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Chapter 5

Breast cancer is a very heterogeneous disease; distinct subtypes of breast
cancer are dependent on different oncogenic pathways and are likely to be
differentially regulated by the immune system. Chemotherapy denotes one
of the main treatments that breast cancer patients receive, but response
rates vary amongst patients. A better understanding of the adaptive and
innate immune system in breast cancer initiation, progression, metastasis
formation and chemotherapy response is essential for the development of
new therapeutic approaches to improve survival rates. For instance,
immunomodulatory agents targeting myeloid cells are currently being
assessed in clinical trials. To maximize the success of these compounds, it
is essential to understand the effects and mechanisms of these drugs. The
overall goal of the research described in this thesis is to better understand
the interaction between the immune system and breast cancer. | have
studied the roles of the adaptive immune system during breast cancer
tumorigenesis and chemotherapy response. In addition, | have studied the
consequences and underlying mechanisms of targeting macrophages via
CSF-1R blockade during breast cancer development and chemotherapy
treatment. We focused on the following main research questions by using
genetically engineered mouse models (GEMMs) for metastatic breast
cancer:

1. Does the adaptive immune system play a role during HER2-positive
breast cancer formation, progression and metastasis?

2. Is the adaptive immune system important for chemotherapy response of
breast cancer?

3. What is the impact, optimal combination partner and mechanism of anti-
CSF-1R antibody targeting during breast cancer development and
chemotherapy treatment?

Impact of the adaptive immune system on HER2-
positive breast cancer

A body of accumulating clinical data indicates that different molecular
subtypes of tumors are characterized by distinct immune landscapes '=.
Depending on the tumor type, stage and treatment, different types of
adaptive immune cells can play opposite functions, ranging from tumor-
promoting, tumor preventing to no role 8. In breast cancer, preclinical
studies with a variety of mouse models have demonstrated that certain
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tumor-associated adaptive immune cell subsets are important for metastasis
formation 8. For example, metastasis formation in the transgenic MMTV-
PyMT mouse model for spontaneous breast adenocarcinomas was shown
to be dependent on interleukin 4 (IL-4)-expressing CD4* T cells that
stimulated EGF production from tumor-associated macrophages (TAMs) °.
In Chapter 2 the causal link between the adaptive immune system in HER2-
positive breast cancer formation and metastatic spread was investigated.
Using a mouse model for spontaneous HER2-driven mammary
tumorigenesis i.e., MMTV-NeuT mice, our findings reveal that genetic
elimination of the complete adaptive immune system did not affect
premalignant progression, tumor latency, tumor growth, tumor multiplicity,
and de novo pulmonary metastasis formation. These findings indicate that
HER2+ breast tumors and metastasis formation in this preclinical model are
not suppressed by immunosurveillance mechanisms, nor promoted by the
adaptive immune system.

The data in Chapter 2 reveal that absence of the complete adaptive immune
system does not impact mammary tumorigenesis in MMTV-NeuT mice. An
important question that our work leaves open is whether individual
(sub)populations of adaptive immune cells play a role during cancer
formation and metastasis in MMTV-NeuT mice. By using Rag” deficient
mice, in which T and B cells are depleted from birth on, we cannot exclude
the existence of opposing roles of individual components of the adaptive
immune system in our model e.g., Tregs, CD8* T or yd T cells. For instance,
HER2-positive breast tumors are frequently infiltrated by Tregs 213,
Increased numbers of FOXP3* Tregs in tumors generally correlate with
worse patient outcomes 4% and Treg accumulation within sentinel lymph
nodes is a predictor of disease progression and metastatic spread in breast
cancer 6. Furthermore, a distinct group of T cell receptor-expressing innate
lymphoid cells, termed ILTC1, were found to have a critical role in cancer
immunosurveillance in MMTV-PyMT mice '. The generation of these
lymphocytes is dependent on the cytokine IL-15 '7. Interestingly, IL-15
deficiency in MMTV-NeuT mice has resulted in accelerated tumor growth
compared to wild-type (WT) MMTV-NeuT mice '8. Since all T cells require
RAG to develop, the MMTV-NeuT mice used in Chapter 2 also lacked the
ILTC1 cell population. Future experiments targeting one specific subset of T
cells such as Tregs or ILTC1 cells before and during tumor development will
help answer whether distinct adaptive immune cells are important in HER2-
positive breast cancer.
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It is surprising that we did not find a clear role for the adaptive immune
system while based on the immunosurveillance hypothesis '°, we would
have expected impact. In fact, preclinical and clinical data in HER2-positive
breast cancer have suggested that the endogenous adaptive immune cell
repertoire is not completely lacking tumor-specific immune cells and could
potentially be involved in immunosurveillance mechanisms. For example,
two studies found CD4* T cell responses directed against HER2 (neu or
ErbB2) in the MMTV-NeuT mouse model during the pre-malignant phase

2021 and HER2-specific CD4* and cD8 T cell responses have been

described in patients with HER2" breast cancer 2223. In addition, antibody-
mediated depletion of T cells in MMTV-NeuT mice resulted in a momentary
and minimal increase in tumor multiplicity 4. Although T cells and Neu-

specific T cells are present in MMTV-NeuT mice and HER2™" breast cancer
patients, it is very likely that immunosuppression is at play. With the
advancing stages of HER2-positive cancer, the infiltrating cell composition
is prone to changes like what has been seen in many cancers; the effector
cells become fewer and less activated, while the TME becomes dominated
by cells with regulatory and immunosuppressive activities 2526, The immune-
editing process in its most complete manifestation is composed of three
sequential phases of tumor “elimination,” “equilibrium,” and “escape” and is
illustrated by studies showing that carcinogen-induced sarcomas and
spontaneous epithelial carcinomas were more immunogenic when induced
in mice lacking lymphocytes as compared to immunocompetent mice '°.
Indeed, ex vivo expanded HER-2/neu-specific T cells failed to reject

transplanted Her2* tumor cells 27, but neu-specific antibody responses were

restored in these transplanted Her2* tumors with the depletion of MDSC’s
27, Besides MDSCs, regulatory T cells and regulatory dendritic cells have
been found to suppress anti-tumor T cell immune responses in MMTV-NeuT
mice 27-2°, Thus likely, tumor antigen-specific CD8* T cell responses are
induced but their activities are restrained from inducing effective cancer
immunosurveillance by their immunosuppressive environment.

The treatment with HER2-targeting therapeutic antibodies has significantly
improved the survival of patients with HER2-positive breast cancer 3°.
Similar results have been found in MMTV-NeuT mice 333, Importantly,
preclinical studies in transplantation models for Her2-positive breast cancer
showed that PD-1 and CTLA-4 inhibition improves HER2-targeted therapies
through activation of CD8* T cells 323, These data have provided a basis for

158



General discussion

the clinical use of immune checkpoint inhibitors for the treatment of HER2*

breast cancer patients and their combination with HER2-targeted treatments
30

In conclusion, we found that absence of the complete adaptive immune does
not impact mammary tumorigenesis in MMTV-NeuT mice. Further research
is needed to determine what the exact immunosuppressive networks are to
engage anti-tumor immunity. Moreover, increasing immunity towards HER2*
tumors with immunotherapy may overcome the unresponsiveness of the
adaptive immune system and result in effective tumor inhibition.

In contrast to our findings in Chapter 2, Tan and colleagues found that
metastatic spread of orthotopically transplanted mammary tumors derived
from the MMTV-NeuT transgenic mouse model was reduced in Rag7” and
CD4" recipient mice as compared to WT recipients . How can a promoting
effect versus no effect of the adaptive immune system on metastasis
formation be obtained from two independent studies that focus on the same

subtype of breast cancer j.e., Her2* -positive mammary tumors? There are
three fundamental differences between these two studies:

1. Tan et al. used transgenic mice expressing the WT Her2 receptor,
whereas in Chapter 2 transgenic mice expressing an activated form of
Her2 are used.

2. Tan et al. used mice on the FVB/N background, whereas in Chapter 2
studies are performed on the Balb/c background.

3. Tan et al. performed their studies in mice that were orthotopically
transplanted with freshly isolated tumor cells or cell lines from MMTV-
NeuT transgenic mice, whereas in Chapter 2 spontaneous mammary
tumorigenesis was studied in transgenic MMTV-NeuT mice.

Due to somatic mutations within the Her2 transgene, mammary tumors from
MMTV-NeuT transgenic mice expressing WT Her2 display activation of
intrinsic Her2 receptor tyrosine kinase activity 353, Therefore, both MMTV-
NeuT mammary tumor models express activated Her2, and it is thus unlikely
that the different results can be attributed to the activation status of the Her2
transgene.
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It is possible that the genetic variation between mouse inbred strains can
provide the basis for fundamentally different mechanisms underlying
metastasis formation. In the PyMT mouse model for breast carcinoma,
PyMT Rag1” mice had significantly reduced tumor latency compared with
PyMT WT mice in the C57BL/6 background, a result that was not seen when
using PyMT mice on the FVB/NJ background %. Certainly, evaluation of
metastasis formation in MMTV-NeuT transgenic mice on the FVB/N
background intercrossed with Rag7-- mice can help to resolve the impact of
the genetic background versus the impact of de novo tumorigenesis on the

influence of the adaptive immune system on metastatic HER2" breast
cancer. However, it is also conceivable that the different outcome between
both studies can be explained by the use of transplanted HER2-positive
mammary tumors in the Tan et al. study, versus spontaneous HER2-positive
mammary tumors in Chapter 2. Transplantation models, based on
engraftment of cultured cells or freshly isolated single-cell suspension
models, as used in the Tan et al study, derived from end-stage tumors have
shown to not fully recapitulate de novo tumor formation with co-evolving
tumor-host interactions and an immunosuppressive microenvironment 3.
Other disadvantages are derangement of the normal tumor architecture,
compared to spontaneous tumors, and cancer cell lines are generally poor
predictors of clinical response %°. In addition, mammary epithelial cells in the
MMTV-NeuT mouse model disseminate already during the premalignant
phase and this early dissemination is not recapitulated in tumor
transplantation models as the premalignant phase is bypassed 384941 Other
evidence of discordant results between the MMTV-NeuT allograft model
versus the MMTV-NeuT spontaneous tumor model comes from Gonzalez-
Suarez and colleagues who by using spontaneous MMTV-NeuT mice on the
FVB/N background showed that RANKL is expressed in mammary epithelial
cells before tumor onset, but not in epithelial or stromal cells of de novo
adenocarcinomas “2. RANKL inhibition in MMTV-NeuT mice resulted in
decreased spontaneous mammary tumorigenesis “42. Consistently, RANKL
expression by breast cancer cells was also seen in a recent study on human
estrogen receptor-positive/HER2- breast cancer cells and patients 4. In
contrast, in the Tan et al. study, RANKL expression was predominantly

detected in Tregs infiltrating transplanted Her2* tumors and RANKL
inhibition only affected primary tumor outgrowth marginally °.

In conclusion, given these discordant findings with transplanted Her2*
tumors versus HER2* patient data and two de novo models of Her2* tumors
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on different backgrounds it is most likely that the observed promoting effect
in the Tan et al. study versus no effect of the adaptive immune system on
metastasis formation in our study (Chapter 2) is caused by using

transplanted Her2* mammary tumors versus spontaneous Her2+ mammary
tumors.

While the findings in Chapter 2 represent a negative finding, it is a surprising
result considering that other breast cancer subtypes are dependent on the
adaptive immune system for metastasis formation °''. One possible
explanation is that the genetic driver of mammary tumorigenesis in MMTV-
NeuT mice, the activation of the HER2 oncogene, influences the
composition and the activation status of the immune landscape differently
compared to other driver mutations that are active in the other breast cancer
subtypes. In fact, the idea that genetic events, activation of oncogenes, or
loss of tumor suppressor genes (TSGs) in cancer cells, shape the immune
landscape is emerging #4. This concept was further investigated in a recent
study from our group where 16 mouse models for breast cancer with
different tissue-specific mutations were used, revealing that loss of p53
shapes the local immune composition of primary breast tumors to drive pro-
metastatic systemic inflammation 8. Thus, genetic aberrations in tumors
influence the immune composition, activation states and therefore different
immune responses, including therapy response 4546. MMTV-NeuT tumors
are characterized by the overexpression of an activated form of the
epidermal growth factor receptor (EGFR) family member HER2 47, which
does not require ligand binding for receptor activation. Instead, in the MMTV-
PyMT mice it was shown that CD4* T cells instructed TAMs to produce EGF
to stimulate EGFR-dependent metastasis formation °. Furthermore, our
group demonstrated that mammary tumors from the genetically engineered
K14cre; Cdh17F; Trp53FF (KEP) mouse model for invasive lobular carcinoma
(ILC), driven by loss of p53, activate systemic pro-metastatic inflammation
in a Wnt-dependent manner 8. Thus, in other breast cancer subtypes where
there is no cell-autonomous EGFR family member activation, tumors may
rely on immune cells to drive metastasis.

In conclusion, the metastatic capacity of NeuT-overexpressing tumors might
be a cancer cell-autonomous trait. Our findings indicate that it is essential to
investigate the impact of the adaptive immune system in other breast cancer
subtypes as they can have a different role. Furthermore, to optimally harness
an effective anti-tumor immune response and improve therapy outcomes in
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HER2-positive patients we need to obtain a deeper understanding of the
immunosuppressive pathways.

Impact of the adaptive immune system on
chemotherapy response

Chemotherapy is frequently used to treat cancer patients. Although most
tumors initially respond to chemotherapeutic drugs, tumors develop
mechanisms of resistance to the treatment. Cancer cell-intrinsic factors like
resistance to apoptosis or overexpression of drug transporter proteins have
been identified as causes of therapy resistance #8. However, also cancer
cell-extrinsic processes underlying poor chemotherapy response have been
recognized 4851, Experimental studies in highly immunogenic tumor models,
e.g., cancer cell line inoculation models and chemically-induced sarcomas
such as the 3-methylcholanthrene (MCA) fibrosarcoma model, have
indicated that T cells can contribute to the anti-cancer efficacy of certain
chemotherapeutics %2-%. Cytotoxic drugs, such as doxorubicin, oxaliplatin,
cyclophosphamide, epothilone B, mitoxantrone, and melphalan have been
reported to lose their therapeutic efficacy on tumor cell line outgrowths in
mice with a defective adaptive immune cell function, including Rag”- mice 5>
5457, The success of these chemotherapy treatments is dependent on the
stimulation of immunogenic tumor cell death (ICD), as initially proposed by
Dr. Zitvogel and Dr. Kroemer %8, which is a type of regulated cell death that
stimulates CD8* T-dependent tumor killing responses via damage-
associated molecular patterns (DAMPs) emission such as calreticulin,
nuclear protein high mobility group box 1 (HMGB1) and adenosine ftri-
phosphate (ATP)52-54.59,

Considering that engraftment of cultured cells derived from end-stage
tumors do not fully recapitulate de novo tumor formation with co-evolving
tumor-host interactions and an immunosuppressive microenvironment 3,
and that the de novo MCA-induced tumours are highly immunogenic, we
hypothesized that in established spontaneous tumors that are relatively
poorly immunogenic, like breast cancer, chemotherapy might not be
powerful enough to activate adaptive immunity. In Chapter 3 we have tested
this hypothesis and describe that the adaptive immune system does not
contribute to the therapeutic efficacy of three different chemotherapy drugs
in two independent clinically relevant de novo mammary tumor models i.e.,
MMTV-NeuT mice for HER2-positive breast cancer and K74cre; Cdh1™*;
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Trp537F (KEP) mice for invasive lobular carcinoma (ILC). Cisplatin,
oxaliplatin or doxorubicin were equally effective in inhibiting the growth of de
novo mammary tumors in T cell- and B cell-deficient MMTV-NeuT;Rag2"
mice as in MMTV-NeuT;Rag2*- mice. Similarly, the therapeutic benefit of
cisplatin and oxaliplatin was the same in KEP;Rag1*- and KEP;Rag1” mice.
In addition, we performed CD8* T cell depletion alone or in combination with
oxaliplatin in tumor-bearing KEP;Rag1*- mice and did not see a change in
the therapeutic efficacy of oxaliplatin. Thus, the adaptive immune system
does not dictate the therapeutic efficacy of chemotherapy in these two de
novo mouse models. Our data in Chapter 3 stand in contrast with previous
experimental studies in highly immunogenic tumor models where the
adaptive immune system dictates the therapeutic efficacy of certain
chemotherapeutics %2-5459, Several differences between these studies and
our study may explain the difference in findings. For example, different
cancer (sub)types, different backgrounds, different chemotherapy regimens
and the use of different mouse models i.e., cancer cell line inoculation
models versus de novo mouse models. Several important distinctions
between these two types of mouse tumor models have been described. For
example, spontaneous tumors were found to have different chemotherapy
response profiles compared to inoculated tumor cells isolated from these
spontaneous tumors €°. Furthermore, immunotherapy efficacy exhibited
enhanced sensitivity in mice with subcutaneously implanted tumors
compared to mice bearing orthotopic tumors from a genetically similar pool
of tumor cells, indicating that the host normal tissue has an enormous impact
on the tumor microenvironment and therefore on endogenous T cell
responses 8'. Hence, it is most conceivable that the differences between our
findings from Chapter 3 and previously described experiments by Zitvogel
and Kroemer are caused by the fact that we employed spontaneous
mammary tumor models in Chapter 3 instead of tumor cell line
transplantation models or the immunogenic MCA fibrosarcoma model 2. To
test this concept experimentally, we generated a tumor cell line from a KEP
tumor and conducted an analogous experiment as previously described in
several papers %5457, Consistent with previous findings in cancer cell line
inoculation models and in contrast to our findings in the transgenic KEP
model (Chapter 3), we observed that tumor outgrowths from a KEP tumor
cell line inoculated in Rag7*~ mice responded to oxalipatin treatment while
tumor outgrowths from the same KEP tumor cell line inoculated in Rag1”
mice did not respond to oxaliplatin treatment (Fig.1; unpublished). Though
this experiment should be reproduced with more cell lines, different
chemotherapeutics and with MMTV-ErbB2 tumor cell lines, we here report
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that oxaliplatin loses its therapeutic efficacy on KEP tumor cell line
outgrowths in mice with a defective adaptive immune cell function. Thus,
Chapter 3 and these unpublished data illustrate the distinction in impact of
the adaptive immune system on chemotherapy response between de novo
tumor models and tumor transplantation models.

—— Rag1” PBS Figure 1. Impact of the adaptive
immune system on the efficacy of

3004 —— Rag?* PBS oxaliplatin in a KEP mammary cell
line transplantation model. Mice
(Rag1*- or Rag1”) were injected s.c in
the flank with 3 million KEP tumor
cells. When the tumors reached 30
* mm? in size, mice were treated with
PBS or oxaliplatin (6mg/kg, i.v) at day
0. Tumor growth in oxaliplatin-treated
Rag1* mice compared to untreated
Rag1** mice was significantly
different at 3 time-points, *p<0.05 by
Mann-Whitney test. Each treatment
0 T T T T 1 group included 8 mice and was

0 2 4 6 8 10 repeated two times with identical
Days after treatment results.

—— Rag1”’ Oxaliplatin

—— Rag1*- Oxaliplatin
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How can we explain that there is no role for the adaptive immune system in
chemotherapy response of spontaneous mouse tumor models? From earlier
studies by others we know that subcutaneous inoculation of cancer cell
suspensions results in massive tumor cell necrosis and early release of
tumor antigens which could trigger acute adaptive immune responses,
whereas spontaneously arising tumors that take months to develop often are
known to trigger a more chronic inflammatory response that prevents acute
T cell priming (immunosuppression) 365 This could explain why the
adaptive immune system contributed to the chemotherapy response of
injected tumors, but not of established spontaneous tumors. Similarly, both
T and B cells in the MCA-induced sarcoma model have been demonstrated
as a critical factor in suppressing tumor initiation 66, suggesting that in
immunogenic tumor models expressing strong antigens, chemotherapy-
induced ICD is effective in activating CD8* T cells to contribute to the
chemotherapy response 2. We hypothesize that in established spontaneous
tumors, chemotherapy is not able to activate adaptive immunity that is
powerful enough to overcome the immunosuppressive networks in the
microenvironment of de novo tumors. This hypothesis has been proven
correct by others 676 and in Chapter 4 in which we show that targeting
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macrophages and neutrophils in combination with chemotherapy improved
survival of KEP mice in a CD8* T cell-dependent mechanism. Our study in
Chapter 4 demonstrates that to boost an adaptive immune response in the
KEP model during platinum-containing chemotherapy it is pivotal to create
a type | interferons (IFNs)-enriched TME. Whether ICD is induced in KEP
tumor models upon targeting of macrophages and neutrophils during
platinum-containing chemotherapy remains unknown. Adaptive immunity
has been engaged by synergistic effects of chemotherapy and
immunotherapy in clinical settings and in de novo cancer mouse models 7%
4 including MMTV-NeuT mice 7 and our KEP mouse model (unpublished).
It is possible that ICD is important for these synergistic effects. Lastly,
although we did not detect major changes in intra-tumoral CD4/CD8* T cell
ratio or proportion of FoxP3* cells after chemotherapy treatment of MMTV-
NeuT; Rag2*- and KEP; Rag1*- mice, we cannot exclude that other distinct
adaptive immune populations such as Tregs or y& T cells have opposing
roles during chemotherapy.

The ICD concept has been established in hundreds of publications based
on transplantation models 76, yet GEMMs have shown to represent human
tumors better than transplantation models 77, We (Chapter 3) and others ¢7-
89 have not seen evidence for a contributing role of the adaptive immune
system upon chemotherapy treatment in de novo mouse tumor models.
Thus, our study continues to urge for a careful analysis of the involvement
of the adaptive immune system in chemotherapy response in a larger set of
de novo tumor models that represent different solid human cancer types and
extend these findings to the clinical situation.

Targeting macrophages as anti-cancer therapy

The TME of solid tumors contains many cell types of which macrophages
are frequently the largest population. For many cancer types, including
breast cancer, macrophage presence in tumors is a negative prognostic
factor 7881, Indeed, our group recently showed that a gene signature derived
from tumor-associated macrophages (TAMs) from KEP mammary tumors
could be used to predict poor survival in two separate cohorts of ILC patients
82, Preclinical studies have established that macrophages contribute to the
various cancer hallmarks including cancer proliferation, suppression of anti-
tumor immune responses, angiogenesis and migration 884, Therapeutic
approaches targeting TAMs focus on inhibiting pro-tumor macrophage
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function via depletion, blockade of their recruitment or repolarization of
macrophages towards an anti- tumor phenotype . Blocking the CSF-
1/CSF-1R signaling pathway, essential for macrophage survival, has proven
to be an attractive strategy to eliminate or reprogram macrophages and
suppress tumor growth in preclinical studies . This has resulted in the
development and clinical testing of CSF-1R signaling pathway inhibitors,
including antibodies against the receptor (anti-CSF-1R), the ligand (anti-
CSF-1), and inhibitors of the tyrosine kinase domain of CSF-1R 348589,
However, monotherapy treatment with CSF-1R inhibitors does not exert anti-
tumor effects in several models °, including in the KEP mouse model
(Chapter 4). Differences in anti-tumor effects of CSF-1/CSF-1R pathway
targeting are likely caused by different cancer (sub)types and cancer mouse
models with their different TME, use of a different type of inhibitor, doses and
timing of the initiation of treatment.

CSF-1R blockade was tolerated well during phase | and Il clinical trials but
has shown only marginal therapeutic benefit 8. Therefore, current clinical
and experimental- efforts are focused on finding the right combination
partners for TAM targeting 8. These combination partners may vary from
immune checkpoint blockade, adoptive T cell transfer, radiotherapy to
chemotherapy. In Chapter 4 we set out to obtain a better understanding of
the mechanisms of action of anti-CSF-1R in vivo and to identify the optimal
combination partner among existing anti-cancer therapies to enhance their
efficacy. CSF-1R pathway targeting has shown to enhance the cytotoxic
efficacy of chemotherapy in various experimental tumor models 68699194
including in the KEP model, as described in Chapter 4 of this thesis.
However, our study reveals a distinct mechanism of how therapeutic
targeting of macrophages enhances chemotherapy efficacy. In Chapter 4
we demonstrated that anti-CSF-1R induces type | IFN signaling in KEP
mammary tumors, which acts synergistically with cisplatin to prevent tumor
outgrowth and to prolong survival. Furthermore, we showed that anti-CSF-
1R synergized with platinum-containing drugs, i.e. cisplatin and oxaliplatin,
but not with the taxane docetaxel, though IFNa was induced.

The exact mechanism that induces the type | IFN expression in
cisplatin/anti-CSF-1R-treated mice is mostly unknown. While our data
showed that CSF-1R blockade depletes 80% of intratumoral macrophages,
we noted a small population of remaining TAMs expressing high levels of
IFNo.. These TAMs are most likely causative of the increased IFNa. levels in
the tumors. Of note, as CSF-1R expression was significantly lower in the
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remaining TAMs, it could explain their resistance to the anti-CSF-1R therapy.
Moreover, our study shows that circulating monocytes can infiltrate into the
tumor of anti-CSF-1R-treated mice, suggesting that these IFNa. expressing
TAMs are either newly recruited monocytes or remaining TAMSs. It is unclear
from our study whether the remaining macrophages upon anti-CSF1R
treatment are repolarized, though noteworthy, three studies using either
CSF-1R neutralizing antibodies or CSF-1R small molecule inhibitors
discovered that TAMs were repolarized towards a tumor-inhibiting state in a
preclinical pancreatic cancer, glioblastoma and lung cancer mouse model -
9. Induction of type | IFN expression by targeting macrophage function has
not only been seen by us in Chapter 4 but also by others; for instance type
| IFNs were also increased in macrophages of the pancreatic cancer model
after CSF-1R neutralizing antibodies %. Furthermore, we also noticed IFNa
upregulation in anti-CSF-1R treated MC38 colon adenocarcinoma tumors,
indicating that anti-CSF-1R unleashes type | IFN signaling in other cancers
besides breast cancer. Lastly, a study targeting macrophages via their
MerTK receptor resulted in the accumulation of apoptotic cells within
transplanted MC38 colon carcinoma tumors and was associated with
circulating cell-free tumor-derived DNA which triggered a type | interferon
response by macrophages %. It is therefore likely that in our KEP model the
dying cancer cells and/or dying macrophages released cytosolic DNA, which
is scavenged by the remaining macrophages and activates the cGAS-
STING pathway which triggers IFNa expression by these macrophages.

There is a vital interest in the development of clinically more effective
combination therapies that combine IFN-I based therapies with for instance
immune checkpoint inhibitors or chemotherapy %-192, The type | IFN family
includes 13 different IFNa proteins (14 in mice), one IFN protein and others
less well defined family members such as IFN¢ and IFNw 193, Type | IFN
molecules bind to their receptor that is composed of IFNAR1 and IFNAR2
subunits in a heterodimer or an IFNAR1 homodimer %3, IFNs activate the
kinases Janus kinase 1 (JAK1) and tyrosine kinase 2 (TYK2) which
phosphorylate STAT1 and STAT2 to promote the expression of type | IFN-
stimulated genes (ISGs). These innate immune signals enhance tumor
antigen presentation and thereby augment the antigen-specific CD8* T cells
response %4105 |Indeed, type | IFN gene signatures have shown to correlate
with increased bone metastasis-free survival or with metastasis-free survival
in general in breast cancer patients 196198, Furthermore, type | IFN signaling
is essential for the function and survival of cytotoxic T cells % and NK
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cells®. Notably, impaired type | IFN signaling is a feature of immune
dysfunction in patients with cancer and is linked with poor prognosis 109111112,
We detected an increase in ISGs in advanced solid tumor biopsies of cancer
patients treated with emactuzumab, a humanized anti-human CSF-1R
monoclonal antibody, compared to their reference levels, which is in line with
our findings in the KEP mouse model (Chapter 4). Thus, the data shown in
Chapter 4 highlight that CSF-1R blockade may be used as a strategy to
induce an intra-tumoral type | IFNs response.

An important question that our work leaves open is what the molecular
mechanisms are of how type | IFN employs its anti-cancer efficacy in
cisplatin/anti-CSF-1R-treated mice. Surprisingly, CD8* T cells were not
unleashed upon cisplatin/anti-CSF-1R-treatment and CD8* T cell depletion
did not influence the survival in cisplatin/anti-CSF-1R-treated mice. Though
additional studies investigating other cytotoxic cells are required, these data
indicate that another mechanism is responsible for the anti-cancer efficacy.
Type | IFNs can have a direct effect on tumor progression by blocking
proliferation or inducing apoptosis in cancer cells 3. Concomitant, our in
vitro work in Chapter 4 of this thesis demonstrated that high concentrations
of IFNa, subtype IFNa1, has a direct inhibitory effect on KEP cancer cells.
Of note, it will be interesting to evaluate other IFNo. molecules and IFNp as
their influence against viral infections 4 and their anti-proliferative effects
on cancer cells ''® have shown to differ and could be cumulative. However,
no increase of apoptotic cells was found in tumors of cisplatin/anti-CSF-1R-
treated mice (Chapter 4), suggesting that a different mechanism such as
necroptosis, an inflammatory programmed form of necrosis, or senescence
might at play. In this regard, studies have shown that both cisplatin 11617 and
type | IFNs 8119 can induce senescence in cancer cells, suggesting that
senescence in cisplatin/anti-CSF-1R-treated tumors could perhaps explain
the reduced proliferation and lack of apoptosis. Since the majority of breast
cancer deaths are caused by metastatic disease '2°, it will be of great value
to study whether type | IFNs influences metastasis formation upon anti-CSF-
1R with platinum based chemotherapy '3. Monotherapy of CSF-1R blockade
did not affect the metastasis-specific survival in the KEP-based model of
spontaneous breast metastasis (Chapter 4).

Studies in preclinical cancer models and patients have described that
chemotherapeutic drugs, such as anthracyclines and cyclophosphamide,
induce type | IFN production, which is required for their therapeutic efficacy
as blockade of type | IFN signaling results in loss of the anti-cancer efficacy
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99,121 However, in our study in Chapter 4 cisplatin response was not affected
by blockade of type | IFN signaling. Only the combination of cisplatin/anti-
CSF-1R induced a type | IFNs response that led to enhanced survival.
Interestingly, the increase in type | IFN during anti-CSF-1R therapy did not
enhance the efficacy of the taxane docetaxel. What could have caused the
synergy of CSF-1R blockade with cisplatin and oxaliplatin but not with
docetaxel? The two conventional chemotherapeutics have a different mode
of action: while platinum-based anticancer drugs cause crosslinks in the
DNA and prompt apoptosis, taxanes affect cell division through stabilization
of microtubules. In line with this notion, a comprehensive study into the
mutagenic impact of common chemotherapeutics found that cisplatin
induces the highest amounts of single nucleotide variant (SNV)’s, indels and
deletions compared to several other standard cytotoxics, including the
taxane paclitaxel '?2. It is now well-known that distinct cytotoxic drugs
differentially affect immune cells and the influence of the immune system on
chemo-responsiveness has shown to depend on the type of
chemotherapeutic drug and dosing 4%123124_ Especially cisplatin has shown
to induce antitumor immunomodulation in multiple preclinical and clinical
studies 125128, Hence, it is conceivable that platinum-based anticancer drugs
create a milieu in KEP tumors that is preventing type 1 IFN signaling. In line
with this notion, cisplatin response was not affected by blockade of type |
IFN signaling (Chapter 4). To this end, it will be interesting to investigate
whether alterations effecting genes or pathways of the IFN signaling
cascade are present in KEP tumors after cisplatin and docetaxel treatments.
Furthermore, two clinical trials recently combined paclitaxel with CSF-1R
blockade; emactuzumab in patients with advanced/metastatic solid tumors
129 and pexidartinib (PLX3397) in patients with refractory solid tumors 30,
Only the combination of paclitaxel with pexidartinib noted an objective
response rate of 16% '3°, while no anti-tumor activity alone or in combination
with paclitaxel was found with emactuzumab '2°. Based on our data, cisplatin
may have been a more optimal combination chemotherapeutic drug.
However, synergistic affects with CSF-1R blockade may also depend on the
tumor (sub)type, stage, prior treatments and CSF-1R blockade drug. Future
studies should expand tumor models, numbers and types of
chemotherapeutic agents used in the clinic to examine synergistic effects
with anti-CSF-1R and choose the optimal cytotoxic drug to maximize the
effects of CSF-1R targeting agents.
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Targeting neutrophil-dependent immunosuppression
further improves cisplatin/anti-CSF-1R efficacy

In contrast to cancer cells which develop mechanisms of resistance to
therapies, immune cells are not under the same mutational pressure and
thus unlikely to develop therapy resistance. However, bidirectional feedback
between cancer cells and their microenvironment can induce resistance of
the tumor microenvironment to immuno-modulation of CSF-1R targeting. In
several models, resistance to CSF-1R targeting or macrophage inhibition
was seen by the recruitment of tumor-promoting neutrophils 3135, These
newly recruited neutrophils embodied similar pro-tumor mechanisms as the
depleted TAMs, such as regulating proccesses like immunosuppression and
angiogenesis 34135 However, different than those studies, neutrophils did
not take over the function of macrophages upon CSF-1R blockade and
cisplatin in KEP tumors, but unlike macrophages, neutrophils exhibited
immunomodulatory functions (Chapter 4). In the poorly immunogenic KEP
model, we targeted the immunosuppressive neutrophils in cisplatin/anti-
CSF-1R-treated mice to obtain an effective CD8" T cell response that
contributed to tumor control and extended survival (Chapter 4). Moreover,
antibody-mediated depletion of NK cells resulted in a partial los of the benefit
of neutrophil depletion, suggesting that not only CD8* T cells but also NK
cells are necessary to engage anti-tumor immunity upon neutrophil depletion
in cisplatin/anti-CSF-1R-treated mice. Engagement of anti-tumor immunity
upon macrophage and neutrophil targeting was also seen in a mouse model
for pancreatic cancer 33, but whether type | IFN signaling was induced is
unknown. However, since we did not observe an increase in neutrophil
recruitment by absolute neutrophil numbers unlike other studies have noted,
it is likely that a different mechanism influenced neutrophil function in the
KEP mouse model upon macrophage targeting.

The exact TME signals that instructed neutrophils to acquire pro-tumor
functions upon CSF-1R blockade are unknown, although it is plausible that
prolonged type | IFN signaling could have led to immunosuppressive
circuits. While several studies have suggested that type | IFNs induce anti-
tumor properties in neutrophils 36138 other studies in chronic infections such
as malaria-infected hosts and patients with active tuberculosis found that a
type | IFN transcriptional signature in neutrophils is correlated with tissue
damage and disease pathogenesis 139140, Moreover, negative-feedback
mechanisms were reported in studies on chronic viral infections when type
I IFN signaling persisted and lead for example to the generation of an
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immunosuppressive environment 23141142 |n fact, higher levels of PD-L1
were found on type | IFN-producing macrophages upon anti-CSF-1R
treatment in KEP mice (Chapter 4), suggesting that perhaps an autocrine
mechanism was present to resolve the inflammatory responses. Whether
sustained type | IFN signaling can rewire neutrophils in cisplatin/anti-CSF-
1R-treated mice should be addressed in future studies. Furthermore, RNA-
sequencing analysis on neutrophils isolated from cisplatin/anti-CSF-1R-
treated mouse tumors displayed elevated expression levels of type | IFN-
stimulated genes compared to neutrophils in tumors of cisplatin/control
antibody-treated mice (Chapter 4). It is unclear whether the type | IFN
signaling of neutrophils promotes their immunosuppressive abilities.

How neutrophils exert their immunosuppressive functions needs to be
further elucidated. Interestingly, a correlation was recently found between
type | IFN signaling and ROS production of neutrophils in a melanoma model
138 Immunosuppressive- pro-metastatic neutrophils in the KEP mouse
model have previously shown to express high levels of inducible nitric oxide
synthase (iNOS) .43, By influencing conformational changes in TCR
recognition, iINOS prevents specific peptide recognition by T cells #4. To
elucidate whether neutrophils employ iINOS to prevent an anti-tumor
immune response in cisplatin/anti-CSF-1R-treated mice additional studies
are required.

Since neutrophils have shown to influence various tumor-promoting
processes, neutrophils have become interesting putative targets for
therapeutic intervention '#5. Moreover, a high neutrophil-to-lymphocyte ratio
in the circulation of multiple cancers is linked to poor prognosis in patients
146 Currently, the chemokine receptors CXCR1 and CXCR2 that are
important for neutrophil recruitment are under clinical evaluation 47-148, Qur
study shows that the therapeutic efficacy of targeting macrophages and
neutrophils in cisplatin-treated KEP mice is mediated by the induction of type
I IFNs and by unleashing anti-tumor responses. To this end, it will be
important to evaluate the development of protumor functions by neutrophils
in patients that receive combinational therapy of chemotherapy with anti-
CSF-1R or type | IFN-stimulating drugs and the subsequent testing of
neutrophil-targeting therapy efficacy.
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Concluding remarks and future perspectives

The work presented in this thesis focuses on obtaining a better
understanding of the adaptive immune system in breast cancer initiation,
progression, metastasis and chemotherapy response. In addition, this thesis
focuses on maximizing the success of immunomodulatory agents targeting
myeloid cells using genetically engineered mouse models. This thesis
demonstrates that unlike other breast cancer mouse models ", the
adaptive immune system is not involved in primary tumor and metastasis
formation in a de novo tumor mouse model of HER2-positive breast cancer
(Chapter 2). To harness successful anti-tumor immunity and increase
therapy outcomes in HER2-positive patients, future research should be
aimed at understanding the immunosuppressive networks in HER2-positive
breast cancer. Furthermore, while the endogenous adaptive immune system
has shown to play an important role during chemotherapy response of
immunogenic cancer models 76, our research shows that the adaptive
immune system is not important during chemotherapy response in two de
novo breast tumor mouse models. Remarkably, by performing studies with
CSF-1R blockade to target macrophages, we demonstrate that the use of
agents that trigger type | IFN responses enhances the anti-cancer efficacy
of chemotherapy. This thesis further elucidates that engagement of anti-
tumor immunity can be reached with the addition of neutrophil depletion
during chemotherapy and CSF-1R blockade. Thus, these data suggest that
a combination strategy triggering the removal of the immunosuppressive
TME networks and subsequent type | IFN response is the mechanism of
action to acquire a proficient adaptive immune response in the less
immunogenic ILC mouse model upon chemotherapy treatment. This thesis
reveals that investigating the function of the adaptive immune system during
tumor development and chemotherapy in a larger set of solid breast cancer
subtypes is essential for the development of immunomodulatory
approaches. Lastly, the data in this thesis describe that the synergy of
combined chemotherapy and CSF-1R blockade is chemotherapy dependent
as we found that only platinum drugs, but not docetaxel, synergized with
CSF-1R blockade and increased survival further. These data indicate that
therapeutic approaches using type | IFN-inducing agents such as CSF-1R-
targeting drugs or STING agonists are important for successful anti-cancer
therapy, however future research should obtain more insights into the
synergistic effects of combinatorial therapies with myeloid targeting and
evaluate immunomodulatory drug-induced resistance. Considering the
realization that cancer subtype, the genetic background of the tumors,
disease stage and treatment history affect anti-cancer immunity, the vision
for immunomodulatory therapies must change to a more personalized
treatment.
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