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A B S T R A C T   

The two-hit stress model predicts that exposure to stress at two different time-points in life may increase or 
decrease the risk of developing stress-related disorders later in life. Most studies based on the two-hit stress 
model have investigated early postnatal stress as the first hit with adult stress as the second hit. Adolescence, 
however, represents another highly sensitive developmental window during which exposure to stressful events 
may affect programming outcomes following exposure to stress in adulthood. Here, we discuss the programming 
effects of different types of stressors (social and nonsocial) occurring during adolescence (first hit) and how such 
stressors affect the responsiveness toward an additional stressor occurring during adulthood (second hit) in 
rodents. We then provide a comprehensive overview of the potential mechanisms underlying interindividual and 
sex differences in the resilience/susceptibility to developing stress-related disorders later in life when stress is 
experienced in two different life stages.   

1. Introduction 

Exposure to stress is a predominant environmental risk factor for the 
development of stress-related diseases, including anxiety and post- 
traumatic stress disorder (PTSD) (De Kloet et al., 2005; McEwen, 
2003). The most deleterious stress-induced effects occur when stressful 
events are experienced during critical developmental windows, such as 
during gestation, and early postnatal and adolescent periods (Bagot 
et al., 2014; Burke et al., 2017; Chen and Baram, 2016). Adolescence, 
representing the transition between childhood and adulthood, is a stage 
of development during which profound behavioral and brain structural 
changes occur (Spear, 2000). Adolescents across many animal species 
are characterized by increased exploratory, risk-taking, sensation- 
seeking, and social behaviors, all activities that support their efforts to 
gain independence from parental caretakers (Casey et al., 2008; Spear, 
2000). Notably, social interactions with peers are extremely important 
during adolescence, and their alteration could induce detrimental 
changes over the long-term (Buwalda et al., 2011; Spear, 2000). During 
adolescence, key stress-sensitive brain areas involved in the regulation 
of emotional and cognitive processes, including the amygdala, hippo-
campus, prefrontal cortex, and components of the hypothalamic–pitui-
tary-adrenal axis (HPA), are still immature (Eiland and Romeo, 2013; 

McCormick et al., 2010; Romeo and McEwen, 2006). These behavioral 
features and ongoing structural and functional changes in the brain 
make the adolescents more susceptible to stressful events, leading to an 
enhanced risk for psychopathologies later in life (Heim and Nemeroff, 
2001; Lupien et al., 2009). 

Exposure to stressful events during adolescence, however, does not 
necessarily predispose individuals to developing stress-related disorders 
in adulthood. In fact, a growing body of evidence indicates that expe-
riencing adverse events early in life may alter the ability to cope with 
stress in adulthood such that either susceptibility or resilience to the 
development of stress-related disorders is enhanced later in life 
(Champagne et al., 2009; Daskalakis et al., 2013; Krugers et al., 2017; 
Santarelli et al., 2014). Using the two-hit stress model of psychopa-
thology, numerous studies have investigated whether exposure to 
different stressors at two different time-points in life increases or de-
creases the risk of developing stress-related disorders in rodents (Das-
kalakis et al., 2013; Horovitz et al., 2012). The vast majority of these 
studies, however, focused on how a stressor experienced during the 
early postnatal stage (e.g., maternal separation/maternal deprivation) 
as the first hit affects coping strategies used to respond to a second 
stressor experienced later in life (Horovitz et al., 2012). 

Adolescence, the period of transition between childhood and 
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adulthood, represents a sensitive developmental window during which 
exposure to highly stressful events may induce detrimental program-
ming outcomes. To better understand whether and how stress during 
adolescence may contribute to the development of stress-related disease, 
it is essential to investigate whether exposure to stress during adoles-
cence affects the response to a second stress exposure experienced in 
adulthood. Further, clarifying the neurobiological underpinnings of 
these effects may pave the way to identifying biomarkers and causative 
mechanisms of resilience/susceptibility to developing stress-related 
disorders, and to the development of novel and precision medicine- 
based prophylactic and/or therapeutic interventions for such diseases 
(e.g., PTSD) in humans. 

Here, we review recent findings from rodent studies on the impact of 
stressful experiences during adolescence (first hit) on the susceptibility 
or resilience to developing stress-related disorders when a second stress 
challenge (second hit) occurs in adulthood. In particular, we describe 
the programming effects, at both the behavioral and molecular levels, of 
different types of adolescent stressors (social and nonsocial) and review 
how experiencing such stress can alter coping strategies in response to 
an additional stressor later in life. Because sex hormones are known to 
affect the stress response system and the risk for developing stress- 
related disorders is twice as high in females compared with males 
(Balhara et al., 2012; Bangasser and Valentino, 2014), we also discuss 
sex differences in the response to stress. The paucity of studies of the 
stress response in females, however, is a major gap that must be 
addressed in future studies. 

We also provide a comprehensive overview of findings from rodent 
experiments evaluating the potential mechanisms underlying the 
contribution of stress susceptibility or resilience to developing stress- 
related psychopathologies as a consequence of the exposure to a com-
bination of different stressors experienced at two different stages in life 
(adolescence and adulthood). Of note, most of the studies on the two-hit 
model in rodents (mice and rats) are based on the first hit experienced 
during early postnatal stage. However, when the first hit occurs during 
adolescence, the vast majority of the studies have been carried out in 
rats only. Therefore, the present review is mainly focused on findings 
obtained from rat models but includes also the few studies present on 
mice. 

2. Adolescence as a critical developmental period 

Adolescence is a crucial developmental stage involving profound 
changes in the structure and function of the brain (Casey et al., 2008; 
Eiland and Romeo, 2013; Romeo and McEwen, 2006; Spear, 2000); it 
can be divided in rodents by three stages: early (post-natal day, PND 
21–34), mid (PND 34–46), and late adolescence (PND 46–59) (Lupien 
et al., 2009). Compelling evidence indicates that most adult behavioral 
features generally result from the continuous development of the brain 
during adolescence (Eiland and Romeo, 2013). Processes such as syn-
aptogenesis, axonogenesis, myelinogenesis, and the maturation of some 
brain pathways and regional neurocircuitry occur specifically during 
adolescence. For example, the frontal lobes and the limbic system, brain 
regions critically involved in the regulation of specific behaviors and 
functions (e.g., judgement, spontaneity, impulse control, social in-
teractions, reward, and emotions), develop during this life period both 
in rodents and humans (Arain et al., 2013; Casey et al., 2008; Gogtay 
et al., 2004; Konrad et al., 2013). 

The prefrontal cortex, amygdala, and hippocampus are key stress- 
sensitive brain areas that continue to develop throughout adolescence 
(Eiland and Romeo, 2013; Romeo and McEwen, 2006) and are charac-
terized by a high expression of glucocorticoid receptors (GR), which 
deeply regulate the stress response system and HPA axis function 
(Dziedzic et al., 2014; Romeo, 2013; Vázquez, 1998). Stressful experi-
ences stimulate the paraventricular nucleus of the hypothalamus to 
produce corticotropin-releasing hormone (CRH), which in turn induces 
the release of adrenocorticotropic hormone (ACTH) from the anterior 

pituitary gland. ACTH then stimulates the final release of glucocorti-
coids from the adrenal cortex. Glucocorticoids rapidly cross the blood 
brain barrier and, through genomic and non-genomic mechanisms via 
binding to their mineralocorticoid receptors (MR) and GR, modulate 
several brain functions (Campolongo et al., 2009; De Kloet, 2014; de 
Kloet et al., 2008; Joëls et al., 2013; Paul et al., 2022; Roozendaal et al., 
2006). Glucocorticoids can exert genomic actions because GR and MR 
are intracellular receptors that act as ligand-activated transcription 
factors (de Kloet et al., 1998; Ulrich-Lai and Herman, 2009). Once glu-
cocorticoids bind to the ligand-binding domain (LBD) of these receptors, 
the ligand-GR/MR complexes translocate to the cell nucleus where, 
through their DNA-binding domain (DBD), they bind to glucocorticoid 
response elements (GREs) at target genes. Although both GR and MR can 
bind to GREs, there is partial selectivity in the MR/GR DNA-binding 
which can depend by the nearby binding of other transcription fac-
tors. For example, it has been previously demonstrated that NeuroD 
transcription proteins, which are members of the basic helix-loop-helix 
protein family, bind to a DNA site close to the GRE inducing specificity 
for the MR DNA-binding in the adult rat brain (Van Weert et al., 2017). 
While the genomic effects of glucocorticoids require a prolonged onset 
of action because they rely on transcription and protein synthesis, the 
non-genomic effects are fast and seems to be mediated by membrane- 
associated receptors and signaling cascades (e.g., involvement of the 
endocannabinoid system) (Di et al., 2003; Groeneweg et al., 2011; 
Tasker et al., 2006). A large body of evidence demonstrates that GR 
expression within the adult brain, especially in the hippocampus and 
central amygdala, can be programmed by stress experienced during 
early-life and peripubertal periods (Arnett et al., 2015; Enthoven et al., 
2010; Papilloud et al., 2019; Santarelli et al., 2017; Sutanto et al., 1996). 

The HPA axis is still immature during adolescence, and its activity 
differs between adolescent and adult subjects (McCormick et al., 2010). 
Evidence indicates that the paraventricular nucleus of the hypothalamus 
is more activated in adolescent rats compared with adult rats after 
exposure to an acute or repeated stressor (Lui et al., 2012; Romeo et al., 
2006). Moreover, the release of cortisol (corticosterone in rodents) and 
ACTH following acute stress is higher and more prolonged in adoles-
cents compared with adults, in both humans and rodents (Andersen, 
2003; Goldman et al., 1973; Romeo, 2013, 2010). For example, Romeo 
and colleagues showed that corticosterone plasma levels in prepubertal 
male rats exposed to restraint stress for 30 min do not return to baseline 
until 120 min after stress exposure, while those measured in adults 
subjected to the same stressor return to baseline levels within 60 min, 
indicating slower inactivation of the HPA axis response in adolescents 
compared with adults (Romeo et al., 2004). Similar effects were 
observed when adolescent and adult rats were exposed to a gas anes-
thetic (ether) for 3 min or intermittent footshock for 60 s (Goldman 
et al., 1973; Vázquez and Akil, 1993). Moreover, adolescent rodents 
have higher corticosterone levels after exposure to repeated stress 
compared with adults, indicating that adolescents, in contrast to adults, 
do not habituate to chronic stressors (Lui et al., 2012; Romeo et al., 
2006). This effect, however, is strongly dependent on the sex of the 
animal and the type of the stressor experienced (for review see 
(McCormick and Mathews, 2010)). 

Sex differences in HPA function occur throughout adolescence; for 
example, adrenal volume increases more in late-adolescent females than 
in late-adolescent males at basal levels (Green and McCormick, 2016; 
Heck and Handa, 2019). Notably, stress exposure can also induce 
different effects on HPA axis function on male vs female adolescent rats. 
A previous study indicated that the expression patterns of moderators/ 
co-chaperones inhibiting GR translocation is upregulated in chronic 
stressed female adolescent rats compared to males, and that HPA axis 
negative feedback is reduced in female, but not male, adolescent rats 
subjected to an acute stressor (Bourke et al., 2013). Sex differences in the 
stress response during the adolescence period can be also due to the 
crosstalk between the HPA and hypothalamic-pituitary–gonadal (HPG) 
axes, which are reviewed here (Green and McCormick, 2016). 
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Further, individual differences in the response to a repeated stressor 
in peripubertal male rats predict the development of an anxiety-like 
phenotype, altered sociability, and deficits in spatial learning in the 
long-term (Tzanoulinou et al., 2020; Walker et al., 2017; Walker and 
Sandi, 2018). Adolescents are also characterized by several behavioral 
features, including increased social interactions and play behaviors with 
peers, and novelty-seeking, activities that are necessary to acquire the 
skills for autonomy and independence from parental caretakers (Spear, 
2000). These behavioral characteristics, together with the profound 
changes in brain structure during this stage, make adolescents more 
susceptible to stressful life events and to the subsequent development of 
stress-related disorders compared with adults (Lupien et al., 2009). 

3. Adolescence and social stressors 

Social interactions and the construction of complex social structures 
are essential characteristics of humans and many other mammals 
(Trezza et al., 2011). For adolescents, the quality and quantity of social 
interactions are critical (Larson et al., 1996). In particular, during 
adolescence, individuals increase their social interactions with peers 
while decreasing those with their parents (Buwalda et al., 2011; Spear, 
2000). These changes in social behavioral patterns during adolescence 
are necessary to develop the skills that promote a successful transition 
from adolescence to adulthood (Gopnik et al., 2017; Tzanoulinou and 
Sandi, 2016). Exposure to adverse social experiences during adolescence 
may profoundly affect adult behaviors, resulting in the subsequent 
development of stress-related disorders. For example, in humans 
bullying and subordination episodes are social stressors that commonly 
occur in adolescence, particularly at school (Menesini and Salmivalli, 
2017; Rettew and Pawlowski, 2016). Bullying or peer victimization re-
fers to a single individual or a group of individuals (bullies) that exhibit 
intentional and aggressive behavior against others (victims) viewed as 
weaker than the bullies and thus unable to defend themselves (Gredler, 
2003). Generally, bully-victims are shy, submissive, and introverted 
individuals, while bullies are generally more aggressive and physically 
stronger than their victims (Olweus, 1978). The type of bullying depends 
on the nature of the attack, and includes verbal and physical violence; 
social aggression such as social exclusion; and cyberbullying, which is 
currently the most widespread form of bullying associated with the 
internet, such as via social media and text messaging (Bonanno and 
Hymel, 2013; Englander et al., 2017; Gredler, 2003; Monks and Smith, 
2006). Being bullied is considered a critical factor enhancing suicidality 
among adolescents (Limbana et al., 2020). Moreover, adolescent 
bullying not only affects adolescent subjects by increasing the devel-
opment of health problems, including anxiety, depression, sleeplessness 
(Arseneault et al., 2010; Hong et al., 2019), but also leads to detrimental 
effects later in life. In fact, numerous studies suggest that adolescent 
bully-victims are more likely to develop stress-related disorders later in 
life, particularly anxiety and PTSD (Gladstone et al., 2006; Mukherjee 
et al., 2020). 

4. Animal models of adolescent stressors 

Animal models are useful tools for elucidating the neurobiological 
underpinnings and potential therapeutic targets of stress-related disor-
ders (Czéh and Simon, 2021; Sarter and Bruno, 2003; Yehuda and 
LeDoux, 2007). Although the majority of preclinical studies on the long- 
term effects of stress have been carried out in adult rodents, interest in 
the long-lasting effects of stress exposure during adolescence has 
increased over the last few decades (McCormick and Green, 2013). 
Many different rodent models exist to represent a variety of adverse 
stressful events experienced by humans during adolescence. Here, we 
focus on the long-term effects induced in animal models of social and 
nonsocial adolescent stressors. 

4.1. Animal models of social stressors 

Sociabilty during adolescence may be disrupted via either lack of 
social interactions or rather by detrimental social interactions (Gopnik 
et al., 2017; Tzanoulinou and Sandi, 2016). Animal models of social 
stressors differ in the type and intensity of the interactions, thus leading 
to different outcomes. Exposure to social stress can be singular, inter-
mittent, or chronic, and may involve social deprivation (e.g., a social 
isolation model in which animals are fully deprived of interactions with 
conspecifics) or social interactions between two or more animals in a 
dyad, group, or colony (Blanchard et al., 2001). Among experimental 
models of social stressors, the social defeat paradigm is a highly vali-
dated model that mimics, in part, bullying in humans, and generally 
consists of exposing two rodents to dyadic contests. The resident- 
intruder paradigm, characterized by social subordination, threat, and 
physical abuse, is easily implemented in rodents to investigate the main 
features of human bullying (Björkqvist, 2001; Miczek, 1979). In this 
paradigm, an experimental rodent (intruder) is placed in the territory of 
a larger, aggressive conspecific (resident) that attacks the intruder 
during either a single or repeated encounters (Golden et al., 2011). 
Although social defeat stress mimics typical features of human bullying, 
which is particularly common among adolescents (Menesini and Sal-
mivalli, 2017; Rettew and Pawlowski, 2016), for many years preclinical 
studies were only focused on the effects of this type of social stress 
experienced in adulthood. These studies demonstrated that exposure to 
social defeat in adult rats profoundly affects behavior by inducing 
depression- and anxiety-like profiles, decreased social interactions, 
cognitive dysfunction, rapid acquisition of psychostimulant self- 
administration, and hyperlocomotion induced by psychostimulants 
(Blanchard et al., 2001; Covington and Miczek, 2005, 2001; Haney et al., 
1995; Meerlo et al., 1996; Patki et al., 2014, 2013; Riga et al., 2015; 
Rygula et al., 2005; Tidey and Miczek, 1997). 

However, exposure to social defeat stress was reported to produce 
different effects depending on whether it occurs during adolescence or 
adulthood (Bingham et al., 2011; Coppens et al., 2011). Studies on the 
short-term effects of social defeat stress experienced during the adoles-
cent period demonstrated that male rats exhibit enhanced proactive 
responses in defensive burying and forced swim tests (Bingham et al., 
2011), while female rats show increased climbing in the forced swim test 
compared with their controls (Ver Hoeve et al., 2013). Further, male 
stressed rats show decreased total water consumption and time spent 
drinking when placed in the same context in which they were exposed to 
the social defeat experience, indicating a lack of generalization across 
different contexts (Vidal et al., 2011a). 

Evaluating the long-term outcomes induced by adolescent social 
defeat is of the utmost importance in view of the risk for the later 
development of psychopathologies. Different studies showed that adult 
male rats, that experienced social defeat during adolescence, exhibit 
increased anxiety (MacKay et al., 2017; Mancini et al., 2021a; Watt 
et al., 2009), altered fear memory dynamics (Mancini et al., 2021a; 
Novick et al., 2016), decreased proactive strategies (Bingham et al., 
2011), and enhanced social anxiety (Vidal et al., 2011b, 2007); and that 
the effects are strain-specific (Vidal et al., 2011a). Moreover, adult male 
rats subjected to social defeat in adolescence exhibit increased loco-
motion in a novel environment, but reduced amphetamine-induced 
locomotion compared with controls (Burke et al., 2010). Further, sus-
ceptibility to the development of a depressive-like phenotype was more 
pronounced in adult females compared with adult males exposed to 
social defeat stress during adolescence (Weathington et al., 2012). 
However, these findings are at odds with those of another study in which 
no depressive-like behaviors were observed in adult female rats exposed 
in adolescence to a social stressor (Ver Hoeve et al., 2013). Taken 
together this large body of evidence demonstrated that: i) social defeat 
stress produces different effects if it occurs during the adolescent or 
adult periods; ii) studies on the effects of social defeat stress experienced 
in adolescence are less investigated rather than those in adulthood; iii) 

G.F. Mancini et al.                                                                                                                                                                                                                              



Frontiers in Neuroendocrinology 69 (2023) 101065

4

adult rats exposed to social defeat stress during adolescence exhibit 
profound effects on adult behavior. 

Beyond the exposure to social defeat stress, other models of social 
stress are used in rodent studies including predator exposure and al-
terations in social housing conditions (e.g., social isolation, social 
crowding and social instability). Predator exposure can be performed 
either directly, through exposure to a predator (e.g., cat) or indirectly 
through exposure to a predator scent (e.g., cat collars or 2,3,5-trimethyl- 
3-thiazoline, TMT, a component of fox feces). Previous studies estab-
lished that these stressors induce several effects (e.g., fear, anxiety, 
avoidance, and defensive behaviors in rodents (Adamec et al., 2004; 
Berardi et al., 2014; Cohen et al., 2012; Dielenberg and McGregor, 
2001)), and that such effects are long-lasting, particularly when these 
stress paradigms occur during adolescence (Post et al., 2014; Tsoory 
et al., 2007; Wah et al., 2019; Wright et al., 2013, 2008). Male rats 
exposed to a combination of fox odor (TMT) and an elevated platform 
for 7 days across the peripubertal period (PND 28–42) exhibit abnormal 
aggressive behavior, reduced social exploration, increased anxiety-like 
behavior, and impaired spatial learning in adulthood (Márquez et al., 
2013; Papilloud et al., 2019; Tzanoulinou et al., 2020, 2014). Addi-
tionally, exposure to a combination of several stressors (e.g., elevated 
platform, TMT, restrainer, tail suspension test, and forced swim stress) 
from PND 28 to 42 induces programming brain alterations (e.g., reduced 
excitability in the nucleus accumbens), and increases adiposity and re-
duces sociability in adult male, but not female, mice (Morató et al., 
2022). 

Alterations in social housing conditions can induce detrimental ef-
fects in rodents. Social isolation stress for instance consists in housing 
animals individually depriving them of any form of social interaction 
with peers, and it is generally conducted for long periods of time (e.g., 
4–6 weeks or more) from weaning to adulthood. Post-weaning social 
isolation represents a highly validated animal model to reproduce in 
rodents neurochemical and behavioral alterations resembling some of 
the core symptoms observed in psychiatric disorders (Fone and Porkess, 
2008; Heidbreder et al., 2000; Lapiz et al., 2003; Mumtaz et al., 2018). 
For example, compelling evidence indicates that social isolation stress 
induces anxious- and depressive-like phenotypes, cognitive deficits, and 
abnormal aggression in adult rodents (Biro et al., 2017; Butler et al., 
2016; Haller et al., 2014; Han et al., 2018; Ieraci et al., 2016; Lukkes 
et al., 2009; Medendorp et al., 2018). However, these results are 
inconsistent between male and female rodents (Walker et al., 2019). 
While social isolation consists in the deprivation of social interactions 
with conspecifics, social crowding paradigm is exactly the opposite. In 
fact, in this stress model rodents are housed in groups of generally 4–6 
rats or 12 mice in the same sufficiently large area. It has been demon-
strated that this housing condition affects many physiological aspects in 
rodents (Beery and Kaufer, 2015), in a sex-dependent manner (Brown 
and Grunberg, 1995). However, one study demonstrated that adolescent 
male mice subjected to social crowding exhibit anxious-like phenotype 
when tested in adolescence but not in adulthood, indicating that the 
stress-induced effects are not permanent (Ago et al., 2014). Another 
social stressor model, highly used in rodents studies, is the social 
instability stress paradigm which is characterized by changing group 
composition of group-housed rodents (Buwalda et al., 2011). Interest-
ingly, previous findings suggest that exposure to chronic social insta-
bility in adolescent rodents of both sexes induces long-lasting effects in 
adulthood (McCormick et al., 2020, 2015, 2012; Schmidt et al., 2009; 
Sterlemann et al., 2010). 

Together, these results suggest that exposure to different types of 
social (direct or indirect) stress paradigms during adolescence may 
induce profound programming alterations in the response to stress 
experienced later in life. 

4.2. Animal models of nonsocial stressors 

Animal models are also useful for investigating the neurobiological 

mechanisms underlying the effects of adolescent stress exposure on the 
later development of stress-related disorders (Czéh and Simon, 2021; 
Sarter and Bruno, 2003; Yehuda and LeDoux, 2007). As previously 
mentioned, the stress response that is triggered by an acute nonsocial 
stressor in adolescent rodents differs from that in adults. For example, 
high plasma corticosterone levels induced by an acute nonsocial stressor 
(e.g., restraint stress, ether vapor exposure, or footshock exposure) re-
turn to baseline more slowly in adolescent rats than in adult rats 
(Goldman et al., 1973; Romeo et al., 2004; Vázquez and Akil, 1993), 
which may be a mechanism by which stress experienced in adolescence 
induces profound effects later in life. In fact, single (PND 28) and 
repeated (PND 26–28) exposure to an elevated platform in early- 
adolescence increases the development of anxiety-like behavior in 
adult male rats (Avital and Richter-Levin, 2005). Different effects can 
occur when the same stressor is experienced by adolescent rats for 
longer periods of time. For example, exposure to restraint stress for 28 
consecutive days (PND 28–55) induces anxiolytic- and antidepressive- 
like phenotypes in adult male rats (Suo et al., 2013), indicating that 
the long-lasting outcomes of exposure to a stressor during adolescence 
can also depend on the stress duration. In addition to these effects 
induced later in life by a repeated stressor experienced during adoles-
cence, numerous studies found that the exposure to many different types 
of repeated nonsocial stressors during adolescence may induce long- 
term effects. Exposure to variable nonsocial stressors, such as forced 
swim, elevated platform, and restraint stress, for 3 consecutive days 
(PND 27–29) induces reduced exploratory behavior (Horovitz et al., 
2014; Jacobson-Pick and Richter-Levin, 2010), increased development 
of anxious- and depressive-like phenotypes (Ilin and Richter-Levin, 
2009), and alterations in freezing behavior in male adult rats (Yee 
et al., 2012). Similar effects were found in female adult rats subjected to 
the same stress in adolescence (Horovitz et al., 2014; Jacobson-Pick and 
Richter-Levin, 2010). Additionally, male adult rats exposed to another 
type of variable nonsocial stressors (e.g., restraint stress, elevated plat-
form and footshock for three nonconsecutive days across PND 27–33) 
also exhibit increased anxious-like profile (Luo et al., 2014). Further, the 
exposure to forced swim stress, restraint stress and footshock across PND 
25–27 increases the development of anxious-like phenotype in adult 
rodents, and induces altered cognitive bias and decision making in adult 
rats of both sexes (Brydges et al., 2014, 2012). A recent study, however, 
demonstrated that exposure to variable stressors for a more prolonged 
period of time (e.g., two weeks) and in a different phase of adolescence 
(e.g., late adolescence) did not induce any alterations in fear memory 
dynamics in male or female adult rats (Cotella et al., 2022). All together, 
these results suggest that the use of different repeated nonsocial stress 
paradigms during adolescence may induce a diversity of programming 
effects in rats. This could be due to several factors, including the 
severity, duration, and type of stressor. Additionally, it is important to 
consider whether the repeated stressor is the same (homonymous) or 
variable, which is related to controlling and predicting stress, aspects 
that influence stress-induced behavioral outcomes (Albrecht et al., 
2017). 

5. Resilience and susceptibility to developing stress-related 
disorders 

Experiencing stressful events can increase the risk for stress-related 
disorders development (De Kloet et al., 2005; McEwen, 2003), howev-
er, it does not affect everyone the same, and not all individuals who are 
exposed to stressful experiences develop a mental disease. This concept 
was described for the first time by Hans Selye, the founder of the stress 
theory summarized by the statement “it is not stress that kills us, it is our 
reaction to it”, which suggests that the final consequences of exposure to 
stress depend on the individual responses (Selye, 1936). Because stress 
responses cannot be sustained over a long period of time, the organism 
must develop effective physiological and psychological coping methods 
(McEwen, 2007). Stressful experiences lead to adaptation, but in some 
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susceptible individuals this adaption can be either dysfunctional or 
affected by “mismatched” circumstances, suggesting interindividual 
differences in the stress response (Champagne et al., 2009; Del Giudice 
et al., 2011; Ullmann et al., 2019). 

The exact mechanisms underlying such differences, however, are not 
yet well clarified. Interindividual differences in the response to stress 
may be related to various combinations of numerous factors (McEwen 
and Stellar, 1993): i) subjective perception of the stressful event (e.g., for 
some individuals speaking in public is stressful while for others it is not); 
ii) genetic components, as it has been demonstrated that some genes are 
more involved than others in the development of stress-related disorders 
(e.g., serotonin transporter and pituitary adenylate cyclase-activating 
polypeptide) (Richter-Levin and Sandi, 2021; Smoller, 2016); iii) sex, 
as it is well known that sex-hormones can affect the stress response 
system and females have a two-fold greater risk than males for devel-
oping stress-related disorders (e.g., PTSD) (Balhara et al., 2012; Ban-
gasser and Valentino, 2014; Kessler et al., 1995); iv) developmental 
stage during which stress occurs (e.g., adolescence, which is a stress- 
sensitive period); v) previous life experiences; and vi) rodents strain 
differences in the responsivity to the same stressor (Anisman and 
Matheson, 2005; Mineur et al., 2006; Mozhui et al., 2010; Pothion et al., 
2004). To elucidate this latter aspect, various theories and hypotheses 
have been postulated. 

Among these theories, the cumulative stress model emphasizes the 
effects of repeated exposure to stressors throughout life. When the 
accumulation of stress exceeds a certain threshold, individuals will have 
an enhanced risk of developing psychiatric disorders (McEwen, 1998). 
On the one hand, the cumulative stress theory postulates that repeated 
exposure to stress induces susceptibility to the development of psychi-
atric disorders, while on the other hand, the match/mismatch hypoth-
esis asserts that resilience or susceptibility to psychopathologies 
depends on the match or mismatch of the early-life environment with 
the environment later in life (Champagne et al., 2009; Schmidt, 2011). 
This theory thus suggests that the environment during early-life itself 
may promote active coping strategies that allow individuals to better 
face a similar stressor later in life, which in turn leads to resilience 
against mental disorders (Tsoory et al., 2007). To test the validity of the 
match/mismatch hypothesis, an experimental study was performed in 
which female mice were subjected to an early handling paradigm as a 
positive condition (early handling is known to increase maternal care) or 
to a limited bedding and nesting material paradigm as a negative con-
dition. Mice were then housed in a social isolation (negative situation) 
or group (positive situation) condition during adulthood. Interestingly, 
female mice exposed to matched (either positive or negative) environ-
mental manipulations during early-life and adult periods exhibited 
different behaviors compared with animals subjected to a mismatched 
condition (Santarelli et al., 2014). Even though this study does not 
investigate stress effects during adolescence it appears relevant for the 
present review because it highlights how, according to the match/ 
mismatch hypothesis, the two-hit stress model asserts that different 
types of stress exposure in two different periods of life may affect either 
the resilience or susceptibility to developing stress-related psychopa-
thologies after the second stress exposure (Daskalakis et al., 2013; 
Horovitz et al., 2012). For example, male rats experienced a social 
stressor in adolescence exhibit increased ability to face with a similar 
stress later in life (resilience) (Buwalda et al., 2013), while an opposite 
outcome (susceptibility) was found following the exposure to two 
different stressors (Horovitz et al., 2014). However, these effects do not 
always occur since several factors are involved. 

Although interindividual differences play an important role in the 
final development of a susceptible or resilient phenotype regarding 
stress-related disorders, the context and timing of the two stress expe-
riences are key factors involved in this process as well. A recent study 
evaluated the effects of different manipulations in male mice throughout 
early postnatal to peri-adolescent periods coupled with chronic stress 
exposure in adulthood (Peña et al., 2019). Specifically, the authors 

demonstrated that maternal separation paired with reduced bedding 
material (PND 10–17) increases susceptibility to depression- and 
anxiety-like phenotypes after adult chronic social defeat stress in 
adulthood. Predictable chronic mild stress also during peri-adolescence 
(PND 28–56) induced a susceptible phenotype. Conversely, other ma-
nipulations throughout the peri-adolescent period, such as social isola-
tion (PND 22–60), yoked footshock stress (PND 26–30), and an enriched 
environment (PND 22–56), produced pro-resilient phenotypes (Peña 
et al., 2019), indicating that the final development of resilience or sus-
ceptibility to developing stress-related disorders is strongly related to 
the context and timing of the other types of stressors. Therefore, eval-
uating the biological differences occurring between different life stages 
is extremely important in terms of translational value. 

Most of the studies in rodents have focused on how stress during the 
early postnatal period (e.g., by subjecting animals to a maternal sepa-
ration paradigm) affects responsiveness to an additional challenge later 
in life (Horovitz et al., 2012). Maternal separation is generally per-
formed during the first weeks of life (Marais et al., 2008; Plotsky et al., 
2005; Vetulani, 2013), which is a period termed the “hyporesponsive 
stress period” because the HPA axis is not yet mature, thus leading to a 
limited secretion of glucocorticoids following stress (Levine, 2001; 
Sapolsky and Meaney, 1986; Schapiro et al., 1962). Importantly, a 
previous study demonstrated that the detrimental maternal separation- 
induced effects strongly depend by the time of the hyporesponsive stress 
period during which such stressor occurs. In fact, maternal deprivation 
was only effective when mice were subjected to it between PND 1–12, 
and not on PND 13 (Enthoven et al., 2008), suggesting that the 
vulnerability to stress can be different according to the exact moment 
across the hyporesponsive stress period a stressor is experienced. 

It is important to consider that the early postnatal period strongly 
differs from the adolescent one in several aspects. For example, com-
ponents of the HPA axis as well as several brain areas (e.g., the hippo-
campus, prefrontal cortex, and amygdala) are more mature during 
adolescence than during the early postnatal period. Additionally, ro-
dents during adolescence develop emotional, cognitive, and social skills 
that are necessary to reach independence from parental caretakers, the 
same types of characteristics observed in adolescent humans (Spear, 
2000). For these reasons, it is critical to evaluate whether stress expe-
rienced during early-life, but in a period that more reflects adolescence 
in humans, can affect the response to an additional stress challenge later 
in life (Horovitz et al., 2012). 

5.1. The two-hit model: behavioral effects 

5.1.1. Interaction between adolescent social stress and adult stress 
The two-hit model assumes that exposure to stress during early-life 

(first hit), such as during the stress-sensitive window of adolescence, 
induces alterations in brain structure and function, which in turn may 
affect responsiveness to an additional stressor (second hit) experienced 
later in life, thus leading to a decreased and/or increased risk of stress- 
related disorders (Fig. 1). During adolescence, social interactions, 
including play and novelty seeking-behaviors, represent a fundamental 
aspect in the development of behavioral features necessary to acquire 
autonomy and independence (Gopnik et al., 2017; Spear, 2000; Tza-
noulinou and Sandi, 2016). Therefore, to understand how early-life so-
cial stress affects the responsiveness to a second stressor experienced 
later in life, we recently investigated whether exposure to the social 
defeat stress paradigm (first hit) for 7 consecutive days during early- 
adolescence (PND 28–34) alters the ability to cope with a second hit 
(single prolonged stress) occurring during adulthood (PND 90) in male 
rats (Mancini et al., 2021a). Single prolonged stress is a valid model to 
reproduce in rodents some of the core symptoms of PTSD, and is a 
multimodal stress protocol consisting in the sequential exposure to three 
different stressors (restraint stress, forced swim stress and inhalation of 
gas anesthetic until loss of consciousness) (Lisieski et al., 2018; Souza 
et al., 2017; Verbitsky et al., 2020; Yamamoto et al., 2009). In our study, 
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the final consequences of the exposure to stress were evaluated by 
testing animals in several behavioral tasks 30 days after the single 
prolonged stress paradigm, as previously described (Mancini et al., 
2021b). We found that exposure to social defeat stress alone during 
early-adolescence increased the development of anxiety-like behavior 
and hyperarousal in the open field and acoustic startle response tasks, 
respectively, in the long-term. The single prolonged stress alone reduced 
locomotor activity in the open field task, induced hyperarousal in the 
acoustic startle response task, and altered spatial memory retention long 
after the trauma. Interestingly, rats exposed to social defeat stress during 
early adolescence and then to a single prolonged stressor in adulthood 
exhibited resilience against the development of an anxiety-like pheno-
type, hyperarousal, and spatial memory retention deficits, but demon-
strated susceptibility to dysfunctional fear memory dynamics. It is 
important to note that these effects seemed to be directional as the ef-
fects induced by a single prolonged stressor were not observed in rats 
exposed only to social defeat stress, and vice versa. Together, these 
findings suggest that experiencing social stress during early-adolescence 
affects the ability to cope with additional trauma later in life (Mancini 
et al., 2021a), in line with the match/mismatch concept. In another 
study, Buwalda and colleagues (2013) investigated whether exposure to 
social defeat stress for 3 nonconsecutive days during adolescence (PND 
28, 31, and 34) altered the response to the same stressor experienced 
later in life (PND 89–90), and found that social defeat stress during 
adolescence did not induce behavioral alterations in the long-term, but 
rather led to a stronger ability to face the same stressor in adulthood in 
male rats (Buwalda et al., 2013). These findings demonstrate that 
exposure to social defeat stress during early-adolescence may promote 
active coping strategies to positively respond to an additional similar 
stressor in adulthood. 

When a different early-life social stressor occurs, however, such 
stress-resilient effects are no longer observed. In fact, indirect exposure 
to a social stressor (predator scent) in juvenile (PND 28) or adult (PND 
60) male rats increases anxiety-like behavior in the elevated plus maze 
and acoustic startle response tasks, and these effects are maintained 
when the rats experience a combination of these two stressors, indi-
cating that the indirect exposure to a predator (through its scent) during 
early-life predisposed the rats to developing anxiety-like behavior in 

response to stress later in life (Tsoory et al., 2007). These findings 
together suggest that the development of stress vulnerability vs stress 
resilience is due to differences in the timing and type of the social 
stressor experienced during early-adolescence. The results described 
above are summarized in Table 1. 

5.1.2. Interaction between adolescent nonsocial stress and adult stress 
Interest has grown over the last few decades in the effects of 

nonsocial stress experienced during adolescence on the ability to cope 
with another stressful event later in life. 

Numerous studies in this field were carried out by Richter-Levin’s 
group, who demonstrated that the combined experience of different 
types of stressors in two different life periods (adolescence and adult-
hood) increased susceptibility to stress-related disorders later in life in 
rats (most such studies were reviewed here (Horovitz et al., 2012)). The 
early-life stress model used in these studies is applied in the juvenile 
stage (PND 26–28 or PND 27–29) and therefore referred to as juvenile 
stress and consists of exposure to variable nonsocial stressors for 3 
consecutive days (one stressor per day). To determine whether such 
stress affects the ability to cope with additional stress later in life, the 
two-way shuttle avoidance task has been used as the adult stressor. 
Briefly, rats were exposed to several conditioning trials (tones) paired 
with footshock and learning abilities were measured by evaluating how 
animals respond to each stimulus (e.g., avoidance behavior). 

Exposure to forced swim stress (PND 27), an elevated platform (PND 
28), and footshock or restraint stress (PND 29) induced low exploratory 
activity and poor avoidance learning in the two-way shuttle avoidance 
task in male rats at adulthood (Tsoory et al., 2008, 2007). The same 
effect was observed in another study in which the combination of these 
juvenile and adult stressors induced susceptibility to developing 
depressive-like behavior, as demonstrated by reduced consumption of 
saccharine in a saccharine preference test, in both male and female adult 
rats (Horovitz et al., 2014). Further, male adult rats exposed to both 
stressors exhibited reduced exploratory activity and a stronger anxiety- 
like phenotype in the open field task (Gruber et al., 2015) and in the 
elevated zero maze (Horovitz et al., 2020). In another study, male rats 
were subjected to an elevated platform (day 1), forced swim stress (day 
2), and footshock (day 3) during the juvenile (PND 27–29) or adolescent 

Fig. 1. Schematic representation of the two-hit model. Stress exposure during adolescence (first hit) induces changes in the structure and function of the brain, 
which in turn can alter the responsiveness to an additional challenge (second hit) experienced later in life, thus increasing and/or decreasing the risk for the 
development of stress-related disorders. 

Table 1 
Two-hit studies: social adolescent stress (first hit) + adult stress (second hit).  

Sex and strain First hit 
(PND) 

First hit 
(type) 

Second hit 
(PND) 

Second hit (type) Behavioral effects 
(two-hit) 

Male rats ( 
Mancini et al., 
2021a) 

PND 
28–34 

Social defeat 
stress 

PND 90 Single prolonged stress (2 h restraint stress, 15 min forced 
swim stress and, after 15 min, isoflurane exposure until loss of 
consciousness) 

Reduced alterations on emotionality and spatial 
memory, and increased cued fear memory 
dysfunction 

Male rats ( 
Buwalda et al., 
2013) 

PND 28, 
31, 34 

Social defeat 
stress 

PND 89–90 Social defeat stress Increased ability to face towards social defeat 
stress in adulthood 

Male rats (Tsoory 
et al., 2007) 

PND 28 Predator 
scent 

PND 60 Predator scent Increased anxious-like behavior  
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(PND 33–35) periods, and then to a different stressor (two-way shuttle 
avoidance task) in adulthood (Tsoory and Richter-Levin, 2006). Expo-
sure to variable stressors during the juvenile or adolescent periods 
reduced exploratory activity in the open field task in the long-term, and 
this effect was maintained when rats were exposed to additional stress 
later in adulthood. Moreover, alterations in learning performances 
during the two-way shuttle avoidance paradigm were found. When adult 
rats previously exposed to stress in either the juvenile or adolescent 
periods exhibited poor avoidance learning in the two-way shuttle 
avoidance task, those stressed in the juvenile stage also demonstrated a 
high frequency of no-response trials (“learned helplessness-like 
behavior”), while adult animals subjected to stress during the adoles-
cent stage demonstrated a low frequency of no-response trials (“bad 
learners”), suggesting a difference in learning abilities based specifically 
on when the early-life stress occurs (Tsoory and Richter-Levin, 2006). 

Avital and colleagues (2005) used a different two-hit model than the 
previous models already described. They subjected male rats to an 
elevated platform for a single day at PND 28 (experiment 1) or for 3 
consecutive days at PND 26–28 (experiment 2), and then, to determine 
whether this stressor alters the ability to cope with another stressor later 
in life, rats were exposed to acute swim stress for 15 min in adulthood. In 
experiment 1, they found that a single exposure to an elevated platform 
at PND 28 reduced exploratory activity in the open field task, and 
ameliorated reversal learning abilities during day 1 of the reversal 
learning session in the Morris water maze task in the long-term. Acute 
swim stress in adulthood reduced exploratory activity in the open field, 
increased anxiety-like behavior in both the open field and acoustic 
startle response tasks, and induced faster reversal learning during day 1 
of reversal learning in the Morris water maze task compared with con-
trols. Interestingly, exposure to both stressors exacerbated the devel-
opment of impaired exploratory activity, increased anxiety-like effects, 
and altered spatial memory performances. The same effects were found 
in experiment 2, in which increased anxiety-like behavior in both open 
field and acoustic startle response tasks was observed in adult rats pre-
viously exposed to juvenile stress (Avital and Richter-Levin, 2005). 
Together, these studies demonstrate that experiencing a first hit during 
early-life exacerbates behavioral alterations induced by exposure to a 
second stress challenge later in life. It is important to note, however, that 
resilience effects may also occur after exposure to both stressors at two 
different life periods. For example, Suo and colleagues (2013) found that 
repeated predictable chronic mild stress during adolescence (PND 
28–55) induced anxiolytic- and antidepressive-like behaviors in adult 
male rats compared with their controls in the long-term, while exposure 
to chronic unpredictable stress in adulthood (PND 63–83) increased the 
development of anxiety- and depression-like behaviors. Interestingly, 
they found that when rats were exposed to both types of stress, they 
exhibited resilience against the development of such phenotypes, indi-
cating that, in this case, stress during adolescence helped rats to cope 
with another stressful event later in life (Suo et al., 2013). Similar 
resiliency-inducing effects were found in a more recent study in which 
late-adolescent male and female rats were subjected to chronic variable 
stress for 2 weeks (starting at PND 45 ± 2) and then to single prolonged 
stress in adulthood (PND 85). Specifically, they found that exposure to 
stress in adolescence did not induce later alterations in fear memory 
dynamics in either sex, but that the adult stressor reduced extinction 
only in males and enhanced reinstatement in both sexes in an auditory- 
cued fear conditioning paradigm. Further, they demonstrated that the 
combination of these two stressors induced the development of resil-
ience against such alterations in fear memory (Cotella et al., 2022). 
These results indicate that the final consequences of susceptibility or 
resilience to stress depend on several factors, such as the duration and 
type of the stressors. Another possible explanation for such different 
outcomes could be the interindividual variability in the stress response, 
which was not considered in the studies described above. Generally, in 
animal studies, the data are interpreted by considering the whole pop-
ulation of the stress-exposed subjects homogeneously, i.e., as having the 

same phenotype (vulnerable or resilient) (Cohen et al., 2004). Evalu-
ating individual values instead of the average of a certain behavioral 
parameter in stress-exposed animals could be helpful, however, to better 
understand interindividual variability in the stress response and 
enhance the translational value of the study. All the results described 
above are summarized in Table 2. 

5.2. Neurobiological mechanisms underlying the effects of combined 
adolescent social/nonsocial and adult stress 

Clarification of the neurobiological mechanisms underlying the ef-
fects induced by early-life adverse events on the individual’s respon-
siveness to an additional stressor experienced later in life in animal 
models has high translational value. This understanding will provide the 
basis to unravel biomarkers and causative mechanisms of resilience/ 
susceptibility to developing stress-related disorders, which in turn will 
open the way for the development of new pharmacological tools to treat 
and prevent the development of such diseases following an additional 
stress exposure in adulthood. Evidence suggests that epigenetic regula-
tion of gene expression (histone modification, DNA methylation and 
microRNAs) is responsible for the permanent effects of stress (Klengel 
and Binder, 2015). In fact, it is hypothesized that stress affects the 
expression of genes related to the HPA axis or to important processes 
within the brain. These alterations may change stress-induced adaptive 
(allostasis) or maladaptive (allostatic load) mechanisms, which can 
result in the adoption of either successful coping strategies (health) or 
dysfunctional coping strategies (stress-related disorders) (Gray et al., 
2017). Although it is clear that adolescent (social and nonsocial) 
stressors may affect the ability to cope with an additional stressful event 
experienced later in life (see behavioral results described in the above 
two paragraphs), the precise brain areas and signaling involved in such 
effects are not yet well elucidated. 

Gamma-aminobutyric acid (GABA) and opioid neurotransmission 
play important roles in the pathophysiology of stress-related disorders, 
and altered modulation of GABAA receptors (GABAAR) and κ opioid 
receptors (KOR) may be involved in the development of anxiety (Hor-
ovitz et al., 2012; Nuss, 2015; Van’T Veer and Carlezon, 2013). Horovitz 
and colleagues (2020) showed that exposure to stressors in both the 
juvenile and adult stages induces susceptibility to anxiety-like behavior 
in adult male rats (Horovitz et al., 2020). To investigate the neurobio-
logical mechanisms underlying such effects, they analyzed protein 
expression levels of α1 and α2 subunits of the GABAAR (GABAAR α1 and 
α2) and KOR in different stress-related brain areas, such as medial pre-
frontal cortex, nucleus accumbens, amygdala, and periaqueductal gray. 
By using an integrated receptor expression network profile (useful 
approach since the stress response involves the activity of multiple brain 
areas at the same time), they found that exposure to variable stressors in 
juveniles and to a two-way shuttle avoidance task in adulthood affects 
the expression of GABAAR α1 and α2 and KOR within the brain and that 
these alterations occur in parallel. These findings suggest that the 
enhanced anxiety-like phenotype induced by both stressors could be 
explained by alterations in neurotransmission involved in this brain 
network (Horovitz et al., 2020). 

Compelling evidence, however, indicates that the development of 
anxiety-like symptoms can be related to several pathways, including the 
serotonergic (5-HT) system (Akimova et al., 2009; Baldwin and Rudge, 
1995). Further, it is established that cross-talk between the 5-HT and 
GABA systems occurs within the brain, particularly in the hippocampus, 
as GABAergic neurons express various 5-HT receptor types (Dale et al., 
2016). According to these findings, Gruber and colleagues (2015) 
investigated the contribution of 5-HT–induced GABAergic inhibition in 
the ventral dentate gyrus of the hippocampus to the susceptibility of 
developing anxiety-like behavior in adult male rats subjected to a 
combination of two stressors experienced in adolescence and adulthood 
(Gruber et al., 2015). Their findings indicated that rats singularly 
exposed to juvenile or adult stress exhibited altered modulation of 5- 
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HT–induced granule cell inhibition, and that some of these effects 
remained when rats were subjected to both stressors, while other effects 
at the synaptic level disappeared. This suggests that alterations of 5-HT- 
induced GABAergic inhibition in the ventral dentate gyrus of the hip-
pocampus may be related to the enhanced anxiety-like state in animals 
exposed to both stressors (Gruber et al., 2015). 

Although published data indicate that early-life stress alters synaptic 
plasticity in the long-term (Akers et al., 2006; Gruss et al., 2008), how 
stress exposure at two different life periods affects synaptic plasticity is 
not well investigated. Maggio and Segal (2011) evaluated whether 
exposure to variable stressors during adolescence and to forced swim 
stress in adulthood changes the ability to produce long-term potentia-
tion and depression in the CA1 region of both the ventral and dorsal 
hippocampus in male rats. Their findings demonstrated that stress in 
adolescence profoundly affects brain plasticity by enhancing long-term 
potentiation in the dorsal hippocampus and reducing long-term 
depression in the ventral hippocampus, but these effects are no longer 
observed 1 week after stress exposure. Additional exposure to adult 
stress strengthens the effects induced by adolescent stress, indicating 
that stress in adolescence can permanently alter neuronal plasticity 
when a second stress event occurs later in life (Maggio and Segal, 2011). 

Beyond the effects of glucocorticoids to alter synaptic plasticity 
within the hippocampus, it is important to note that this mechanism can 
be also regulated in an opposite way by brain-derived neurotrophic 

factor (BDNF), a member of the neurotrophin family, whose signaling 
and expression are affected by stress hormones (Jeanneteau and Chao, 
2013). A recent study investigated the interplay between glucocorti-
coids and BDNF to elucidate the neurobiological mechanisms of resil-
ience in male rats that experienced social defeat stress during 
adolescence and single prolonged stress in adulthood (Mancini et al., 
2021a). In parallel with the behavioral results, early-life social stress 
increased hippocampal BDNF protein expression levels and reduced 
plasma corticosterone levels in the long-term, and such effects dis-
appeared when rats were exposed to additional trauma later in life. 
These results suggest the BDNF pathway as a possible mechanism un-
derlying the long-lasting effects of adolescent social defeat stress and 
that the combination of two stressors, which is responsible for resilience 
toward emotional and cognitive behavioral alterations, could be 
explained by the altered hippocampal BDNF protein expression levels 
that are completely normalized following a single prolonged stress 
exposure in adulthood (Mancini et al., 2021a). 

Regarding stress resilience mechanisms, another study demonstrated 
that adult male rats singularly exposed to chronic unpredictable stress in 
adulthood, but not predictable chronic mild stress during adolescence, 
exhibited anxiety- and depression-like behaviors, and that these effects 
were attenuated following exposure to both stressors (Suo et al., 2013). 
Because the rapamycin (mTOR) pathway may be involved in the 
development of depression (Abelaira et al., 2014; Ignácio et al., 2016), 

Table 2 
Two-hit studies: nonsocial adolescent stress (first hit) + adult stress (second hit).  

Sex and strain First hit 
(PND) 

First hit 
(type) 

Second 
hit (PND) 

Second hit (type) Behavioral effects 
(two-hit) 

Male rats (Tsoory 
et al., 2007) 

PND 
27–29 

Forced swim stress (PND 27) +
elevated platform (PND 28) +
footshock (PND 29) 

PND 60 Two-way shuttle avoidance task Reduced exploration and avoidance 
learning 

Male rats (Tsoory 
et al., 2008) 

PND 
27–29 

Forced swim stress (PND 27) +
elevated platform (PND 28) +
footshock/restraint (PND 29)  

PND ~ 60 Two-way shuttle avoidance task Reduced avoidance learning 

Male rats ( 
Horovitz et al., 
2014) 

PND 
27–29 

Forced swim stress (PND 27) +
elevated platform (PND 28) +
restraint (PND 29) 

PND 60 Two-way shuttle avoidance task Reduced exploration and avoidance 
learning, and increased depressive-like 
behavior 

Female rats ( 
Horovitz et al., 
2014) 

PND 
27–29 

Forced swim stress (PND 27) +
elevated platform (PND 28) +
restraint (PND 29) 

PND 60 Two-way shuttle avoidance task Reduced avoidance learning, and increased 
depressive-like behavior 

Male rats (Gruber 
et al., 2015) 

PND 
27–29 

Forced swim stress (PND 27) +
elevated platform (PND 28) +
restraint (PND 29) 

PND 
60–69 

Two-way shuttle avoidance task (one single 
exposure)  

Reduced exploration, and increased 
anxious-like behavior 

Male rats ( 
Horovitz et al., 
2020) 

PND 
27–29 

Forced swim stress (PND 27) +
elevated platform (PND 28) +
restraint (PND 29)  

PND ~ 60 Two-way shuttle avoidance task Increased anxious-like behavior 

Male rats (Tsoory 
and Richter- 
Levin, 2006) 

PND 
27–29 

Elevated platform (PND 27) +
forced swim stress (PND 28) +
footshock (PND 29) 

PND 
59–60 

Two-way shuttle avoidance task (one single 
exposure) 

Reduced exploration and avoidance 
learning with high frequency of no- 
response trials (’learned helplessness-like 
behavior)  

Male rats (Tsoory 
and Richter- 
Levin, 2006) 

PND 
33–35 

Elevated platform (PND 33) +
forced swim stress (PND 34) +
footshock (PND 35) 

PND 
59–60 

Two-way shuttle avoidance task (one single 
exposure) 

Reduced exploration, and avoidance 
learning with low frequency of no-response 
trials (’bad learners’)  

Male rats (Avital 
et al., 2005) 

PND 28 Elevated platform PND 86 Acute swim stress Reduced exploration, increased anxious- 
like behavior, and ameliorated spatial 
memory performances 

Male rats (Avital 
et al., 2005) 

PND 
26–28 

Elevated platform PND 60/ 
90 

Acute swim stress Reduced exploration, increased anxious- 
like behavior, and ameliorated spatial 
learning 

Male rats (Suo 
et al., 2013) 

PND 
28–55 

Predictable chronic mild stress PND 
63–83 

Chronic unpredictable stress Reduced anxious- and depressive-like 
behaviors 

Male rats (Cotella 
et al., 2022) 

PND 45 ±
2; two 
weeks 

Chronic variable stress PND 85 Single prolonged stress (2 h restraint stress, 
20 min forced swim stress and, after 15 min, 
ether anesthesia until loss of consciousness) 

Reduced fear memory dynamics alterations 
(e.g., impaired extinction and increased 
reinstatement) 

Female rats ( 
Cotella et al., 
2022) 

PND 45 ±
2; two 
weeks 

Chronic variable stress PND 85 Single prolonged stress (2 h restraint stress, 
20 min forced swim stress and, after 15 min, 
ether anesthesia until loss of consciousness) 

Reduced fear memory dynamics alterations 
(e.g., increased reinstatement)  
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Suo et al. (Suo et al., 2013) evaluated the role of this pathway in resil-
ience against anxiety- and depression-like behaviors. They demon-
strated that chronic unpredictable stress in adulthood led to decreased 
expression of phospho-mTOR protein in the prefrontal cortex and yet 
when rats were subjected to the combination of both stressors these 
decreased phospho-mTOR levels were no longer observed, suggesting 
that mTOR signaling represents a possible mechanism underlying 
resilience against the later development of stress-related psychopathol-
ogies when separate stressors occur in different life stages (Suo et al., 
2013). 

The important role of the prefrontal cortex in regulating the devel-
opment of resilience was also suggested by the results of another study in 
which exposure to chronic variable stress during late-adolescence pre-
vented fear memory alterations induced by single prolonged stress in 
adulthood (Cotella et al., 2022). Cotella and colleagues (2022) found 
reduced neural activation (fos expression) in the infralimbic region of 
the medial prefrontal cortex after the reinstatement session of a fear 
conditioning paradigm in male adult rats, but not female adult rats, 
exposed to single prolonged stress. This effect was abolished when an-
imals were exposed to both stressors. These authors then used whole-cell 
patch clamp recordings to demonstrate that the previous exposure to 
stress in adolescence prevented the reduced infralimbic pyramidal cell 
excitability induced by stress in adulthood. Together, their findings 
indicate the involvement of the medial prefrontal cortex in the devel-
opment of stress-resilience after exposure to different stressors in 
adolescence and in adulthood, but the exact mechanism by which 
resilience develops requires further investigation. 

Results described above including both behavioral data and neuro-
biological mechanisms are summarized in Table 3. 

6. Conclusion 

The present review summarizes recent findings on the programming 
effects induced by social and nonsocial stress during adolescence as a 
first hit, and how they can affect the resilience and susceptibility to the 
development of stress-related disorders when a second stressor (second 
hit) is experienced later in life. Further, we described the potential 
neurobiological underpinnings responsible for the stress response dif-
ferences to the combined experience of different stressors at two 
different time-points in life (adolescence and adulthood). 

Interestingly, not all individuals experiencing adverse stressful 
events will eventually develop a mental disorder. To elucidate this 

aspect, several hypotheses have been postulated, such as the two-hit 
model, which describes that stress during early-life (first hit) can pro-
duce some alterations within the brain that in turn modify the ability to 
cope with an additional challenge (second hit) later in life, and thereby 
lead to an increased or decreased risk for stress-related disorders. The 
majority of these preclinical studies used an early postnatal stressor as 
the first hit (e.g., maternal separation paradigm). A previous review, 
however, highlighted the fact that subjecting rats to a stress in a period 
that reflects some of the characteristics observed during adolescence in 
humans provides these studies a high translational value (Horovitz et al., 
2014). What we found is that following the exposure to different 
stressors in two different life periods (adolescence and adulthood), adult 
rats exhibit either susceptibility or resilience depending on the type, 
duration, and intensity of the stressor (e.g., social or nonsocial, repeated 
homonymous or repeated variable, and different phases of adolescence), 
indicating that the final development of susceptibility or resilience to 
developing stress-related disorders is strongly related to the context and 
timing of both stressors. Beyond these two aspects, interindividual 
variability in the stress response also plays an important role in these 
effects and depends on a combination of factors. In fact, people can react 
differentially to stress for several reasons, including subjective inter-
pretation of the stressful event, genetic components, as well as sex (e.g., 
females are twice as likely as males to develop stress-related disorders). 
Another important aspect that remains to be clarified is the exact 
neurobiological mechanisms underlying susceptibility and resilience. 
We described the literature evidence on possible pathways and brain 
areas involved in such processes, but further studies are needed to better 
clarify the precise neurobiological underpinnings of these effects. 

Unravelling stress susceptibility/resilience mechanisms could be 
helpful toward identifying biomarkers and causative mechanisms of 
susceptibility and/or resilience to developing stress-related disorders, as 
well as for developing new potential pharmacological tools for treating 
and preventing these disorders in humans when an additional stressor is 
experienced later in life. 

In conclusion, the data discussed in our review suggest that exposure 
to social or nonsocial stressors during adolescence, a critical window for 
brain development and a stress-sensitive period, can affect responsive-
ness towards an additional stressor experienced later in life, which in 
turn can lead to an increased or decreased risk for the development of 
stress-related disorders. 

Table 3 
Two-hit studies: neurobiological underpinnings of susceptibility/resilience.  

Sex and strain First hit 
(PND and type) 

Second hit (PND and type) Behavioral effects 
(two-hit) 

Neurobiological underpinings 
(two hit) 

Male rats ( 
Horovitz 
et al., 2020) 

Forced swim stress (PND 
27) + elevated platform 
(PND 28) + restraint (PND 
29) 

Two-way shuttle avoidance task (PND ~ 
60) 

Increased anxious-like behavior Altered expression of GABAAR α1 and α2 and 
KOR within the brain (e.g., medial prefrontal 
cortex, nucleus accumbens, amygdala, and 
periaqueductal gray) 

Male rats ( 
Gruber 
et al., 2015) 

Forced swim stress (PND 
27) + elevated platform 
(PND 28) + restraint (PND 
29) 

Two-way shuttle avoidance task (one single 
exposure; PND 60–69)  

Reduced exploration, and 
increased anxious-like behavior 

Altered 5-HT-induced GABAergic inhibition in 
the ventral dentate gyrus of the hippocampus 

Male rats ( 
Mancini 
et al., 
2021a) 

Social defeat stress (PND 
28–34) 

Single prolonged stress (2 h restraint stress, 
15 min forced swim stress and, after 15 
min, isoflurane exposure until loss of 
consciousness; PND 90) 

Reduced alterations on 
emotionality and spatial memory, 
and increased cued fear memory 
dysfunction 

Altered BDNF protein expression levels within 
the hippocampus 

Male rats (Suo 
et al., 2013) 

Predictable chronic mild 
stress (PND 28–55) 

Chronic unpredictable stress (PND 63–83) Reduced anxious- and depressive- 
like behaviors 

Altered expression of phospho-mTOR protein 
in the prefrontal cortex 

Male rats ( 
Cotella 
et al., 2022) 

Chronic variable stress 
(PND 45 ± 2; two weeks) 

Single prolonged stress (2 h restraint stress, 
20 min forced swim stress and, after 15 
min, ether anesthesia until loss of 
consciousness; PND 85) 

Reduced fear memory dynamics 
alterations (e.g., impaired 
extinction and increased 
reinstatement) 

Altered activation of the infralimbic region of 
the medial prefrontal cortex 

Female rats ( 
Cotella 
et al., 2022) 

Chronic variable stress 
(PND 45 ± 2; two weeks) 

Single prolonged stress (2 h restraint stress, 
20 min forced swim stress and, after 15 
min, ether anesthesia until loss of 
consciousness; PND 85) 

Reduced fear memory dynamics 
alterations (e.g., increased 
reinstatement) 

Altered activation of the central lateral region 
of the central amygdala  
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Abelaira, H.M., Réus, G.Z., Neotti, M.V., Quevedo, J., 2014. The role of mTOR in 
depression and antidepressant responses. Life Sci. https://doi.org/10.1016/j. 
lfs.2014.02.014. 

Adamec, R., Walling, S., Burton, P., 2004. Long-lasting, selective, anxiogenic effects of 
feline predator stress in mice. Physiol. Behav. 83, 401–410. https://doi.org/ 
10.1016/j.physbeh.2004.08.029. 

Ago, Y., Tanaka, T., Ota, Y., Kitamoto, M., Imoto, E., Takuma, K., Matsuda, T., 2014. 
Social crowding in the night-time reduces an anxiety-like behavior and increases 
social interaction in adolescent mice. Behav. Brain Res. 270, 37–46. https://doi.org/ 
10.1016/j.bbr.2014.04.047. 

Akers, K.G., Nakazawa, M., Romeo, R.D., Connor, J.A., McEwen, B.S., Tang, A.C., 2006. 
Early life modulators and predictors of adult synaptic plasticity. Eur. J. Neurosci. 24, 
547–554. https://doi.org/10.1111/j.1460-9568.2006.04921.x. 

Akimova, E., Lanzenberger, R., Kasper, S., 2009. The serotonin-1A receptor in anxiety 
disorders. Biol. Psychiatry. https://doi.org/10.1016/j.biopsych.2009.03.012. 
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