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Abstract 

Introduction: Determining the optimal timing for extubation can be challenging in the intensive care. In this study, 
we aim to identify predictors for extubation failure in critically ill patients with COVID‑19.

Methods: We used highly granular data from 3464 adult critically ill COVID patients in the multicenter Dutch Data 
Warehouse, including demographics, clinical observations, medications, fluid balance, laboratory values, vital signs, 
and data from life support devices. All intubated patients with at least one extubation attempt were eligible for analy‑
sis. Transferred patients, patients admitted for less than 24 h, and patients still admitted at the time of data extraction 
were excluded. Potential predictors were selected by a team of intensive care physicians. The primary and secondary 
outcomes were extubation without reintubation or death within the next 7 days and within 48 h, respectively. We 
trained and validated multiple machine learning algorithms using fivefold nested cross‑validation. Predictor impor‑
tance was estimated using Shapley additive explanations, while cutoff values for the relative probability of failed 
extubation were estimated through partial dependence plots.

Results: A total of 883 patients were included in the model derivation. The reintubation rate was 13.4% within 48 h 
and 18.9% at day 7, with a mortality rate of 0.6% and 1.0% respectively. The grandient‑boost model performed best 
(area under the curve of 0.70) and was used to calculate predictor importance. Ventilatory characteristics and settings 
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Introduction
The decision to extubate a COVID-19 patient can be 
challenging and a delicate trade-off between early and 
postponed extubation. In non-COVID patients, extu-
bation failure occurs in 10–20% of intensive care cases 
and is associated with increased mortality [1]. While 
postponing extubation and waiting for further clinical 
improvement appears sensible, unnecessary extubation 
delays may lead to more ventilator-associated complica-
tions and inefficient use of scarce intensive care resources 
[2, 3].

An understanding of the risk factors for extubation fail-
ure will aid the clinician in determining the optimal time 
point for extubation. Previous studies in non-COVID-19 
patients have investigated numerous factors related to 
extubation outcome, including age, maximum inspira-
tory pressure, and the rapid shallow breathing index [4]. 
However, given the complex interplay of many patient 
and treatment related characteristics in extubation suc-
cess, a single parameter rarely provides sufficient accu-
racy to guide decision making [5]. Moreover, it remains 
largely unclear whether these parameters are similar for 
COVID-19 patients [6].

The collection of large intensive care datasets that span 
the entire intensive care admission paves the way for 
machine learning models to capture this complex inter-
play of predictors by using machine learning models. Pre-
vious non-COVID-19 machine learning work has aimed 
to predict simple and difficult weaning [7] and extubation 
failure [8–15]. However, data was frequently from over a 
decade ago, mechanical ventilator data was usually lack-
ing, and no data was included from COVID-19 patients. 
Taken together, we identify an opportunity for machine 
learning models to predict unsuccessful extubation in 
critically ill COVID-19 patients.

We created the Dutch Data Warehouse (DDW), a mul-
ticenter database with critically ill COVID-19 patients 
[16]. All structured electronic health record (EHR) data 
for these patients have been combined and cleaned for 
research purposes. These data therefore represent the 
structured EHR data readily available to the intensivist at 

the bedside. In this study, we aim to identify and validate 
the most important predictors for extubation failure in 
COVID-19 patients.

Methods
This study follows the transparent reporting of a multi-
variable prediction model for individual prognosis or 
diagnosis (TRIPOD) guidelines [17].

Data source
All data came from the DDW, a large, multicenter, full-
admission, electronic health record data warehouse with 
data from critically ill COVID-19 patients in the Nether-
lands [16]. The data warehouse currently contains 3464 
patients admitted between the beginning of the crisis in 
March 2020 and March 2021. Data spans both the first 
and second wave of ICU admissions from 25 hospitals 
in the Netherlands. The institutional review board of 
Amsterdam University Medical Center location VUmc 
waived the need for informed consent from individual 
patients and approved of an opt out procedure.

Patients
All critically ill patients extubated after more than 24  h 
of invasive mechanical ventilation were eligible for inclu-
sion. Transferred patients were included if the transfer 
destination data were available. We excluded patients 
transferred before extubation or within 1 day after extu-
bation in case the transfer destination data were not 
available. Patients transferred more than 24 h after extu-
bation were assumed to be fit for transport and classified 
as successful extubations. Patients still admitted at the 
time of data collection were excluded.

Outcomes
The primary outcome was unsuccessful separation from 
invasive mechanical ventilation defined according to 
the WIND criteria [18], which mandate an extubation 
without reintubation or death within the next 7  days, 
or discharge from the ICU without invasive mechanical 
ventilation within 7  days [18]. The use of non-invasive 

were the most important predictors. More specifically, a controlled mode duration longer than 4 days, a last fraction 
of inspired oxygen higher than 35%, a mean tidal volume per kg ideal body weight above 8 ml/kg in the day before 
extubation, and a shorter duration in assisted mode (< 2 days) compared to their median values. Additionally, a higher 
C‑reactive protein and leukocyte count, a lower thrombocyte count, a lower Glasgow coma scale and a lower body 
mass index compared to their medians were associated with extubation failure.

Conclusion: The most important predictors for extubation failure in critically ill COVID‑19 patients include ventilatory 
settings, inflammatory parameters, neurological status, and body mass index. These predictors should therefore be 
routinely captured in electronic health records.

Keywords: Extubation, Prediction, Risk factors, Extubation failure
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ventilation is disregarded in this definition. As second-
ary outcomes, we applied the same criteria to a 48 h’ time 
window after extubation. The definition of extubation in 
EHR data has been published previously and reasonably 
excludes palliative care patients [16]. We did not distin-
guish between accidental and elective extubations as the 
reason for extubation is not routinely recorded.

Predictors and scoping literature search
Potential predictors for modeling were selected by a team 
of intensivists. Notably, the list included medication and 
fluid balance. To facilitate the selection process, machine 
learning studies that predict extubation failure were 
identified in the literature. Each of the identified arti-
cles was scanned full-text and included predictors were 
extracted. The total list of studies can be found in Addi-
tional file 1: Table S1. In addition, to account for the wide 
variety of ventilator settings in the DDW, the parameters 
from the landmark paper by Amato et al. on the associa-
tion between ventilator parameters and outcome were 
included in the selection [19]. The mean or last value 
from the last 24 h before extubation as specified by the 
team of intensivists were included to facilitate interpre-
tation of the model. The total dose in the last 24  h was 
included for the medications. For any predictor pair with 
an interpredictor correlation higher than 0.5, the most 
clinically insightful predictor was selected. The full list of 
predictors can be found in Table 1.

Modeling
Across all 25 hospitals, a nested cross validation was per-
formed to assess model performance. First, the data was 
split into five equally large sets called outer folds. These 
outer folds were then each split into a train and test set. 
Each of the train sets was again divided into five subsets 
called the inner folds. A model was trained on these 5 
inner folds with a randomized hyperparameter search. 
Model performance after training on these inner folds 
was then tested on the corresponding outer fold test set. 
Importantly, observations belonging to the same patient 
were always kept in the same split to prevent leakage of 
information. The overall model performance was the 
average of all outer fold test set performances.

We trained a logistic regression model, decision trees, 
and an XGBoost algorithm. These models were selected 
for their ease of determining predictor importance. 
Model performance was gauged with the area under the 
receiver operating characteristic (AUROC), Brier score, 
average precision, and calibration loss. Data imputa-
tion, standardization and automated feature selection 
were carried out on each outer fold separately. Missing 
values were imputed with the median and predictors 
were standardized to have a mean of 0 and a standard 

Table 1 Included parameters

Overview of included parameters and their aggregation

FiO2: Fraction of inspired oxygen, PEEP: positive end expiratory pressure, P/F 
ratio:  PaO2/FiO2 ratio,  PCO2: partial pressure of carbon dioxide, RASS score: 
Richmond Agitation and Sedation Scale

Predictor Aggregation

Age

Apache‑II score Mean last 24 h

Body mass index (BMI)

C‑reactive protein Mean last 24 h

Creatinine Mean last 24 h

FiO2 Mean last 24 h, Last value

Fluid balance Sum

Glasgow coma scale Mean last 24 h

Glucose Mean last 24 h

Cardiac comorbidity

Diabetes comorbidity

Respiratory comorbidity

Renal comorbidity

Heart rate Mean last 24 h

Hematocrit Mean last 24 h

Gender

Duration of mechanical ventilation

Leukocyte count Mean last 24 h

Benzodiazepine dose Given in last 24 h

Clonidine dose Given in last 24 h, Total dose 
last 24 h

Dexmedetomidine dose Given in last 24 h, Total dose 
last 24 h

Fentanyl dose Given in last 24 h, Total dose 
last 24 h

Haloperidol dose Given in last 24 h, Total dose 
last 24 h

Midazolam dose Given in last 24 h, Total dose 
last 24 h

Propofol dose Given in last 24 h, Total dose 
last 24 h

Quetiapine dose Given in last 24 h, Total dose 
last 24 h

p0.1 Mean last 24 h, Last value

P/F ratio Mean last 24 h

PCO2 arterial Last value

PEEP Last value

pH Last value

Hours since last proning session

Pressure above PEEP Mean last 24 h, Last value

Respiratory rate Mean last 24 h

RASS score Mean last 24 h, Last value

Thrombocyte count Mean last 24 h

Tidal volume per kg ideal body weight Mean last 24 h, Last value

Duration of controlled mode

Hours since last controlled mode

Ventilatory ratio Mean last 24 h
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deviation of 1. Lasso regression was performed for auto-
matic feature selection, and the L1 regularization term 
was optimized together with the other hyperparameters 
[20].

Predictor importance was estimated with the Shap-
ley additive explanation (SHAP) framework. SHAP val-
ues represent a predictor’s marginal contribution to the 
overall prediction [21] and are state of the art in machine 
learning explainability. Moreover, Partial Dependence 
Plots (PDPs) were created to visualize the average change 
in probability of successful extubation for all values of 
a predictor while keeping all other predictors constant 
[22]. Standard deviations represent the distribution of the 
data. All analyses were carried out in Python 3.8 (Python 
software foundation).

Results
Population and outcome
A total of 2.421 patients were mechanically ventilated 
during their ICU stay. In case of a patient transfer, data 
from the transferring and receiving hospital were merged 
when available. We excluded 517 transfers for which out-
come or admission data were lacking, 123 patients that 
were still intubated when data were extracted, and 139 
patients that were intubated less than 24 h. 568 patients 
died on the mechanical ventilator before their first extu-
bation attempt and 191 patients received a tracheostomy. 
As a result, a total of 883 patients were included in the 
modeling. The reintubation rate in this COVID-19 pop-
ulation was 18.9% within 7 days and 13.4% within 48 h. 
The mortality rate was 1.0% within 7 days and 0.6% in the 
first 48 h after extubation. Patient characteristics are out-
lined in Table 2.

Modeling
Model performance for the primary outcome is shown 
in Additional file 1: Table S2 for each of the models. The 
XGBoost algorithm yielded the highest performance with 
an AUROC of 0.70, outperforming logistic regression 
(AUROC 0.67) and a decision tree (AUROC 0.59). Model 
performance for the prediction of unsuccessful extuba-
tion 48 h after extubation is presented in Additional file 1: 
Table S2. All algorithms, XGBoost (AUROC 0.67), logis-
tic regression (0.66), and a decision tree (AUROC 0.54), 
performed worse compared to the primary outcome.

Predictor importance
Predictor importance was calculated with the XGBoost 
model since it yielded the highest performance. The 
SHAP values for the highest predictors are shown in 
Fig. 1. The most important predictive feature of extuba-
tion failure was the last  FiO2 value before extubation. The 
majority of important predictors can be grouped into 

ventilatory characteristics, inflammation markers, neuro-
logical status and body mass index.

Ventilatory characteristics
Ventilatory characteristics are shown in Table 2. A short 
time-period between the last controlled mode and 
extubation, and a longer duration in controlled mode 
throughout the course of mechanical ventilation were 
associated with unsuccessful extubation. The PD-plots 
depict the difference in predicted probability of extuba-
tion failure compared to the median value for all of the 
observed values. The PD-plot shows a time since the last 
controlled mode shorter than 2  days and a controlled 
mode duration longer than 4  days are associated with 
increased chances of unsuccessful extubation compared 
to the median value.

For the ventilator settings, a higher fraction of inspired 
oxygen and a higher average tidal volume in the last 24 h 
are predictive of extubation failure. The PD-plot in Fig. 2 
shows that an  FiO2 above 35% or a tidal volume per kg 
ideal body weight above 8  ml/kg compared to their 
median values increases the probability of unsuccessful 
extubation. The median PEEP was 8  cmH2O (IQR 5–8 
 cmH2O) before extubation, with a median pressure sup-
port of 6  cmH2O (IQR 5–9  cmH2O). No patients received 
PEEP levels below 5  cmH2O, while pressure above PEEP 
was below 5  cmH2O in 7.3% of patients.

Inflammation markers, neurological scores and body mass 
index
Both a higher CRP, an elevated leukocyte count and 
higher thrombocyte count in the 24  h preceding extu-
bation are predictors of an unsuccessful extubation 
attempt, while temperature was not in the top predict-
ing features. For neurological scores, on the other hand, 
low EMV scores predict unsuccessful extubation. Lastly, 
BMI showed an inverse relationship with extubation fail-
ure; patients with a higher BMI had a lower probability of 
extubation failure. An increase in the chances of unsuc-
cessful extubation is observed below 28 kg/m2 compared 
to the median in the PD-plot (shown in Additional file 1: 
Fig. S1).

Discussion
To the best of our knowledge, this is the first study that 
identifies predictors for extubation failure in critically ill 
COVID-19 patients from a large and multicenter cohort 
that contains a wide variety of routinely collected clini-
cal predictors. The most important predictors of extuba-
tion failure are ventilatory characteristics, inflammatory 
parameters, GCS score, and body mass index. These risk 
factors may aid intensive care professionals in selecting 
the optimal time point for extubation.
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This study is unique as it provides predictive modeling 
of extubation failure across twenty-five hospitals. All pre-
vious machine learning studies in non-COVID patients 
for predicting extubation failure have been single center 
[7–15]. Model performance was higher in these studies, 
presumably due to overfitting resulting from the sole use 
of local data. Algorithms may be biased towards local 
extubation practices and extubation readiness assess-
ments, making these models less generalizable to other 
clinical settings.

In our study, ventilatory characteristics, including ven-
tilator settings, are the most important risk factors for 

extubation failure. These factors are systematically and 
frequently recorded by the ventilators, and are poten-
tially modifiable. Two of the most important predictors 
associated with higher chances of failed extubation are 
the duration of the controlled and assisted ventilation 
modes prior to extubation. A longer time in a controlled 
mode was a stronger predictor than the total duration 
of mechanical ventilation. Moreover, a longer time in 
assisted mode was associated with improved chances 
of successful extubation. A possible explanation may be 
the reduced activity and consequent atrophy of the dia-
phragm or other skeletal muscles in controlled modes 

Table 2 Patient characteristics

Overview of patient characteristics, lab characteristics and ventilatory characteristics before extubation. All values are medians with an interquartile range, unless 
otherwise indicated

FiO2: Fraction of inspired oxygen, PEEP: positive end expiratory pressure, P/F ratio:  PaO2/FiO2 ratio, IBW: ideal body weight,  PO2: partial pressure of oxygen,  PCO2: 
partial pressure of carbon dioxide

Total patients
(N = 883)

Successful extubation
(N = 707)

Unsuccessful extubation
(N = 176)

Male 71.5% (N = 883) 70.4% (N = 707) 75.6% (N = 176)

Age, years 63 (55–70, N = 883) 63 (55–69, N = 707) 65 (57–72, N = 176)

Age, years

< 60 360 (40.8%) 301 (42.6%) 59 (33.5%)

60–70 314 (35.6%) 249 (35.2%) 65 (36.9%)

70–80 199 (22.5%) 150 (21.2%) 49 (27.8%)

> 80 10 (1.1%) 7 (1.0%) 3 (1.7%)

Body mass index, kg/m2 27.9 (25.1–31.6, N = 809) 28.4 (25.4–32.0, N = 642) 26.8 (24.2–30.1, N = 167)

Body mass index, kg/m2

< 25 200 (24.7%) 145 (22.6%) 55 (32.9%)

25–30 336 (41.5%) 267 (41.6%) 69 (41.3%)

30–35 174 (21.5%) 145 (22.6%) 29 (17.4%)

> 35 98 (12.1%) 84 (13.1%) 14 (8.4%)

Lab values (last 24 h before extubation)

C‑reactive protein, mg/L 57 (23–114, N = 731) 53 (21–108, N = 583) 72 (33–146, N = 148)

Creatinine, micromol/L 66 (52–96, N = 820) 65 (52–90, N = 657) 66 (53–108, N = 163)

Leukocyte count,  109/L 11.3 (8.8–14.2, N = 817) 11.2 (8.8–13.9, N = 653) 11.7 (8.9–15.5, N = 164)

Thrombocyte count,  109/L 350 (269–457, N = 824) 356 (269–462, N = 664) 340 (259–419, N = 160)

Respiratory characteristics (last measured)

Time since last controlled mode, hours 74 (35–130, N = 773) 77 (37–137, N = 603) 64 (27–115, N = 170)

FiO2, % 36 (30–41, N = 866) 35 (30–41, N = 691) 40 (33–45, N = 175)

Pressure above PEEP,  cmH2O 6 (5–9, N = 773) 6 (5–10, N = 617) 7 (5–8, N = 156)

PEEP,  cmH2O 8 (5–8, N = 867) 8 (6–9, N = 693) 7 (5–8, N = 174)

Respiratory rate, /min 22 (18–26, N = 883) 22 (18–26, N = 707) 23 (18–27, N = 176)

Tidal volume, ml/kg IBW 7.5 (6.4–9.0, N = 857) 7.5 (6.3–8.9, N = 682) 7.6 (6.6–9.1, N = 175)

Ventilatory ratio 1.8 (1.4–2.3, N = 722) 1.8 (1.4–2.3, N = 577) 1.9 (1.5–2.4, N = 145)

P/F ratio 206 (168–258, N = 861) 209 (171–262, N = 690) 192 (163–242, N = 171)

pO2 arterial, mmHg 74 (67–84, N = 792) 75 (68–85, N = 634) 72 (65–83, N = 158)

pCO2 arterial, mmHg 41 (37–46, N = 732) 41 (37–46, N = 579) 40 (36–46, N = 153)

Bicarbonate arterial, mmol/L 29 (26–31, N = 861) 29 (26–32, N = 688) 28 (25–31, N = 173)

Airway occlusion pressure (P0.1),  cmH2O 2.1 (1.3–3.8, N = 450) 2.1 (1.2–3.7, N = 356) 2.3 (1.4–4.0, N = 94)
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[23, 24]. Of note, none of the previous machine learning 
studies included the duration of controlled ventilation as 
a predictor. Our results show that the duration of venti-
lation modes should be recorded and taken into account 
when assessing extubation readiness.

For the ventilator settings, a higher  FiO2 before extu-
bation was associated with an increased risk of extu-
bation failure. A higher  FiO2 may indicate incomplete 
resolution of pulmonary pathology. Higher PEEP levels, 
on the other hand, were associated with better extu-
bation success. The interquartile ranges of PEEP are 
low, however, indicating low PEEP is common practice 

before an extubation attempt. In addition, we observed 
that higher mean tidal volumes corrected for the ideal 
body weight in the last day before extubation were an 
important predictor of extubation failure. Patients with 
high average tidal volumes may suffer from more lung 
injury that may increase the risk of unsuccessful extu-
bation [25]. While most of the ventilator settings are 
readily available, relevant respiratory system maneuvers 
such as spontaneous breathing trials, tracheobronchial 
suctioning and maximum inspiratory pressure that 
would ideally be included, were inconsistently recorded 
in the EHR systems and therefore not included in 
modelling. To evaluate their predicting importance in 

Fig. 1 SHAP values for most important predictors of extubation failure. Overview of SHAP values for the top 20 predictors of successful extubation 
(negative SHAP values) or unsuccessful extubation (positive SHAP values). Features are ordered according to importance. FiO2: fraction of inspired 
oxygen, IBW: ideal body weight, PEEP: positive end expiratory pressure, P/F ratio: PaO2/FiO2 ratio
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Fig. 2 Partial dependence plots. PD‑plot for the last FiO2 recording, mean glasgow coma score and tidal volume per kg ideal body weight in the 
last 24 h, and duration of the controlled mode
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extubation failure, data of these maneuvers need to be 
incorporated systematically in the EHR.

Other important predictors included signals of ongo-
ing or developing inflammation, poorer neurological sta-
tus, and body mass index. Inflammation parameters are 
routinely determined in most intensive care units when 
extubation decisions are made. Conversely, neurological 
scores can be ambivalently scored in the intensive care 
unit. The Glasgow Coma Scale was originally designed 
for brain damage patients [26], but is used for the gen-
eral intensive care patient. Unequivocal interpretation of 
sedated states, however, may hamper the use of this scale 
in the context of extubation readiness. Based on these 
results, we would recommend systematically recording 
and evaluating the predictive value of other scores like 
the Richmond agitation sedation scales.

Lastly, body mass index upon admission had an inverse 
relationship with extubation failure. Apart from one 
small study that found an association between BMI and 
post extubation stridor [27], no other studies were identi-
fied that found BMI to be an important predictor. As in 
any predictive study, the effect of BMI may be explained 
by an unmeasured predictor or a selection bias. That 
means, a low-BMI patient would have to be sicker to be 
admitted to the ICU. A negligible correlation was found 
between BMI and SOFA score, however, as an indicator 
of illness severity. Previous studies have also shown that 
BMI is uncorrelated with immunological responses or 
adverse outcomes [28]. Overall, once in the ICU, BMI is 
not related to higher chances of unsuccessful extubation 
and may not be a valid reason to postpone extubation.

Our study has several limitations. We aim to apply a 
holistic set of predictors across centers to assess extu-
bation readiness. In routine practice, however, indi-
vidualized treatment and diagnostic decisions result in 
variation of available parameters [29], and predictors 
may be unavailable in the 24  h prior to extubation. For 
example, it is not possible to conclude that cardiac mark-
ers like NT-pro-BNP or troponin do not aid in the pre-
diction of extubation failure, because these markers were 
not routinely determined. Along the same line, we had to 
merge groups of medications, because individual drugs 
may not be administered frequently enough to be use-
ful in the modeling. To truly exploit the predictive power 
of machine learning models, we should strive to system-
atically record the predictors of interest and determine 
which algorithms work in what clinical circumstances 
[30].

A further limitation is the missing outcome data 
because of patient transfers to centers not included in 
this project. The potential bias is considered small, as 
we connected all patients’ stays whenever available and 
transferred patients had similar baseline characteristics 

as the study population as a whole [31]. Lastly, the rela-
tionships identified in this study are associations and do 
not equal causation. As with any clinical observational 
dataset, we cannot observe counterfactual states; once 
a patient is extubated we irretrievably lose the outcome 
in case the patient would have been kept on mechanical 
ventilation. While many of the ventilatory settings are 
predictive of extubation failure, we would ultimately be 
interested in the effects of continuing mechanical venti-
lation for another day on extubation success. We believe 
that these results will provide a crucial step for other 
study designs to investigate the causal relation between 
modifiable predictors and successful extubation.

Conclusion
This is the first study to identify risk factors of extuba-
tion failure in a large multi-center cohort of critically 
ill COVID-19 patients. The large number of hospitals 
included limits the risk of overfitting due to specific local 
practices. From a large set of clinically important predic-
tors, ventilatory characteristics, inflammatory markers, 
neurological status and BMI were most important pre-
dictors for failed extubation. These predictors should be 
taken into account to determine extubation readiness.
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