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In this chapter, theoretical tools are discussed, which are important for Chapters 4,
5, and 6. The methods used to evaluate the electronic structure, which underlie the ad-
sorption energetics and the accompanying charge transfer are discussed in Section 3.1.
Assuming an appropriate electronic structure can be obtained, a commonly used the-
oretical framework to simulate STM images, that can be used to assess the correlation
between the theoretical description and experiment directly, is described in Section
3.2. Finally, Section 3.3 describes a method to facilitate analysis of surface structures
found in experiments in Chapters 5 and 6 by extending energetics obtained in the
microcanonical ensemble at zero temperature and pressure towards finite temperature
and pressure conditions.

3.1 Electronic Structure Calculations

3.1.1 Born-Oppenheimer Approximation

The Born-Oppenheimer (BO) approximation is one of the most fundamental approx-
imations in computational chemistry.1 According to the BO approximation, the elec-
trons adjust instantaneously to the motion of the nuclei, which means the motion of the
nuclei and electrons can be decoupled. This is justified by the vast difference in mass
between the nuclei and the electrons, resulting in a large disparity in the time-scales
of their respective motions. As a result, the electronic structure and, in particular,
the electronic ground state can be obtained separately for each set of nuclear positions
by solving (an in practice usually approximated version of) the electronic Schrödinger
equation.

3.1.2 Density-Functional Theory

Presently, the most common method used to calculate the electronic structure is
density-functional theory (DFT), whereby the energy of an electronic system can be
described by a functional of the electron density. The Hohenberg-Kohn theorem proves
that the electronic ground-state energy and all other ground-state electronic properties
can be uniquely determined by the electron density.2 W. Kohn and L.J. Sham used
a fictitious system of non-interacting electrons to determine the ground-state electron
density, by solving a set of single-electron Kohn-Sham equations, which result from
Hohenberg and Kohn’s equivalent of the variational principle:[

−1

2
∇2 + ve-e(r⃗) + ve-N(r⃗) + vxc(r⃗)

]
ψi(r⃗) = ϵiψi(r⃗) . (3.1)

Hartree atomic units are used here and in the remainder of this section. The first
term is the kinetic energy operator, and ϵi is the energy of the Kohn-Sham orbital ψi.
The single-electron potentials are divided into three separate potentials, describing the
electron-electron interaction

ve-e(r⃗) =

∫
ρ(r⃗′)

|r⃗ − r⃗′|
dr⃗′ , (3.2)
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and the electron-nuclear interactions

ve-N(r⃗) =
∑
I

ZI

|r⃗ −RI |
, (3.3)

where ZI and RI are the charge and position of nucleus I, respectively. The positions
of the nuclei (RI) are kept constant while solving the Kohn-Sham equations, according
to the aforementioned Born-Oppenheimer approximation. The electron density (ρ(r⃗)
in Equations (3.2) and (3.3)) is obtained from the sum of the Kohn-Sham orbitals

ρ(r⃗) =
∑
i

|ψi(r⃗)|2 , (3.4)

and the exchange-correlation potential is the functional derivative of the exchange-
correlation energy Exc:

vxc(r⃗) =
δExc[ρ]

δρ
(r⃗) , (3.5)

Since ve-e and vxc in Equation 3.1 depend on the electron density explicitly, the
Kohn-Sham equations have to be solved iteratively, until self-consistency has been
reached within some numerical tolerance. In practice, the Kohn-Sham orbitals are
expanded as linear combinations of basis functions taken from a particular set. In this
work, plane waves are chosen as the most convenient basis functions.

Systematic errors in DFT stem from the approximation of the exchange-correlation
functional Exc[ρ], since no exact expression is known. As such, a key focus of the-
oretical chemistry involves the development of exchange-correlation functionals that
allow DFT to accurately reproduce, and predict, experimentally observed properties
of materials. This means that the choice of an appropriate functional is important to
obtain meaningful results with DFT.3,4

3.1.3 Analyzing Charge Transfer

A common ”textbook” approach to describe chemical compounds is by considering
them as a collection of atoms, held together by chemical bonds. This approach is
easy to understand, and can be used to explain or predict many chemical properties
of compounds. A quantum mechanical version of this approach, commonly called
quantum theory of atoms in molecules (QTAIM), has been developed (primarily) by
Richard Bader.

Bader shows that the volume associated with single molecules, or the unit cell
of a crystal, can be divided into ”Bader volumes” by determining dividing surfaces
between their constituent atoms, at which the “flux of electrons” is zero.5 In practice,
this surface is a minimum in the electron density along the bonds between atoms or
ions. Typically, each of the Bader volumes contains at most a single nucleus, and can
therefore be considered as the atomic volume. By integrating separately over each of
the Bader volumes, the Bader charge of each atom can be calculated from the number
of electrons contained in that volume. Comparing the calculated Bader charges with
the expected charge, given by the number of valence electrons of each atom, quantifies
the charge transfer between the constituent atoms of the chemical compound, and thus
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gives some insight into the type of bonding. An example of a Bader charge analysis
for a diatomic molecule is shown in Figure 3.1.

The Henkelman group at the University of Texas has implemented this approach
into a very versatile Fortran code, which is interfaced to electron densities that can be
obtained from various DFT codes.6–9 This code is used for all Bader charge analyses
presented in this thesis.

(a) One-dimensional cut through the electronic charge
density ρ(r⃗) of an O2 molecule. The nuclei of atom A and
B are indicated by red circles, while ρ(r⃗) is shown on the
y-axis. The surface of zero flux marked by the gray
dashed line.

(b) Isosurface representation of the
electronic charge density of an O2

molecule (top) and corresponding
charge densities assigned to nuclei A
and B, according to the partitioning
based on Bader volumes (bottom).

Figure 3.1: Schematic representation of a Bader charge analysis for an O2 molecule. The
electron density can be split up in two Bader volumes through a “surface of zero flux”. The
total Bader charge for atom A and B can be found by integrating ρ(r⃗) over the Bader volume
that contains the nucleus of A (blue) and B (green), respectively.

3.2 Simulating STM Images

3.2.1 Bardeen’s Formalism

In order to compare images from scanning tunneling microscopy (STM) experiments
with first-principle calculations, an appropriate quantum mechanical description of the
tunneling current is required. Here, we will discuss a formalism for the tunneling
current, developed by John Bardeen.10 By considering a time-dependent perturbation
of the sample due to the tip, Bardeen’s formalism is able to express the tunneling
current as a function of the tip and sample states, temperature, and bias voltage. In
the next section, the derivation of this expression for the tunnel current is given.11,12

The time-dependent Schrödinger equation describing the combination of the sample
(S) and tip (T) can be defined as:

iℏ
∂Ψ

∂t
=

(
− ℏ2

2m
∇2 + US + UT

)
Ψ . (3.6)
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Where m describes the electron mass. When the sample and tip are far apart, so
that they do not interact with one another, they can be described as two separate
subsystems by the following set of two uncoupled Schrödinger equations:

iℏ∂ψ
∂t

= Ĥ□ψ =

(
− ℏ2

2m
∇2 + U□

)
ψ , with □ = S, T . (3.7)

The Hamiltonian ĤS contains the sample potential US and the Hamiltonian ĤT con-
tains the tip potential UT . Stationary solutions of the uncoupled Schrödinger equations

for the sample and tip take the form ψS
µ (r⃗)e−iES

µ t/ℏ and ψT
ν (r⃗)e−iET

ν t/ℏ, respectively.

We now consider the tip moving slowly towards the surface, and thus let UT in
Equation 3.6 be a time dependent potential

UT (t) = UT eηt/ℏ (3.8)

where UT is time-independent and equal to UT in Equation 3.7, and η
ℏ is very small

and positive. In this way, the tip potential UT (t) is slowly turned on over time, as
the tip approaches the sample. This means UT (t) → 0 for t → −∞, which results in
Equation 3.7 for the sample. The rate at which UT (t) changes over time is determined
by the value of η

ℏ , and UT (t) → UT for small η
ℏ (η

ℏ → 0), i.e., UT (t) becomes a
time-independent potential in the limit of small sample-tip coupling.

Initially (for t→ −∞), we can describe Ψ in Equation 3.6 as a linear combination
of tip (ψT

ν ) and sample (ψS
µ ) eigenfunctions from the separated subsystems, i.e., the

solutions from Equation 3.7, because tip and sample initially do not interact and thus
US and UT do not spatially overlap. Since the respective subsystems ψS

µ and ψT
ν are

eigenfunctions of the Hamiltonians in Equation 3.7, they comprise an orthogonal and
complete basis set for the Hamiltonian of the combined system given by Equation 3.6.
Thus, the state ψ(t), of the combined system, can be expanded in these solutions at
all times

ψ(t) = aµ(t)ψS
µe

−iES
µ t/ℏ +

∞∑
λ=1

cλ(t)ψT
λ e

−iET
λ t/ℏ (3.9)

whereby state ψ(t) is initially (at t → −∞) an eigenstate of the sample, since aµ(−∞) →
1 and cν(−∞) → 0. The time-dependent coefficients for t > −∞ have to be determined
from Equation 3.6. Inserting Equations (3.7) and (3.9) into Equation 3.6 gives:

iℏ
∂

∂t
(ψ(t)) =

(
ĤS + UT (t)

)(
aµ(t)ψS

µe
−iES

µ t/ℏ
)

+
(
ĤT + US

)( ∞∑
λ=1

cλ(t)ψT
λ e

−iET
λ t/ℏ

)

=aµ(t)
[
ES

µ + UT (t)
]
ψS
µe

−iES
µ t/ℏ +

∞∑
λ=1

cλ(t)
(
ET

λ + US
)
ψT
λ e

−iET
λ t/ℏ

(3.10)

If we assume that the tip and sample eigenfunctions do not overlap (
∫
ψS
µψ

T∗
ν dr⃗ ≈ 0),
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and are orthogonal, we can project ψT
ν onto Equation 3.10� to obtain:

iℏ
∂cν(t)

∂t
=aµ(t)

[
ES

µ · 0 +

∫
ψS
µU

T (t)ψT∗
ν dr⃗

]
e−i(ES

µ−ET
ν )t/ℏ+

cν(t)ET
ν +

∞∑
λ=1

cλ(t)

∫
ψT
λU

SψT∗
ν dr⃗ e−i(ET

λ −ET
ν )t/ℏ

(3.11)

In what follows we only consider the time evolution during very short times, during
which the time-dependent perturbation UT (t) is (almost) constant, so that we can
assume aµ ≈ 1 and cν ≈ 0. This simplifies Equation 3.11 to:

iℏ
∂cν(t)

∂t
=

∫
ψS
µU

TψT∗
ν dr⃗ei(E

T
ν −ES

µ−iη)t/ℏ (3.12)

By integrating Equation 3.12, we are able to obtain an expression for cν(t):

cν(t) =
−1(

ET
ν − ES

µ − iη
)Mµνe

i(ET
ν −ES

µ−iη)t/ℏ , Mµν =

∫
ψS
µU

TψT∗
ν dr⃗ (3.13)

Here, the tunneling matrix element Mµν is introduced, which describes the transition
from state µ in the sample to tip state ν due to the perturbed potential UT . It is
important to note that the tunneling matrix element Mµν is only non-zero in the
vacuum region between the tip and the sample, since ψT

ν → 0 in the region belonging
to the sample, while ψS∗

µ → 0 in the region belonging to the tip.
In order to get an expression for the tunnel current, the chance that an electron

tunnels from the sample to the tip per unit time is required. The tunnel current
for the transition between µ and ν, Pµν can be obtained from Equation 3.13, since

Pµν(t) = ∂|cν(t)|
∂t

2
. This gives:

Pµν(t) =
∂|cν(t)|
∂t

2

=
2

ℏ
η

(ET
ν − ES

µ )2 + η2
|Mµν |2e2ηt/ℏ (3.14)

In the limit of small tip-sample coupling, the last factor in Equation 3.14 simplifies
according to: limη→0 e

2ηt/ℏ = 1. Additionally, the second term is a type of Cauchy-
Lorentz probability density function,13 which means that limη→0 η([ET

ν −ES
µ ]2+η2)−1 =

πδ(ET
ν − ES

µ ). Equation 3.14 becomes:

Pµν(t) =
2π

ℏ
δ(ET

ν − ES
µ )|Mµν |2 (3.15)

The tunnel current between states µ and ν can now be obtained by multiplying
Pµν by the charge per electron e. Since we are interested in the total tunneling current
between the tip and the sample, and not the tunneling between 2 particular states,
we have to sum over all tip states (ν) and sample states (µ). At finite temperatures,
some states below the Fermi level are unoccupied and some states above the Fermi

�By applying
∫
ψT∗
ν eiE

T
ν t/ℏdr⃗ · on both sides of Equation 3.10.
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level can be occupied. At thermodynamic equilibrium, the probabilities for populating
those states are described by the Fermi-Dirac distribution function, which means the
probabilities are

f(E − EF ) =
1

1 + e(E−EF )/kBT
for a state to be occupied and

1 − f(E − EF ) for a state to be unoccupied,
(3.16)

where T is the temperature and kB is the Boltzmann constant. Since tunneling can
only occur from filled states to empty states, Equation 3.15 has to be multiplied with
the probability that µ is occupied and ν is unoccupied or vice-versa. At thermodynamic
equilibrium, there is a certain tunnel current from states µ to states ν from the sample
to the tip (IS→T ) and vice-versa (IT→S). In an STM experiment, a bias voltage between
the tip and the sample is applied to obtain a net tunneling current. For a bias voltage
V applied to the sample, the resulting net tunneling current, I, can be calculated as
follows:

IS→T =
2eπ

ℏ
∑
µν

f(ES
µ − ES

F + eV )[1 − f(ET
ν − ET

F )]δ(ET
ν − ES

µ )|Mµν |2

IT→S =
2eπ

ℏ
∑
νµ

f(ET
ν − ET

F )[1 − f(ES
µ + eV − ES

F )]δ(ET
µ − ES

ν )|Mµν |2

I = IS→T − IT→S =
2eπ

ℏ
∑
µν

[
f(ES

µ − ES
F + eV ) − f(ET

ν − ET
F )
]
δ(ET

ν − ES
µ )|Mµν |2

(3.17)

By changing the sign of the bias voltage, it is possible change the sign of I in order to
tunnel through either the occupied or unoccupied states of the sample.

To further examine the tunneling matrix element Mµν , we define a plane Σ in
the vacuum region between the tip and sample through which the tunneling occurs.
This plane splits the vacuum region into a volume ΩT , belonging to the tip, and a
volume ΩS , belonging to the sample. For the tip volume, ΩT , by substituting for

UTψT
ν =

(
ℏ2

2m∇2 + ET
ν

)
ψT
ν from Equation 3.7 into the definition of the tunneling ma-

trix element from Equation 3.13, we can rewrite Mµν as:

Mµν =

∫
ΩT

ψS
µ

(
ET

ν +
ℏ2

2m
∇2

)
ψT∗
ν dr⃗ (3.18)

Assuming only elastic tunneling i.e., ET
ν = ES

µ , yields:

Mµν =

∫
ΩT

ψS
µE

S
µψ

T∗
ν + ψS

µ

ℏ2

2m
∇2ψT∗

ν dr⃗ (3.19)

Substituting for ES
µ using Equation 3.7:

Mµν =

∫
ΩT

ψT∗
ν

(
− ℏ2

2m
∇2 + US

)
ψS
µ + ψS

µ

ℏ2

2m
∇2ψT∗

ν dr⃗

= − ℏ2

2m

∫
ΩT

ψT∗
ν ∇2ψS

µ − ψS
µ∇2ψT∗

ν dr⃗

(3.20)
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Figure 3.2: The Fermi-Dirac distribution
from Equation 3.16 at various temperatures.
At typical STM temperatures (295 K and be-
low), f(E −EF ) approaches a step-function.

Figure 3.3: Schematic of the tip and surface
in the Tersoff-Hamann approach.14,15 The
sample surface is indicated by the shaded
area. At the point closest to the surface, the
tip-sample distance is indicated by d, and the
tip is presumed to locally have a spherical
shape with radius R and center r⃗0. A separa-
tion surface Σ in the vacuum region between
the tip and surface is shown as a dotted line.

since in the region belonging to the tip, US = 0.

3.2.2 Tersoff-Hamann Approach

Using the formalism of Bardeen, we can estimate the tunneling current if we have infor-
mation on the electronic wave functions of both the tip and the sample. In most STM
experiments, the atomistic structure of the tip is not precisely known, which means
that no accurate atomic-scale information about the tip states is available. On the
other hand, for the analysis and interpretation of STM experiments, the exact (elec-
tronic) structure of the tip is only of interest to the degree in which it affects the STM
imaging. The Tersoff-Hamann approach simplifies Equation 3.17 to enable practical
computations of the tunneling current (and thus STM images) based on output that
can nowadays be easily obtained from electronic structure calculations, typically done
at the DFT level.14,15

Firstly, Equation 3.17 can be simplified by making some assumptions about the
conditions of the (hypothetical) STM experiment. If we consider room temperature
or below, which is often the case for STM experiments, the Fermi-Dirac distribution
function approaches a step-function, as seen in Figure 3.2. Assuming that the Fermi
level of the tip and sample is equivalent, in the limit of small bias voltage (eV ≪ ES

µ ),
Equation 3.17 can be simplified to:

I =
2πe2V

ℏ
∑
µν

δ(ES
µ − EF )δ(ET

ν − EF )|Mµν |2 (3.21)

Now, to make solving Equation 3.21 easier, the tip is modeled as a spherically
symmetric potential well with a local radius R, centered at a single point (r⃗0) closest
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to the surface, as shown in Figure 3.3. Since the potentials of the tip and sample are
negligible at a surface Σ in the vacuum region, the states near the Fermi level of the
tip and the sample satisfy the vacuum Schrödinger equation:

− ℏ2

2m
∇2ψ(r⃗ − r⃗0) = −ϕψ(r⃗ − r⃗0) or

(
∇2 − κ2

)
ψ(r⃗ − r⃗0) = 0 (3.22)

where ϕ is the work function, r⃗ a position in the vacuum region between the tip and the
sample, and κ =

√
2mϕℏ−1. Equation 3.22 is also known as the Helmholtz equation.16

Assuming the tip wave functions take the form of s-orbitals, Equation 3.22 has two
types of solutions: spherical modified Bessel functions of the first and second kind.
The spherical modified Bessel function of the first kind diverges far away from the tip
(r⃗ ≫ r⃗0), which means it does not satisfy the boundary condition for the tip wave
functions (lim|r⃗−r⃗0|→∞ ψT → 0).17 The modified Bessel function of the second kind
(K0(x)) takes the form of an exponential decay from the center of the tip towards the
vacuum and, therefore, satisfies the boundary condition for the tip wave functions.18

This means the solutions of Equation 3.22 for the tip become:

ψT (r⃗ − r⃗0) = AK0(κ|r⃗ − r⃗0|) = A
e−κ|r⃗−r⃗0|

κ|r⃗ − r⃗0|
(3.23)

where A is a normalization constant. Inserting ψT
ν from Equation 3.23 into Equa-

tion 3.20 gives:

Mµν(r⃗0) = − ℏ2

2m
A

[∫
ΩT

K0(κ|r⃗ − r⃗0|)∇2ψS
µ (r⃗ − r⃗0)dr⃗

−
∫
ΩT

ψS
µ (r⃗ − r⃗0)∇2K0(κ|r⃗ − r⃗0|)dr⃗

] (3.24)

Because US → 0 in ΩT , the first integral can be treated as the vacuum Schrödinger
equation in Equation 3.22, however, the second integral is not as straightforward to
solve.

Using properties of the modified spherical Bessel functions, we can obtain a solution
for Equation 3.24, in the form of:

Mµν(r⃗0) =
2πℏ2A
mκ

ψS
µ (r⃗0) (3.25)

Now that we have a convenient expression for Mµν , we can substitute it into Equa-
tion 3.21 to get

I =
8π3A2ℏ3e2

κ2m2
V ρT (EF )

∑
ν

|ψS
ν (r⃗0)|2δ(ES

ν − EF ) (3.26)

which gives

I = C · V · ρT (EF ) · ρS(r⃗0, EF ) (3.27)
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with

C =
8π3A2ℏ3e2

κ2m2
(3.28) and ρ(r⃗, E) ≡

∑
λ

|ψλ(r⃗)|2 δ(Eλ − E) (3.29)

This means that in the Tersoff-Hamann approximation the tunneling current can be
calculated from a constant, C, the bias voltage, V , the density of states of the tip at the
Fermi level, ρT (EF ), and the local density of states (LDOS) of the sample at the center
of curvature of the tip near the Fermi level, ρS(r⃗0, EF ). As expected, I ∝ e−2κd, since

from 3.23 and the definition of r0 in Figure 3.3 we know that
∣∣ψS

ν (r⃗0)
∣∣2 ∝ e−2κ(R+d).

As mentioned in Section 2.4, STM experiments can either be performed in constant-
height mode, where the tip-sample distance (d) is kept constant and the tunnel current
(I) is measured, or in constant-current mode, where the tunnel current is kept con-
stant and the tip-sample distance is measured. Due to the exponential decay of I with
increasing d, the Tersoff-Hamann approach enables meaningful simulations of STM
images even if C and ρT (EF ) are not accurately known. In fact, the results in Equa-
tion 3.27 show that in the case of constant-current STM, the tip will simply follow
a surface of constant local density of states of the sample, since the only positional
dependence of I(r⃗0) is contained in ρS(r⃗0, EF ). This means it is possible to model
a constant-current STM image from first-principles by calculating the LDOS of the
sample at the surface, and plotting an isosurface of the LDOS at the energy that
corresponds to the bias voltage applied in the experiments.

Since the tip states are approximated as s-orbitals (given by K0 in Equation 3.23),
the Tersoff-Hamann approach holds only if the electronic states of the real tip have a low
angular dependence. When the effective tip radius (R) becomes larger, the contribution
of real wave functions with higher angular momentum l becomes more significant, and
the approach becomes less realistic. In order to overcome this problem with the Tersoff-
Hamann approach, Chen17 developed an extension of the Tersoff-Hamman approach,
wherein the tip wave function in the vacuum region is expanded in terms of spherical
harmonics. This results in solutions of the tunneling matrix elements for higher order
orbitals that are related also to the derivatives of the sample wave functions at the
tip position (r⃗0), and allow for a more exact description of the tunneling process. The
results obtained with the standard Tersoff-Hamann approach suggest that it is sufficient
in the scope of this work.

3.3 Atomistic Thermodynamics

At high gas pressures and non-zero temperatures, the surface of a heterogeneous cat-
alyst is exposed to a high impingement rate of molecules from the gas phase, which
are continuously adsorbing and desorbing. The relative stability of different candidate
surface structures at these conditions cannot be determined by directly comparing the
relative total energy from total energy calculations if such structures contain different
adsorbate coverages and/or surface atom densities.19 Increasing the amount of (ad-
sorbate) molecules will, without any additional considerations, change the calculated
absolute total energy of the system, because atoms are ’created’ from nothing. A direct
comparison between structures with different atomic compositions is thus meaningless
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if the origins of the atoms that are added, or removed, are not accounted for. As such,
to represent a surface at thermodynamic equilibrium, a grand-canonical description
of the atoms and molecules on the surface is required. The foundation of atomistic
thermodynamics is to accommodate this by including gas-phase and solid-state reser-
voirs. These reservoirs can provide or take away constituents from a particular surface
structure, which enables the construction of thermodynamic phase diagrams based on
the results of total energy calculations of surfaces with different numbers of adsorbates
and/or surface atoms.20,21

If the surface is at equilibrium with the gas phase, then the structure that is the
most thermodynamically stable at constant temperature T and partial pressures pg
(for each gas g) is the structure with the minimal surface Gibbs free energy

γ(T, pg) =
1

A
[G(T, pg, Ng, Ns) −

∑
g

Ngµg −
∑
s

Nsµs] (3.30)

In equation 3.30, G(T, pg) is the Gibbs free energy of the surface configuration, Ng and
Ns are the number of species with a reservoir in the gas phase, with chemical potential
µg, and surface-only species with chemical potential µs, respectively. To evaluate
equation 3.30, suitable reservoirs have to be determined for all species involved to
determine their chemical potential.22 For species g, the gas phase is an obvious choice.
By approximating the gas as an ideal gas, µg in equation 3.30 can simply be looked up
in a database.23 Often, equation 3.30 is easier to evaluate by introducing a reference
surface structure with N∗

g gas-phase species, N∗
S surface species, and a surface free

energy of γ0(T, pg), which yields

γ(T, pg) − γ0(T, pg) =
1

A

∑
g,s

[
∆G(T, pg, Ng, Ns, N

∗
g , N

∗
s ) − ∆Ngµg − ∆Nsµs

]
(3.31)

with
∆Ng = Ng −N∗

g , ∆Ns = Ns −N∗
s

and

∆G(T, pg, Ng, Ns, N
∗
g , N

∗
s ) = G(T, pg, Ng, Ns) −G0(T, pg, N

∗
g , N

∗
s ). (3.32)

In the case of atomistic thermodynamics calculations whereby the number of surface
species Ns in equation 3.31 does not change, for example when comparing only the
stability of various adsorption structures, ∆Ns = 0 and therefore µs does not have
to be considered. When ∆Ns ̸= 0, for example when a (component of) a catalyst is
reduced or oxidized, the bulk phase is a suitable reservoir. This leaves ∆G as the only
part of equation 3.31 that still has to be determined. The absolute Gibbs free energy
is consists in its general form of the following terms

G = Etot + F trans + F rot + F vib + F conf + pV, (3.33)

and is usually difficult to calculate exactly. However, F trans and F rot can be discarded
for solids and pV constitutes only a small fraction of G.24 The terms that contribute
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most significantly to the total Gibbs free energy in a solid are Etot, which is the total
energy, and the vibrational free energy F vib.24,25 If a proper reference surface structure
is chosen in equation 3.31 and all considered surface structures do not vary a great
deal, then the ∆F vib and ∆F conf will be relatively small and can be neglected in a
first approximation.25 For ∆µg ≡ µg −Etot(g), where Etot(g) is the total energy of the
isolated gas species g and Etot(s) the total energy of the solid-state reservoir of species
s, then equation 3.31 can be simplified to

γ(T, pg) − γ0(T, pg) ≈ 1

A
[∆Etot − ∆Ng∆µg(T, pg)], (3.34)

where

∆Etot = Etot(Ng, Ns) − Etot(N∗
g , N

∗
s ) − ∆NgE

tot(g) − ∆NsE
tot(s) (3.35)

According to the approximation given by Equation 3.34, the excess surface free energy
of a given structure can be obtained from total energy calculations of the correspond-
ing structure, of the reference surface, of all isolated gas-phase species and of the
associated solid-state reservoirs. Pressure and temperature dependence is included in
∆Ng∆µg(T, pg), whereby ∆µg(T, pg) can be determined from reference tables. This
means that –within these approximations– atomistic thermodynamics is computation-
ally very convenient. Nevertheless, it is important to note that the change in vibrational
free energy, ∆F vib, and the change in configurational free energy, ∆F conf , are not al-
ways negligible. In that case, ∆F vib can either be approximated,26 or calculated in
more detail from first principles.27,28 ∆F conf is not so straightforward, but can often
be quantified using cluster expansion techniques that can help with the calculation of
total energies for a huge amount of surface structures.29,30 This holds in particular
for ordered surface structures, which do not contain any “complex” reconstructions or
overstructures.

To apply atomistic thermodynamics for the prediction of surface structures present
in situ on catalysts, multiple gas phase reactants and products usually have to be ac-
counted for. This means that in equation 3.34 each molecule type has its respective
reservoir. As mentioned before, the surface equilibrium structure is determined as a
function of partial pressures and temperature, but for a full thermodynamic equilib-
rium the gas phase reservoirs are in equilibrium also. Under catalytic conditions the
gas phase is obviously not in equilibrium, otherwise all reactants would be converted
to the more thermodynamically favorable products. Obviously, this is not a proper
description of the conditions during catalysis, so to prevent this from happening, the
gas phase reservoirs cannot be in equilibrium with each other. ”Constrained” atomistic
thermodynamics describe a situation where the surface is in equilibrium with the gas
phase consisting of reactant reservoirs that are independent of one another. This ap-
proximation allows for first-principle comparison of surface structures under different
reaction conditions.

By applying the constrained equilibrium approximation to equation 3.34, it is possi-
ble to evaluate the surface free energies of a range of candidate structures as a function
of each gas-phase chemical potential ∆µg(T, pg). The temperature and pressure depen-
dence of the surface free energy in equation 3.34 is contained in the gas-phase chemical
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potentials, so the most stable surface structure can also be determined as a function
of pressure at a constant temperature or as a function of temperature at constant
pressure. Consequently, a phase diagram, as a function of temperature and partial
pressure, can be obtained by determining the structure with the minimum surface free
energy for every combination of gas phase chemical potentials.

It is important to emphasize that (constrained) atomistic thermodynamics does not
take into account the influence of kinetic effects, such as reactions between species on
the surface. If catalytic activity consumes surface(-bound) species faster than they can
be replenished from the gas phase, or if various species are consumed at a drastically
different rate, the predicted structure from constrained atomistic thermodynamics may
differ from the one formed in experiments, let alone real (commercial) catalysts. To
ensure meaningful results, it is important that the inherent approximations of atom-
istic thermodynamics are appropriate to model the experimental conditions. Another
limitation that currently holds true for all atomistic thermodynamics approaches is
that the reliability of the results depend on the chemical intuition and creativity of
the theoretician, as it is only possible to compare between (surface) structures that are
included explicitly. In other words, structures that are not explicitly considered in the
calculations cannot be obtained as a result, even if those structures are thermodynam-
ically more favorable.
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