

Neutral outflows in high-redshift dusty galaxies Butler, K.M.

Citation

Butler, K. M. (2023, September 14). *Neutral outflows in high-redshift dusty galaxies*. Retrieved from https://hdl.handle.net/1887/3640590

Version:	Publisher's Version
License:	Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from:	https://hdl.handle.net/1887/3640590

Note: To cite this publication please use the final published version (if applicable).

Neutral Outflows in High-Redshift Dusty Galaxies

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Leiden, op gezag van rector magnificus prof. dr. ir. H. Bijl, volgens besluit van het college voor promoties te verdedigen op donderdag 14 september 2023 klokke 13.45 uur

door

Kirsty May Butler

geboren te Perth, Western Australia, Australia in 1994

Promotor:	Prof. dr. P. P. van der Werf	
Co-promotor:	Dr. J. A. Hodge	
Promotiecommissie:	Prof. dr. I. A. G. Snellen	
	Prof. dr. J. Schaye	
	Prof. dr. S. Viti	
	Dr. P. Cox	Institut d'Astrophysique de Paris
	Prof. dr. K. Kraiberg Knudsen	Chalmers University of Technology

Printed by: Gildeprint ISBN: 978-94-6419-891-1

An electronic copy of this thesis can be found at https://openaccess.leidenuniv.nl.

© Kirsty May Butler, 2023

Cover design: A galaxy juggling its outflows. Design by Erica Emma Butler Kuser & Assistants. Artwork by Kirsty May Butler.

To beans.

"There are many theories about how the univarse began, but the truth is most of the theories are just that. Theories. All we know for certain is that in the beginning there was a bum." - from Zombie Bums from Uranus (2003) by Australian children's author Andy Griffiths

Contents

1	Intro	duction	n	3
	1.1	The Ba	aryon Cycle	3
	1.2	The M	ultiphase Nature of Galaxy Outflows	3
	1.3	Outflow	ws at High-z	5
	1.4	This T	hesis	7
	Refe	rences .		7
2	Reso	lved Ne	eutral Outflow from a Lensed Dusty Star-Forming Galaxy at $z = 2.09$	11
	2.1	Introdu	uction	11
	2.2	Observ	vations and data reduction	14
		2.2.1	ALMA Band 6 Observations and Reduction	14
		2.2.2	Ancillary NIR data	16
		2.2.3	Ancillary CH ⁺ data	16
	2.3	Results	5	17
	2.4	Gravita	ational Lens modelling and Source Plane Reconstruction	19
		2.4.1	Lens modelling: VISILENS	19
		2.4.2	Source Reconstruction: LENSTOOL	23
		2.4.3	Comparison with Previous Lens Models	29
	2.5	Outflow	w Geometry	29
		2.5.1	Sheet	29
		2.5.2	Spherical	29
		2.5.3	Conical	32
	2.6	Chemi	cal Properties of the Gas	33
		2.6.1	CO(9-8)	35
		2.6.2	OH ⁺	35
		2.6.3	CH ⁺	37
		2.6.4	Comparison of OH ⁺ and CH ⁺	38
	2.7	Derive	d Outflow Properties	39
		2.7.1	Outflow Mass	41
		2.7.2	Mass Outflow Rate	42
		2.7.3	Outflow Energetics	46
		2.7.4	Impact on the Host Galaxy and Fate of the Outflowing Neutral Gas	51
	2.8	Conclu	sions	55
	2.A	Beam S	Smearing Effects on Source Reconstruction of Gravitational Lenses	57
	2.B	OH+(1	$_0 - 1_1$) Optical Depth to Column Density	59
References			· · · · · · · · · · · · · · · · · · ·	60

3	Mol	ecular C	Dutflows in $z > 6$ Unobscured QSO Hosts Driven by Star Formation	67
	3.1	Introdu	ction	67
	3.2	Sample	e, Observations and Imaging	69
	3.3	Results	, 	71
		3.3.1	Spectra and Spectral Fitting	71
		3.3.2	Source Sizes	76
		3.3.3	Outflow Covering Fractions and Detection Rates	77
	3.4	Derived	d Outflow Properties	78
		3.4.1	Outflow Mass. Mass Outflow Rate and Depletion Times	78
		342	Outflow Energetics	, o 80
		343	Escape Fractions	81
	35	Discuss	sion	83
	5.5	2 5 1	What Drives Molecular Outflows in Unobscured OSO Hosts?	83
		3.5.1	Interaction Between Central AGNs and the Surrounding ISM	05 Q1
		252	The Deckground Dust Continuum and its Effect on the Outflow Abcom	04
		5.5.5	tion Signature	06
		254		80 00
	2.6	3.5.4	OH 119 μ m Emission	89
	3.6	Conclu	sion	90 91
	Refe	rences.		91
4	Neut	tral Out	flows in High–z QSOs	97
	4.1	Introdu	ction	97
	4.2	Sample	and Observations	98
	4.3	Spectra	and Spectral Fitting	99
	4.4	Results		99
		4.4.1	Fitted Line Properties	99
		4.4.2	Derived Line Properties	03
	4.5	Discuss	sion	03
		4.5.1	OH ⁺ Absorption	03
		4.5.2	OH ⁺ Emission	05
		4.5.3	CO(9-8) Emission	06
	4.6	Conclu	sions	07
	4.A	ALMA	Observation Details	08
	4.B	Additic	onal lines in WFL I2026-4536	08
	Refe	rences .		08
5	Nort	tual Out	Howa from - 2 4 Ducty Colorian	12
5	TNeu		nows from $z \sim 2 - 4$ Dusty Galaxies	13
	5.1	Introdu		15
	5.2	Observ	ations and data	15
	5.3	Spatial	ly Integrated Spectra and Fitting	15
		5.3.1	Cycle 3 Sample Spectral Fitting	17
		5.3.2	Cycle 9 Sample Spectral Fitting 12	20
	5.4	Results	······································	27
		5.4.1	Detected Spectral Features	27
		5.4.2	Derived Spectral Line Properties	28

CONTENTS

5.5	Nature of the Sources	129
	5.5.1 Cycle 3 Sample	132
	5.5.2 Cycle 9 Sample	134
5.6	Tracing Fueling and Feedback with OH ⁺ Absorption	135
	5.6.1 Properties of the Diffuse Neutral Gas	136
	5.6.2 Detection Rates and Covering Fractions	137
	5.6.3 What type of Galaxies drive Neutral Outflows in the CGM?	137
5.7	Warm Dense Molecular Gas	138
5.8	Conclusions	139
Refe	rences	141
English	Summary •	145
Nederla	ndstalige Samenvatting 🏓	149
List of p	oublications	153
Curricu	lum vitae	155
Acknow	ledgments	157