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Abstract
The COVID-19 pandemic caused a drastic drop in passenger air transport demand due
to two forces: supply restriction and demand depression. In order for airlines to recover,
the key is to identify which force they are fighting against. We propose a method
for separating the two forces of COVID-19 and evaluating the respective impact on
demand. Our method involves dividing passengers into different segments based on
passenger characteristics, simulating different scenarios, and predicting demand for
each passenger segment in each scenario. Comparing the predictions with each other
and with the real situation, we quantify the impact of COVID-19 associated with the
two forces, respectively. We apply our method to a dataset from Air France–KLM and
show that from March 1st to May 31st 2020, the pandemic caused demand at the air-
line to drop 40.3% on average for passengers segmented based on age and purpose of
travel. The 57.4% of this decline is due to demand depression, whereas the other 42.6%
is due to supply restriction. In addition, we find that the impact of COVID-19 associ-
ated with each force varies between passenger segments. The demand depression force
impacted business passengers between age 41 and 60 the most, and it impacted leisure
passengers between age 20 and 40 the least. The opposite result holds for the supply
restriction force. We give suggestions on how airlines can plan their recovery using our
results and how other industries can use our evaluation method.
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1 INTRODUCTION

The COVID-19 pandemic caused many industries enormous
losses. The aviation industry is one that was hit the hardest
(Hollinger, 2020). According to the International Air Trans-
port Association, passenger air transport measured as revenue
passenger kilometer was down 90% year-on-year in April
2020 and still down 70% in August 2020. Till November
2020, most fleets were still grounded. However, the industry
urgently needs to plan for recovery. Our research is conducted
in cooperation with the fourth largest airline in Europe, Air
France-KLM. The initial question from the airline is how to
recover effectively and efficiently from the COVID-19 pan-
demic. To answer this question, the airline needs to identify
the forces of COVID-19 they are fighting against, because
the effect of a recovery plan depends on whether it directly
addresses the problem at source.
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Current recovery plans of airlines include seeking aids
and financial supports from governments, cutting capacity to
rein in costs, implementing in-flight service changes, such as
enhanced measures for cleaning airplanes (Peterson, 2020),
to rebuild passenger confidence and trust, and focusing on
passenger retention, for example, by offering booking incen-
tives (Albers & Rundshagen, 2020; Amankwah-Amoah,
2020). Air France-KLM is concerned with two strategies:
cutting capacity and offering booking incentives. A potential
danger of cutting capacity is that it will further restrain
demand. For offering booking incentives, many airline man-
agers believe that it only has values if the main reason why
passengers choose not to fly is because they have a low will-
ingness to fly. If it is not the case, offering booking incentives
only lowers the profit as passengers who want to fly will do
so even if there are no booking incentives. To investigate the
effectiveness of these two recovery strategies, Air France-
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KLM needs to investigate the impacts of flight route restric-
tions and low willingness to fly on demand, respectively.

Not only to airlines, but also to other industries, pan-
demics affect business demand in multiple ways and they
are qualitatively different from typical disruptions. Craighead
et al. (2020) illustrate that a typical disruption reshuffles the
proverbial deck regarding supply and demand — often affect-
ing one, but not the other. However, during the COVID-19
pandemic, the force of disruption is strong enough to force
extreme shifts in both demand and supply. As such, pan-
demics require scholars to take a fresh look at supply chain
phenomena to help firms better prepare for the next pandemic
and foster resiliency. By separating the forces of the pan-
demic and evaluating the impact of each force, firms can iden-
tify the salience of their issues and better allocate their limited
resource for a swift recovery.

In the context of passenger air transport, although the dam-
age of the pandemic is straightforward, that is, a drastic drop
in demand, there are two forces impacting demand. First,
COVID-19 restricts supply. Passengers cannot travel because
of the restrictions imposed by governments. Second, COVID-
19 depresses demand. Passengers’ desire or need to travel
naturally drops in times of pandemic (De Vos, 2020). The
impacts of the two forces on demand can be different. In addi-
tion, given the same force, the impact can differ between pas-
sengers and flight routes. For example, considering supply
restriction, COVID-19 impacted passengers in Europe more
than passengers in United States because passenger flights in
Europe are mostly international and most of the travel restric-
tions are also international. If COVID-19 has little impact on
passenger willingness to fly on certain routes, airlines could
expect a V-shaped recovery once they resume operations on
these routes. In this situation, instead of launching a mar-
keting campaign for these routes, airlines should move their
resource to other critical operations areas. If there is an impact
on passenger willingness to fly and the impact varies between
passengers, airlines should identify the segments of passen-
gers who are affected the most, and launch targeted promo-
tions.

In this article, we propose a method for separating the
forces of the COVID-19 pandemic based on the target area
of the force and evaluating the respective impact on demand
for passenger air transport. Our method consists of four steps.
First, we divide passengers into different segments based on
passenger characteristics (age and purpose of travel, or tier
in the airline loyalty program and length of flight). Second,
based on the availability of data and the scope of the prob-
lem, we select candidate models for predicting demand for
each passenger segment. Third, we simulate two scenarios
for the pandemic period (from March 1st to May 31st, 2020).
The first scenario is the business as usual scenario in which
we assume that there is no pandemic and the prediction here
represents demand in a normal situation, considering passen-
gers’ behavior pattern. The second scenario is the pandemic
scenario in which we consider the travel restrictions in reality
by making specific flight routes unavailable. The prediction
here represents demand in a situation where passengers fol-

low their behavior pattern under the impact of specific travel
restrictions. Fourth, we test the candidate forecasting mod-
els and apply the best performing model to predict demand
for each passenger segment in each scenario. Comparing the
prediction in the business as usual scenario with the real situ-
ation, we derive the twofold impact of COVID-19 on demand
for each segment. Comparing the prediction in the business as
usual scenario with the prediction in the pandemic scenario,
we derive the impact of COVID-19 associated with supply
restriction. Comparing the prediction in the pandemic sce-
nario with the real situation, we derive the impact of COVID-
19 associated with demand depression.

We apply our method to a dataset from the joint loyalty
program of Air France–KLM, which contains travel data of
5.8 million passengers and 51 million flights from June 1st,
2018 to May 31st, 2020. Our results show that in the pan-
demic period, COVID-19 caused the airline a demand decline
of 40.3% on average for passengers segmented based on age
and purpose of travel. The 57.4% of this decline is due to
demand depression, whereas the other 42.6% is due to sup-
ply restriction. The result that a large portion of the demand
decline is due to supply restriction suggests a promising
recovery once Air France–KLM fully resumes its operations.
In addition, we find that the impact of COVID-19 associ-
ated with each force varies between passenger segments. The
force associated with demand depression impacted passen-
gers between age 41 and 60 and travel mostly for business
(middle-age & business) the most, and it impacted passen-
gers between age 20 and 40 and travel mostly for leisure the
least. The opposite result holds for the force associated with
supply restriction. Specifically, for the middle-age & business
segment, the demand depression impact of COVID-19 counts
for 97.8% of the total decrease, whereas the supply restriction
impact of COVID-19 only counts for 2.2%. Based on our
results, we suggest the airline focus on resuming flights for
passenger segments of which demand decline is mainly due
to the supply restriction impact, and focus on restoring pas-
senger confidence for passenger segments of which demand
decline is mainly due to the demand depression impact. We
also provide guidelines for other industries to use our method.

Our research contributes to the theory and practice in three
ways. First, we use forecasting to evaluate the impact of a
past special event, COVID-19, on transport demand. Current
evaluations on the impact of COVID-19 are mostly based on
direct comparisons between actual and historical values, for
example, comparing the number of flights now with the num-
ber in the same period last year. This type of results may
not give the most accurate picture of COVID-19 because
demand may increase or decline over time due to normal
factors such as economic outlooks. Second, we quantify the
impact of COVID-19 on demand, based on whether it is asso-
ciated with the travel restrictions or the depression on pas-
senger willingness to fly. Current research on evaluating the
impact of COVID-19 does not measure the impact of each
force of COVID-19. Without properly identifying the forces
firms are fighting against, recovery strategies may not be
effective. Last, we consider differences between passengers
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when evaluating the impact of COVID-19. Different passen-
ger segments respond to economic or social events differently
due to particular characteristics of the segments. Thus, eval-
uations that do not model segments separately may over- or
underestimate the impact on a specific segment and a uniform
recovery plan may not work for all segments.

The remainder of the article is structured as follows. In
Section 2, we discuss the related research. In Section 3, we
elaborate on our method. In Section 4, we apply the method
to the Flying Blue dataset from Air France-KLM. In Sec-
tion 5, we present the results in our industry example. In Sec-
tion 6, we give suggestions on how airlines can plan their
recovery using our results and how other industries can use
our method.

2 LITERATURE REVIEW

Our research is related to two streams of literature. First, it
is related to transportation research on traffic flow prediction.
Second, it is related to research on crisis and disaster manage-
ment, particularly the study of operations management issues
in managing epidemic outbreaks. In the transportation litera-
ture, various methods have been used for traffic flow predic-
tion. Below our review is limited to urban traffic flow predic-
tion and passenger air transport demand forecast.

Traffic flow prediction is dealt with at different time hori-
zons. Long- and medium-term forecasts, which usually have a
1- to 10-year planning horizon, provide key inputs for infras-
tructure planning decisions such as freeway capacity plan-
ning. Short-term forecasts, of which planning horizons vary
from 1 h to 1 month, provide key inputs for daily operation
management decisions such as congestion control. Regard-
less of the forecast horizon, traffic conditions in a trans-
portation network are related to its previous patterns. Thus,
transport volumes and other information are recorded at reg-
ular time intervals and time series models are often used
for traffic flow prediction. Traditional time series models
include linear stationary models such as autoregressive (AR)
and moving average (MA), and linear nonstationary mod-
els such as AR-integrated MA (ARIMA). ARIMA model is
the most representative time series model used in the trans-
portation industry for traffic flow prediction. Lee and Fambro
(1999) compared the performance of four time series mod-
els for short-term freeway transport volume forecasting. Their
results showed that ARIMA model gave the most stable and
accurate results for their industry example. Multivariate time
series models, such as vector ARMA and space-time ARIMA
(Kamarianakis & Prastacos, 2003, 2005), have also been used
for traffic flow prediction. To capture seasonal patterns in traf-
fic data, Williams et al. (1998) proposed seasonal ARIMA
(SARIMA) models.

In addition to time series models, machine learning algo-
rithms such as artificial neural networks and support vector
regression have been used for traffic flow prediction (Smith,
1994; Dia, 2001; Vlahogianni et al., 2005; Kumar et al.,
2013; Lv et al., 2014). These algorithms are trained to learn

a function between a high-dimensional set of features and
the target to be predicted. Machine learning algorithms are
mostly used for real-time urban traffic forecasting with a
swift planning horizon, for example, from 15 to 40 min.
The goal is to provide travelers the ability to choose better
routes and provide authorities the ability to manage the
transportation system in real time (Polson & Sokolov, 2017).
Despite the superiority of machine learning algorithms in
capturing spatial-temporal relations and nonlinear effects,
time series models show robust and accurate predictions in
many real-world applications with short- and medium-term
forecast horizons. For example, Lippi et al. (2013) presented
an experimental comparison of different time series models
and supervised learning models. They found that SARIMA
model coupled with a Kalman filter is the most accurate
model for short-term traffic flow prediction.

In the air transportation industry, time series models are
most commonly used for demand forecast. Samagaio and
Wolters (2010) used AR and exponential smoothing models
to make long-term forecasts for the total number of passen-
gers at Lisbon airport. Xie et al. (2014) developed a hybrid
model based on seasonal decomposition and support vector
regression for short-term forecasting of air passenger at air-
ports. Nai et al. (2017) proposed a hybrid model based on
empirical mode decomposition and SARIMA for short- and
medium-term air traffic forecasting.

The first limitation of the current traffic flow prediction
practices is that they often underestimate the impact of char-
acteristics of passengers on their travel behavior. Bhaskar
et al. (2014) pointed out that the majority of studies in public
transport neglect differences between groups of passengers.
In addition, the existing passenger segmentation methods are
limited to the use of passenger surveys. Although passengers’
stated preference is valuable for transport demand forecasting
(Park & Ha, 2006), segmentation can rely on passengers’
exhibited behavior pattern (Bhaskar et al., 2014; Briand et al.,
2017). Air passengers are known for their distinct character-
istics; thus, to obtain accurate demand forecasts, the market
should be segmented based on passenger characteristics and
forecasting should be done for different segments separately.
The second limitation of the existing transport demand fore-
casting models is that they often neglect the occurrence of
large-scale disasters. Li et al. (2017) argued that traditional
traffic flow prediction methods focus on regular demand
forecasting and have disadvantages in predicting passenger
flows under special events scenario such as concerts and
parades. Special events including large-scale disasters have a
disruptive impact on public transportation systems, and thus,
should be given more attention in traffic flow prediction for
proactive management. Comparing the forecast considering
a special event with the real situation, the impact of the
event on transport demand can be estimated and it helps
governments and firms plan effective recovery strategies.

In the disaster operations management (DOM) literature,
among all types of disasters that are studied, epidemics is
rarely the focus. Altay and Green III (2006) surveyed the
operations research literature on DOM. They found that only
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11.9% of the existing studies focus on natural disasters,
whereas the majority is on man-made emergencies such as
industrial accidents, spills, and computer network crashes.
They outlined four stages of DOM, that is, mitigation, pre-
paredness, response, and recovery, and found that the one that
is in dire need of more research is disaster recovery. Disasters
like a pandemic are difficult and costly to mitigate and pre-
pare. The focus should, without question, be on response and
recovery. To effectively and efficiently recover, the key is to
identify the source of the problem and its impact on business.
Pournader et al. (2020) conducted a review of supply chain
risk management (SCRM) articles between 2001 and 2019.
They found that little attention has been given to studies on
business continuity and resilience management or humani-
tarian operations and disaster relief, compared to other more
popular SCRM topics. Zhu et al. (2004) proposed a frame-
work for understanding the impact of service failures on cus-
tomers and designing cost-effective recovery strategies. They
suggested that appropriate resource allocations for outcome
and process recovery strategies should be based on customer
risk profiles and the firm’s cost structures.

Using interviews, Suau-Sanchez et al. (2020) provided an
early assessment of the medium- and long-term impact of
COVID-19 on air transport in terms of supply and demand.
Their interview results showed that there will be a consol-
idation trend in supply, especially in the European market,
and demand will be highly affected, even in the long term,
because of changes in passenger behavior. In addition, on
the demand side, the interviewees expressed their concern
for business-related long-haul travel. Although the results
showed a depressing future for airlines, Suau-Sanchez et al.
(2020) recognized that their study does not consider recov-
ery scenarios as the interviews were conducted during the
first weeks of the crisis. If they were to consider recovery
scenarios, the effect of these scenarios should be evaluated
and it will require the researchers to measure the impact of
COVID-19 on demand more precisely. Using an online sur-
vey, Graham et al. (2020) studied the attitudes of aging pas-
sengers (defined as aged 65+) toward air transport in times of
pandemic. The findings showed that over 60% of aging, pas-
sengers are planning to travel by air in the next 12 months.
Factors such as flexible ticket booking and quarantine rules
that are key drivers affecting travel decisions of other groups
of passengers do not appear to be key drivers for aging pas-
sengers. Their study demonstrated the importance of evaluat-
ing the impact of COVID-19 on different groups of passen-
gers separately.

The limitation of the current DOM studies on the impact
of COVID-19 is that they lack quantitative analyses. It may
be due to a lack of data as the impact of COVID-19 is yet
to unfold. Forecasting models based on historical data can be
used to evaluate the impact of the ongoing pandemic. In addi-
tion, the current studies on the impact of COVID-19 on the
transportation sector do not consider passenger segmentation.
Tirachini and Cats (2020) synthesized on research needs per-
taining to contagion risk in public transportation. One urgent
research need is on the assessment of passengers’ behavioral

responses and adaptations in the post lockdown phase. They
pointed out that although COVID-19 has negatively affected
all passengers’ desires to travel, the extent of the effect varies
considerably, depending on personal preferences as well as
household income. Therefore, research on predicting passen-
gers’ behavioral changes should consider the differences in
people’s willingness to travel and their ability to travel if they
so desire.

Our research contributes to the literature in two ways.
First, we contribute to the transportation literature on traf-
fic flow prediction by forecasting transport demand in a
travel restriction scenario. In addition, we segment passen-
gers based their demographic and trip-related characteristics
and perform forecasting for different segments separately.
Second, we contribute to the DOM literature by using fore-
casting to evaluate the impact of COVID-19 on passenger air
transport demand and quantify the impact based on whether it
is associated with supply restriction or demand depression. In
addition, we evaluate the impact of COVID-19 for different
groups of passengers separately.

3 METHODOLOGY

We evaluate the impact of COVID-19 on demand for passen-
ger air transport. Passenger air transport demand can be mea-
sured in many forms such as the number of scheduled pas-
senger, the number of scheduled flights, passenger-kilometer,
and revenue passenger kilometers (Banerjee et al., 2020;
Marazzo et al., 2010). In this research, we model different
passenger segments separately and measure demand for a
segment in the number of unique flights completed by each
passenger in the segment. It is different from the number
of flights planned or executed by an airline because the for-
mer is for each individual passenger, reflecting her/his will-
ingness to fly, whereas the latter considers all passengers
as a whole. Measuring demand at the individual level helps
capture differences between passengers. In addition, flight
scheduling considers many other factors such as competi-
tion for market share than demand based on passenger will-
ingness to fly. We measure daily demand if not specified.
Another important note on our demand measure is that in air-
line databases, flights information is registered on the flight-
leg1 level, instead of based on the origin destination on the
ticket. For example, if a ticket is from Amsterdam (AMS) to
Paris (ORY) with a layover at Brussels (BRU), this ticket will
be registered as two separate flights in the database, that is,
AMS-BRU and BRU-ORY.

Our evaluation method consists of four steps. First, we
divide passengers into different segments based on passenger
characteristics. Second, we select candidate models for pre-
dicting demand for each passenger segment. Third, we simu-
late two scenarios for the pandemic period. Fourth, we test the
candidate forecasting models and apply the best-performing

1 A flight leg is a flight that maintains the same flight number and aircraft throughout
its journey.
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model to predict demand for each passenger segment in each
scenario. Below, we elaborate on each step.

3.1 Step 1. Passenger segmentation

The first step is to segment passengers using data till the
pandemic period. The concept of market segmentation was
proposed by Smith (1956) for accommodating the diversity
or heterogeneity among customers and providing better mar-
keting strategies. It has been widely used in the aviation
industry for the same purposes, for example, see Park (2007),
Mukhopadhyay et al. (2007), and Harrison et al. (2015). Pas-
senger segmentation is conducted either by dividing passen-
gers into predefined groups or by clustering methods. Clus-
tering methods such as density-based clustering help deter-
mine the number of segment based on the heterogeneity in
the data (Kriegel et al., 2011). When a fixed number of seg-
ments is required, k-means clustering can be used (Hartigan
& Wong, 1979). A potential drawback of clustering methods
is that the composition of each segment, as well as the num-
ber of segments, is determined endogenously, which might
not be practical from the business perspective or might not
generate actionable insights. In practice, if clustering results
have proven to be robust in a specific industry, these clus-
ters can be used to generate group labels and future seg-
mentation can be done by dividing data into the predefined
groups.

In the airline industry, passenger segmentation is usually
done by dividing passengers into predefined groups based
on passenger characteristics that have proven effective in
explaining the heterogeneity in passenger behavior. To extend
the applicability of our method to different airlines or other
industries, in this research, we also choose this approach. Pas-
senger characteristics that impact passengers’ travel behav-
ior include demographics information of passengers such as
age and income level. Furthermore, membership in a tiered
loyalty program, employment status, and whether passen-
gers are emigrants emerge as important determinants of travel
demand (Warburg et al., 2006; Adikariwattage et al., 2012;
Kuljanin & Kalić, 2015; Cook et al., 2017). In addition to
demographic characteristics, geographic characteristics such
as origin location data (home postcodes) of passengers can
be extremely useful for effective passenger segmentation and
targeting (Leung et al., 2017). However, each airline usually
has one targeted passenger region, from which more than half
of its flights and passengers originate. For example, over 80%
of Air France-KLM flights depart from EU, among which
over 50% depart from France and are for French passengers.
Thus, if there is only data of one airline, geographic informa-
tion may not be effective in passenger segmentation.

In addition to demographic and geographic characteristics,
trip-related information such as length of flight and travel
motive can be used in passenger segmentation. For example,
based on different travel motives, passengers can be divided
into business or leisure passengers. Brons et al. (2002) found
that leisure travel demand and business travel demand are

fundamentally different as they are affected by different fac-
tors. Because of the essential differences between the two
passenger groups, leisure and business travelers are likely
to respond differently to changes in certain socioeconomic
factors and to events like travel restrictions. Therefore, they
should be considered separately when forecasting demand in
a pandemic situation. According to the common practice in
the airline industry, a trip is classified as a business trip and
the passenger is classified as a business traveler if one of the
following conditions is met: (1) the ticket is purchased from
a corporation account or (2) the cabin class of the ticket is
a business class. Considering passenger p’s flight history in
a given period, we calculate the percentage of the time the
passenger flies on a business trip as follows:

Pp =
1

Ap

Ap∑

i=1

max{Ci,Ki}, (1)

where Ap is the total number of flights passenger p takes; Ci ∈

{0, 1}, where Ci = 1 if the ticket for flight i is purchased from
a corporate account and 0 otherwise; Ki ∈ {0, 1}, where Ki =

1 if the cabin class of the ticket for flight i is a business class
and 0 otherwise.

When segmenting passengers, the number of desired seg-
ments is an important factor that airlines should consider and
the more is not always better. Depending on the goal of pas-
senger segmentation, for example, when it is to retain passen-
gers rather than to reduce the cost of the existing passenger
reward scheme, the value of fewer segments may outweigh
that of an overly-refined segmentation. In addition, with more
passenger segments, it could become difficult to interpret the
results and generate actionable insights.

3.2 Step 2. Forecasting model selection

The second step is to select candidate models for predicting
demand for each passenger segment. The choice of a forecast-
ing model depends on the availability of data and the scope
of the problem. For short-term forecasts with time series
data, models such as AR, MA, and ARMA are often used.
When time series data show evidence of nonstationarity, the
ARIMA model is a good candidate model. When seasonality
exists in time series data, the seasonal ARIMA (SARIMA)
model can be used. As SARIMA model only requires univari-
ate time series data, it can be used in a broad range of indus-
try sectors. If time series exhibit complex and multiple sea-
sonal patterns (e.g., a monthly pattern and an annual pattern),
(Trigonometric seasonality, Box-Cox transformation, ARMA
errors, Trend and Seasonal components) TBATS model can
be used. When multivariate data are available or there is a
need for real-time forecasting, multivariate ARIMA-based
models or more complex models such as artificial neural net-
works can be deployed. In our industry example in which uni-
variate time series data exhibit nonstationarity and seasonal-
ity, we choose two candidate models: SARIMA and TBATS.
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SARIMA model considers seasonality in the data by
including additional seasonal terms in ARIMA model
(Hamilton, 1994). The AR part of ARIMA indicates that the
evolving variable of interest is regressed on its own lagged
values. The MA part indicates that the regression error is
a linear combination of error terms whose values occurred
both contemporaneously and at various times in the past. The
I indicates that the data values have been replaced with the
difference between their values and the previous values. This
differencing process can be performed multiple times to make
the model fit the data as well as possible.

The seasonal part of the model consists of terms that are
very similar to the nonseasonal components of the model, but
they involve backshifts of the seasonal period.

TBATS is an acronym for key features of the model: T is
for trigonometric seasonality, B is for Box-Cox transforma-
tion, A is for ARIMA errors, T is for trend, and S is for sea-
sonal components. TBATS model takes it roots in exponential
smoothing methods (De Livera et al., 2011).

Before applying a candidate model to predict future
demand, it is important to test the performance of the model
using historical data. In the case where accuracy measure-
ments show a poor performance of the model, alternatives
should be selected.

3.3 Step 3. Scenario simulation

The third step is to simulate two scenarios for the pandemic
period. The first scenario is the business as usual scenario,
and the prediction in this scenario represents the number of
flights that each passenger segment would take in a normal
situation, assuming that passengers follow their behavior pat-
tern. This prediction serves as a baseline and will be com-
pared with the prediction in the other scenario and with the
real situation. The second scenario is the pandemic scenario.
In this scenario, we make specific flight routes unavailable
according to the travel restrictions in reality, and the pre-
diction here represents demand in a situation where passen-
gers follow their behavior pattern under the impact of spe-
cific travel restrictions. We assume that passengers’ flight
route choice will stay the same as before when evaluating
the impact of a flight route restriction on demand; thus, this
impact is proportional to the previous frequency at which pas-
sengers flew on the route. We recognize that this is a strong
assumption. However, since the pandemic period which we
select in this research only lasts 3 months (from March 1st
to May 31st, 2020) and it is in the early months of the pan-
demic, we expect that passengers’ flight route choices based
on their own willingness to fly will not change. This assump-
tion helps separate the impact of COVID-19 associated with
supply restriction from the impact of COVID-19 associated
with demand depression. In addition, because our industry
example is a market leader, instead of a budget airline, and
because our data are collected from the early months of the
pandemic, we assume that the flight route restrictions in the

pandemic period are results of government regulations, but
not because of passengers cancelling flights.

To simulate the travel restrictions that had taken place
in the pandemic period, data about flight routes availability
need to be collected. This could be done by collecting pub-
lic information on the travel restrictions, for example, airline
announcements on flight cancellations. However, this infor-
mation is not trivial to collect. We can also collect travel
restriction data following three steps: (1) retrieve the pre-
planned2 schedule for each flight in the pandemic period. Use
Nr to denote the number of days in the pandemic period for
which a flight was scheduled on flight r. (2) Retrieve the exe-
cuted flights for each flight in the pandemic period. Use Dr to
denote the number of days in the pandemic period for which
a flight was executed on flight r. (3) Calculate the availability

of flight r in the pandemic period as
Dr

Nr
.

Table 1 shows an example of the availability of six flights
in a period of 4 days. In the table, the value “True” indicates
that the flight is available on the specific date and this date
is retrieved from the preplanned schedule for the flight. For
example, on March 25th, 2020, a flight on route AMS - BRU
was supposed to take off and in reality a flight took off; thus,
this route is marked as available (“True”) on this date. We cal-
culate the availability of a flight route in the pandemic period
based on the percentage of days this route is available.

3.4 Step 4. Prediction comparison

The last step is to apply the best-performing forecasting
model to predict demand for each passenger segment in each
scenario. We first obtain the prediction in the business as
usual scenario, using historical demand for each segment.
Comparing the prediction in the business as usual scenario
with the real situation, we derive the twofold impact of
COVID-19 on demand for passenger air transport, assuming
that passengers will follow their behavior pattern if there was
no pandemic. The time series prediction uses univariate flight
data and the availability of flight routes is not considered.
To obtain the prediction in the pandemic scenario, we first
identify passengers’ behavior pattern in terms of flight route
choice and then adjust the prediction in the business as
usual scenario, considering the impact of each flight route
restriction on demand. Not every flight route restriction has
the same impact on demand. Restrictions on popular routes
result in severer impact than restrictions on less-popular
routes. In addition, restriction on a specific flight route may
impact demand for different passenger segments differently
because not every segment will fly on the route with the
same frequency.

The flight route choices of each passenger segment can be
identified by calculating the frequency at which the segment

2 Flight schedules are mapped out several months in advance by the schedule planning
teams at the airlines (Hope, 2017). Given the length of the pandemic period in our
research that is 3 months starting from March 1st, 2020, it is safe to assume that the
flight schedule was made without considering the pandemic.
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400 USING FORECASTING TO EVALUATE THE IMPACT OF COVID-19

TA B L E 1 Example of availability in the dataset

Flight route 2020-03-25 2020-03-26 2020-03-27 2020-03-28 Availability

AMS - BRU True True False False 1/2

AMS - ORY True True True True 1

BRU - AMS True True True False 3/4

BRU - ORY True True False False 1/2

ORY - AMS False False False False 0

ORY - BRU True False False False 1/4

flies on each flight route, using historical data. In the pan-
demic scenario, the impact of a route restriction on demand
for a segment considers both the availability of the route and
the previous frequency at which the segment flew on this
route. For example, if a segment flew from AMS to BRU,
30% of the time previously and in the pandemic period flights
on this route were canceled 90% compared to the previous
schedule, then the impact of this travel restriction on demand
for this passenger segment, measured in the number of flights
reduced, will be equivalent to 30% × 90% of the demand fore-
cast in the business as usual scenario. The prediction in the
pandemic scenario is given by Equation (2):

Fp
s = Fb

s

Rs∑

r=1

Ar∣sDr

AsNr
, (2)

where Fp
s is the forecast on the number of flights for pas-

senger segment s in the pandemic scenario, Fb
s is the fore-

cast on the number of flights for passenger segment s in the
business as usual scenario, Ls is the number of flight routes
on which passenger segment s has flown previously, Ar∣s is
the number of flights on route r passenger segment s has
flown previously, As is the total number of flights passen-

ger segment s has flown, and
Dr

Nr
calculates the availability

of flight route r in the pandemic period (see Step 3 of the
method).

The impact of a flight route restriction on demand for a
passenger segment can also be evaluated by directly multi-
plying the availability of this route with the demand fore-
cast for this route. However, it will then require forecasting to
be done on the flight route level, that is, demand forecasting
for each flight route for each passenger segment. The poten-
tial disadvantage of this approach is that there may be a lack
of time series data on the flight route level within a passen-
ger segment, and thus the forecast may not be accurate. By
aggregating the flight data on different flight routes, gener-
ating an overall demand forecast for the entire set of flight
routes, and considering the weight of each flight route in the
demand forecast, we maintain good accuracy of the forecast-
ing model and extend the applicability of our approach to a
broad range of industries.

In the pandemic scenario, the impact of the availability of
flights on demand is considered. Comparing the prediction in
the business as usual scenario with the prediction in the pan-

demic scenario, we derive the impact of COVID-19 associ-
ated with supply restriction. Comparing the prediction in the
pandemic scenario with the real situation, if there is a lower
number of flights in the real situation, it can be attributed to
a low willingness to fly. Therefore, the difference between
the prediction in the pandemic scenario and the actual num-
ber of flights is the impact of COVID-19 associated with
demand depression.

4 APPLICATION TO THE FLYING BLUE
DATASET

We apply our method to a dataset collected from the largest
air passenger loyalty program in Europe, the Flying Blue pro-
gram of Air France–KLM. The dataset contains passenger
and flight specific data. Passenger-specific data consist of the
identification number of the passenger, the age of the passen-
ger, and the membership information of the passenger. Flight-
specific data consist of the date of the flight, the purchasing
account of the ticket, the cabin class of the ticket, the origin
and destination of each leg of the fight, and the length of the
flight. The flight data are linked to the passenger data, that
is, for each passenger in the program, we can retrieve her/his
previous flights. In addition, the passenger-specific data are
updated in real time, for example, for each flight, there is a
data entry on the current age of the passenger and current tier
at which the passenger is in the loyalty program. Table 2 pro-
vides a description of the dataset.

We left-censor the flight-specific data on June 1st, 2018
and right-censor it on May 31st, 2020. March 11th is the date
on which the World Health Organization (WHO) declared the
coronavirus outbreak a pandemic, but some travel restrictions
had already taken place before that date; therefore, in our
analysis, we select the first date in March as the starting date
of the pandemic period. The pandemic period ends on the
right-censoring date of the dataset, that is, May 31st, 2020.
In total, the dataset contains data of 5.8 million passengers
and 51 million flights. Table A1 in the Appendix lists the key
dates in the dataset used in our research. We follow the four
steps of our evaluation method. That is, we divide passengers
in the dataset to different segments, simulate the two scenar-
ios for the pandemic period, test the performance of the two
candidate models, and apply the best-performing model to
predict demand for each passenger segment in each scenario
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LI ET AL. 401

TA B L E 2 Description of the data in the dataset

Type Variable name (notation) Description

Passenger specific data CIN (I) An unique identifier of the passenger in the loyalty program

Age (A) The age of the passenger on a specific date

Tier (R) The tier at which the passenger is in the loyalty program3

Flight specific data Flight Date (T) The date of the flight leg

Corporate Purchaser (C) Whether the ticket is purchased from a corporation account

Cabin Class (K) Whether the cabin class of the ticket is a business class

Origin (O) The origin airport of the flight leg

Destination (D) The destination airport of the flight leg

Flight Length (M) The miles of the flight leg

TA B L E 3 Distribution of passengers in the dataset

Age Purpose of travel

Young (age 20–40) 31% Leisure (business trip <20%) 51.9%

Middle-age (age 41–60) 52.5% Middle-class (business trip 20%–70%) 18.9%

Aging (age 61–80) 16.5% Business (business trip >70%) 29.2%

Tier Flight Length

Explorer (the entry tier) 61.4% Short-haul (<2000 miles) 27.5%

Silver (one tier higher than Explorer) 13.8% Medium-haul (2000–3500 miles) 39.6%

Higher (higher tiers than Silver) 24.8% Long-haul (>3500 miles) 32.9%

and compare predictions. Below, we elaborate on passenger
segmentation and model application.

4.1 Passenger segments in the flying blue
dataset

Our methodology choices for passenger segmentation in the
Air France-KLM example are largely motivated by prac-
tice. The merits of such an approach are that results would
be intuitive and practically easy to implement. In the air-
line industry, passenger segmentation uses both passenger-
and flight-specific data. Based the age of the passenger or
the tier at which the passenger is in the loyalty program
on the starting date of the pandemic period, passengers
can be divided into three groups: young/middle-age/aging or
explorer/silver/higher passengers. Considering a passenger’s
flight history till the pandemic period, we calculate the per-
centage of the time the passenger flies on a business trip
according to Equation (1). Based on this percentage or the
average length of the passenger’s previous flights, she/he is
assigned to one of the following three groups: leisure/middle-
class/business or short-/medium-/long-haul passengers. The
criterion for each group and the distribution of passengers
across each set of three groups are shown in Table 3. These
criteria are selected based on our discussions with the airline
managers at Air France-KLM to ensure a relatively fair repre-
sentation of all passengers and they meet the airline’s estima-
tions on the portion of each passenger group. The dataset also

contains a small portion of passengers, around 3.8%, whose
age is below 20. However, because teenagers usually depend
on others, for example, their parents, when it comes to air
travel decisions (Copperman & Bhat, 2007), we exclude this
portion of passengers in our analysis. In addition, we exclude
passengers whose age is above 80 since there is a large num-
ber of outliers in the time series flight data of this group, and
this group is less than 1% of the total passengers in the dataset
and counts for even a smaller portion of the total flights. As
explained earlier, since we only have data of one airline, pas-
senger geographic information or the origin of flight is not
used here to segment passengers.

Following the suggestions of the airline managers at Air
France-KLM and for the purpose of generating actionable
insights, we formalize nine passenger segments based on
a passenger-specific variable and a flight-specific variable.
Specifically, we divide passengers either based on age
and purpose of travel or based on tier and flight length:
young/middle-age/aging & leisure/middle-class/business
(denoted as A1–A9) or explore/silver/higher & short-
/medium-/long-haul (denoted as B1–B9) passengers. The
tier at which a passenger is in the loyalty program could be
closely related to the passenger’s purpose of travel, that is, the
higher the tier, more likely the passenger travels for business.
For example, among the explorer tier, 64.7% belong to the
leisure passenger group and among the higher tier, 50.5%
belong to the business passenger group. In addition, the age
of the passenger and the average length of her/his flights
could be closely related. Middle-age passengers typically fly
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402 USING FORECASTING TO EVALUATE THE IMPACT OF COVID-19

TA B L E 4 Distribution of passengers in each group

Young Middle age Aging

Leisure 55% Leisure 41.4% Leisure 59.2%

Middle-class 21.1% Middle-class 21.4% Middle-class 17.2%

Business 23.9% Business 37.2% Business 23.6%

Leisure Middle-class Business

Young 33.4% Young 30% Young 22.6%

Middle-age 46.2% Middle-age 56.1% Middle-age 64.7%

Ageing 20.4% Ageing 13.9% Ageing 12.7%

Explorer Silver Higher

Short-haul 28.9% Short-haul 27.7% Short-haul 29.5%

Medium-haul 39% Medium-haul 42.7% Medium-haul 39.4%

Long-haul 32.1% Long-haul 29.6% Long-haul 31.1%

Short-haul Medium-haul Long-haul

Explorer 56.5% Explorer 55.5% Explorer 57.7%

Silver 14.8% Silver 16.6% Silver 14.5%

Higher 28.7% Higher 27.9% Higher 27.8%

long hauls more often than the other passenger age groups,
whereas aging passengers take the least amount of long
hauls. Therefore, we do not segment passengers based on tier
and purpose of travel or based on age and length.

Table 4 presents the distribution of passengers in each
group when using each of the two segmentation plans. The
results show that in each segmentation plan, there are no cor-
relations between groups based on passenger specific data
and groups based on flight specific data. Figure 1 shows the
passenger distribution across each set of nine segments. We
also check whether the two sets of segments overlap, the
results show no significant overlaps between any two seg-
ments. As two examples, Figures A1(a) and A1(b) in the
Appendix show the distribution of A1 passengers across B1–
B9 segments and the distribution of B1 passengers across
A1–A9 segments, respectively. An ANOVA test (p < 0.01) is
performed to confirm that each set of nine segments exhibit
different patterns among each other.

Figures 2 and 3 present an overview of the 21-month flight
history (till the pandemic period) of A1–A9 and B1–B9 seg-
ments, respectively. The y-axis shows the total number of

flights for a passenger segment; thus, when comparing the
three lines in a plot, the distribution of passengers should be
considered. For example, in Figure 3, the explorer tier (the
blue line) takes many more flights than the other two tier
groups. This may be because that in each group based on
flight length, over 55% of passengers are at the explorer tier
(see Table 4). Due to the data privacy requirement of the air-
line, the units of flights (the y axis of all figures) are hidden in
this research and the y axes of different figures are not on the
same scale. However, comparing the lines of the same color in
the three plots with each other, it is still evident that the pas-
senger groups within the same age range behave differently
if the purposes of their trips are different or that passenger
groups at the same tier behave differently if the lengths of
their flights are different. For example, in Figure 2, the level
in a year of flight data for the middle-age & leisure segment
is relatively stable, comparing to that for the middle-age &
middle- class segment or the middle-age & business segment.
Comparing the three lines in each plot in Figures 2 and 3, it
is also clear that different age groups with the same travel
purpose or different tier groups with the same flight length
behave differently.

Figures 2 and 3 also show evidence of nonstationarity and
seasonality in the flight data for each passenger segment. For
example, in Figure 2, the middle-class & leisure segment and
the young & leisure segment are flying less in 2019 (a turn-
ing point in July 2019) compared to 2018. For the majority of
each set of nine passenger segments, clear seasonal patterns
occur. For example, for the young & leisure/business segment
and the aging & leisure/middle-class segment in Figure 2,
the number of flights drops in January and August each year.
Because of these patterns in the time series data, a candidate
model is SARIMA model. As there may exist multiple sea-
sonalities, we also consider TBATS model.

4.2 The model selection and parameter
estimation

To test the performance of each candidate model, we use the
first 15 months of demand (from June 1st, 2018 to Septem-
ber 30th, 2019) for all passengers in the dataset. Using
maximum likelihood estimation, autocorrelation plot and

F I G U R E 1 Distribution of passengers across A1–A9/B1-B-9 segments
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LI ET AL. 403

F I G U R E 2 Behavior pattern of A1–A9 segments

F I G U R E 3 Behavior pattern of B1–B9 segments

partial autocorrelation plot (the two plots are shown in the
Appendix), the estimated parameters of SARIMA model are:
(p, d, q) = (6, 1, 2), and (P,D,Q) = (0, 1, 1). The parameters
of TBATS model are listed in Table A2 in the Appendix. The
mean absolute percentage error (MAPE) and Akaike infor-
mation criterion (AIC) associated with the two models are:
MAPE of 0.1288 and AIC of 9294.475 for SARIMA model
and MAPE of 0.1409 and AIC of 10819.972 for TBATS
model. As the more complex model, TBATS model, does
not improve the forecast performance, hereinafter, we apply
SARIMA model to predict demand for each passenger seg-
ment in each scenario, using historical demand till the pan-
demic period (from June 1st, 2018 to February 29th, 2020).

We first obtain the prediction in the business as usual sce-
nario. SARIMA model parameters for each passenger seg-
ment are listed in Table A3 in the Appendix. The prediction
in the pandemic scenario depends on the prediction in the
business as usual scenario and the impact of each flight route
restriction on a passenger segment. To derive the impact of
a flight route restriction, we calculate the availability of each
flight route in the pandemic period (see Step 3 in Section 3 for
how we collect travel restriction data). The average availabil-

ity of 51 million flights is 0.3658 and Table 5 lists the aver-
age flight availability for each passenger segment. The results
show that the extent of supply restriction, without considering
the weight of each route in a segment’s route choices, is sim-
ilar between segments. Next, we identify flight route choices
of each passenger segment, using historical data till the pan-
demic (from June 1st, 2018 to February 29th, 2020). Incorpo-
rating both the availability of each flight route and flight route
choices of each passenger segment, we obtain the demand
forecast in the pandemic scenario according to Equation (2).

Last, for passenger segment s, we compare the prediction
in the business as usual scenario (denoted as Fb

s ) with the
real number of flights completed by passengers in segment s
(denoted as Rs) to derive the twofold impact of COVID-19

on the segment, that is,
Fb

s−Rs

Fb
s

. We compare the prediction in

the pandemic scenario (denoted as Fp
s ) with Fb

s to derive the
impact of COVID-19 associated with supply restriction, that

is,
Fb

s−F
p
s

Fb
s−Rs

. The impact of COVID-19 associated with demand

depression is then
F

p
s−Rs

Fb
s−Rs

. Table 6 lists the twofold impact and

the impact of each force on each segment.
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404 USING FORECASTING TO EVALUATE THE IMPACT OF COVID-19

TA B L E 5 Availability of flight routes for A1–A9/B1–B9 segments

A1–A9 segments Flight availability B1–B9 segments Flight availability

Young & Leisure 0.3754 Explorer & Short-haul 0.3192

Young & Middle-class 0.3792 Explorer & Medium-haul 0.4434

Young & Business 0.3786 Explorer & Long-haul 0.3142

Middle-age & Leisure 0.3629 Silver & Short-haul 0.3103

Middle-age & Middle-class 0.3657 Silver & Medium-haul 0.4502

Middle-age & Business 0.3767 Silver & Long-haul 0.3201

Aging & Leisure 0.3614 Higher & Short-haul 0.3165

Aging & Middle-class 0.3592 Higher & Medium-haul 0.4577

Aging & Business 0.3635 Higher & Long-haul 0.3293

TA B L E 6 Twofold impact of COVID-19, impact associated with
supply restriction (S.R.I.) and impact associated with demand depression
(D.D.I.) on A1–A9/B1–B9 segments

Age
Purpose of
travel

Twofold
impact S.R.I. D.D.I.

Young Leisure 41% 74.7% 25.3%

Middle-class 40.3% 68.9% 31.1%

Business 38.7% 31.2% 68.8%

Middle-age Leisure 40.7% 39.7% 60.3%

Middle-class 40.9% 37.1% 62.9%

Business 38.9% 2.2% 97.8%

Aging Leisure 39.5% 42.4% 57.6%

Middle-class 41.7% 49.4% 50.6%

Business 41% 37.3% 62.7%

Average 40.3% 42.6% 57.4%

Tier
Flight
length

Twofold
impact S.R.I. D.D.I.

Explorer Short-haul 40.8% 56.3% 43.7%

Medium-haul 39.5% 61.2% 38.8%

Long-haul 47.7% 54.7% 45.3%

Silver Short-haul 46.7% 48.6% 51.4%

Medium-haul 49.3% 49.4% 50.6%

Long-haul 45.1% 61.1% 38.9%

Higher Short-haul 36.2% 60.7% 39.3%

Medium-haul 60.2% 41.7% 58.3%

Long-haul 33.7% 84.5% 15.5%

Average 44.3% 57.6% 42.4%

5 TWOFOLD IMPACT OF COVID-19 ON
AIR FRANCE-KLM

In the pandemic period, the number of executed flights
decreased by 88.9% on average, compared to the number
in the period from 2019-03-01 to 2019-05-31. Using our
evaluation method and comparing the prediction in the busi-
ness as usual scenario with the real situation, we find that
COVID-19 causes a demand decline of 40.3% on average for
passenger segments A1–A9 and a demand decline of 44.3%

on average for passenger segments B1–B9. Among A1–A9
segments, the young & leisure/middle-class segments, the
middle-age & leisure/middle-class segments, and the aging
& middle-class/business segments have the biggest decrease
in demand (each has a decrease of more than 40%), whereas
the other segments have slightly smaller decreases (around
38%–39%). Among B1–B9 segments, the higher & medium-
haul segment has the biggest decrease in demand, a decrease
of 60.2%, whereas the other segments have decreases smaller
than 50%.

As explained earlier, the number of unique flights com-
pleted by each passenger in a segment cannot be directly
compared with the number of flights executed by the airline
because a flight can be double counted if more than one
passenger in the segment have taken the same flight. How-
ever, within the same segment, demand predictions and real
demand can be compared because they are both derived at
the individual passenger level. Comparing the real situation
with the prediction, COVID-19 is evaluated as having a less
severe impact on passenger air transport demand than that
if we compare the real situation with the same period last
year. This is due to the significant decreasing trend in the
24-month data (see Figures 2 and 3), and the fact that Air
France-KLM, as well as other European airlines, only started
the majority of the flight route restrictions in mid-March
2020. In addition, it is said that Air France-KLM maintained
a relatively impressive route network during the pandemic;
thus, its flight activity has less of a precipitous drop at
its lowest points compared to some other carriers (Leigh,
2021).

Comparing the predictions in the two scenarios, the impact
of COVID-19 associated with supply restriction counts for
42.6% of the total demand decline on average for A1–A9 and
57.6% of the total demand decline on average for B1–B9.
The impact of COVID-19 associated with demand depres-
sion counts for the other 57.4% for A1–A9 and 42.4% for
B1–B9. The result that a large portion of the demand decline
is due to supply restriction suggests a promising recovery
once Air France-KLM fully resumes its operations. Separat-
ing the two forces of COVID-19, the respective impact varies
between passenger segments. Among A1–A9 segments, the
force associated with supply restriction impacted the young
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LI ET AL. 405

& leisure segment the most and the middle-age & business
segment the least, whereas the opposite result holds for the
force associated with demand depression. Specifically, for
the middle-age & business segment, the demand depression
impact of COVID-19 counts for 97.8% of the total decrease,
whereas the supply restriction impact of COVID-19 only
counts for 2.2%. It means that for this segment of passen-
gers, routes on which they frequently fly were not severely
restrained in the pandemic period (see Table 5), but they
chose not to fly. This result is consistent with the initial belief
of the airline.

Compared to other age groups, young people do not have
a high risk of severe illness from COVID-19 and are often
seen as taking more risks against social distancing (Reniers,
2020). Thus, the decrease in their flight activities is mainly
due to the travel restrictions. People who travel mostly for
a business purpose have a high financial standing, and it is
argued that this group can easily afford to work from home or
do social distancing, compared to people with lower incomes
(Holliss, 2020). Thus, for them, it is not the travel restric-
tions that lowered their travel frequencies, but their low will-
ingness to fly. This is also the reason why in our industry
example, for passengers between age 20 and 40, the supply
restriction impact of COVID-19 is bigger than the demand
depression impact unless these passengers travel mostly for
business. In addition, for passengers within every age range,
the demand depression impact of COVID-19 is the biggest
when these passengers travel mostly for business, compared
to that when they travel for another purpose. We also find
that for passengers between age 61 and 80, the two impacts
are relatively equal, unless these passengers travel mostly for
business.

Among B1–B9 segments, the impact of COVID-19 is rela-
tively evenly distributed between the two forces, except for
the higher & long-haul segment where the impact associ-
ated with supply restriction significantly (84.5%) outweighs
the impact associated with demand depression (15.5%).
Although there are no noticeable patterns in the results for
B1–B9, we can still find that for passengers who often take
long-haul flights, the supply restriction impact of COVID-
19 is always bigger than the demand depression impact. This
result is reasonable as the majority of the travel restrictions at
Air France-KLM involved long-haul flights. In addition, for
passengers at the explorer tier, the supply restriction impact
is always bigger than the demand depression impact. It can
be explained by the same reason behind why young & leisure
passengers were impacted the most by the supply restriction
force of COVID-19. The different results for A1–A9 and B1–
B9 segments also demonstrate the importance of using multi-
ple segmentation plans when applying our evaluation method.
It helps identify the differences between passengers in terms
of the impact of COVID-19.

6 IMPLICATION FOR AIRLINES AND
OTHER INDUSTRIES

The initial request of this research in cooperation with Air
France-KLM is to help them design an effective recovery
plan. To do so, we propose a method for separating the two
forces of COVID-19 and evaluating the respective impact on
passenger air transport demand for different passenger seg-
ments separately. Based on our results, different recovery
strategies should be used for different segments. For seg-
ments on which the two forces of COVID-19 have almost
equal impacts, for example, the aging & leisure/middle-class
segments, both strategies that resume flights and strategies
that restore passenger confidence or increase passenger will-
ingness to fly should be deployed. For segments on which
the supply restriction impact is bigger than the demand
depression impact of COVID-19, for example, the young &
leisure/middle-class segments, the focus of airlines’ recovery
strategies should be on resuming flights on routes on which
these passengers frequently fly. For segments on which the
demand depression impact is bigger than the supply restric-
tion impact of COVID-19, for example, the young/middle-
class/aging & business segments, the focus of airlines’ recov-
ery strategies should be on restoring passenger confidence or
increasing passenger willingness to fly by using targeted pro-
motions. Based on our discussions with multiple airline man-
agers from the passenger relation management department,
future research can be done on designing an effective market-
ing campaign using our evaluation results and data of passen-
ger’s response to a specific campaign.

Our evaluation method can also be applied to other indus-
tries on which the COVID-19 pandemic has a similar twofold
impact. An example of such industries is the retail indus-
try with a brick-and-mortar channel presence where demand
dropped also due to the two forces of COVID-19. First,
shops were closed and thus customers cannot visit, and sec-
ond, customers’ desire to go out to shop dropped in times
of pandemic. When using our evaluation method, the same
four steps apply. First, firms need to segment their customers
based on customer demographics and characteristics related
to customer purchase habit. Second, based on the availability
of the data and the scope of the forecasting problem, firms
need to select the appropriate forecasting model. Third, two
scenarios need to be simulated. One of the two scenarios rep-
resents a normal situation in the pandemic, assuming that cus-
tomers will follow their behavior pattern. The other scenario
represents a pandemic situation in which supply is restrained,
considering both the behavior pattern of customers and the
impact of supply restriction. Fourth, by comparing the pre-
dictions in the two scenarios with each other and with the
real situation, firms can derive the twofold impact of COVID-
19 on their business demand and the impact of each force of
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COVID-19. Based on the evaluation results, firms can plan
recovery strategies effectively.

6.1 Limitations and future research

Our study is not exempt from limitations, many of which
offer opportunities for future research. First, as our data are
from the loyalty program of an airline, we only consider
passengers who are registered in the program. Although
nonmember passengers are often the ones who rarely fly
with the airline, it is interesting to examine whether their
behavior changes in the pandemic. If the airline can track
the flight history of nonmember passengers, this group of
passengers could be included in the future research. Second,
our data are from one airline of which the majority of flights
depart from EU (particularly, France) and most of passen-
gers are EU residents, and thus, we have not considered
the origin of flight or passenger geographic information in
passenger segmentation. Such information may be effective
in explaining the heterogeneity in passenger behavior. Future
research could incorporate data from multiple airlines and
examine whether COVID-19 has a different twofold impact
on passengers in different regions. Third, similar to other
COVID-related studies in the early days of the pandemic, our
data are limited. At the time of analysis, we had flight data
until May 31st, and thus, the pandemic period in our study
only lasted 3 months. It would be interesting to investigate
how the twofold impact of COVID-19 on airlines evolves as
time proceeds. Future research could also focus on develop-
ing advanced clustering methods to segment passengers and
developing forecasting models to predict demand in a special
scenario.
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A P P E N D I X

TA B L E A 1 Key dates in the dataset

Date Usage

June 1st, 2018–May 31st, 2020 Length of the Flying Blue dataset

March 1st–May 31st, 2020 Pandemic period selected in this study

Length of the business as usual scenario and the pandemic scenario

March 1st Passenger specific data on this date and

flight specific data till this date

June 1st, 2018–September 30th, 2019 Use time series flight data from this period to test

the performance of each candidate model

June 1st, 2018–February 29th, 2020 Use time series flight data from this period to predict

demand for each passenger segment in each scenario

Use flight data from this period to identify

passenger flight route choice

TA B L E A 2 TBATS model parameters

Season periods [14. 30.5]

Seasonal harmonics [6 1]

ARMA (p, q) (2, 3)

𝛼 0.764876

𝛽 −0.04858

𝜙 0.949855

𝛾 [−2.09593603e-05 2.54518372e-05 6.34832417e-06 1.69336316e-05]

AR coefficients [6.34832417e-06 1.69336316e-05]

MA coefficients [0.0506144 −0.39585266 −0.07443607]

Seed vector [9.42639351e+04 −4.44284036e+02 −5.95677756e+02 −1.72887709e+03 −2.59420523e+02
5.44976966e+03 −2.35703158e+02 4.15908728e+03 7.35261057e+00 −6.57202348e+03
−1.81355200e+02 −7.79385936e+03 4.10624044e+01 1.55331475e+03 −2.02719771e+03

1.04546232e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]

TA B L E A 3 SARIMA model parameters for each passenger segment

Segment p d q P D Q Segment p d q P D Q

Young & Leisure 2 1 3 5 1 1 Explorer & Short-haul 1 1 1 1 1 2

Young & Middle-class 5 1 1 4 1 2 Explorer & Medium-haul 1 1 1 2 1 2

Young & Business 1 1 1 4 1 2 Explorer & Long-haul 0 1 1 5 1 0

Middle-age & Leisure 0 1 1 0 1 2 Silver & Short-haul 4 1 3 5 1 1

Middle-age & Middle-class 4 1 1 3 1 2 Silver & Medium-haul 3 1 1 1 1 2

Middle-age & Business 4 1 3 5 1 1 Silver & Long-haul 1 1 1 2 1 1

Aging & Leisure 0 1 1 3 1 1 Higher & Short-haul 1 1 1 5 1 1

Aging & Middle-class 0 1 1 5 1 2 Higher & Medium-haul 0 1 1 5 1 1

Aging & Business 3 1 3 5 1 1 Higher & Long-haul 1 1 1 2 1 2
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F I G U R E A 1 Distribution of A1/B1 passengers across B1–B9/A1–A9 segments

F I G U R E A 2 Autocorrelation and partial
autocorrelation plots for SARIMA model testing
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