

be mimicked in inner ear differentiation protocols to reach a functional
unit of cell types within the IEO. Secondly, to bridge the gap to
translational research, a more controlled environment with high-
throughput possibilities could be achieved by technical innovations,
like the incorporation of microfluidics in the system, resulting in an
inner ear organoid-on-chip.
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