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Breast cancer is a very heterogeneous disease; distinct subtypes of breast 
cancer are dependent on different oncogenic pathways and are likely to be 
differentially regulated by the immune system. Chemotherapy denotes one 
of the main treatments that breast cancer patients receive, but response 
rates vary amongst patients. A better understanding of the adaptive and 
innate immune system in breast cancer initiation, progression, metastasis 
formation and chemotherapy response is essential for the development of 
new therapeutic approaches to improve survival rates. For instance, 
immunomodulatory agents targeting myeloid cells are currently being 
assessed in clinical trials. To maximize the success of these compounds, it 
is essential to understand the effects and mechanisms of these drugs. The 
overall goal of the research described in this thesis is to better understand 
the interaction between the immune system and breast cancer. I have 
studied the roles of the adaptive immune system during breast cancer 
tumorigenesis and chemotherapy response. In addition, I have studied the 
consequences and underlying mechanisms of targeting macrophages via 
CSF-1R blockade during breast cancer development and chemotherapy 
treatment. We focused on the following main research questions by using 
genetically engineered mouse models (GEMMs) for metastatic breast 
cancer:  

1. Does the adaptive immune system play a role during HER2-positive 
breast cancer formation, progression and metastasis? 

2. Is the adaptive immune system important for chemotherapy response of 
breast cancer? 

3. What is the impact, optimal combination partner and mechanism of anti-
CSF-1R antibody targeting during breast cancer development and 
chemotherapy treatment? 

Impact of the adaptive immune system on HER2-
positive breast cancer 

A body of accumulating clinical data indicates that different molecular 
subtypes of tumors are characterized by distinct immune landscapes 1-3. 
Depending on the tumor type, stage and treatment, different types of 
adaptive immune cells can play opposite functions, ranging from tumor-
promoting, tumor preventing to no role 4-8. In breast cancer, preclinical 
studies with a variety of mouse models have demonstrated that certain 
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tumor-associated adaptive immune cell subsets are important for metastasis 
formation 8-11. For example, metastasis formation in the transgenic MMTV-
PyMT mouse model for spontaneous breast adenocarcinomas was shown 
to be dependent on interleukin 4 (IL-4)-expressing CD4+ T cells that 
stimulated EGF production from tumor-associated macrophages (TAMs) 9. 
In Chapter 2 the causal link between the adaptive immune system in HER2-
positive breast cancer formation and metastatic spread was investigated. 
Using a mouse model for spontaneous HER2-driven mammary 
tumorigenesis i.e., MMTV-NeuT mice, our findings reveal that genetic 
elimination of the complete adaptive immune system did not affect 
premalignant progression, tumor latency, tumor growth, tumor multiplicity, 
and de novo pulmonary metastasis formation. These findings indicate that 
HER2+ breast tumors and metastasis formation in this preclinical model are 
not suppressed by immunosurveillance mechanisms, nor promoted by the 
adaptive immune system.  

The data in Chapter 2 reveal that absence of the complete adaptive immune 
system does not impact mammary tumorigenesis in MMTV-NeuT mice. An 
important question that our work leaves open is whether individual 
(sub)populations of adaptive immune cells play a role during cancer 
formation and metastasis in MMTV-NeuT mice. By using Rag-/- deficient 
mice, in which T and B cells are depleted from birth on, we cannot exclude 
the existence of opposing roles of individual components of the adaptive 
immune system in our model e.g., Tregs, CD8+ T or γδ T cells. For instance, 
HER2-positive breast tumors are frequently infiltrated by Tregs 12,13. 
Increased numbers of FOXP3+ Tregs in tumors generally correlate with 
worse patient outcomes 14,15 and Treg accumulation within sentinel lymph 
nodes is a predictor of disease progression and metastatic spread in breast 
cancer 16. Furthermore, a distinct group of T cell receptor-expressing innate 
lymphoid cells, termed ILTC1, were found to have a critical role in cancer 
immunosurveillance in MMTV-PyMT mice 17. The generation of these 
lymphocytes is dependent on the cytokine IL-15 17. Interestingly, IL-15 
deficiency in MMTV-NeuT mice has resulted in accelerated tumor growth 
compared to wild-type (WT) MMTV-NeuT mice 18. Since all T cells require 
RAG to develop, the MMTV-NeuT mice used in Chapter 2 also lacked the 
ILTC1 cell population. Future experiments targeting one specific subset of T 
cells such as Tregs or ILTC1 cells before and during tumor development will 
help answer whether distinct adaptive immune cells are important in HER2-
positive breast cancer. 
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It is surprising that we did not find a clear role for the adaptive immune 
system while based on the immunosurveillance hypothesis 19, we would 
have expected impact. In fact, preclinical and clinical data in HER2-positive 
breast cancer have suggested that the endogenous adaptive immune cell 
repertoire is not completely lacking tumor-specific immune cells and could 
potentially be involved in immunosurveillance mechanisms. For example, 
two studies found CD4+ T cell responses directed against HER2 (neu or 
ErbB2) in the MMTV-NeuT mouse model during the pre-malignant phase 
20,21 and HER2-specific CD4+ and CD8

+ T cell responses have been 
described in patients with HER2+ breast cancer 22,23. In addition, antibody-
mediated depletion of T cells in MMTV-NeuT mice resulted in a momentary 
and minimal increase in tumor multiplicity 24. Although T cells and Neu-
specific T cells are present in MMTV-NeuT mice and HER2+ breast cancer 
patients, it is very likely that immunosuppression is at play. With the 
advancing stages of HER2-positive cancer, the infiltrating cell composition 
is prone to changes like what has been seen in many cancers; the effector 
cells become fewer and less activated, while the TME becomes dominated 
by cells with regulatory and immunosuppressive activities 25,26. The immune-
editing process in its most complete manifestation is composed of three 
sequential phases of tumor “elimination,” “equilibrium,” and “escape”  and is 
illustrated by studies showing that carcinogen-induced sarcomas and 
spontaneous epithelial carcinomas were more immunogenic when induced 
in mice lacking lymphocytes as compared to immunocompetent mice 19. 
Indeed, ex vivo expanded HER-2/neu-specific T cells failed to reject 
transplanted Her2+ tumor cells 27, but neu-specific antibody responses were 
restored in these transplanted Her2+ tumors with the depletion of MDSC’s 
27. Besides MDSCs, regulatory T cells and regulatory dendritic cells have 
been found to suppress anti-tumor T cell immune responses in MMTV-NeuT 
mice 27-29. Thus likely, tumor antigen-specific CD8+ T cell responses are 
induced but their activities are restrained from inducing effective cancer 
immunosurveillance by their immunosuppressive environment. 

The treatment with  HER2-targeting therapeutic antibodies has significantly 
improved the survival of patients with HER2-positive breast cancer 30. 
Similar results have been found in MMTV-NeuT mice 31-33. Importantly, 
preclinical studies in transplantation models for Her2-positive breast cancer 
showed that PD-1 and CTLA-4 inhibition improves HER2-targeted therapies 
through activation of CD8+ T cells 32,34. These data have provided a basis for 
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the clinical use of immune checkpoint inhibitors for the treatment of HER2+ 
breast cancer patients and their combination with HER2-targeted treatments 
30.  

In conclusion, we found that absence of the complete adaptive immune does 
not impact mammary tumorigenesis in MMTV-NeuT mice. Further research 
is needed to determine what the exact immunosuppressive networks are to 
engage anti-tumor immunity. Moreover, increasing immunity towards HER2+ 
tumors with immunotherapy may overcome the unresponsiveness of the 
adaptive immune system and result in effective tumor inhibition.  

In contrast to our findings in Chapter 2, Tan and colleagues found that 
metastatic spread of orthotopically transplanted mammary tumors derived 
from the MMTV-NeuT transgenic mouse model was reduced in Rag1-/- and 
CD4-/- recipient mice as compared to WT recipients 10. How can a promoting 
effect versus no effect

 
of the adaptive immune system on metastasis 

formation be obtained from two independent studies that focus on the same 
subtype of breast cancer i.e., Her2+ -positive

 
mammary tumors? There are 

three fundamental differences between these two studies: 

1. Tan et al. used transgenic mice expressing the WT Her2 receptor, 
whereas in Chapter 2 transgenic mice expressing an activated form of 
Her2 are used.  

2. Tan et al. used mice on the FVB/N background, whereas in Chapter 2 
studies are performed on the Balb/c background. 

3. Tan et al. performed their studies in mice that were orthotopically 
transplanted with freshly isolated tumor cells or cell lines from MMTV-
NeuT transgenic mice, whereas in Chapter 2 spontaneous mammary 
tumorigenesis was studied in transgenic MMTV-NeuT mice. 

 

Due to somatic mutations within the Her2 transgene, mammary tumors from 
MMTV-NeuT transgenic mice expressing WT Her2 display activation of 
intrinsic Her2 receptor tyrosine kinase activity 35,36. Therefore, both MMTV-
NeuT mammary tumor models express activated Her2, and it is thus unlikely 
that the different results can be attributed to the activation status of the Her2 
transgene. 
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It is possible that the genetic variation between mouse inbred strains can 
provide the basis for fundamentally different mechanisms underlying 
metastasis formation. In the PyMT mouse model for breast carcinoma, 
PyMT Rag1-/- mice had significantly reduced tumor latency compared with 
PyMT WT mice in the C57BL/6 background, a result that was not seen when 
using PyMT mice on the FVB/NJ background 37. Certainly, evaluation of 
metastasis formation in MMTV-NeuT transgenic mice on the FVB/N 
background intercrossed with Rag1-/- mice can help to resolve the impact of 
the genetic background versus the impact of de novo tumorigenesis on the 

influence of the adaptive immune system on metastatic HER2+ breast 
cancer. However, it is also conceivable that the different outcome between 
both studies can be explained by the use of transplanted HER2-positive 
mammary tumors in the Tan et al. study, versus spontaneous HER2-positive 
mammary tumors in Chapter 2. Transplantation models, based on 
engraftment of cultured cells or freshly isolated single-cell suspension 
models, as used in the Tan et al study, derived from end-stage tumors have 
shown to not fully recapitulate de novo tumor formation with co-evolving 
tumor-host interactions and an immunosuppressive microenvironment 38. 
Other disadvantages are derangement of the normal tumor architecture, 
compared to spontaneous tumors, and cancer cell lines are generally poor 
predictors of clinical response 39. In addition, mammary epithelial cells in the 
MMTV-NeuT mouse model disseminate already during the premalignant 
phase and this early dissemination is not recapitulated in tumor 
transplantation models as the premalignant phase is bypassed 38,40,41. Other 
evidence of discordant results between the MMTV-NeuT allograft model 
versus the MMTV-NeuT spontaneous tumor model comes from Gonzalez-
Suarez and colleagues who by using spontaneous MMTV-NeuT mice on the 
FVB/N background showed that RANKL is expressed in mammary epithelial 
cells before tumor onset, but not in epithelial or stromal cells of de novo 
adenocarcinomas 42. RANKL inhibition in MMTV-NeuT mice resulted in 
decreased spontaneous mammary tumorigenesis  42. Consistently, RANKL 
expression by breast cancer cells was also seen in a recent study on human 
estrogen receptor-positive/HER2- breast cancer cells and patients 43. In 
contrast, in the Tan et al. study, RANKL expression was predominantly 
detected in Tregs infiltrating transplanted Her2+ tumors and RANKL 
inhibition only affected primary tumor outgrowth marginally 10. 

In conclusion, given these discordant findings with transplanted Her2+ 

tumors versus HER2+ patient data and two de novo models of Her2+ tumors 
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on different backgrounds it is most likely that the observed promoting effect 
in the Tan et al. study versus no effect

 
of the adaptive immune system on 

metastasis formation in our study (Chapter 2) is caused by using 
transplanted Her2+ mammary tumors versus spontaneous Her2+ mammary 
tumors.  

While the findings in Chapter 2 represent a negative finding, it is a surprising 
result considering that other breast cancer subtypes are dependent on the 
adaptive immune system for metastasis formation 9-11. One possible 
explanation is that the genetic driver of mammary tumorigenesis in MMTV-
NeuT mice, the activation of the HER2 oncogene, influences the 
composition and the activation status of the immune landscape differently 
compared to other driver mutations that are active in the other breast cancer 
subtypes. In fact, the idea that genetic events, activation of oncogenes, or 
loss of tumor suppressor genes (TSGs) in cancer cells, shape the immune 
landscape is emerging 1,44. This concept was further investigated in a recent 
study from our group where 16 mouse models for breast cancer with 
different tissue-specific mutations were used, revealing that loss of p53 
shapes the local immune composition of primary breast tumors to drive pro-
metastatic systemic inflammation 8. Thus, genetic aberrations in tumors 
influence the immune composition, activation states and therefore different 
immune responses, including therapy response 45,46. MMTV-NeuT tumors 
are characterized by the overexpression of an activated form of the 
epidermal growth factor receptor (EGFR) family member HER2 47, which 
does not require ligand binding for receptor activation. Instead, in the MMTV-
PyMT mice it was shown that CD4+ T cells instructed TAMs to produce EGF 
to stimulate EGFR-dependent metastasis formation 9. Furthermore, our 
group demonstrated that mammary tumors from the genetically engineered 
K14cre; Cdh1F/F; Trp53F/F (KEP) mouse model for invasive lobular carcinoma 
(ILC), driven by loss of p53, activate systemic pro-metastatic inflammation 
in a Wnt-dependent manner 8. Thus, in other breast cancer subtypes where 
there is no cell-autonomous EGFR family member activation, tumors may 
rely on immune cells to drive metastasis.  

In conclusion, the metastatic capacity of NeuT-overexpressing tumors might 
be a cancer cell-autonomous trait. Our findings indicate that it is essential to 
investigate the impact of the adaptive immune system in other breast cancer 
subtypes as they can have a different role. Furthermore, to optimally harness 
an effective anti-tumor immune response and improve therapy outcomes in 
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HER2-positive patients we need to obtain a deeper understanding of the 
immunosuppressive pathways.  

Impact of the adaptive immune system on 
chemotherapy response  

Chemotherapy is frequently used to treat cancer patients. Although most 
tumors initially respond to chemotherapeutic drugs, tumors develop 
mechanisms of resistance to the treatment. Cancer cell-intrinsic factors like 
resistance to apoptosis or overexpression of drug transporter proteins have 
been identified as causes of therapy resistance 48. However, also cancer 
cell-extrinsic processes underlying poor chemotherapy response have been 
recognized 48-51. Experimental studies in highly immunogenic tumor models, 
e.g., cancer cell line inoculation models and chemically-induced sarcomas 
such as the 3-methylcholanthrene (MCA) fibrosarcoma model, have 
indicated that T cells can contribute to the anti-cancer efficacy of certain 
chemotherapeutics 52-56. Cytotoxic drugs, such as doxorubicin, oxaliplatin, 
cyclophosphamide, epothilone B, mitoxantrone, and melphalan have been 
reported to lose their therapeutic efficacy on tumor cell line outgrowths in 
mice with a defective adaptive immune cell function, including Rag-/- mice 52-

54,57. The success of these chemotherapy treatments is dependent on the 
stimulation of immunogenic tumor cell death (ICD), as initially proposed by 
Dr. Zitvogel and Dr.  Kroemer 58, which is a type of regulated cell death that 
stimulates CD8+ T-dependent tumor killing responses via damage-
associated molecular patterns (DAMPs) emission such as calreticulin, 
nuclear protein high mobility group box 1 (HMGB1) and adenosine tri-
phosphate (ATP)52-54,59.  

Considering that engraftment of cultured cells derived from end-stage 
tumors do not fully recapitulate de novo tumor formation with co-evolving 
tumor-host interactions and an immunosuppressive microenvironment 38, 
and that the de novo MCA-induced tumours are highly immunogenic, we 
hypothesized that in established spontaneous tumors that are relatively 
poorly immunogenic, like breast cancer, chemotherapy might not be 
powerful enough to activate adaptive immunity. In Chapter 3 we have tested 
this hypothesis and describe that the adaptive immune system does not 
contribute to the therapeutic efficacy of three different chemotherapy drugs 
in two independent clinically relevant de novo mammary tumor models i.e., 
MMTV-NeuT mice for HER2-positive breast cancer and K14cre; Cdh1F/F; 
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Trp53F/F (KEP) mice for invasive lobular carcinoma (ILC). Cisplatin, 
oxaliplatin or doxorubicin were equally effective in inhibiting the growth of de 
novo mammary tumors in T cell– and B cell–deficient MMTV-NeuT;Rag2-/- 
mice as in MMTV-NeuT;Rag2+/- mice. Similarly, the therapeutic benefit of 
cisplatin and oxaliplatin was the same in KEP;Rag1+/- and KEP;Rag1-/- mice. 
In addition, we performed CD8+ T cell depletion alone or in combination with 
oxaliplatin in tumor-bearing KEP;Rag1+/- mice and did not see a change in 
the therapeutic efficacy of oxaliplatin. Thus, the adaptive immune system 
does not dictate the therapeutic efficacy of chemotherapy in these two de 
novo mouse models. Our data in Chapter 3 stand in contrast with previous 
experimental studies in highly immunogenic tumor models where the 
adaptive immune system dictates the therapeutic efficacy of certain 
chemotherapeutics 52-54,59. Several differences between these studies and 
our study may explain the difference in findings. For example, different 
cancer (sub)types, different backgrounds, different chemotherapy regimens 
and the use of different mouse models i.e., cancer cell line inoculation 
models versus de novo mouse models. Several important distinctions 
between these two types of mouse tumor models have been described. For 
example, spontaneous tumors were found to have different chemotherapy 
response profiles compared to inoculated tumor cells isolated from these 
spontaneous tumors 60. Furthermore, immunotherapy efficacy exhibited 
enhanced sensitivity in mice with subcutaneously implanted tumors 
compared to mice bearing orthotopic tumors from a genetically similar pool 
of tumor cells, indicating that the host normal tissue has an enormous impact 
on the tumor microenvironment and therefore on endogenous T cell 
responses 61. Hence, it is most conceivable that the differences between our 
findings from Chapter 3 and previously described experiments by Zitvogel 
and Kroemer are caused by the fact that we employed spontaneous 
mammary tumor models in Chapter 3 instead of tumor cell line 
transplantation models or the immunogenic MCA fibrosarcoma model 62. To 
test this concept experimentally, we generated a tumor cell line from a KEP 
tumor and conducted an analogous experiment as previously described in 
several papers 52-54,57. Consistent with previous findings in cancer cell line 
inoculation models and in contrast to our findings in the transgenic KEP 
model (Chapter 3), we observed that tumor outgrowths from a KEP tumor 
cell line inoculated in Rag1+/- mice responded to oxalipatin treatment while 
tumor outgrowths from the same KEP tumor cell line inoculated in Rag1-/- 
mice did not respond to oxaliplatin treatment (Fig.1; unpublished). Though 
this experiment should be reproduced with more cell lines, different 
chemotherapeutics and with MMTV-ErbB2 tumor cell lines, we here report 
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that oxaliplatin loses its therapeutic efficacy on KEP tumor cell line 
outgrowths in mice with a defective adaptive immune cell function. Thus, 
Chapter 3 and these unpublished data illustrate the distinction in impact of 
the adaptive immune system on chemotherapy response between de novo 
tumor models and tumor transplantation models. 

Figure 1. Impact of the adaptive 
immune system on the efficacy of 
oxaliplatin in a KEP mammary cell 
line transplantation model. Mice 
(Rag1+/- or Rag1-/-) were injected s.c in 
the flank with 3 million KEP tumor 
cells. When the tumors reached 30 
mm2 in size, mice were treated with 
PBS or oxaliplatin (6mg/kg, i.v) at day 
0. Tumor growth in oxaliplatin-treated 
Rag1+/- mice compared to untreated 

Rag1+/- mice was significantly 
different at 3 time-points, *p<0.05 by 
Mann-Whitney test. Each treatment 
group included 8 mice and was 
repeated two times with identical 
results. 

 
How can we explain that there is no role for the adaptive immune system in 
chemotherapy response of spontaneous mouse tumor models? From earlier 
studies by others we know that subcutaneous inoculation of cancer cell 
suspensions results in massive tumor cell necrosis and early release of 
tumor antigens which could trigger acute adaptive immune responses, 
whereas spontaneously arising tumors that take months to develop often are 
known to trigger a more chronic inflammatory response that prevents acute 
T cell priming (immunosuppression) 63-65. This could explain why the 
adaptive immune system contributed to the chemotherapy response of 
injected tumors, but not of established spontaneous tumors. Similarly, both 
T and B cells in the MCA-induced sarcoma model have been demonstrated 
as a critical factor in suppressing tumor initiation 66, suggesting that in 
immunogenic tumor models expressing strong antigens, chemotherapy-
induced ICD is effective in activating CD8+ T cells to contribute to the 
chemotherapy response 62. We hypothesize that in established spontaneous 
tumors, chemotherapy is not able to activate adaptive immunity that is 
powerful enough to overcome the immunosuppressive networks in the 
microenvironment of de novo tumors. This hypothesis has been proven 
correct by others 67-69 and in Chapter 4 in which we show that targeting 
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macrophages and neutrophils in combination with chemotherapy improved 
survival of KEP mice in a CD8+ T cell-dependent mechanism. Our study in 
Chapter 4 demonstrates that to boost an adaptive immune response in the 
KEP model during platinum-containing chemotherapy it is pivotal to create 
a type I interferons (IFNs)-enriched TME. Whether ICD is induced in KEP 
tumor models upon targeting of macrophages and neutrophils during 
platinum-containing chemotherapy remains unknown. Adaptive immunity 
has been engaged by synergistic effects of chemotherapy and 
immunotherapy in clinical settings and in de novo cancer mouse models 70-

74 including MMTV-NeuT mice 75 and our KEP mouse model (unpublished). 
It is possible that ICD is important for these synergistic effects. Lastly, 
although we did not detect major changes in intra-tumoral CD4/CD8+ T cell 
ratio or proportion of FoxP3+ cells after chemotherapy treatment of MMTV-
NeuT; Rag2+/- and KEP; Rag1+/- mice, we cannot exclude that other distinct 
adaptive immune populations such as Tregs or γδ T cells have opposing 
roles during chemotherapy.   

The ICD concept has been established in hundreds of publications based 
on transplantation models 76, yet GEMMs have shown to represent human 
tumors better than transplantation models 77, We (Chapter 3) and others 67-

69 have not seen evidence for a contributing role of the adaptive immune 
system upon chemotherapy treatment in de novo mouse tumor models. 
Thus, our study continues to urge for a careful analysis of the involvement 
of the adaptive immune system in chemotherapy response in a larger set of 
de novo tumor models that represent different solid human cancer types and 
extend these findings to the clinical situation.  

Targeting macrophages as anti-cancer therapy  

The TME of solid tumors contains many cell types of which macrophages 
are frequently the largest population. For many cancer types, including 
breast cancer, macrophage presence in tumors is a negative prognostic 
factor 78-81. Indeed, our group recently showed that a gene signature derived 
from tumor-associated macrophages (TAMs) from KEP mammary tumors 
could be used to predict poor survival in two separate cohorts of ILC patients 
82. Preclinical studies have established that macrophages contribute to the 
various cancer hallmarks including cancer proliferation, suppression of anti-
tumor immune responses, angiogenesis and migration 83,84. Therapeutic 
approaches targeting TAMs focus on inhibiting pro-tumor macrophage 
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function via depletion, blockade of their recruitment or repolarization of 
macrophages towards an anti- tumor phenotype 84. Blocking the CSF-
1/CSF-1R signaling pathway, essential for macrophage survival, has proven 
to be an attractive strategy to eliminate or reprogram macrophages and 
suppress tumor growth in preclinical studies 85. This has resulted in the 
development and clinical testing of CSF-1R signaling pathway inhibitors, 
including antibodies against the receptor (anti-CSF-1R), the ligand (anti-
CSF-1), and inhibitors of the tyrosine kinase domain of CSF-1R 34,85-89. 
However, monotherapy treatment with CSF-1R inhibitors does not exert anti-
tumor effects in several models 90, including in the KEP mouse model 
(Chapter 4). Differences in anti-tumor effects of CSF-1/CSF-1R pathway 
targeting are likely caused by different cancer (sub)types and cancer mouse 
models with their different TME, use of a different type of inhibitor, doses and 
timing of the initiation of treatment.  

CSF-1R blockade was tolerated well during phase I and II clinical trials but 
has shown only marginal therapeutic benefit 85. Therefore, current clinical 
and experimental- efforts are focused on finding the right combination 
partners for TAM targeting 85. These combination partners may vary from 
immune checkpoint blockade, adoptive T cell transfer, radiotherapy to 
chemotherapy. In Chapter 4 we set out to obtain a better understanding of 
the mechanisms of action of anti-CSF-1R in vivo and to identify the optimal 
combination partner among existing anti-cancer therapies to enhance their 
efficacy. CSF-1R pathway targeting has shown to enhance the cytotoxic 
efficacy of chemotherapy in various experimental tumor models 68,69,91-94, 
including in the KEP model, as described in Chapter 4 of this thesis. 
However, our study reveals a distinct mechanism of how therapeutic 
targeting of macrophages enhances chemotherapy efficacy. In Chapter 4 
we demonstrated that anti-CSF-1R induces type I IFN signaling in KEP 
mammary tumors, which acts synergistically with cisplatin to prevent tumor 
outgrowth and to prolong survival. Furthermore, we showed that anti-CSF-
1R synergized with platinum-containing drugs, i.e. cisplatin and oxaliplatin, 
but not with the taxane docetaxel, though IFN was induced.  

The exact mechanism that induces the type I IFN expression in 
cisplatin/anti-CSF-1R-treated mice is mostly unknown. While our data 
showed that CSF-1R blockade depletes 80% of intratumoral macrophages, 
we noted a small population of remaining TAMs expressing high levels of 
IFN. These TAMs are most likely causative of the increased IFN levels in 
the tumors. Of note, as CSF-1R expression was significantly lower in the 
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remaining TAMs, it could explain their resistance to the anti-CSF-1R therapy. 
Moreover, our study shows that circulating monocytes can infiltrate into the 
tumor of anti-CSF-1R-treated mice, suggesting that these IFN expressing 
TAMs are either newly recruited monocytes or remaining TAMs. It is unclear 
from our study whether the remaining macrophages upon anti-CSF1R 
treatment are repolarized, though noteworthy, three studies using either 
CSF-1R neutralizing antibodies or CSF-1R small molecule inhibitors 
discovered that TAMs were repolarized towards a tumor-inhibiting state in a 
preclinical pancreatic cancer, glioblastoma and lung cancer mouse model 95-

97. Induction of type I IFN expression by targeting macrophage function has 
not only been seen by us in Chapter 4 but also by others; for instance type 
I IFNs were also increased in macrophages of the pancreatic cancer model 
after CSF-1R neutralizing antibodies 95. Furthermore, we also noticed IFN 
upregulation in anti-CSF-1R treated MC38 colon adenocarcinoma tumors, 
indicating that anti-CSF-1R unleashes type I IFN signaling in other cancers 
besides breast cancer. Lastly, a study targeting macrophages via their 
MerTK receptor resulted in the accumulation of apoptotic cells within 
transplanted MC38 colon carcinoma tumors and was associated with 
circulating cell-free tumor-derived DNA which triggered a type I interferon 
response by macrophages 98. It is therefore likely that in our KEP model the 
dying cancer cells and/or dying macrophages released cytosolic DNA, which 
is scavenged by the remaining macrophages and activates the cGAS-
STING pathway which triggers IFN expression by these macrophages.  

There is a vital interest in the development of clinically more effective 
combination therapies that combine IFN-I based therapies with for instance 
immune checkpoint inhibitors or chemotherapy 99-102. The type I IFN family 
includes 13 different IFN proteins (14 in mice), one IFN protein and others 
less well defined family members such as IFN and IFN 103. Type I IFN 
molecules bind to their receptor that is composed of IFNAR1 and IFNAR2 
subunits in a heterodimer or an IFNAR1 homodimer 103. IFNs activate the 
kinases Janus kinase 1 (JAK1) and tyrosine kinase 2 (TYK2) which 
phosphorylate STAT1 and STAT2 to promote the expression of type I IFN-
stimulated genes (ISGs). These innate immune signals enhance tumor 
antigen presentation and thereby augment the antigen-specific CD8+ T cells 
response 104,105. Indeed, type I IFN gene signatures have shown to correlate 
with increased bone metastasis-free survival or with metastasis-free survival 
in general in breast cancer patients 106-108. Furthermore, type I IFN signaling 
is essential for the function and survival of cytotoxic T cells 109 and NK 
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cells110. Notably, impaired type I IFN signaling is a feature of immune 
dysfunction in patients with cancer and is linked with poor prognosis 109,111,112. 
We detected an increase in ISGs in advanced solid tumor biopsies of cancer 
patients treated with emactuzumab, a humanized anti-human CSF-1R 
monoclonal antibody, compared to their reference levels, which is in line with 
our findings in the KEP mouse model (Chapter 4). Thus, the data shown in 
Chapter 4 highlight that CSF-1R blockade may be used as a strategy to 
induce an intra-tumoral type I IFNs response.  

An important question that our work leaves open is what the molecular 
mechanisms are of how type I IFN employs its anti-cancer efficacy in 
cisplatin/anti-CSF-1R-treated mice. Surprisingly, CD8+ T cells were not 
unleashed upon cisplatin/anti-CSF-1R-treatment and CD8+ T cell depletion 
did not influence the survival in cisplatin/anti-CSF-1R-treated mice. Though 
additional studies investigating other cytotoxic cells are required, these data 
indicate that another mechanism is responsible for the anti-cancer efficacy. 
Type I IFNs can have a direct effect on tumor progression by blocking 
proliferation or inducing apoptosis in cancer cells 113. Concomitant, our in 
vitro work in Chapter 4 of this thesis demonstrated that high concentrations 
of IFN, subtype IFN1, has a direct inhibitory effect on KEP cancer cells. 
Of note, it will be interesting to evaluate other IFN molecules and IFN as 
their influence against viral infections 114 and their anti-proliferative effects 
on cancer cells 115 have shown to differ and could be cumulative. However, 
no increase of apoptotic cells was found in tumors of cisplatin/anti-CSF-1R-
treated mice (Chapter 4), suggesting that a different mechanism such as 
necroptosis, an inflammatory programmed form of necrosis, or senescence 
might at play. In this regard, studies have shown that both cisplatin 116,117 and 
type I IFNs 118,119 can induce senescence in cancer cells, suggesting that 
senescence in cisplatin/anti-CSF-1R-treated tumors could perhaps explain 
the reduced proliferation and lack of apoptosis. Since the majority of breast 
cancer deaths are caused by metastatic disease 120, it will be of great value 
to study whether type I IFNs influences metastasis formation upon anti-CSF-
1R with platinum based chemotherapy 13. Monotherapy of CSF-1R blockade 
did not affect the metastasis-specific survival in the KEP-based model of 
spontaneous breast metastasis (Chapter 4).  

Studies in preclinical cancer models and patients have described that 
chemotherapeutic drugs, such as anthracyclines and cyclophosphamide, 
induce type I IFN production, which is required for their therapeutic efficacy 
as blockade of type I IFN signaling results in loss of the anti-cancer efficacy 
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99,121. However, in our study in Chapter 4 cisplatin response was not affected 
by blockade of type I IFN signaling. Only the combination of cisplatin/anti-
CSF-1R induced a type I IFNs response that led to enhanced survival. 
Interestingly, the increase in type I IFN during anti-CSF-1R therapy did not 
enhance the efficacy of the taxane docetaxel. What could have caused the 
synergy of CSF-1R blockade with cisplatin and oxaliplatin but not with 
docetaxel? The two conventional chemotherapeutics have a different mode 
of action: while platinum-based anticancer drugs cause crosslinks in the 
DNA and prompt apoptosis, taxanes affect cell division through stabilization 
of microtubules. In line with this notion, a comprehensive study into the 
mutagenic impact of common chemotherapeutics found that cisplatin 
induces the highest amounts of single nucleotide variant (SNV)’s, indels and 
deletions compared to several other standard cytotoxics, including the 
taxane paclitaxel 122. It is now well-known that distinct cytotoxic drugs 
differentially affect immune cells and the influence of the immune system on 
chemo-responsiveness has shown to depend on the type of 
chemotherapeutic drug and dosing  49,123,124. Especially cisplatin has shown 
to induce antitumor immunomodulation in multiple preclinical and clinical 
studies 125-128. Hence, it is conceivable that platinum-based anticancer drugs 
create a milieu in KEP tumors that is preventing type 1 IFN signaling. In line 
with this notion, cisplatin response was not affected by blockade of type I 
IFN signaling (Chapter 4). To this end, it will be interesting to investigate 
whether alterations effecting genes or pathways of the IFN signaling 
cascade are present in KEP tumors after cisplatin and docetaxel treatments. 
Furthermore, two clinical trials recently combined paclitaxel with CSF-1R 
blockade; emactuzumab in patients with advanced/metastatic solid tumors 
129 and pexidartinib (PLX3397) in patients with refractory solid tumors 130. 
Only the combination of paclitaxel with pexidartinib noted an objective 
response rate of 16% 130, while no anti-tumor activity alone or in combination 
with paclitaxel was found with emactuzumab 129. Based on our data, cisplatin 
may have been a more optimal combination chemotherapeutic drug. 
However, synergistic affects with CSF-1R blockade may also depend on the 
tumor (sub)type, stage, prior treatments and CSF-1R blockade drug. Future 
studies should expand tumor models, numbers and types of 
chemotherapeutic agents used in the clinic to examine synergistic effects 
with anti-CSF-1R and choose the optimal cytotoxic drug to maximize the 
effects of CSF-1R targeting agents.  
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Targeting neutrophil-dependent immunosuppression 
further improves cisplatin/anti-CSF-1R efficacy 

In contrast to cancer cells which develop mechanisms of resistance to 
therapies, immune cells are not under the same mutational pressure and 
thus unlikely to develop therapy resistance. However, bidirectional feedback 
between cancer cells and their microenvironment can induce resistance of 
the tumor microenvironment to immuno-modulation of CSF-1R targeting. In 
several models, resistance to CSF-1R targeting or macrophage inhibition 
was seen by the recruitment of tumor-promoting neutrophils 131-135. These 
newly recruited neutrophils embodied similar pro-tumor mechanisms as the 
depleted TAMs, such as regulating proccesses like immunosuppression and 
angiogenesis 134,135. However, different than those studies, neutrophils did 
not take over the function of macrophages upon CSF-1R blockade and 
cisplatin in KEP tumors, but unlike macrophages, neutrophils exhibited 
immunomodulatory functions (Chapter 4). In the poorly immunogenic KEP 
model, we targeted the immunosuppressive neutrophils in cisplatin/anti-
CSF-1R-treated mice to obtain an effective CD8+ T cell response that 
contributed to tumor control and extended survival (Chapter 4). Moreover, 
antibody-mediated depletion of NK cells resulted in a partial los of the benefit 
of neutrophil depletion, suggesting that not only CD8+ T cells but also NK 
cells are necessary to engage anti-tumor immunity upon neutrophil depletion 
in cisplatin/anti-CSF-1R-treated mice. Engagement of anti-tumor immunity 
upon macrophage and neutrophil targeting was also seen in a mouse model 
for pancreatic cancer 133, but whether type I IFN signaling was induced is 
unknown. However, since we did not observe an increase in neutrophil 
recruitment by absolute neutrophil numbers unlike other studies have noted, 
it is likely that a different mechanism influenced neutrophil function in the 
KEP mouse model upon macrophage targeting.   

The exact TME signals that instructed neutrophils to acquire pro-tumor 
functions upon CSF-1R blockade are unknown, although it is plausible that 
prolonged type I IFN signaling could have led to immunosuppressive 
circuits. While several studies have suggested that type I IFNs induce anti-
tumor properties in neutrophils 136-138, other studies in chronic infections such 
as malaria-infected hosts and patients with active tuberculosis found that a 
type I IFN transcriptional signature in neutrophils is correlated with tissue 
damage and disease pathogenesis 139,140. Moreover, negative-feedback 
mechanisms were reported in studies on chronic viral infections when type 
I IFN signaling persisted and lead for example to the generation of an 
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immunosuppressive environment 93,141,142. In fact, higher levels of PD-L1 
were found on type I IFN-producing macrophages upon anti-CSF-1R 
treatment in KEP mice (Chapter 4), suggesting that perhaps an autocrine 
mechanism was present to resolve the inflammatory responses. Whether 
sustained type I IFN signaling can rewire neutrophils in cisplatin/anti-CSF-
1R-treated mice should be addressed in future studies. Furthermore, RNA-
sequencing analysis on neutrophils isolated from cisplatin/anti-CSF-1R-
treated mouse tumors displayed elevated expression levels of type I IFN-
stimulated genes compared to neutrophils in tumors of cisplatin/control 
antibody-treated mice (Chapter 4). It is unclear whether the type I IFN 
signaling of neutrophils promotes their immunosuppressive abilities.  

How neutrophils exert their immunosuppressive functions needs to be 
further elucidated. Interestingly, a correlation was recently found between 
type I IFN signaling and ROS production of neutrophils in a melanoma model 
138. Immunosuppressive- pro-metastatic neutrophils in the KEP mouse 
model have previously shown to express high levels of inducible nitric oxide 
synthase (iNOS) 11,143. By influencing conformational changes in TCR 
recognition, iNOS prevents specific peptide recognition by T cells 144. To 
elucidate whether neutrophils employ iNOS to prevent an anti-tumor 
immune response in cisplatin/anti-CSF-1R-treated mice additional studies 
are required.   

Since neutrophils have shown to influence various tumor-promoting 
processes, neutrophils have become interesting putative targets for 
therapeutic intervention 145. Moreover, a high neutrophil-to-lymphocyte ratio 
in the circulation of multiple cancers is linked to poor prognosis in patients 
146. Currently, the chemokine receptors CXCR1 and CXCR2 that are 
important for neutrophil recruitment are under clinical evaluation 147,148. Our 
study shows that the therapeutic efficacy of targeting macrophages and 
neutrophils in cisplatin-treated KEP mice is mediated by the induction of type 
I IFNs and by unleashing anti-tumor responses. To this end, it will be 
important to evaluate the development of protumor functions by neutrophils 
in patients that receive combinational therapy of chemotherapy with anti-
CSF-1R or type I IFN-stimulating drugs and the subsequent testing of 
neutrophil-targeting therapy efficacy.  
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Concluding remarks and future perspectives 

The work presented in this thesis focuses on obtaining a better 
understanding of the adaptive immune system in breast cancer initiation, 
progression, metastasis and chemotherapy response. In addition, this thesis 
focuses on maximizing the success of immunomodulatory agents targeting 
myeloid cells using genetically engineered mouse models. This thesis 
demonstrates that unlike other breast cancer mouse models 9-11, the 
adaptive immune system is not involved in primary tumor and metastasis 
formation in a de novo tumor mouse model of HER2-positive breast cancer 
(Chapter 2). To harness successful anti-tumor immunity and increase 
therapy outcomes in HER2-positive patients, future research should be 
aimed at understanding the immunosuppressive networks in HER2-positive 
breast cancer. Furthermore, while the endogenous adaptive immune system 
has shown to play an important role during chemotherapy response of 
immunogenic cancer models 76, our research shows that the adaptive 
immune system is not important during chemotherapy response in two de 
novo breast tumor mouse models. Remarkably, by performing studies with 
CSF-1R blockade to target macrophages, we demonstrate that the use of 
agents that trigger type I IFN responses enhances the anti-cancer efficacy 
of chemotherapy. This thesis further elucidates that engagement of anti-
tumor immunity can be reached with the addition of neutrophil depletion 
during chemotherapy and CSF-1R blockade. Thus, these data suggest that 
a combination strategy triggering the removal of the immunosuppressive 
TME networks and subsequent type I IFN response is the mechanism of 
action to acquire a proficient adaptive immune response in the less 
immunogenic ILC mouse model upon chemotherapy treatment. This thesis 
reveals that investigating the function of the adaptive immune system during 
tumor development and chemotherapy in a larger set of solid breast cancer 
subtypes is essential for the development of immunomodulatory 
approaches. Lastly, the data in this thesis describe that the synergy of 
combined chemotherapy and CSF-1R blockade is chemotherapy dependent 
as we found that only platinum drugs, but not docetaxel, synergized with 
CSF-1R blockade and increased survival further. These data indicate that 
therapeutic approaches using type I IFN-inducing agents such as CSF-1R-
targeting drugs or STING agonists are important for successful anti-cancer 
therapy, however future research should obtain more insights into the 
synergistic effects of combinatorial therapies with myeloid targeting and 
evaluate immunomodulatory drug-induced resistance. Considering the 
realization that cancer subtype, the genetic background of the tumors, 
disease stage and treatment history affect anti-cancer immunity, the vision 
for immunomodulatory therapies must change to a more personalized 
treatment. 
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