
Improving weakly supervised phrase grounding via visual
representation contextualization with contrastive learning
Wang, X.; Du, Y.; Verberne, S.; Verbeek, F.J.; Meng, X.; Wang, F.; ... ; Xie, X.

Citation
Wang, X., Du, Y., Verberne, S., & Verbeek, F. J. (2022). Improving weakly supervised
phrase grounding via visual representation contextualization with contrastive learning.
Applied Intelligence, 53(11), 14690-14702. doi:10.1007/s10489-022-04259-9
 
Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/3640505
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3640505


Applied Intelligence (2023) 53:14690–14702
https://doi.org/10.1007/s10489-022-04259-9

Improving weakly supervised phrase grounding via visual
representation contextualization with contrastive learning

XueWang1,2 · Youtian Du1 · Suzan Verberne2 · Fons J. Verbeek2

Accepted: 10 October 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Weakly supervised phrase grounding aims to map the phrases in an image caption to the objects appearing in the
image under the supervision of image-caption correspondence. We observe that the current studies are insufficient to
model the complicated interactions between the visual components (i.e., the visual regions) and between the visual and
textual components (i.e., the phrases). Therefore, this paper presents a novel weakly supervised learning approach to
phrase grounding in which we systematically model the visual contextualized representation with three modules: (1)
object proposals pooling (OPP), (2) visual self-attention (VSA) and (3) visual-textual cross-modal attention (VTCA). OPP
alleviates the suppression of the object proposals and benefits the visual representation in terms of trading off the richness
of the visual components and the computational efficiency. VSA aims to capture the correlation among the object proposals
and generate a representation of each proposal by incorporating the visual information of the others. To measure the cross-
modal compatibility in terms of topics, we introduce the VTCA module to represent the visual topic corresponding to each
textual component in a cross-modal common vector space. In the training process, we build a mixed contrastive loss function
by considering both the cross-modal compatibility and the differences in the visual representations in the VSA module.
Compared with the state-of-the-art methods, the proposed approach improves the performance by 3.88% points and 1.24%
points on R@1, and by 2.23% points and 0.26% points on Pt Acc, when trained on the MS COCO and Flickr30K Entities
training sets, respectively. We have made our code available for follow-up research.

Keywords Visual representation · Phrase grounding · Contrastive learning · Weakly supervised learning

1 Introduction

Tasks combining cross-modal (visual-and-language) com-
patibility have attracted much attention and have contributed
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to the advancement of artificial intelligence in recent years.
Examples of cross-modal tasks are image caption gen-
eration [1], visual question answering (VQA) [2], visual
reasoning [3, 4] and phrase grounding [5]. Phrase ground-
ing localizes the objects in images and at the same time,
based on the paired images and captions, maps them to the
phrases in the captions. Phrase grounding requires a model
to understand the fine-grained correspondences between
images and language. A large part of the previous works
[6–8] are based on supervised learning, i.e., there is super-
vision of the correspondence between the visual regions and
phrases. However, the availability of this kind of labeled
data is limited due to the significant amount of manual
effort required to collect the annotations for region-phrase
correspondences.

To address the issue of limited data availability,
researchers have proposed a few weakly supervised phrase
grounding methods, which employ only the correspondence
between images and text as supervision instead of the
matching annotations of the visual regions and phrases. The
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attention mechanism has become an important technique
in solving the task of weakly supervised phrase grounding,
and can generally be divided into two types. The first
type models the intra-modality compatibility that infers
the latent correlations between the different regions in an
image or the different words in a caption [9] based on a
self-attention mechanism. The other seeks to mine the cross-
modal interactions between textual words and visual regions
based on inter-modality compatibility [10]. That is, most of
the previous methods only consider the inter-modality or
intra-modality correlations.

Another issue of weakly supervised phrase grounding is
how to choose loss functions to obtain a better learning
result. Recently, contrastive learning, e.g., InfoNCE [11],
has shown promising results on a variety of applications.
Gupta et al. [12] proposed a novel contrastive learning
approach to the task of weakly supervised phrase grounding,
which improved the performance by employing the
InfoNCE loss defined on the positive and negative samples.

In this paper, inspired by the advancements of contrastive
learning [12] and phrase grounding [13], we introduce
a new approach called VRC-PG to improve the weakly
supervised phrase grounding with visual representation
contextualization (VRC). In our method, the inter- and intra-
modality interactions are modeled to infer the compatibility
between the phrases and the visual regions. Here, we also
call the phrase and visual region the textual component
and the visual component, respectively. VRC-PG consists of
three modules: object proposals pooling (OPP), visual self-
attention (VSA) and visual-textual cross-modal attention
(VTCA). In the visual representation contextualization,
OPP is introduced to alleviate the suppression of object
proposals (candidates) generated by the object detectors.
This benefits visual representation contextualization in
terms of trading off the richness of the visual components
and the computational efficiency. VSA aims to capture
the correlation between visual object proposals for each
image and generate the representation of each candidate by
incorporating the visual information of the other candidates.
To measure the cross-modal compatibility at the level
of topics, we subsequently introduce the VTCA module
to distill the visual topic corresponding to each textual
component, i.e., the textual phrase, in a cross-modal
common vector space, guided by the attention of a phrase
to the visual object proposals. In addition, we present a
mixed contrastive loss function including two terms; one
term is to improve the cross-modal compatibility in terms of
topics of images and captions, and the other is to control the
difference of the visual representations induced by the VSA
module.

In summary, our research contributions are threefold: (1)
We propose a novel approach to weakly supervised phrase
grounding based on visual representation contextualization

under the weak supervision of image-caption correspon-
dences without region-phrase matching annotations. More-
over, a mixed contrastive loss is introduced to improve the
performance of our model. (2) We present an architecture
of visual representation contextualization that consists of
object proposals pooling (OPP), visual self-attention (VSA)
and visual-textual cross-modal attention (VTCA). (3) The
proposed model is evaluated on the Flickr30K Entities
dataset and achieves a state-of-the-art performance, improv-
ing by 1.24% and 3.88% in terms of Recall@1 on the
Flickr30K Entities test set when trained on the Flickr30K
Entities training set and MS COCO, respectively.

2 Related work

2.1 Phrase grounding

The existing works on phrase grounding are carried
out mainly under two learning paradigms, namely, fully
supervised learning and weakly supervised learning. Fully
supervised learning methods employ the correspondence
between visual regions and phrases in the training
procedure. Plummer et al. [5] proposed a global image-
sentence canonical correlation analysis model based on full
supervision to measure the region-phrase correspondence
in a combined image-text embedding space and achieved
a state-of-the-art result on the Flickr30K Entities dataset.
Bajaj et al. [14] utilized graphs to formulate more complex,
non-sequential dependencies among object proposals and
phrase candidates. However, it is time-consuming in
practice to manually annotate data for the correspondences
between phrases and visual regions. Thus, researchers
have started to address the phrase grounding task under
weak supervision. Plummer et al. [6] presented a weakly
supervised learning method to localize the phrases in images
by modeling the appearance, object size and position of
the visual objects. Chen et al. [15] proposed a weak
supervision novel knowledge-aided network, which was
optimized by reconstructing the input information of queries
and region proposals with the prediction labels extracted
with a region proposal network (RPN). Akbari et al. [16]
proposed a multi-level multimodal model to explicitly learn
a nonlinear mapping of the visual and textual modalities in
a common semantic space based on a weakly supervised
learning process, and did so at different granularities for
each modality. Most weakly supervised phrase grounding
methods can be categorized into two classes; one class
directly measures the similarity between the predicted
textual labels of the visual region proposals and the phrases
in the captions, the other class transforms both modalities
into a common space and measures the similarity of a
sentence and an image in such a space.
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Recently, with the success of the attention mechanism in
the cross-modal research field, researchers have employed
the attention mechanism in phrase grounding to model
the correspondence of visual regions and phrase problems.
Vaswani et al. [17] introduced an attention mechanism in
the Transformer model to mine the relation between the
terms fed to the model. A number of works have been
proposed to use the attention mechanism for an estimation
of the similarity between the data from different modalities.
Yu et al. [18] proposed a heterogeneous attention network
(HAN) to build a cross-modal self-attention in the union of
word features and bounding box features. To integrate more
cross-modal information from the other modalities, Dong
et al. [19] proposed a cross-modal graph attention strategy
to generate a graph attention representation for each sample.
To address the problem that image regions and words do
not strictly match, Xu et al. [20] proposed an approach
named cross-modal attention with semantic consistency
(CASC) by jointly considering the local alignment and
global semantic consistency. Overall, the main goal of the
attention mechanism in cross-modal understanding is to
reconstruct the representation of an example by aggregating
the contextual information from both modalities.

In our work, we propose to build a visual representation
contextualization architecture to enhance the performance
of weakly supervised phrase grounding, which jointly
considers the visual self-attention for the visual modality
and the visual-textual cross-modal attention between both
modalities. To optimize the proposed model, a mixed
contrastive loss is defined in the visual space and cross-
modal common space.

2.2 Non-maximum suppression (NMS)

NMS [21] has been an important technique for computer
vision tasks, such as object detection [22, 23] and edge
extraction [24]. In object detection, NMS is a post-
processing step adopted by a number of modern object
detectors, which can remove duplicate bounding boxes
based on the confidence of detection. A major issue with
NMS is that it sets the confidence of the neighboring
detection results to zero. Thus, the object region proposals
will be removed when their intersection over union (IoU)
with the region proposal of the highest classification
confidence is greater than a threshold, which will lead to
a drop in the average precision. To alleviate this problem,
Bodla et al. [25] presented the Soft-NMS algorithm to
decrease the confidence scores as an increasing function
of overlap instead of setting the score to zero as in NMS.
Softer-NMS [26] proposed a bounding box regression
Kullback-Leibler loss for learning the bounding box
transformation and localization variance together. As a
downstream task of object detection, language grounding

has been performed with NMS to align the language with
the visual object proposals. Chen et al. [27] employed NMS
to yield expression-aware region proposals to improve the
performance of language grounding.

In our work, we use Soft-NMS to replace NMS in
the generation of the regions of interest (RoIs) to keep
more bounding box proposals and introduce an extra object
proposals pooling module with NMS to adaptively choose
those proposals with high confidence scores and to benefit
the weakly supervised phrase grounding task.

2.3 Contrastive learning in cross-modal tasks

Contrastive learning was first used as a powerful scheme in
self-supervised representation learning [11, 28–30]. Recently,
contrastive learning has been introduced in cross-modal
understanding tasks to enforce the consistency of represen-
tations from different modalities by leveraging contrasting
positive example pairs and negative pairs. Zhang et al. [31]
proposed a cross-modal model called XMC-GAN, which
introduced an attentional self-modulation generator and a con-
trastive discriminator to maximize the cross-modal informa-
tion between the images and text. Dai and Lin [32] proposed
a method that encouraged the distinctiveness of positive
pairs while maintaining the overall quality of the generated
captions. Gupta et al. [12] built a weakly supervised phrase
grounding model based on optimizing the lower bound of
InfoNCE onmutual information (MI) with respect to param-
eters of a word-region attention model. Li et al. [33] pro-
posed a framework combining a self-attention mechanism
with contrastive feature construction to effectively summa-
rize the common information from each image group while
capturing the discriminative information between the visual
regions and phrases. CDMLMR [34] integrates the quadru-
plet ranking loss and semi-supervised contrastive loss to
model the cross-modal semantic similarity in a unified
multi-task learning architecture.

Different from previous works, our work introduces a
mixed contrastive loss for the learning of contextualized
visual representations in the phrase grounding task. The
mixed contrastive loss consists of two terms; one term
improves the cross-modal compatibility in terms of the
topics of images and captions, and the other controls the
closeness of the visual representations before and after the
VSA module.

3Methodology

3.1 Overview

We are given a set of pairs, each consisting of an
image and its caption. Formally, we have data Di =
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{(Ii, Ci)}Ni=1, where Ii and Ci denote the i-th image and
its corresponding caption, respectively. In general, the
content of an image, Ii , can be described by a set of
ni visual object regions enclosed with bounding boxes
Bi = {bi1, bi2, · · · , bini

}. The visual regions can be
represented with the box locationBi = (bi1, bi2, · · · , bini

),
confidence score Si = (si1, si2, · · · , sini

), visual features
Ri = (r i1, r i2, · · · , r ini

) and category predictions Li =
(li1, li2, · · · , lini

). Regarding the textual modality, each
caption Ci can be considered a sequence of mi tokens
Ti = (ti1, ti2, · · · , timi

), and transformed to the token
representation T i = (t i1, t i2, · · · , t imi

), using the BERT-
base model [35]. A phrase consists of one or multiple
tokens of captions. In this manner, the training data can be
described by Di = {(Bi , Si , Ri , Li ),T i}Ni=1.

In this paper, we present a novel approach called VRC-
PG for the task of weakly supervised phrase grounding.
As shown in Fig. 1, our VRC-PG approach includes
four main parts: (1) an object proposals pooling module,
(2) a visual self-attention module, (3) a visual-textual
cross-modal attention module and (4) a mixed contrastive
loss function. The proposed approach models visual
representation contextualization by jointly considering the
interactions in both the unimodal data and cross-modal data
and trains the model with a contrastive learning paradigm
under the weak supervision of the correspondence between
images and text.

3.2 Visual representation contextualizationmodel

3.2.1 Feature extraction

The purpose of the visual representation contextualization
model is to build the correspondence between the token
representations T i = (t i1, t i2, · · · , t imi

) and object
candidate representations Ri = (r i1, r i2, · · · , r ini

) by
measuring their attention.

We use the BERT-base model [35] to generate the textual
representation, with captions as input.

t ij = BERT (Ci), (1)

where t ij ∈ R
dt is a dense vector representation.

We utilize the Faster R-CNN model [22] trained on the
Visual Genome dataset [36] to extract and represent the
visual objects from images:

({bij }, {sij }, {r ij }, {lij }) = FasterRCNN(Ii), (2)

where bij ∈ R
4 and r ij ∈ R

dr and sij is the maximum
classification score among all the categories. In this work,
we do not employ the predicted category labels, lij ,
generated by Faster R-CNN for each object region in our
task.

Fig. 1 The framework of VRC-PG. The visual representation contex-
tualization comprises three parts: 1) object proposals pooling, where
thick bounding boxes (red, blue and yellow) are the output boxes
and thin bounding boxes (green) are non-maximally suppressed, 2)

visual self-attention, and 3) visual-textual cross-modal attention. The
proposed model is trained with the contrastive learning paradigm by
introducing our 4) mixed contrastive loss
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3.2.2 Object proposals pooling (OPP)

As weakly supervised phrase grounding is performed
without phrase grounding annotations, its quality depends
on the accuracy of the object proposals extracted with
Faster R-CNN. To keep more effective object proposals,
we replace NMS used in Faster R-CNN with Soft-NMS
[25]. The advantage of Soft-NMS is that it keeps more
proposals for an object. However, it will cause a lower
mapping accuracy if two objects overlap with each other.
To alleviate this problem, we propose an object proposals
pooling module based on NMS to further prune the detected
objects and only keep the boxes with less than an IoU
threshold θ in the training process. The OPP module can
adaptively choose those proposals with high confidence
scores, {sij }, and benefit the weakly supervised phrase
grounding task.

For an image Ii , the pruning starts with a bounding box,
biz, with the highest confidence score siz = maxj (sij ). biz

is kept as one of the bounding boxes. Then, we update the
confidence score of each bounding box bij by

sij =
{

sij , IoU(bij , biz)<θ, j ∈ 1, . . . , ni;
0, IoU(bij , biz) ≥ θ, j ∈ 1, . . . , ni .

(3)

Here, θ is a threshold to decide which object box should be
directly excluded in each iteration of the object proposals
pooling. Based on the above process, we can choose more
bounding boxes based on (3) until all the confidence scores
are updated to zero. Finally, the OPP module produces n′

i

object proposals. In this module, we do not employ the
category predictions generated by Faster R-CNN.

3.2.3 Visual self-attention (VSA)

In general, the visual components, i.e., the visual object pro-
posals in an image, have spatial and semantic correlations
with each other. In this paper, we introduce a visual self-
attention module to model the context of the visual object
regions and build their representations. A general attention
mechanism [17] can be formulated as follows:

Attention(Q,K, V ) = softmax(sim(Q,K)) · V , (4)

where Q, K , V and Attention(·, ·, ·) refer to the query, key,
value and output, respectively, and sim(·, ·) denotes a certain
function to measure the similarity of the queries and keys.
In this work, the query (key) and value are obtained by the
projection functions f s

I (·) and gs
I (·), respectively, and are

implemented with a fully-connected layer as follows:{
qs

ij , k
s
ij = f s

I (r ij ), j = 1, · · · , n′
i;

vs
ij = gs

I (r ij ), j = 1, · · · , n′
i ,

(5)

where qs
ij , k

s
ij and vs

rij
∈ R

ds refer to the vector of query,
key and value, respectively. The soft weight of self-attention

from r ij to r iu can be measured by the correspondence
between them defined as follows:

as

(
qs

ij , k
s
iu

)
= e

qs
ij ·ks

iu/
√

ds

∑
we

qs
ij ·ks

iw/
√

ds

. (6)

Thus, the contextualized visual representation of an object
region is obtained by considering the self-attention:

rs
ij =

∑
u

as

(
qs

ij , k
s
iu

)
vs

iu, (7)

where rs
ij denotes the contextualized visual representation

for the object region r ij that incorporates the global
information of the i-th image. Figure 2 illustrates the
structure of the VSA module.

3.2.4 Visual-textual cross-modal attention (VTCA)

To build an adaptive correspondence between the compo-
nents of different modalities (i.e., the object proposals and
tokens), we make a cross-modal alignment between the
visual and textual components. Here, we introduce a visual-
textual cross-modal attention module to find the visual com-
ponents semantically related to a given textual component.
First, we transform the representation of the textual com-
ponents generated by BERT and the contextualized visual
representation into a common space of dimensionality, dc.
In this module, we take the textual token as the query and
measure the weight of attention to the visual components by
computing the cross-modal correlation.

In the common space, the query and value for the token
representation t ij are generated by the functions fC(·)
and gC(·), respectively, and the key and value for the
visual region proposal oij are obtained by fI (·) and gI (·),
respectively, as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qC
ij = fC(t ij ), j = 1, · · · , mi;

kI
ij = fI (r

s
ij ), j = 1, · · · , n′

i;
vC

ij = gC(t ij ), j = 1, · · · , mi;
vI

ij = gI (r
s
ij ), j = 1, · · · , n′

i ,

(8)

where t ij refers to the representation of token tij generated
by BERT, rs

ij is the contextualized visual representation

obtained with (7) and qC
ij , k

I
ij , v

C
ij and vI

ij ∈ R
dc . In this

work, f·(·) and g·(·) are implemented with fully-connected
layers.

Given the representation of a token obtained from
BERT as a query, i.e., qC

ij , based on the attention
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Fig. 2 The detailed structure of the VSA and VTCA modules. as
i,ju and ac

i,ju denote the abbreviation of as(q
s
ij , k

s
iu) in (6) and ac(q

C
ij , k

I
iu) in (9),

respectively

mechanism [17], the cross-modal attention [12] is defined as
follows:

ac

(
qC

ij , k
I
iu

)
= e

qC
ij ·kI

iu/
√

dc

∑n′
i

w=1e
qC

ij ·kI
iw/

√
dc

, (9)

r̂ ij =
n′

i∑
u=1

ac

(
qC

ij , k
I
iu

)
vI

iu, (10)

where r̂ ij represents a visual topic correlated to the
semantics of token tij by incorporating the textual token
information with the cross-modal attention. Figure 2
illustrates the structure of the VTCA module.

3.3 Mixed contrastive loss function

For a mini-batch in the learning process, we have Nb

pairs of captions and images represented with V C
i

=
[vC

i1, v
C
i2, · · · , vC

imi
] and V̂

I

j = [r̂ i1, r̂ i2, · · · , r̂ imi
], respec-

tively, based on VTCA. We measure the similarity between
two samples of different modalities as follows:

S
(
V C

i , V̂
I

j

)
=

etr
(
V CT

i · V̂
I

j

)
∑Nb

k=1e
tr

(
V CT

i · V̂
I

k

) , (11)

where tr(·) and the superscript T denote the trace and
transposition of a square matrix. (11) uses a softmax
operator to normalize the similarity to sum 1.

In contrastive learning, an image and its matching
caption construct a positive sample pair (i.e., i = j ), and
the non-matching image-caption pairs in a mini-batch are

considered negative sample pairs (i.e., i �= j ). Based on the
similarity measured in (11), we introduce a contrastive loss
function at the granularity of images and captions:

LC = − 1

Nb

Nb∑
i=1

log
(
S

(
V C

i , V̂
I

i

))
/T , (12)

where T is a temperature hyperparameter. The loss in
(12) seems to only work on the positive pairs and does
not involve the negative pairs. Actually, to maximize the
similarity S(·, ·) in (12) for the positive pair will lead to the
suppression of the similarity for the negative pairs due to
the sum-to-one normalization shown in (11), which is just a
manner of contrastive learning.

In addition, we introduce a loss to force the outputs of
the visual self-attention module to be close to its inputs. The
visual self-attention loss is defined as follows:

LS = − 1

Nb

Nb∑
i=1

⎛
⎝ 1

n′
i

n′
i∑

j=1

log

⎛
⎝ e

(r ij ·rs
ij )

∑n′
i

u=1e
(r ij ·rs

iu)

⎞
⎠

⎞
⎠ . (13)

Clearly, the visual self-attention loss is also a contrastive
loss.

Finally, we build a mixed contrastive loss function in the
form of

L = αLC + LS, (14)

where α is a hyperparameter to control the balance of both
terms.
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4 Experimental results

4.1 Datasets andmetrics

The experiments are conducted on the Flickr30K Entities
dataset [5] and MS COCO 2014 dataset. The Flickr30K
Entities contains 31,873 images and 5 captions per image.
Following the work by Gupta et al. [12], we split the
Flickr30K Entities dataset into a training set with 29,783
images, a validation set with 1,000 images and a test set with
1,000 images. The MS COCO 2014 dataset [1] contains
118,287 training images and 5,000 validation images, where
each image is provided with 5 human-annotated captions. In
the training process, we randomly select one caption from 5
captions of each example as the textual input.

We use two standard metrics, namely, Recall@K

(R@K) and P t Acc [12], to evaluate the performance.
Recall@K (R@K) for K ∈ {1, 5, 10} measures the
percentage of phrases for which IoU > 0.5 between
the top K predicted bounding boxes and the ground
truth boxes. Unlike Recall@K , P t Acc does not require
identifying the IoU of the predicted object box. Generally,
the center point of the selected bounding box is used
as the prediction for each phrase to compute the point
accuracy.

4.2 Implementation details

4.2.1 Visual feature representation

We extract the visual region proposals from images using
Faster R-CNN with a backbone ResNet-101 [22] based on
the bottom-up attention method [37], which was trained on
the Visual Genome dataset. The region proposals contain
the bounding boxes, visual features and confidence scores
(after Soft-NMS thresholding). We choose 50 RoIs based on
the confidence scores and obtain 2048-dimensional visual
representations (i.e., dr = 2048). By the VSA module, we
will reduce the dimension of the visual representations from
2048 to 768 (i.e., ds = 768).

4.2.2 Textual feature representation

We follow the setting of the BERT model proposed by
Gupta et al. [12] and employ a pre-trained BERT [35] for the
generation of textual representations. A 768-dimensional
token representation, i.e., dt = 768, is generated for a word,
tij , in captions with the BERT model. The dimension of
the common space generated by VTCA is set to 384, i.e.,
dc = 384.

4.2.3 Parameter tuning

The hyperparameters are determined with a grid search on
the Flickr30K Entities validation set. The threshold θ in (3)
is set to 0.5, the same value used in the evaluation of models
in terms of the R@K metrics. We train our model for 10
epochs with a batch size of 30 using an SGD optimizer with
a momentum of 0.9 and a learning rate of 10−5.

Figure 3 shows the effect of the hyperparameter
temperature T in (12) and α in (14) on the performance in
terms of R@1, R@5, R@10 and P t Acc on the Flickr30K
Entities validation set. From Fig. 3(a), (b) and (d), we
can see that the model with T = 0.07 achieves the best
performance in terms of R@1, R@5 and P t Acc. In terms
of R@10, the model with T = 0.07 may also achieve a
result close to the best one (e.g., α = 4 and 9). It is noted
that the best performances mentioned above are achieved at
different values of α. In general, we consider that R@1 is a
more important metric, and thus select the final checkpoint
for the best performance in terms of R@1. Finally, we set
α = 16 and T = 0.07.

4.3 Quantitative results

Table 1 presents the experimental results of the compared
methods on the Flickr30K Entities test set. From this table,
we observe that our proposed approach outperforms the
state-of-the-art work [38] by 1.24% and 0.26% in terms of
R@1 and P t Acc, respectively, with the model trained on
the Flickr30K Entities training set. For the models trained
on MS COCO, our approach improves the performance
by 3.88% points and 2.23% points in terms of R@1 and
P t Acc, respectively, compared with the state-of-the-art
work [12]. For the other cases, we observe that our approach
is superior to the compared methods as a whole.

In terms of R@10, our model obtains a lower perfor-
mance (−1.41%) than InfoGround [12] when trained on
the Flickr30K Entities training set. We analyzed this differ-
ence and found that our approach without the OPP module
obtains an R@10 of 83.86%, improving the performance
by 0.95% compared with InfoGround. The reason is that
after the OPP module, we keep a smaller set of object pro-
posals as input to the next module than without the OPP
module. The main contribution of InfoGround is that it gen-
erates a context-preserving negative caption set based on a
language model, which improves the results in comparison
with randomly sampling negatives from the training data.
In our approach, we do not employ this negative caption
set. To verify this, we retrain our model by employing the
negative caption set used in InfoGround [12]. Our proposed
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(a) (b)

(c) (d)

Fig. 3 The effect of the hyperparameter temperature, T , and loss function weight, α, on (a) R@1, (b) R@5, (c) R@10 and (d) P t Acc on the
validation set of the Flickr30K Entities dataset

model with these negative captions achieves 66.60% and
78.83% in terms of R@1 and P t Acc, respectively, with
the model trained on the Flickr30K Entities training set. For
the models trained on MS COCO, our approach achieves
59.47% and 79.34% in terms of R@1 and P t Acc, respec-
tively, when the negative captions are employed. Both of
them demonstrate that our approach achieves much higher
performances than InfoGround when employing the same
negative caption settings.

4.4 Ablation study

In Table 2, we report the quantitative performance of 8
different design choices, i.e., c1-c8, within our proposed
model on the Flickr30K Entities validation set. In this

experiment, we take the design only consisting of the VTCA
module as our baseline model, which is only supervised
by image-caption pairs based on InfoNCE loss, similar to
the model by Gupta et al. [12]. The introduction of VSA
improves P t Acc from 62.43% to 64.26% but results in a
drop in R@1 from 32.13% to 29.64% (c1 vs. baseline). Our
OPP module, as shown in Table 2, brings a performance
gain of 3.24% in terms of R@1 but a 1.46% lower P t Acc

(c2 vs. baseline). When we use these two modules together,
R@1 is improved from 32.13% to 39.21% and P t Acc

from 62.43% to 63.61% (c3 vs. baseline). Thus, OPP is
more positive for R@1 and VSA for P t Acc. If we want
to simultaneously optimize both metrics, these two kinds
of modules can work in coordination with each other. We
replace the InfoNCE loss in the baseline with our contrastive
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Table 1 The comparison of the results (%) of our approach with the state-of-the-art on the Flickr30K entities test set

Methods Training data R@1 R@5 R@10 Pt Acc

GroundeR [39]

Flickr30K

28.94 − − −
KAC Net [15] 38.71 − − −
InfoGround [12] 47.88 76.63 82.91 74.94

Contrastive Distillation[40] 53.10 − − −
RIR [38] 59.27 − − 78.60

VRC-PG (ours) Flickr30K 60.51 78.77 81.50 78.86

MS Research [41] MS COCO − − − 29.00

MultiGrounding [16] − − − 69.19

Align2Ground [9] − − − 71.00

InfoGround [12] 51.67 77.69 83.25 76.74

VRC-PG (ours) MS COCO 55.55 79.23 84.12 78.97

The models have been trained on Flickr30K entities and MS COCO

loss function (without LS) and achieve an improvement of
16.77% on R@1 and 14.17% on P t Acc (c4 vs. baseline).
If we further add the visual self-attention loss LS , we
can obtain a better result on R@1 and a close result on
P t Acc (c6 vs. c5 and VRC-PG vs. c8). This shows that our
contrastive loss is very useful in the phrase grounding task.

In Fig. 4, we visualize a few examples of phrase
grounding for different model settings, i.e., with and without
VSA, on the Flickr30K validation set. The figure indicates
that the setting with VSA can lead to more attention being
paid to the correct visual region corresponding to the phrase
in the caption than without VSA. For example, for the
top-right example in the figure, we find that the setting
with VSA gives an attention score (0.82) to the bounding
box (red) enclosing a man, while the setting without VSA

generates a lower attention score (0.73) for the region (red)
covering the man and a large area of the background.

4.5 Qualitative results

In Fig. 5, we illustrate a few qualitative results of phrase
grounding obtained by our approach on three image-caption
pairs from the Flickr30K Entities test data. From this figure,
it is evident that our model has the ability to localize the
phrases from a caption in an image. In Fig. 6, we show the
attention scores obtained by (9) from the VTCA module in
our model. For example, for the word ‘old’, our approach
generates a high attention to visual region No. 17 (cf.
Fig. 6(a)). It is visible in the image that this region contains
a head with white hair and exhibits a visual appearance of

Table 2 Benefits of the different modules in our approach

Methods OPP VSA Loss R@1 Pt Acc

baseline − − − 32.13 62.43

c1 − � − 29.64 64.26

c2 � − − 35.37 60.97

c3 � � − 39.21 63.61

c4 − − �w/o LS 48.90 76.60

c5 − � �w/o LS 52.71 78.31

c6 − � � 53.20 78.27

c7 � − �w/o LS 55.64 77.58

c8 � � �w/o LS 57.90 77.24

VRC-PG � � � 58.64 77.03

All models are trained on the Flickr30K Entities training set, and the results (%) are reported for the Flickr30K Entities validation set
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Fig. 4 The attention scores achieved in (9) of the region proposals
on the Flickr30K Entities validation set for the setting without/with
the visual self-attention module (i.e., w/o VSA and VSA). The visual

regions surrounded by bounding boxes refer to the object proposals
with top-3 cross-modal attention scores (colored red, green and blue)

‘old’. Regions 29 and 3 are about the topic of scenes, and
we can observe that the corresponding cells are highlighted
in the attention weight map when the query phrase is ‘park’

and ‘bench’. Regions 2 and 6, both related to the semantics
of a man, are paid much attention to for the query phrase
‘men’, as shown in the attention weight map.
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Fig. 5 Visualization of weakly supervised phrase grounding. In each image, for a given word query, we show the visual regions in the form of
bounding boxes with top-3 cross-modal attention scores (colored by red, green and blue) achieved in (9)

5 Conclusion

In this work, we have proposed a novel weakly supervised
approach to phrase grounding under the supervision of
the correspondence between images and captions. Our key
contribution lies in systematically learning contextualized
visual representations with a mixed contrastive loss

function. In the visual representation contextualization, the
three modules, OPP, VSA and VTCA, work in coordination
with each other for representing local visual semantics
by considering the unimodal and cross-modal contexts.
In addition, we define a novel contrastive loss function
on the intra- and inter-modal representations and clearly
demonstrate that this leads to better results. Overall, we

Fig. 6 The cross-modal
attention scores achieved by (9)
between the visual object
proposals and words. The darker
cell color indicates that more
attention is given to the
corresponding visual object
proposals for a word query
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report improvements of 3.88% points and 1.24% points on
R@1, and 2.23% points and 0.26% points on P t Acc, with
the models trained on the MS COCO and Flickr30K Entities
training set, respectively, compared with the state-of-the-
art methods. Our qualitative analysis, using a visualization
of the attention between words and the image regions,
also illustrates the capability of our model to learn the
joint representations of images and text using the attention
mechanism.
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