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ABSTRACT 

Introduction 

Adequate epileptic seizure detection may have the potential to minimize 

seizure-related complications and improve treatment evaluation. Autonomic 

changes often precede ictal electroencephalographic discharges and therefore 

provide a promising tool for timely seizure detection. We reviewed the literature 

for seizure detection algorithms using autonomic nervous system parameters.  

Methods  

The PubMed and Embase databases were systematically searched for original 

human studies that validate an algorithm for automatic seizure detection based 

on autonomic function alterations. Studies on neonates only and pilot studies 

without performance data were excluded. Algorithm performance was 

compared for studies with a similar design (retrospective vs. prospective) 

reporting both sensitivity and false alarm rate (FAR). Quality assessment was 

performed using QUADAS-2 and recently reported quality standards on 

reporting seizure detection algorithms.  

Results  

Twenty-one out of 638 studies were included in the analysis. Fifteen studies 

presented a single-modality algorithm based on heart rate variability (n = 10), 

heart rate (n = 4), or QRS morphology (n = 1), while six studies assessed multi-

modal algorithms using various combinations of HR, corrected QT interval, 

oxygen saturation, electrodermal activity, and accelerometry. Most studies had 

small sample sizes and a short follow-up period. Only two studies performed a 

prospective validation. A tendency for a lower FAR was found for retrospectively 

validated algorithms using multimodal autonomic parameters compared to 

those using single modalities (mean sensitivity per participant 71-100% vs. 64-

96% and mean FAR per participant 0.0-2.4/h vs. 0.7-5.4/h).  

Conclusions 

The overall quality of studies on seizure detection using autonomic parameters 

is low. Unimodal autonomic algorithms cannot reach acceptable performance 

as false alarm rates are still too high. Larger prospective studies are needed to 

validate multimodal automatic seizure detection.  
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INTRODUCTION 
Epileptic seizures are potentially dangerous as they can lead to complications, 

including injury, status epilepticus, and sudden unexpected death in epilepsy 

(SUDEP).1 Adequate seizure detection may have the potential to minimize these 

complications and to ameliorate treatment evaluation, as seizures — particularly 

those at night — are often underreported.2-5 Detection devices may also help to 

improve the independence and quality of life of people with epilepsy and their 

caregivers.3,6  

Several parameters, including movement, sound, and autonomic nervous 

system changes, can be used to detect seizures. This review focuses on 

changes in autonomic function, including cardiovascular, respiratory, and 

transpiration changes.7 Seizures can alter autonomic function, particularly if the 

central autonomic network is involved. The most common expression is a 

sudden increase in sympathetic tone.7, 8 Ictal tachycardia (IT) is a very frequent 

sign, with prevalence rates ranging from 80 to 100%.9, 10 IT is a hallmark of 

convulsive seizures (i.e., focal to bilateral tonic-clonic as well as generalized 

tonic-clonic seizures), and more common in temporal lobe vs. extratemporal 

lobe seizures.9 Changes in autonomic function can precede ictal 

electroencephalographic (EEG) discharges by several seconds.10-12 Preictal 

tachycardia has an incidence rate of approximately one-third of seizures.13 

Autonomic alterations may therefore provide an adequate tool for early seizure 

detection and facilitate timely interventions. Ictal arrhythmias and desaturations 

are more common but are thought to be self-limiting, while postictal arrhythmias 

and apneas may lead to SUDEP.14-17 SUDEP usually occurs several minutes 

after a convulsive seizure (mean 10 min, range 2-17 min).18 Raising an alarm at 

seizure onset may be sufficient to allow timely intervention.  

We aimed to systematically review different seizure detection algorithms based 

on autonomic function changes.  

METHODS 
This systematic review was conducted in accordance with the preferred 

reporting items for systematic reviews and meta-analyses (PRISMA) guideline.19  

The PubMed and Embase databases were systematically searched through May 

2018 for original studies validating an algorithm for automatic seizure detection 

based on heart rate (HR), heart rate variability (HRV), oxygen saturation (SpO2), 

electrodermal activity (EDA, reflecting changes in transpiration), or a  
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Figure 1 Flowchart of the search for applicable studies  

combination of the aforementioned. A sequence of synonyms for ‘autonomic 

variables,’ ‘seizures,’ and ‘detection’ were used as search terms. Studies were 

included if they met the following criteria: (1) human studies; (2) written in 

English; (3) reporting on children or adults with any type of epilepsy; (4) 

validating an algorithm for automatic seizure detection using autonomic 

parameters; (5) reporting at least one performance measure [sensitivity, positive 

predictive value (PPV), false alarm rate (FAR), or detection latency (DL)]. 

Studies on neonates only were excluded, because both seizure and autonomic 
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function characteristics differ greatly at this age compared to older age. Pilot 

studies lacking performance data, as well as conference abstracts and reviews 

were also excluded (Fig. 1).  

One author (AvW) screened all titles and abstracts, as well as the full texts of 

the remaining studies. For each article included, the following parameters were 

recorded: method of automatic seizure detection, type of autonomic variable, 

individual characteristics, number and types of seizures analyzed, prospective 

or retrospective validation, total recording time and performance of the 

algorithm (including sensitivity, PPV, FAR, and DL). We compared algorithm 

performance using multimodal autonomic parameters versus those using single 

modalities, provided that the studies (1) had a similar design (prospective vs. 

retrospective) and (2) reported both sensitivity and FAR.  

The quality of the included studies was evaluated using the QUADAS-2.20 This 

tool consists of four domains (patient selection, index test, reference standard, 

and flow and timing) and different signaling questions to assist in judgments of 

the risk of bias and applicability. Additionally, we assessed all included studies 

according to the recently proposed standards for clinical validation of seizure 

detection devices (SDDs).21  

RESULTS 
Out of the 638 articles identified, 86 studies were selected based on title and 

abstract. After full-text screening, 21 studies were included for further analysis. 

Most of the excluded articles lacked the validation of a seizure detection 

algorithm (Fig. 1). The characteristics of the included studies are summarized in 

Table 1. Most of the studies (n = 15) focused on ictal cardiac changes as a tool 

for seizure detection algorithms, including HRV (n = 10),8, 22-30 HR (n = 4),31-34 

and changes in QRS morphology (n = 1).35 Six studies used multimodal 

algorithms, including combinations of HR, corrected QT interval (QTc), SpO2, 

EDA, and accelerometry (ACC).2, 36-40 None of the included studies validated an 

algorithm based on oxygen saturation or EDA alone. Most studies were 

conducted in adults, but two studies included a pediatric population,23, 40 and six 

studies included both children and adults.22, 25, 35-37, 39 Fourteen studies 

prospectively enrolled their participants,8, 22, 23, 26, 28, 30-33, 36-40 but only two studies 

prospectively validated their algorithm.31, 33 Most studies had small sample sizes 

(median population size 14, IQR 7-26). The number of seizures analyzed per 

patient tended to be low (median number of seizures per participant 3, IQR 2-7). 

The total recording time used to validate the algorithm varied from 7 min to 158 
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h per person (median recording time per participant 34 h, IQR 3-86 h), but was 

not specified in two studies. Seizure onset was mostly focal (n = 14),8, 22, 24-26, 28, 30, 

31, 33, 34, 37, 39, 40, 42 but was focal and generalized in some (n = 4)2, 23, 35, 42 or not 

specified in others (n = 3).32, 36, 38 All four performance measures (sensitivity, 

PPV, FAR, and DL) were only reported in three out of 21 studies;22, 33, 39 eight 

studies reported three,2, 23-25, 28, 30, 31, 42 eight studies reported two,8, 26, 34, 36-38, 40, 43 

one study reported one,41 and one study only reported sensitivity and PPV data 

for some of the subjects.32  

Heart rate analysis  

Heart rate was monitored using single or multiple lead electrocardiography 

(ECG) in 14 of 18 studies,8, 22-26, 28, 32, 34-37, 42, 43 Alternative methods included 

photoplethysmography (PPG) in a wearable sensor (n = 2)2, 30 and an implanted 

heart rate sensor (AspireSR) (n = 2).31,33  

Heart rate measurement was done using various methods of R-peak detection, 

including those proposed by Pan and Tompkins,30, 41 Kohler,28 Yeh and Wang,22-

24 or unspecified methods.8, 25, 26, 31-34, 42 Some studies applied noise filtering 

techniques to diminish false R-peak detection, including high- and low-pass 

noise filters8, 22-24, 26, 30 or a specific algorithm (baseline estimation and denoising 

with sparsity).42 One case study prospectively assessed a HR algorithm using a 

vagal nerve stimulation (VNS) device with a fixed HR sensitivity threshold.33 

Alarms were generated when the HR augmentation exceeded 50% of the 

baseline HR. Eleven out of twelve seizures were detected (sensitivity 92%), 

together with 128 false alarms (FAR 1.88/h; 68 h recordings). A second 

prospective validation study of the same VNS device compared different HR 

thresholds (≥ 20%, ≥ 40%, and ≥ 60% increases from baseline) in 16 adults with 

refractory epilepsy.31 Lower thresholds resulted in higher sensitivity and higher 

FAR than higher thresholds (e.g., sensitivity 59.3% and FAR 7.2/h for threshold 

≥ 20% vs. sensitivity 18.8% and FAR 0.5/h for thresholds ≥ 60%). Similar effects 

of varying the thresholds (for both the relative HR increase and the duration of 

HR increase) were reported in two studies on retrospectively validated HR 

algorithms.32, 34 A follow-up using the same dataset examined different factors 

that may influence the probability of seizure detection.44 The best regression 

model was created with variables including age, gender, etiology, seizure class, 

and years with epilepsy.  
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Heart rate variability (HRV)  

All the HRV-focused studies performed retrospective validations.8, 22-26, 28, 30, 41, 42 

Different HRV features were selected and specific feature thresholds were 

classified as ‘ictal’ or ‘interictal.’ Nine out of ten HRV studies applied linear 

analysis8, 22-25, 28, 30, 41, 42 using time domain22-25, 28, 30, 41, 42 and frequency domain8, 25, 

28, 41, 42 features. Time domain analysis focuses on the instantaneous HR; the 

interval between two normal QRS complexes, abbreviated to ‘NN.’ Different 

time domain features, such as the mean NN interval or the distribution of NN 

have been used for seizure detection. Four studies extracted and classified 

these time domain features using a support vector machine (SVM) classifier and 

validated the same HRV algorithm in different populations.22-24, 30 The first 

retrospective study of seventeen people with temporal lobe epilepsy found a 

mean sensitivity of 83.2% with a FAR of 2.01/h.22 The second study extracted 

ECG or PPG data from three different heart rate sensors worn by eleven adults 

with temporal lobe epilepsy.30 The best performance was obtained using a 

wearable ECG device, with a sensitivity of 64% and a FAR of 2.35/h. A third 

study tested the algorithm in 28 children and showed a higher overall sensitivity 

(81.3%) and a lower FAR (0.75/h).23 Performance, particularly FAR, improved 

when applying a patient-specific heuristic classifier. The latter was confirmed in 

the fourth study of data from nineteen people with temporal lobe epilepsy from 

a pre-existing epilepsy database.24 The authors also proposed an adaptive 

seizure detection algorithm, and showed that similar results were obtained with 

simulated ‘real-time’ user feedback.  

Frequency domain analysis is used to extract the frequency components of the 

HR signal, each with its own physiological footprint: low frequency (LF 0.04-0.15 

Hz), high frequency (HF 0.15-0.40 Hz), very low frequency (VLF 0.0001-0.04 

Hz), and very high frequency (VHF 0.4-0.5 Hz). Different frequencies were 

identified by power spectral density analysis of HRV in four studies,8, 25, 28, 41 and 

two studies sped up this process by applying an efficiency algorithm [fast 

Fourier transform (FFT)].8, 28 The LF/HF ratio, reflecting the balance of 

sympathetic and parasympathetic function, was examined in two studies.25, 41 

One of these studies tested a seizure detection algorithm combining both time 

and frequency domain features on eleven focal seizures upon awakening.25 Ten 

of the eleven seizures were detected prior to seizure onset (sensitivity 91%, DL 

− 494 ± 262 s). Another study of seven adults with focal epilepsy that used time-

frequency analysis of HRV based on a combination of the matching-pursuit and 

Wigner-Ville distribution algorithms reported a sensitivity of 96.4% with high 
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FAR (5.4/h).42 Combining ECG and EEG algorithms yielded better performance 

(sensitivity 100%, FAR 1.6/h).  

To assess the dynamic properties of ictal HR changes, nonlinear analysis can 

be applied, such as a Lorenz (or Poincaré) plot. This method plots the current 

R-R interval against the next R-R value. Standard deviations in the transverse 

(SD1) and longitudinal (SD2) directions of these plots can be calculated, and 

higher ratios of SD2/SD1 reflect increased sympathetic tone. These ratios can 

be used in seizure detection algorithms, since an increase in sympathetic tone 

is often seen during the preictal and early ictal phases. One small retrospective 

study proposed the modified cardio sympathetic index (mCSI) as a new 

measure in seizure detection that reflects the sympathetic tone.26 A seizure 

detection algorithm based on changes in mCSI yielded a sensitivity of 88% in 

five people with temporal lobe epilepsy (FAR not reported). A larger follow-up 

study of adults with focal epilepsy compared frequency domain analysis with 

Lorenz plot analysis.8 mCSI appeared more sensitive, but FARs were not 

reported.  

The two remaining studies of HRV combined linear and nonlinear analysis.28, 41 

The first retrospective study of seven people with focal epilepsy reported an 

overall sensitivity of 88.3% with a specificity of 86.2% after selecting an optimal 

performance threshold for each patient.41 The second study combined time-

frequency and Lorenz plot analysis with a second nonlinear analysis of ‘sample 

entropy’.28 This parameter quantifies the regularity and complexity of a time 

series, and entropy decreases can be seen during the ictal phase. Applying all 

these methods together to ECG data from twelve temporal lobe epilepsy 

patients resulted in overall sensitivity of 94.1% with a FAR of 0.49/h.  

Another retrospective study reported two different seizure detection algorithms 

based on changes in QRS morphology (algorithm 1) and cardiorespiratory 

interactions (algorithm 2).35 The first algorithm captured five consecutive QRS 

complexes, aligned them with respect to the R peak, and assembled them into 

one QRS matrix. Principal component analysis was used to select different 

features from this QRS matrix. This process was repeated for every heart beat, 

which resulted in a sensitivity of 89.5-100% for detecting focal onset seizures 

and 86% for generalized onset seizures. The second algorithm was based on 

the well-known modulatory effects of respiration on HRV. These 

cardiorespiratory changes were quantified using phase-rectified signal 

averaging — a methodology used to detect quasi-periodicities in nonstationary 

signals such as the resampled RR interval time series — and were used for 
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seizure detection. Slightly better performance was achieved by the second 

algorithm, which yielded a sensitivity of 100% for focal onset seizures and 90% 

for generalized onset seizures. In this study, 10.4-90% of the generated alarms 

were false, and this percentage was lower for the second algorithm.  

Combining autonomic parameters  

All multimodal autonomic algorithms were retrospectively validated. A 

combination of three biosignals, measured by two different devices, was used 

for seizure detection in a study of ten subjects with focal epilepsy.2 An algorithm 

based on a specific seizure pattern of increased HR, decreased SpO2, and 

increased EDA was able to detect all seizures in six out of ten patients with a 

low FAR of 0.015/h. Specific thresholds of HR, QTC, and SpO2 were combined 

in an algorithm tested on a larger study population of 45 people with refractory 

epilepsy.37 Only half of the collected data was used for analysis, and a sensitivity 

of 81-94% was found for focal to bilateral tonic-clonic seizures, while focal 

seizures without bilateral spreading showed worse performance, with a 

sensitivity of 25-36%. Overall FAR ranged from 0.4-2.4/h.  

Three other retrospective validation studies combined EDA and accelerometry 

(ACC), measured with one device.28-40 Different classifiers were used to select 

features of EDA and ACC. The first study tested two machine learning 

algorithms, the k-nearest neighbor (kNN) and random forest classifiers. The 

kNN classifier achieved the best results with eleven features and was most 

sensitive for nonmotor seizures (sensitivity 97.1%, FAR not reported). The 

random forest classifier selected 26 features and showed its best performance 

with motor seizures (sensitivity 90.5%, FAR not reported). A second study used 

a SVM classifier to extract 19 features (16 ACC and 3 EDA).40 Fourteen out of 

sixteen focal onset seizures with bilateral spreading were detected (sensitivity 

88%) and FAR was 0.04/h. The same feature set was used in the third study and 

compared to a larger (40 ACC and 6 EDA) and a reduced (22 ACC and 3 EDA) 

feature set.39 Retrospectively tested on 24 children and 45 adults with focal 

epilepsy, the reduced set showed the best performance (sensitivity 94.6%, FAR 

0.20/ day).  

A multicenter study combined HR and ACC measures in 95 people with 

nocturnal major motor seizures.36 Data from only 23 patients could be used to 

retrospectively validate three different algorithms based on changes in HR, 

ACC, and ‘HR or ACC.’ Clinically urgent seizures were detected well (sensitivity 

71-87%), but FAR was relatively high (2.3-6.3/night), with wide variation 

between subjects.  
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Table 2 Quality of the included studies according to QUADAS-2  

Study Risk of Bias Concerns regarding 

applicability 
 

 
Patient 

selection 

Index 

tests 

Reference 

standard 

Flow 

and 

timing 

Patient 

selection 

Index 

tests 

Reference 

standard 

Van Andel  
et al.36 ● ● ● ● ● ● ● 
Boon  

et al.31 ● ● ● ● ● ● ● 
Cogan  
et al.2 ● ● ● ● ● ● ● 

De Cooman 
et al.22 ● ● ● ● ● ● ● 

De Cooman  
et al.23 ● ● ● ● ● ● ● 

De Cooman  
et al.24 ● ● ● ● ● ● ● 

Elmpt, van  
et al.32 ● ● ● ● ● ● ● 

Fujiwara  
et al.25 ● ● ● ● ● ● ● 

Goldenholz  
et al.37 ● ● ● ● ● ● ● 

Hampel  
et al.33 ● ● ● ● ● ● ● 

Heldberg  
et al.38 ● ● ● ● ● ● ● 

Jeppesen  
et al.26 ● ● ● ● ● ● ● 

Jeppesen  
et al.8 ● ● ● ● ● ● ● 

Moridani  
et al.27 ● ● ● ● ● ● ● 

Onorati  
et al.39 ● ● ● ● ● ● ● 
Osorio  
et al.34 ● ● ● ● ● ● ● 
Pavei  

et al.28  ● ● ● ● ● ● ● 
Poh  

et al.40 ● ● ● ● ● ● ● 
Qaraqe  
et al.29 ● ● ● ● ● ● ● 

Vandecasteele 
et al.30 ● ● ● ● ● ● ● 
Varon  
et al.43 ● ● ● ● ● ● ● 

● low risk of bias ● unclear risk of bias ● high risk of bias. 

Quality of the included studies  

According to the QUADAS-2 criteria, the overall quality of the included studies 

was medium-high (Table 2). Seventeen out of 21 studies were at risk of bias, 
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mainly due to an undefined patient selection process and fitting of the 

algorithm.2, 8, 22-26, 30, 32, 34, 37-43 There was concern regarding the applicability of the 

selected patients in three studies, because the populations consisted of children 

only and/or were not well described.23, 25, 33 Concerns about the applicability of 

the index test (i.e., the tested algorithm) arose in nine studies, mainly because 

the algorithm was fitted to one dataset.2, 8, 23, 25, 28, 30, 32, 36, 37 

Based on the standards for the clinical validation of SDDs proposed by Beniczky 

and Ryvlin,21 most studies were classified as phase 1 proof-of-principle studies, 

whereas three were classified as phase 0 initial studies,34, 41, 42 and only one as a 

phase 2 study on a dedicated SDD31(Table 3). Seven other studies also tested a 

dedicated device but included small population sizes or did not address the 

safety of the device and were therefore classified as phase 1.2, 30, 33, 36, 38-40 Ten 

studies trained and tested their algorithm on the same dataset,2, 8, 22, 26, 32, 34, 37, 40-42 

and only four used a predefined algorithm or cutoff values.30, 31, 33, 36 Eighteen 

studies used video-EEG as reference standard; the remaining three used EEG 

or ECoG without video recordings.34, 41, 42  

DISCUSSION  
The overall quality of studies on seizure detection using autonomic parameters 

is low. Small population sizes, short follow-up periods, and high study 

heterogeneity raise concerns about the applicability of the results. Available 

studies are mainly initial or proof-of-principle studies that lack long-term and 

real-time ambulatory monitoring, which is needed to obtain more reliable 

performance data and usability outcomes.  

HR- or HRV-based algorithms are most frequently applied, but it is hard to 

compare the results of different studies due to wide variation in the detection 

techniques used and a lack of FAR data (Table 4). Additionally, FAR, when 

mentioned, is high for these studies and exceeds acceptable limits for daily 

practice. We could not compare the performance of HR- and HRV-based 

algorithms due to the wide variety of study designs employed. HRV-based 

algorithms seem attractive given their short detection latency, but they still 

require prospective validation. HRV is, however, situation dependent and 

affected by exercise, stress, respiration, and sleep stage.45-47 These confounding 

factors make it more challenging to distinguish ictal patterns from non-ictal 

ones, resulting in lower accuracy.48 Also, similar activation of the autonomic 

nervous system can occur before physiological arousal or other sleep-related 

movements.49 Multimodal algorithms might help to lower FARs. 
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Table 4 Performance of seizure detection algorithms grouped according to dataset size  
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Table 4 (Continued) 

CSI cardiac sympathetic index, DL detection latency, ECG electrocardiogram, EEG 

electroencephalography, FAR rate false alarm rate, FOBTC focal onset to bilateral tonic–clonic, FOIA focal 

onset with impaired awareness, FOS focal onset seizures, h hour, MC myoclonic, mCSI modified cardiac 

sympathetic index, NA not applicable, No. number, PPG photoplethysmography, s seconds, T tonic, TCs 

tonic–clonic seizures, TRT total recording time. 
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Table 4 (Continued) 
aTraining and test set combined.  
bIncluding tonic-clonic, tonic, hypermotor and cluster (series of at least five tonic or myoclonic spasms 

within 3 min).  
cWhen attendance or intervention was deemed necessary, based on seizure severity, postictal arousal 

state, breathing difficulties, and distress.  
dPercentage of evaluable data.  
eAlso 3525 hours without seizures tested for False positives.  
fGreat variability in sensitivity and PPV.  
g F1: Focal seizures children, G1: generalized seizures children (F1 +G1 = training set), F2: focal seizures 

adult, used for validation. 

 

A retrospective study of seven children with tonic-clonic seizures validated 

different unimodal and multimodal algorithms on the same dataset. All 

combinations of multimodal sensors, including ECG, EMG, and ACC, showed at 

least 75% lower FAR.50 Studies differentiating outcome according to seizure 

type showed diverse results, indicating that that different seizure types may 

require different detection techniques. Multimodal techniques can provide a 

solution to this problem.51 Another solution could be personalizing or tailoring 

the algorithm. One study group studied two different personalization strategies 

and calculated the number of seizures required for accurate tailoring.52 The 

authors proposed an initialization phase to tailor an existing predefined 

algorithm to a patient-specific algorithm. Six to eight seizures seemed sufficient 

to set individual thresholds.52 Another retrospective multicenter study proposed 

an automatic adaptive HRV algorithm and tested it on a database of 107 

nocturnal seizures from 28 children.23 After an initialization phase of five 

seizures, the personalized algorithm resulted in lower FARs compared to those 

obtained with the patient-independent algorithm. A follow-up study proposed an 

adaptive classifier with real-time user feedback that presented similar 

performance; this method might be better accepted in daily practice.24  

CONCLUSION  
Autonomic function alterations seem to represent an attractive tool for timely 

seizure detection. Unimodal autonomic algorithms cannot, however, reach 

acceptable performance: while most algorithms are quite sensitive, false alarm 

rates are still too high. Multimodal algorithms and personalization of the 

algorithm are important strategies to improve performance. Larger, prospective, 

home-based studies with long-term follow-up are needed to validate these 

methods and to demonstrate the added value of SDDs in clinical care.  
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