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Abstract—In order to preserve sufficient fluorescence intensi-

ty and improve the quality of fluorescence images in optical pro-
jection tomography (OPT) imaging, a feasible acquisition solu-
tion is to temporally formalize the fluorescence and bright-field 
imaging procedure as two consecutive phases. To be specific, 
fluorescence images are acquired first, in a full axial-view revolu-
tion, followed by the bright-field images. Due to the mechanical 
drift, this approach, however, may suffer from a deviation of 
center of rotation (COR) for the two imaging phases, resulting in 
irregular 3D image fusion, with which gene or protein activity 
may be located inaccurately. In this paper, we address this prob-
lem and consider it into a framework based on sinogram unifica-
tion so as to precisely fuse 3D images from different channels for 
CORs between channels that are not coincident or if COR is not 
in the center of sinogram. The former case corresponds to the 
COR deviation above; while the latter one correlates with COR 
alignment, without which artefacts will be introduced in the re-
constructed results. After sinogram unification, inverse radon 
transform can be implemented on each channel to reconstruct 
the 3D image. The fusion results are acquired by mapping the 3D 
images from different channels into a common space. Experi-
mental results indicate that the proposed framework gains excel-
lent performance in 3D image fusion from different channels. For 
the COR alignment, a new automated method based on interest 
point detection and included in sinogram unification, is present-
ed. It outperforms traditional COR alignment approaches in 
combination of effectiveness and computational complexity.    

Keywords—3D image fusion; sinogram unification; OPT; COR 

I.  INTRODUCTION  

Understanding how genes coordinate the myriad of cellular 
processes involved in organogenesis remains one of the fron-
tiers of modern science. However, experimental acquisition of 
the genetic information at the molecular level is still beyond 
our current capabilities. A viable alternative to gathering mo-
lecular-kinetic information about gene networks is to gather 
accurate and quantitative activity-state data including gene 
expression patterns and protein state distributions [1]. In this 
case, the ability to map gene and protein activity within 3D 
shaped organs plays an essential role in biological research, as 
knowledge of where genes are expressed gives us insight into 
their function, and the gene distribution gives us clues about 
which genes or proteins interact with each other [2, 3]. Conse-
quently, a reliable 3D imaging technology to locate and digit-

ize gene expressing patterns could therefore prove to be an 
essential complement and boost to more traditional biochemi-
cal approaches [4].  

To image small animal organs and embryos measuring be-
tween 1mm and 1cm, in 2002 Sharpe et al proposed OPT to 
fill the size gap between confocal microscopy and magnetic 
resonance imaging (MRI) [5]. It allows for acquisition of high 
resolution full body images of animal organs with excellent 
spatial resolution and contrast and with minimal shadowing 
artifacts due to back-projection reconstruction after multi-
angle projection acquisition [6, 7]. In OPT imaging, the first 
step is to apply a fluorescent labeling of gene and/or protein. 
Secondly, specimen is imaged in fluorescence and bright-field 
channels and reconstructed to a 3D volume. Finally, gene or 
protein can be localized by integrating the fluorescence 3D 
image into the bright-field 3D image [8]. In order to focus on 
the acquisition of high-quality OPT images in short time and 
retaining sufficient fluorescence intensity, we have developed 
an improved OPT imaging system wherein for a specimen all 
fluorescence images are acquired before bright-field images. 
In this case, with regard to 3D image reconstruction and fu-
sion, not only COR position but also the accumulated mechan-
ical drift between two phases should be considered.  

When applying the inverse radon transform for 3D recon-
struction, the COR position should be in the middle of the 
sinogram. This could be achieved by COR alignment, which 
was first studied in 1990 [9] in computational tomography 
(CT). Previous studies showed that misaligned COR could 
introduce severe artefacts or even incorrect results [10, 11]. 
Furthermore, in OPT it avoids the long time spent on hardware 
calibration before imaging, ameliorating the efficiency of the 
imaging system. Regarding COR alignment methodologies, 
there are two mainstream approaches: the first approach is 
based on signal match for pairs of projection data (180° op-
posed to each other) [9, 12, 13, 14]. They are widely used in 
CT because the projected intensities from two opposite angles 
are theoretically equivalent in this imaging system. Unfortu-
nately, these methods may not be suitable for OPT images, as 
opposite projected data vary differently at different angles. 
These differences are caused by the fact that OPT only images 
the front half of the specimen [5]. Moreover, they are not fea-
sible when the sinogram is disturbed by fixed defects or rand- 
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Fig. 1. Framework of fluorescence and bright-field 3D image fusion for OPT 
imaging. (a1), (b1), (c1), (d1) Images, sinogram, unified sinogram and 
reconstructed slices of 6 days post-fertilization (dpf) zebrafish in the 
fluorescence channel. (a2), (b2), (c2), (d2) The corresponding images, 
sinogram, unified sinogram and reconstructed slices in bright-field channel. 
Sinogram unification and 3D reconstruction are applied to both channels 
separately. (e) Fused 3D image. Fluorescence signals are shown from green to 
blue (strong to weak), and the bright-field signal is shown in gray. Images 
with a red line correspond to the same slice in the specimen. 

om noise, which frequently occurs in OPT imaging. The sec-
ond mainstream approach both for CT and OPT is based on 
iterative reconstruction in the sinogram [15, 16, 17]. The ver-
tical axis producing the smallest variance in reconstructed 
image is chosen as the COR in [16]. However, this approach is 
time-consuming, making it seldom used in CT. Furthermore, 
both approaches choose only one sinogram for COR align-
ment, so the COR fluctuation produced by different sinograms 
is not taken into account, resulting in unconvincing COR. 

Therefore we aim to locate convincing COR while achiev-
ing a significant decrease in the computational cost by present-
ing a new COR alignment methodology. Constrained by the 
OPT imaging mechanism, projection pairs from opposite an-
gles are not all equivalent. We first detect the interest points 
where the neighboring projections are relatively equivalent 
with those of their opposite points. The distance between 
neighboring projections of interest points and those of their 
opposite points reaches the minimum when the COR is most 

close to the ideal value. With this hypothesis, the COR could 
be located in the sinogram. To make the COR convincing, 
multiple sinograms are considered, which are detected auto-
matically from the OPT images, based on the range where 
signals exist. Traditionally, images in different channels are 
regarded to share the same COR; therefore 3D images from 
different channels are reconstructed and fused based on the 
single-channel located COR. 

In this paper we propose an improved framework of 3D 
image reconstruction and fusion by taking the mechanical drift 
into account for our improved OPT system. In this framework 
depicted in Fig.1, sinogram unification including COR align-
ment and sinogram resizing, is introduced before 3D recon-
struction for each channel. As stated above, COR alignment is 
related to rectifying shift between COR position and center of 
sinogram. Thus sinogram resizing is responsible for correcting 
mechanical drift between two channels, guaranteeing that each 
pair of reconstructed voxels is registered to the same voxel in 
the fused 3D image. Moreover, sinogram unification avoids 
the time spent on adjusting the rotation axis to the middle of 
Field of View (FOV) before imaging process. With the correct 
3D fusion result, accurately locating and digitizing gene or 
protein activity becomes possible.   

II.  FLUORESCENCE AND BRIGHT-FIELD 3D IMAGE FUSION 

A. OPT images from the improved OPT imaging system 

The images from our OPT system come with improved 
sample preparation and image acquisition. For each specimen, 
the fluorescence images were acquired before the bright-field 
images. Improved sample preparation included counterstain 
optimizing, agarose embedding and optical clearing. Different 
solutions were analyzed and compared quantitatively to opti-
mize the sample preparation, with which more high-quality 
images were imaged in a given period of time. Optimization of 
image acquisition involved calibration of microscope, decrease 
of imaging artefacts and optimization of gain. Importantly, 
several influences on image quality including mechanical drift 
in the stepper motor, heat generation, dissolution of the glue 
and agarose shrinkage, were considered and optimized to de-
crease the artefacts produced in the imaging process. Some 
image samples are shown in Fig. 1 (a1) and (a2). The raw data 
of a specimen for each channel is a 16-bit high-resolution im-
age of size 1036×1360×400 pixels, with a file size of 1.05GB. 
1036×1360 is the image size for one angle, and 400 is the 
number of rotation angles in [0°, 360°). In most cases presented 
here, Green Fluorescent Protein (GFP) was used as fluores-
cence signal for imaging. As images from different channels 
were acquired at different times, the corresponding 3D images 
after 3D reconstruction should not be directly fused without 
considering possible mechanical drift from the rotation. 

B. Sinogram unification 

Sinogram unification is defined to unify sinograms in dif-
ferent channels before 3D reconstruction under the condition 
that the detector and rotation stage is not tilted, so that each 
pair of reconstructed voxels is registered to the same voxel in 
the fused 3D image with minimum reconstruction artefacts. It 
includes the automatic processes of COR alignment and sino-
gram resizing. 
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Fig. 2. (a) One slice of the reconstructed bright-field images of 3 dpf zebrafish 
embryo without COR shift. (b) The reconstructed slice with a shift of 5 pixels 
between COR and sinogram centre, showing the artefacts. (c) and (d) The 
results with a shift of 20 pixels and 52 pixels, respectively. 

1) COR alignment: Considering the artefact effect of COR 
shift on reconstructed images as shown in Fig. 2 (b, c, d), a 
novel COR alignment approach is presented to solve the  
computationally expensive problem and to refine the 
unconvincing result from only one sinogram in [16]. 

According to the principle of OPT imaging, only the front 
half of specimen is in focus, so the projected data from oppo-
site angles may vary differently depending on the rotation an-
gle, specimen size and shape. However, for a voxel at the left 
or right boundary of the specimen, the opposite projected data 
are equivalent. This equivalence is shown as a peak and trough 
in the sinogram edge. To illustrate our hypothesis, a sinogram 
of the fluorescent channel of zebrafish larva is depicted as an 
example in Fig. 3. Point O, A and B are the fluorescence sig-
nals of 6 dpf zebrafish eye from 3 different angles, and O*, A* 
and B* are their corresponding opposite projections. The pro-
jected data for an eye voxel should be formed as a sine func-
tion passing through O, A, B, O*, A* and B* in CT system, 
but in OPT only O and O* remain equivalent; while A and A* 
as well as B and B* differ significantly, being consistent with 
the hypothesis above. With this hypothesis, the COR could be 
located with the oppositely projected pairs that are similar to 
O and O*. The problem of locating the COR is therefore trans-
formed as search for peaks and troughs in the sinogram edge, 
in our case defined as interest points. 

a) Interest point detection: A sinogram is defined as ܵ(ߦ, ߮) with a size of 400 ×  ,where ߮ is the rotating angle ,
and ߦ is the phase in each angle. As described in Algorithm 1, 
the procedure of interest point detection is based on point 
selection with initial points ܧ = ,ߦ} 	߮}, 		݇ ∈  the ,[ܯ,1]
collection of points using edge detection in sinogram. M is the 
number of initial points. After point selection, the detected int- 
erest points interest points are ܲ = ൛ߦ, ߮ൟ, 		݆ ∈ [1, ܰ], and  ܰ ≤  The specific steps of point selection are depicted in .ܯ
Algorithm 1, and the size of both patch ܹ0and ܹ are ݓଵ. 

 

Fig. 3. The sinogram in Fig. 1 (b1), showing the differences among pairs of 
opposite projected data. O and O*, A and A*, B and B* are pairs respectively. 
O and O* are interest points; while A and A*, B and B* are not. 

Algorithm 1: Interest Point Detection in sinogram 

 Input: ܵ(ߦ, ߮), ܧ = ൛൫ߦ , ߮൯ൟ, 	݇ ∈  [ܯ,1]
 Binarize sinogram ܵ(ߦ, ߮) 
 for each initial point (ߦ, ߮) in binarized sinogram do 
       Creat patch ܹ0 of size ݓଵcentered by (ߦ, ߮) and update it as ܹ with 

only one 1-labeled region remaining 
        Detect the new edge ܦܧ in the binary patch ܹ 
        if the edge ܦܧ is not enclosed then 

 if  tan ߠ < √ଷଷ      is the angle passing through 0-labeled centre ߠ ,

,௭ߦ)          ߮௭) and 1-labeled centre (ߦ, ߮) in ܹ then  
 if  (ߦ, ߮) is peak or trough as defined in Eq(1) then (ߦ, ߮) is remained as one of the interest points 

   ܲ = ൛൫ߦ	, ߮൯ൟ, 		݆ ∈ [1, ܰ] 
                      else if  (ߦ, ߮) meet the Eq(2) or Eq(3) then  

                           increase the size of ܹ0 and do the for loop again  
                         end if 
                 end if  
           end if 
     end if 

 end for 

 

Constrained by tan ߠ < √ଷଷ  in Algorithm 1, only points 

with  ߠ < 30° are remained. We define ߠ as the angle passing 
through the 0-labeled center (ξୣ୰୭, φୣ୰୭) and the 1-labeled 
center (ߦ, ߮) that are separated by edge ܦܧ in its patch ܹ, instead of defining ߠ as the slope of ܦܧ. The peak and 
trough within ܹ (red stars in Fig. 4) are defined as following:  

Peak:

۔ۖۖەۖۖ
		ۓ
௭ߦ > |ఝܦ|							ߦ = ଵݓ) − (కܦ)ܦ(1 < 0									1 ∉ 1			(కଵ݀)݊݃݅ݏ ∉ 			൫݀కଶ൯݊݃݅ݏ

Trough:

۔ۖەۖ
		ۓ
௭ߦ < |ఝܦ|							ߦ = ଵݓ) − క൯ܦ൫ܦ(1 > 0									−1 ∉ ൫݀కଵ൯−1݊݃݅ݏ ∉ (కଶ݀)݊݃݅ݏ

          (1)            

- in the ߮ direcܦܧ ఝ symbolizes the sum of derivatives ofܦ
tion along the edge curve, while ܦ(ܦక) is the sum of second 
derivatives of ܦܧ in the ߦ direction along the edge curve. 
When ܦ(ܦక) < 0, the function of ܦܧ sequence is con-
strained as convex, and if ܦ൫ܦక൯ > 0, it is concave, corre-
sponding to the peak and trough, respectively. We break  ܦܧ 
into upper and lower edges: ܦܧଵ and ܦܧଶ, both of  which 
are started at the middle of ܦܧ in the φ direction. ݀కଵ and ݀కଶ are the derivatives of  ܦܧଵ and ܦܧଶ separately in the ߦ 
direction. 

Authorized licensed use limited to: Universiteit Leiden. Downloaded on September 06,2023 at 14:18:42 UTC from IEEE Xplore.  Restrictions apply. 



406

 

Fig. 4. Bright-field sinogram from 5 dpf chicken embryo heart images with 
interest points detected (shown as red and blue stars). Edge points (initial 
points) are shown as cyan points; while false-peak are shown as yellow cross. 

    With the definition in Eq. (1), false-peak and false-trough 
(yellow crosses in Fig. 4) are not kept as interest points, as 
they are not true sine peaks but rather intersections of different 
sine functions, which should be discarded. Furthermore, when 
a true trough satisfies Eq. (2) (blue star in Fig. 4): 

                   

۔ۖۖەۖۖ
		ۓ
௭ߦ < |ఝܦ|							ߦ = ଵݓ) − క൯ܦ൫ܦ(1 = ൫݀కଵ൯݊݃݅ݏ									0 = ൫݀కଶ൯݊݃݅ݏ		0 = 0		

                                   (2) 

or a true peak satisfies Eq. (3): 

                            

۔ۖۖەۖۖ
		ۓ
௭ߦ > |ఝܦ|							ߦ = ଵݓ) − క൯ܦ൫ܦ(1 = ൫݀కଵ൯݊݃݅ݏ										0 = ൫݀కଶ൯݊݃݅ݏ		0 = 0		

 ,                                  (3) 

it means that edge ܦܧ in ܹ of size ݓଵ is strictly vertical, so 
it does not satisfy the definition of peak or trough in Eq. (1). 
The reason for the inconsistency comes from the size of ܹ. 
To solve this problem, a bigger patch (set as 2ݓଵ-1 in our 
experiment) should be set to satisfy Eq. (1) in a bigger patch, 
following the same steps in Algorithm 1. 

b) COR alignment: With the interest points detected in a 
sinogram, the COR range is abtained as [ߦ,   in theߦ  are the maximum and minimum ofߦ ௫ andߦ ௫] , whereߦ
interest points ܲ. For a specific COR ܿ, we locate the corre-

sponding opposite points ܲᇱ = {൫ߦ	, ߮൯ᇱ }, 		݆ ∈ [1, ܰ] for all 

interest points ܲ, which are symmetric by ܿ and have an inter-
val of 180° in projection. To find a mathematical metric be-
tween ܲ and ܲᇱ, we define the neighbors of ൫ߦ	, ߮൯ and ൫ߦ	, ߮൯ᇱ  as ݎ൫ߦ, ߮൯ and ݎᇱ(ߦ, ߮). As shown in Fig. 3, the 

projection data betweem interest point ൫ߦ	, ߮൯ and its oppo-

site point ൫ߦ	, ߮൯ᇱ  should be equivalent, so we search for the 

optimal COR for the ith sinogram in the range [ߦ,  ௫] byߦ
formulationg Eq. (4): 

∗ܥ               = min ଵே∑ ,ߦ൫ݎ) ߮൯ − ,ߦ)ᇱݎ ߮))ே                 (4) 

The sinogram range S used for COR alignment, is obtained 
by choosing the smallest one among four ranges where fluo-
rescence or bright-field signals exist in each of the four or-
thogonally projected raw OPT images (0°, 90°, 180°, and 270°). The range for each raw OPT image is roughly calculat-
ed by applying threshold segmentation based on the OTSU 
algorithm [18] to abstract the signals from the background. To 
reduce the redundancy of computation in COR alignement, s 
sinograms are selected from the range S by using a variable 
step. For the s sinograms, the corresponding optimal COR 
sequence is generated as ܥ = ,∗ଵܥ} ,∗ଶܥ … ,  .௦∗} using Eq. (4)ܥ
The most frequently occurring value r in C is referred to as the 
optimal COR for 3D reconstruction. Sinogram ܵ sized by 400 × direction, to ܵᇱ of size 400 ߦ could be aligned centered by r in the  ×  :by applying Eq. (5) ݍ

ݍ                             = ൝2 × ݎ															,ݎ < ଶ2 × ) − ,(ݎ ݎ		 ≥ ଶ                           (5) 

As illustrated in Eq. (5), q is calculated to be smaller than p to 
preserve sufficient sinogram information, as well as to avoid 
redundant background reconstruction, i.e. ܵ is truncated as  ܵᇱ 
using Eq. (6), instead of extending it, which consumes more 
time in reconstructing the background. 

                    ܵᇱ = ൝	 ܵ(1: ,ݎ2 ߮), ݎ												 < ଶ	 ܵ(2ݎ − : , ߮), ݎ					 ≥ ଶ                    (6) 

2) Sinogram resizing: As in our OPT imaging system 
fluorescence images are acquired before bright-field images, 
the COR may deviate from the original position after a full 
rotation, owing to the inevitable mechanical drift. 
Consequently, the located CORs for both channels may suffer 
by tiny difference (0-2pixels in our experiment). The ith 
sinograms in the fluorescence and bright-field channels are 
obtained as ܵ sized by 400 ×  and ܵ sized by 400 ×  .
The aligned sinograms are ܵᇱ  and ܵᇱ , with size of 400 ×  ݍ
and 400 ×  respectively. To fuse the corresponding 3Dݍ
images from both channels, ܵᇱ  and ܵᇱ  are resized as: 

           ቊ ܵ∗ = ൫ݖ, ܵᇱ , ∗ܵ	൯;ݖ = ܵᇱ ݍ									, < ∗ܵݍ = ܵᇱ ; 	ܵ∗ = ,ݖ) ܵᇱ , ݍ									,(ݖ > ݍ               (7) 

Where ݖ is a zero matrix with size of 400 × หݎ − - represent the located CORs for the fluorescence and brightݎ  andݎ .หݎ
field sinograms. After resizing, ܵ∗  and ܵ∗  form a pair of si-
nograms for 3D reconstruction, so that the voxel pair in the 
reconstructed images of ܴ and ܴ could be registered to the 
same voxel in 3D space. 

C. 3D image fusion 

By applying FBP algorithm in fluorescence and bright-
field channel, the reconstructed 3D images from L sinograms 
are formed as ܴ = { ܴଵ, ܴଶ, … , ܴ, … , ܴ} and ܴ ={ܴଵ, ܴଶ, … , ܴ, … , ܴ}. The intensities in ܴ and ܴ refer 
to the fluorescence and bright-field signals. For transparent 
specimen such as zebrafish larvae in our experiment, the 
bright-field signals are generally distributed in vertebral and 
bones, describing the zebrafish silhouette. Therefore, by fus-
ing ܴ and ܴ, fluorescence signals could be better located 
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Fig. 5. 3D image comparison of 3 dpf zebrafish models. (a) Reconstructed 3D 
images without sinogram unification. (b) Reconstructed 3D images with 
sinogram unification. Bright-field signals are shown in gray, and fluorescence 
signals are shown in green and blue (green indicates strong fluorescence 
signal; while blue shows weak fluorescence signal). 

and analyzed within specimens. ܴ and ܴ are fused according to 
their equivalent slice number l. For each voxel in the fused 3D image, (ܸ௫,௬,) = ,ܫ) ,ݔ) ) describes its signals in different channels, andܫ ,ݕ ݈) symbolizes the coordinate in 3D space. (ݔ, -and l corre (ݕ
spond to the pixel and the slice number of the reconstructed image. (ܸ௫,௬,) could be further used for 3D segmentation and quantitative 
calculation of fluorescence labeling (gene and/or protein activity) in 
specimen or organs. 

III. EXPERIMENTAL RESULTS 

A. Reconstructed 3D image comparison 

The reconstructed 3D images with and without sinogram 
unification are shown in Fig. 5. The experiments are imple-
mented on the 3 dpf zebrafish. The size of sinograms ܵ for 
both channels are 400 × 1036 pixels. The fused 3D image 
without sinogram unification is shown as Fig. 5 (a), which 
suffers from severe artefacts around the specimen in both 
channels, as well as dislocation between them. Conversely, the 
results with sinogram unification in Fig. 5 (b) describe clear 
and distinct signals in both channels. Vertically in sinograms, 
the located CORs for the fluorescence and bright-field 
channels are 569 and 570, with 1 pixel of deviation after a full 
rotation of 360°. More fused 3D image comparisons, 
including the HH36 chicken embyo heart and the 6 dpf 
zebrafish brain, can be found in Fig. A1. On the two datasets,  
COR disparities between channels are 1 pixel (located at 525 

and 526) and 2 pixels (located at 261 and 263), respectively. 
By fusing 3D images after sinogram unification and 3D 
reconstruction, fluorescence signals can be accurately 
visualized and located within the specimen. 

In this section, the reconstructed results with and without 
sinogram unification are compared quantitatively on the same 
dataset as in Fig. 5. Inspired by [16], we analyzed the variance 
of the reconstructed image slices because reconstructed image 
with smaller variance indicates more blur and similarities, 
which is consistent with the artefacts produced by misaligned 
COR. The variances of all reconstructed slices are shown in 
Fig. 6 (a) and (b). Obviously, for both channels employing 
sinogram unification gains larger variances, introducing less 
blurred artefacts. What should be noted is that there are no 
evident variance differences on both sides of Fig. 6 (a) and (b), 
because no fluorescence or bright-field signal occurs on both 
sides, producing approximately equivalent variances ap-
proaching to 0. (b), (c), (e), (f) are the comparison of one re-
constructed slice (slice 940). (g), (h) show the fused compari-
son without and with sinogram unification (slice 940 to 949). 
Noting the top edge of (g), we see a dislocation between chan-
nels; but in (h) no dislocation exists. Therefore, we conclude 
that with sinogram unification, not only the 3D images in both 
channels describe sharp fluorescence and bright-field infor-
mation, but also they are integrated without dislocation. 

B. Comparison of different COR alignment methods on OPT 
images 

Three previous COR alignment approaches are analyzed 
and compared to our method on the OPT images of a 3 dpf 
zebrafish. The Pixel Match method [13] and the Cross Corre-
lation Operation (CCO) method [14] are based on signal 
match for pairs of projection, both of which are successfully 
used in CT COR alignment. The most commonly used method 
in OPT COR alignment is the one proposed in [16], named as 
Automatic method in this paper. The results of [13], [14] and 
[16] strongly depend on the selection of sinograms. In order to 
produce convincing results, comparisons of different COR 
alignment methods are implemented on multiple sinograms 
selected with the proposed strategy above.   

According to the explanation in Fig. 6, sinograms without 
fluorescence or bright-field signals make no contribution to 
COR alignment. Therefore, in our experiment the sinogam 
range S used for COR alignment is determined by locating 
where fluorescence or bright-field signals exist in raw OPT 
images as depicted above. To reduce the redundancy of com-
putation, sinograms are selected by a step that varies accord-
ing to the number of sinograms in S, referred as NS. Specifi-
cally,ܰܵ ∈ [1,400], ܰܵ ∈ (400,800] and ܰܵ ∈ (800,1360] 
correspond to the step of 10, 20 and 30 respectively. From ݏ  sinograms, the obtained different CORs and their ݁ݐݏ/ܵܰ=
frequencies are shown in different colors and rectangle widths 
as shown in Fig. 7. Large rectangle width in Fig. 7 (a) implies 
high frequency. CORs from four methods are located at 513, 
518, 515 and 516 in the fluorescence channel. For the bright-
field images in Fig. 7 (c), the corresponding results are 516, 
518, 517 and 517 respectively. Sinograms are unified and 
reconstructed based on the located CORs. The variances of the

Authorized licensed use limited to: Universiteit Leiden. Downloaded on September 06,2023 at 14:18:42 UTC from IEEE Xplore.  Restrictions apply. 



408

 

Fig. 6. Comparison of reconstructed image slices without and with sinogram unification. (a) , (d) The comparison of reconstructed image variances in the 
fluorescence and bright-field channel. (b), (c) One reconstructed image (slice 940) without sinogram unification in two channels. (e), (f) The same slice of 
reconstructed image with sinogram unification in two channels. (g), (h) Fused reconstructed slices (slice 940 to 949) without and with sinogram unification. 
Fluorescence and bright-field signals are shown in green and red, and the interation between two channels is shown in yellow. There is a dislocation between 
channels in (g), which is observed in the top edge of (g); while (h) intergrates both channels precisely. 

 

Fig. 7. COR and reconstruction comparison from different COR alignment methods. (a) and (c) Different COR values and their frequencies in the fluorescence 
and bright-field channels. The colors correspond to COR values, and the rectangle widths represent their frequencies. (b) and (d) Variances of all reconstructed 
slices in the fluorescence and bright-field channels with CORs from different methods. In (d) Variances of Automatic method and our method overlap, because 
CORs for both methods are equal as 517. (e)-(h) The same reconstructed slice (slice 100) by Pixel Match method, COO method, Automatic method and our 
method repectively.  

reconstructed image are shown in (b) and (d). In the fluores-
cence channel (b), our method outperforms the other three 
methods with the largest overall variance, coinciding with the 
reconstructed results in (e)-(h) where the sharpness increases 
from (e) to (h). Not only in the fluorescence channel, but also 
in the bright-field channel the proposed method achieves the 
largest variance of all reconstructed slices.  

      To further verify the performance, experiments are 
implemented on 12 other datasets including zebrafish embryo 
(ZE), chicken embryo heart (CEH) and zebra finch embryo 
(ZFB) in the fluorescence (F) and bright-field (B) channel. 
From the results in Fig. 8, the Automatic method and our 
method obtained maximum variances on all the 12 datasets, 
because both methods achieved the optimal and equivalent    
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Fig. 8. Average Variances of reconstructed images with four COR alignment 
methods on 12 datasets. For each dataset, larger variance corresponds to less 
artefacts introduced by COR alignment. ZE is short for zebrafish embryo; 
CEH is for chicken embryo heart; ZFE represents zebra finch embryo; 
Different prefixes refer to different stages when specimens are imaged. 

TABLE 1. RUNTIME of different COR alignment aprroaches in each sinogram 
on different datasets 

Datasets Pixel 
Match(s) 

CCO(s) Automatic(s) Ours(s) 

6dpf ZE (F) 0.6897 102.8966 1043.1034 10.3448 
6dpf ZE (B) 0.6765 102.7941 1042.7941 12.2941 
7dpf ZE (F) 0.6897 102.9310 1043.3793 11.7241 
7dpf ZE (B) 0.6786 102.8929 1042.8214 11.7241 

HH36 CEH (F) 0.6774 102.9032 1043.2580 2.2258 
HH36 CEH (B) 0.6667 102.9333 1042.8444 6.2888 
H28 CEH (F) 0.6800 103.1200 1043.1200 5.2000 
H26 CEH (F) 0.7200 103.2000 1043.2000 4.3200 
H30 CEH (B) 0.6774 103.5484 1043.1935 4.1612 
H34 CEH (B) 0.6897 103.5517 1043.0344 3.3793 

Tg228 ZFE (B) 0.7143 103.1786 1042.8571 2.6785 
Tg225 ZFE (B) 0.7857 103.2143 1042.7857 2.7857 

Average  0.6955 103.097 1043.0326 6.4272 

 
COR on each dataset. The Pixel Match and CCO methods 
gained lower variances, resulting in more artefacts in recon-
structed images. 

Apart from the competitive effectiveness to the Automatic 
method in Fig. 8, our method performs significantly superior 
to CCO method and Automatic method in terms of its 
computational complexity; cf. Table 1. With the computer 
configuration of 16Gb RAM and 8-core 3.4GHz CPU, the 
average runtime for different COR alignment methods on one 
sinogram are 0.6955s, 103.097s, 1043.0326s and 6.4272s 
respectively. The pixel Match method achieves highest per-
formance in runtime, but its capability of optimal COR align-
ment is frustrating. Overall, our method outperforms the other 
three in the combination of effectiveness and computational 
complexity. It is noteworthy that in our method the runtime on 
each dataset varies due to the differences in the number of 
interest points; while other three approaches consume approx-
imately the same fixed runtime for each sinogram. 

IV. CONCLUSION 

The focus of this paper is to present a framework based on 
sinogram unification for 3D image fusion in different channels 

for OPT images, as well as a new automatic COR alignment 
method that outperforms other COR alignment approaches in 
general efficiency. Furthermore, the new COR alignment 
methodology could suppress random and fixed machine noise 
in background from OPT imaging system, because only peaks 
and troughs from foreground are detected in the sinogram as 
interest points. Importantly, the proposed framework and COR 
alignment are also suitable for 3D CT image fusion and com-
parison when tracking medical therapy, as well as multi-
channel 3D image fusion in OPT. All the Experiments in this 
paper were implemented on a personal computer with an i7 
processor and 16Gb RAM. Currently, the integrated system 
including imaging, sinogram unification, 3D reconstruction, 
3D image fusion and visualization is being constructed as a 
distributed application on a cluster. With this integrated sys-
tem, signals in different channels for the specimens can be 
imaged and visualized in 3D space within a very short period 
of time. Moreover, a quantitative 3D model for locating and 
calculating fluorescence signals (gene and/or protein activity) 
within specimen will be established in our future work. 
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Appendix 

         

      
      

Fig. A1. Fused 3D image comparisons without and with sinogram unification in different dataset samples. Left (a,c) shows the results without sinogram 
unification. Right (b,d) indicates the 3D images with sinogram unification. (a) and (b) The HH36 chicken embyo heart. CORs are located at 525 and 526 in 
fluorescence and bright-field channel, with a disparity of 1pixel. (c) and (d) The 6 dpf zebrafish brain. CORs are located at 261 and 263 suffering a disparity of 2 
pixels.  
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