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ABSTRACT 

Introduction 

Seizure detection devices (SDDs) can improve epilepsy care, but wearables are 

not always tolerated. We previously demonstrated good performance of a real-

time video-based algorithm for detection of nocturnal convulsive seizures in 

adults with learning disabilities.  

Methods 

The algorithm calculates the relative frequency content based on the group 

velocity reconstruction from video-sequence optical flow. We aim to validate the 

video algorithm on nocturnal motor seizures in a paediatric population.  

Results 

We retrospectively analysed the algorithm performance on a database including 

1661 full recorded nights of 22 children (age 3-17 years) with refractory 

epilepsy at home or in a residential care setting. The algorithm detected 54 of 

69 convulsions (median sensitivity per participant 54%; overall sensitivity 78%, 

95% CI 57.5-100%) and identified 117 of 161 hyperkinetic seizures (overall 

sensitivity 73%). Most children had no false alarms; 87 false alarms occurred in 

seven children (median false alarm rate (FAR) per participant per night 0 [range 

0-0.53]; overall FAR 0.05 per night). Most false alarms (58%) were behaviour-

related (e.g., awake and playing in bed).  

Conclusions 

Our noncontact detection algorithm reliably detects nocturnal epileptic events 

with only a limited number of false alarms and is suitable for real-time use. 
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INTRODUCTION 
Nocturnal convulsive seizures, particularly if unwitnessed, pose the highest risk 

of sudden unexpected death in epilepsy (SUDEP).1,2 Nocturnal supervision 

seems to have a protective effect on SUDEP, likely by permitting an 

intervention, but the exact protective mechanism is unknown.3,4 Seizure 

detection devices (SDDs) can be used to alert for nocturnal seizures and allow 

others to intervene. Wearable devices are not always tolerated, especially not 

by children or those with intellectual disabilities, and may require charging. We 

previously demonstrated good performance of a remote real-time video-based 

seizure detection in adults living in a residential care setting.5 The algorithm was 

able to detect all 50 nocturnal convulsive seizures (sensitivity 100%) with a 

median false alarm rate (FAR) of 0.78 per night and a latency of ≤10 seconds in 

78% of detections. We aimed to validate the video detection algorithm in a 

paediatric population.  

METHODS 

Algorithm adjustment 
The methodology used was previously published.6 Detection thresholds were 

recently determined in a training set and the detection performance was 

validated in a test set of nocturnal video recordings of adults with refractory 

epilepsy.5 The algorithm is composed of different steps to identify specific 

movement patterns of convulsions in the video image sequence. The first step 

is to reconstruct spatial movements by creating a vector field of velocities from 

changes in luminance (optical flow). Secondly, these velocities are grouped into 

six rates of spatial transformation (translation (horizontal & vertical), rotation, 

dilatation, and shear rates (horizontal & vertical)). Subsequently, time-frequency 

spectra of these group velocities are calculated using Gabor aperture functions 

with central frequencies ranging from 0.5-12.5Hz. The final step is to derive the 

power in the 2-6Hz frequency range (which is assumed to be the spectrum of 

convulsive seizures) relative to the total Gabor power.6 The relative 2-6 Hz 

power is expressed as a value between zero and one, thus reflecting the 

probability of registering a convulsion. If the output signal exceeds the 

previously determined threshold of 0.51 for more than 4 seconds, an alarm is 

set.5 We made the following adjustments to the original algorithm: (1) the optical 

flow calculation was extended to the multi-channel (colour) level to avoid 

potential information loss due to the image interpolation to the greyscale7 (2) a 
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novel algorithm (Global Optical Flow Reconstruction Iterative Algorithm 

(GLORIA)) was applied to bypass the time-consuming task of first 

reconstructing the local vector field and subsequently fitting the group 

transformation templates.8 The GLORIA algorithm improves calculation speed 

by directly reconstructing relevant global group transformation velocities from 

the image sequences.  

Validation in a paediatric population 

For validation we used a dataset of all children in the LICSENSE trial 

(NTR4115). This prospective multicentre study validated a wearable multimodal 

SDD (NightWatch) combining heart rate and accelerometry. Children with 

refractory epilepsy were included if they were ≥3 years of age and had at least 

one monthly nocturnal motor seizure (i.e., tonic-clonic (TC), generalized tonic 

>30 seconds, focal hyperkinetic and a ‘remaining’ category, consisting of TC-

like seizures with atypical semiology and clusters of minor seizures lasting >30 

minutes). Exclusion criteria comprised frequent non-epileptic movement 

patterns (e.g., choreatiform movements, sleep walking) and only minor motor 

seizures. They were monitored for a period of two to three months in their home 

or in a residential care setting. All recorded sequences of digital images had an 

H.264 (MPEG-4) format with a resolution of 640(H) x 480(V) pixels, 24-bit RGB 

colour encoding and a constant frame rate of 32 frames per second. 

Experienced epilepsy nurses analysed all alarms generated by the wearable 

device together with caregiver’s seizure diaries and screened 10% of all 

recorded nights for possibly missed seizures. Events were annotated as 

‘seizure’ or ‘no seizure’ and seizure type was specified (e.g., convulsive, 

hyperkinetic). Isolated minor seizures were annotated as ‘no seizure’ and 

classified as false alarms. In case of doubt, annotations were discussed with a 

neurologist.  

We retrospectively analysed the detection performance of the algorithm on the 

annotated LICSENSE video database. All timestamps of the video alarms were 

compared with the annotations of the LICSENSE database. If the algorithm 

detected a clinical event also reported by the caregiver or coincided with a 

NightWatch alarm, the video detection was labelled with the same annotation. 

All other video alarms were designated as ‘new alarms’ and annotated by 

experienced epilepsy nurses, and in case of doubt discussed with a neurologist.  

Detection performance was evaluated as sensitivity for the detection of 

convulsive seizures per participant and FAR per participant and as overall 

sensitivity for the detection of all seizures of a specific seizure type (i.e., TC, 
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generalized tonic >30 seconds, focal hyperkinetic and ‘remaining’) and overall 

FAR (i.e., total number of false alarms divided by total number of recorded 

nights). We restricted sensitivity analysis to those who had motor seizures 

during the trial period, false alarm rate was calculated for the entire dataset. 

False alarms were categorized as (1) Awake and playing or moving in the bed; 

(2) Rhythmic movement disorder (e.g., body rocking); (3) Rhythmically moving 

object in the room; (4) Another person in the room. For the generalizability of 

the results, we also calculated the F1-score for the detection of convulsive 

seizures.9 

The study protocol of LICSENSE was approved by a regional ethics committee 

and written consent was provided by participants or their guardians provided 

ascent were applicable. Data were handled anonymously. 

 

 

Figure 1 (A) Distribution of video alarms (true and false) and missed seizures among all 

22 participants. True alarms are defined as convulsive and hyperkinetic seizures. (B) 

Categorization of false alarms.  
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RESULTS 
The dataset included 1661 full recorded nights of 22 children (13 male) with a 

median age of 9 years [range 3-17 years]. Sixteen children were monitored in a 

residential care setting, three at home and three between home and in a 

residential care setting. We analysed 69 convulsive seizures in six children. The 

video detection algorithm was able to detect 54 out of 69 convulsive seizures 

(median sensitivity per participant 54% [range 0-100%]; overall sensitivity 78% 

[95% CI 57.5-100%]; F1-score = 0.51; Figure 1A). The algorithm also detected 

117 of 161 hyperkinetic seizures (mean sensitivity 86% SD 19.6; overall 

sensitivity 73%) occurring in two children. The overall sensitivity of the algorithm 

for the detection of generalized tonic seizures >30 seconds was 9.8% and 1.0% 

for the detection of the ‘remaining’ major seizures. Median FAR was 0 per 

participant per night [range 0-0.53] (overall FAR 0.05/night). All 87 false alarms 

were clustered in seven children (Figure 1A). Most false alarms (58%) were 

behaviour-related (awake and playing in bed; Figure 1B).  

The calculation speed of the algorithm was improved; a video epoch of 366 

seconds took 263 seconds to analyse using the old algorithm and 194 seconds 

with the new GLORIA algorithm (with MatLab 2019b, Windows 10pro, 

Processor Intel I Core i7 7700 3.5Ghz 32Gb RAM).  

DISCUSSION 
This phase 2 study (according to the recent SDD guidelines)10 validated our 

seizure detection algorithm in children and it showed good performance for the 

detection of nocturnal convulsions and hyperkinetic seizures. False alarms were 

mostly behaviour-related during wakefulness. Our adjustments in the 

processing speed makes the algorithm more suitable for real‐time use and 

ready for clinical implementation.  

A limitation of this study is the evaluation of possibly missed seizures since we 

did not screen all recorded nights. This is almost inevitable for such a long-term 

follow-up study but may have induced an overestimation of the sensitivity.  

Several small phase 1 and phase 2 studies have been performed with various 

methods for automated video-based seizure detection, including motion 

tracking, periodicity estimation and optical flow11,12 All had acceptable detection 

rates (overall sensitivity 75-100%), but algorithms were tested and trained using 

the same dataset, thus posing a risk of overfitting.13-16 All studies used 

retrospectively collected video epochs of infants and children with various 
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motor seizure types and short selections of other non-epileptic movements but 

lacked prospective or continuous data. These studies thus demonstrated the 

feasibility of these techniques but overall performance is uncertain as reliable 

false alarm rates could not be derived.  

Multiple phase 2, 3 and 4 studies on non-EEG based wearable SDDs have 

demonstrated good performance for the detection of convulsive seizures, with 

overall sensitivities over 90% and overall FARs ranging from 0.2/day to 

1.44/day.12 Best performance was achieved by multimodal devices combining 

various sensors including accelerometry, electrodermal activity, surface 

electromyography and heart rate. Most devices were validated in an epilepsy 

monitoring unit with relatively short monitoring periods. Our dataset includes 

long-term (2-3 months) home-based video recordings, which not only resulted 

in a large number of seizures, but also allowed for a reliable estimate of the 

FAR. The absence of false alarms in the majority of children despite the long-

term follow-up makes our detection algorithm an attractive alternative to 

wearable SDDs. Most false alarms occurred during wakefulness in the early 

evening or morning, thus minimizing false alarm impact. Our algorithm detected 

all hyperkinetic seizures. Other modalities (EMG, accelerometry combined with 

heart rate) are likely more sensitive to detect a broader range of motor 

seizures.17,18 A further advantage of our method is that it operates remotely 

without sensors attached to the individual. A survey on first-hand experiences of 

people with epilepsy using wearable devices during a clinical stay indicated that 

most participants found the devices convenient.19 The presence of wires, bulky 

size discomfort and need for support did, however, moderate experience. 

Visibility and accuracy were important determinants about wearing them in 

everyday life. Video systems may raise privacy concerns, but our system 

generates real-time alarms without requiring video storage or monitoring. Our 

analysis was restricted to bedtime period. Daytime monitoring is possible but 

requires multiple cameras or portable video technology (drones, robots) likely 

to increase false alarm rate due to the more diverse movement patterns and 

thus require other algorithms. Compared to other remote SDDs using bed 

sensors, our video algorithm had a lower sensitivity for the detection of 

convulsive seizures (overall sensitivity 78% vs. 89%), but fewer false alarms 

(overall FAR 0.05/night vs 0.13/24h).17  
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