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CHAPTER 2

Ictal autonomic changes as
a tool for seizure detection:
a systematic review
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ABSTRACT

Introduction

Adequate epileptic seizure detection may have the potential to minimize
seizure-related complications and improve treatment evaluation. Autonomic
changes often precede ictal electroencephalographic discharges and therefore
provide a promising tool for timely seizure detection. We reviewed the literature
for seizure detection algorithms using autonomic nervous system parameters.

Methods

The PubMed and Embase databases were systematically searched for original
human studies that validate an algorithm for automatic seizure detection based
on autonomic function alterations. Studies on neonates only and pilot studies
without performance data were excluded. Algorithm performance was
compared for studies with a similar design (retrospective vs. prospective)
reporting both sensitivity and false alarm rate (FAR). Quality assessment was
performed using QUADAS-2 and recently reported quality standards on
reporting seizure detection algorithms.

Results

Twenty-one out of 638 studies were included in the analysis. Fifteen studies
presented a single-modality algorithm based on heart rate variability (7= 10),
heart rate (n = 4), or QRS morphology (7= 1), while six studies assessed multi-
modal algorithms using various combinations of HR, corrected QT interval,
oxygen saturation, electrodermal activity, and accelerometry. Most studies had
small sample sizes and a short follow-up period. Only two studies performed a
prospective validation. A tendency for a lower FAR was found for retrospectively
validated algorithms using multimodal autonomic parameters compared to
those using single modalities (mean sensitivity per participant 71-100% vs. 64-
96% and mean FAR per participant 0.0-2.4/h vs. 0.7-5.4/h).

Conclusions

The overall quality of studies on seizure detection using autonomic parameters
is low. Unimodal autonomic algorithms cannot reach acceptable performance
as false alarm rates are still too high. Larger prospective studies are needed to
validate multimodal automatic seizure detection.



INTRODUCTION

Epileptic seizures are potentially dangerous as they can lead to complications,
including injury, status epilepticus, and sudden unexpected death in epilepsy
(SUDEP)." Adequate seizure detection may have the potential to minimize these
complications and to ameliorate treatment evaluation, as seizures — particularly
those at night — are often underreported.?® Detection devices may also help to
improve the independence and quality of life of people with epilepsy and their
caregivers.>®

Several parameters, including movement, sound, and autonomic nervous
system changes, can be used to detect seizures. This review focuses on
changes in autonomic function, including cardiovascular, respiratory, and
transpiration changes.” Seizures can alter autonomic function, particularly if the
central autonomic network is involved. The most common expression is a
sudden increase in sympathetic tone.” 8 Ictal tachycardia (IT) is a very frequent
sign, with prevalence rates ranging from 80 to 100%.% "° IT is a hallmark of
convulsive seizures (i.e., focal to bilateral tonic-clonic as well as generalized
tonic-clonic seizures), and more common in temporal lobe vs. extratemporal
lobe seizures.® Changes in autonomic function can precede ictal
electroencephalographic (EEG) discharges by several seconds.'®'2 Preictal
tachycardia has an incidence rate of approximately one-third of seizures."
Autonomic alterations may therefore provide an adequate tool for early seizure
detection and facilitate timely interventions. Ictal arrhythmias and desaturations
are more common but are thought to be self-limiting, while postictal arrhythmias
and apneas may lead to SUDEP."*'” SUDEP usually occurs several minutes
after a convulsive seizure (mean 10 min, range 2-17 min).'® Raising an alarm at
seizure onset may be sufficient to allow timely intervention.

We aimed to systematically review different seizure detection algorithms based
on autonomic function changes.

METHODS

This systematic review was conducted in accordance with the preferred
reporting items for systematic reviews and meta-analyses (PRISMA) guideline.®
The PubMed and Embase databases were systematically searched through May
2018 for original studies validating an algorithm for automatic seizure detection
based on heart rate (HR), heart rate variability (HRV), oxygen saturation (Sp02),
electrodermal activity (EDA, reflecting changes in transpiration), or a



Clinical articles on ictal autonomic changes as a tool for
automatic seizure detection in epilepsy care
using heart rate and other autonomic nervous system variables.
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Figure 1 Flowchart of the search for applicable studies

combination of the aforementioned. A sequence of synonyms for ‘autonomic
variables,’ ‘seizures,” and ‘detection’ were used as search terms. Studies were
included if they met the following criteria: (1) human studies; (2) written in
English; (3) reporting on children or adults with any type of epilepsy; (4)
validating an algorithm for automatic seizure detection using autonomic
parameters; (5) reporting at least one performance measure [sensitivity, positive
predictive value (PPV), false alarm rate (FAR), or detection latency (DL)].
Studies on neonates only were excluded, because both seizure and autonomic



function characteristics differ greatly at this age compared to older age. Pilot
studies lacking performance data, as well as conference abstracts and reviews
were also excluded (Fig. 1).

One author (AvW) screened all titles and abstracts, as well as the full texts of
the remaining studies. For each article included, the following parameters were
recorded: method of automatic seizure detection, type of autonomic variable,
individual characteristics, number and types of seizures analyzed, prospective
or retrospective validation, total recording time and performance of the
algorithm (including sensitivity, PPV, FAR, and DL). We compared algorithm
performance using multimodal autonomic parameters versus those using single
modalities, provided that the studies (1) had a similar design (prospective vs.
retrospective) and (2) reported both sensitivity and FAR.

The quality of the included studies was evaluated using the QUADAS-2.%° This
tool consists of four domains (patient selection, index test, reference standard,
and flow and timing) and different signaling questions to assist in judgments of
the risk of bias and applicability. Additionally, we assessed all included studies
according to the recently proposed standards for clinical validation of seizure
detection devices (SDDs).?!

RESULTS

Out of the 638 articles identified, 86 studies were selected based on title and
abstract. After full-text screening, 21 studies were included for further analysis.
Most of the excluded articles lacked the validation of a seizure detection
algorithm (Fig. 1). The characteristics of the included studies are summarized in
Table 1. Most of the studies (7= 15) focused on ictal cardiac changes as a tool
for seizure detection algorithms, including HRV (7= 10),2 2230 HR (n = 4),3'-3
and changes in QRS morphology (/7 = 1).3® Six studies used multimodal
algorithms, including combinations of HR, corrected QT interval (QTc), SpO2,
EDA, and accelerometry (ACC).%*-4°None of the included studies validated an
algorithm based on oxygen saturation or EDA alone. Most studies were
conducted in adults, but two studies included a pediatric population,? 4° and six
studies included both children and adults.??253%37.3% Fourteen studies
prospectively enrolled their participants,® 22 23 26,28, 30-33, 36-40 [t only two studies
prospectively validated their algorithm.3" 33 Most studies had small sample sizes
(median population size 14, IQR 7-26). The number of seizures analyzed per
patient tended to be low (median number of seizures per participant 3, IQR 2-7).
The total recording time used to validate the algorithm varied from 7 min to 158



h per person (median recording time per participant 34 h, IQR 3-86 h), but was
not specified in two studies. Seizure onset was mostly focal (7= 14),8 22 24-26,28, 30,
31,33,34,37, 39,40, 42 byt was focal and generalized in some (771 =4)%2%3%42 or not
specified in others (1 = 3).32 3.3 Al| four performance measures (sensitivity,
PPV, FAR, and DL) were only reported in three out of 21 studies;?* 3 % eight
studies reported three,? 2325 28 30.31.42 gjght studies reported two,3 26 34 36-38, 40, 43
one study reported one,*' and one study only reported sensitivity and PPV data
for some of the subjects.®

Heart rate analysis

Heart rate was monitored using single or multiple lead electrocardiography
(ECG) in 14 of 18 studies,? 22-26. 28, 32, 34-37, 42,43 A\lternative methods included
photoplethysmography (PPG) in a wearable sensor (7= 2)>*° and an implanted
heart rate sensor (AspireSR) (n = 2).%"3

Heart rate measurement was done using various methods of R-peak detection,
including those proposed by Pan and Tompkins,®* 4! Kohler,?® Yeh and Wang,?*
24 or unspecified methods.® 25 26.31-34 42 Some studies applied noise filtering
techniques to diminish false R-peak detection, including high- and low-pass
noise filters® 2224 26.30 or g specific algorithm (baseline estimation and denoising
with sparsity).*> One case study prospectively assessed a HR algorithm using a
vagal nerve stimulation (VNS) device with a fixed HR sensitivity threshold.
Alarms were generated when the HR augmentation exceeded 50% of the
baseline HR. Eleven out of twelve seizures were detected (sensitivity 92%),
together with 128 false alarms (FAR 1.88/h; 68 h recordings). A second
prospective validation study of the same VNS device compared different HR
thresholds (= 20%, = 40%, and = 60% increases from baseline) in 16 adults with
refractory epilepsy.®' Lower thresholds resulted in higher sensitivity and higher
FAR than higher thresholds (e.g., sensitivity 59.3% and FAR 7.2/h for threshold
> 20% vs. sensitivity 18.8% and FAR 0.5/h for thresholds = 60%). Similar effects
of varying the thresholds (for both the relative HR increase and the duration of
HR increase) were reported in two studies on retrospectively validated HR
algorithms.323* A follow-up using the same dataset examined different factors
that may influence the probability of seizure detection.** The best regression
model was created with variables including age, gender, etiology, seizure class,
and years with epilepsy.
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Heart rate variability (HRV)

All the HRV-focused studies performed retrospective validations.® 22262830, 41, 42
Different HRV features were selected and specific feature thresholds were
classified as ‘ictal’ or ‘interictal.” Nine out of ten HRV studies applied linear
analysis® 22-25 28,30, 41,42 sing time domain??2% 28.30.41.42 gnd frequency domain® 25
28 41,42 features. Time domain analysis focuses on the instantaneous HR; the
interval between two normal QRS complexes, abbreviated to ‘NN.’ Different
time domain features, such as the mean NN interval or the distribution of NN
have been used for seizure detection. Four studies extracted and classified
these time domain features using a support vector machine (SVM) classifier and
validated the same HRYV algorithm in different populations.??24 30 The first
retrospective study of seventeen people with temporal lobe epilepsy found a
mean sensitivity of 83.2% with a FAR of 2.01/h.22 The second study extracted
ECG or PPG data from three different heart rate sensors worn by eleven adults
with temporal lobe epilepsy.?® The best performance was obtained using a
wearable ECG device, with a sensitivity of 64% and a FAR of 2.35/h. A third
study tested the algorithm in 28 children and showed a higher overall sensitivity
(81.3%) and a lower FAR (0.75/h).2® Performance, particularly FAR, improved
when applying a patient-specific heuristic classifier. The latter was confirmed in
the fourth study of data from nineteen people with temporal lobe epilepsy from
a pre-existing epilepsy database.?* The authors also proposed an adaptive
seizure detection algorithm, and showed that similar results were obtained with
simulated ‘real-time’ user feedback.

Frequency domain analysis is used to extract the frequency components of the
HR signal, each with its own physiological footprint: low frequency (LF 0.04-0.15
Hz), high frequency (HF 0.15-0.40 Hz), very low frequency (VLF 0.0001-0.04
Hz), and very high frequency (VHF 0.4-0.5 Hz). Different frequencies were
identified by power spectral density analysis of HRV in four studies,® 25241 and
two studies sped up this process by applying an efficiency algorithm [fast
Fourier transform (FFT)].% 2 The LF/HF ratio, reflecting the balance of
sympathetic and parasympathetic function, was examined in two studies.?> #'
One of these studies tested a seizure detection algorithm combining both time
and frequency domain features on eleven focal seizures upon awakening.?® Ten
of the eleven seizures were detected prior to seizure onset (sensitivity 91%, DL
- 494 + 262 s). Another study of seven adults with focal epilepsy that used time-
frequency analysis of HRV based on a combination of the matching-pursuit and
Wigner-Ville distribution algorithms reported a sensitivity of 96.4% with high



FAR (5.4/h).#2 Combining ECG and EEG algorithms yielded better performance
(sensitivity 100%, FAR 1.6/h).

To assess the dynamic properties of ictal HR changes, nonlinear analysis can
be applied, such as a Lorenz (or Poincaré) plot. This method plots the current
R-R interval against the next R-R value. Standard deviations in the transverse
(SD1) and longitudinal (SD2) directions of these plots can be calculated, and
higher ratios of SD2/SD1 reflect increased sympathetic tone. These ratios can
be used in seizure detection algorithms, since an increase in sympathetic tone
is often seen during the preictal and early ictal phases. One small retrospective
study proposed the modified cardio sympathetic index (mCSI) as a new
measure in seizure detection that reflects the sympathetic tone.?® A seizure
detection algorithm based on changes in mCSl yielded a sensitivity of 88% in
five people with temporal lobe epilepsy (FAR not reported). A larger follow-up
study of adults with focal epilepsy compared frequency domain analysis with
Lorenz plot analysis.® mCSIl appeared more sensitive, but FARs were not
reported.

The two remaining studies of HRV combined linear and nonlinear analysis.? 41
The first retrospective study of seven people with focal epilepsy reported an
overall sensitivity of 88.3% with a specificity of 86.2% after selecting an optimal
performance threshold for each patient.*’ The second study combined time-
frequency and Lorenz plot analysis with a second nonlinear analysis of ‘sample
entropy’.2® This parameter quantifies the regularity and complexity of a time
series, and entropy decreases can be seen during the ictal phase. Applying all
these methods together to ECG data from twelve temporal lobe epilepsy
patients resulted in overall sensitivity of 94.1% with a FAR of 0.49/h.

Another retrospective study reported two different seizure detection algorithms
based on changes in QRS morphology (algorithm 1) and cardiorespiratory
interactions (algorithm 2).3° The first algorithm captured five consecutive QRS
complexes, aligned them with respect to the R peak, and assembled them into
one QRS matrix. Principal component analysis was used to select different
features from this QRS matrix. This process was repeated for every heart beat,
which resulted in a sensitivity of 89.5-100% for detecting focal onset seizures
and 86% for generalized onset seizures. The second algorithm was based on
the well-known modulatory effects of respiration on HRV. These
cardiorespiratory changes were quantified using phase-rectified signal
averaging — a methodology used to detect quasi-periodicities in nonstationary
signals such as the resampled RR interval time series — and were used for



seizure detection. Slightly better performance was achieved by the second
algorithm, which yielded a sensitivity of 100% for focal onset seizures and 90%
for generalized onset seizures. In this study, 10.4-90% of the generated alarms
were false, and this percentage was lower for the second algorithm.

Combining autonomic parameters

All multimodal autonomic algorithms were retrospectively validated. A
combination of three biosignals, measured by two different devices, was used
for seizure detection in a study of ten subjects with focal epilepsy.? An algorithm
based on a specific seizure pattern of increased HR, decreased SpO2, and
increased EDA was able to detect all seizures in six out of ten patients with a
low FAR of 0.015/h. Specific thresholds of HR, QTC, and SpO2 were combined
in an algorithm tested on a larger study population of 45 people with refractory
epilepsy.®” Only half of the collected data was used for analysis, and a sensitivity
of 81-94% was found for focal to bilateral tonic-clonic seizures, while focal
seizures without bilateral spreading showed worse performance, with a
sensitivity of 25-36%. Overall FAR ranged from 0.4-2.4/h.

Three other retrospective validation studies combined EDA and accelerometry
(ACC), measured with one device.?®*° Different classifiers were used to select
features of EDA and ACC. The first study tested two machine learning
algorithms, the k-nearest neighbor (kNN) and random forest classifiers. The
kNN classifier achieved the best results with eleven features and was most
sensitive for nonmotor seizures (sensitivity 97.1%, FAR not reported). The
random forest classifier selected 26 features and showed its best performance
with motor seizures (sensitivity 90.5%, FAR not reported). A second study used
a SVM classifier to extract 19 features (16 ACC and 3 EDA).*® Fourteen out of
sixteen focal onset seizures with bilateral spreading were detected (sensitivity
88%) and FAR was 0.04/h. The same feature set was used in the third study and
compared to a larger (40 ACC and 6 EDA) and a reduced (22 ACC and 3 EDA)
feature set.®® Retrospectively tested on 24 children and 45 adults with focal
epilepsy, the reduced set showed the best performance (sensitivity 94.6%, FAR
0.20/ day).

A multicenter study combined HR and ACC measures in 95 people with
nocturnal major motor seizures.*® Data from only 23 patients could be used to
retrospectively validate three different algorithms based on changes in HR,
ACC, and ‘HR or ACC.’ Clinically urgent seizures were detected well (sensitivity
71-87%), but FAR was relatively high (2.3-6.3/night), with wide variation
between subjects.



Table 2 Quality of the included studies according to QUADAS-2

Study Risk of Bias Concerns regarding
applicability
Flow
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Quality of the included studies
According to the QUADAS-2 criteria, the overall quality of the included studies
was medium-high (Table 2). Seventeen out of 21 studies were at risk of bias,



mainly due to an undefined patient selection process and fitting of the
algorithm.? 8 22-26,30,32,34,37-43 Thgre was concern regarding the applicability of the
selected patients in three studies, because the populations consisted of children
only and/or were not well described.?: 2% 33 Concerns about the applicability of
the index test (i.e., the tested algorithm) arose in nine studies, mainly because
the algorithm was fitted to one dataset.? & 23 25,28, 30, 32,36, 37

Based on the standards for the clinical validation of SDDs proposed by Beniczky
and Ryvlin,?" most studies were classified as phase 1 proof-of-principle studies,
whereas three were classified as phase 0 initial studies,** *" 42 and only one as a
phase 2 study on a dedicated SDD3'(Table 3). Seven other studies also tested a
dedicated device but included small population sizes or did not address the
safety of the device and were therefore classified as phase 1.2 3033 36,3840 Tgn
studies trained and tested their algorithm on the same dataset,? 8 22 26. 32 34, 37, 40-42
and only four used a predefined algorithm or cutoff values.3? 3" 3% 3¢ Eighteen
studies used video-EEG as reference standard; the remaining three used EEG
or ECoG without video recordings.34 4142

DISCUSSION

The overall quality of studies on seizure detection using autonomic parameters
is low. Small population sizes, short follow-up periods, and high study
heterogeneity raise concerns about the applicability of the results. Available
studies are mainly initial or proof-of-principle studies that lack long-term and
real-time ambulatory monitoring, which is needed to obtain more reliable
performance data and usability outcomes.

HR- or HRV-based algorithms are most frequently applied, but it is hard to
compare the results of different studies due to wide variation in the detection
techniques used and a lack of FAR data (Table 4). Additionally, FAR, when
mentioned, is high for these studies and exceeds acceptable limits for daily
practice. We could not compare the performance of HR- and HRV-based
algorithms due to the wide variety of study designs employed. HRV-based
algorithms seem attractive given their short detection latency, but they still
require prospective validation. HRV is, however, situation dependent and
affected by exercise, stress, respiration, and sleep stage.***” These confounding
factors make it more challenging to distinguish ictal patterns from non-ictal
ones, resulting in lower accuracy.*® Also, similar activation of the autonomic
nervous system can occur before physiological arousal or other sleep-related
movements.*® Multimodal algorithms might help to lower FARs.
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CHAPTER 2

Table 4 Performance of seizure detection algorithms grouped according to dataset size

Study Validation of algorithm Performance of algorithm
No.of No. of Type of Algorithm Sensitivity FAR PPV t%) DL (s
sub- seizures/ Seizures (%} [range]
jects  TRT
Large datasets
Andel, 23 86/ All major Heart rate 60 0.5/h NA NA
van et 402h? motor™® Movement 56 0.3/h NA NA
ale Hartrate or 71 0.7/h NA NA
movement
59 Clinically Heart rate T4 0.6/h NA NA
urgent Movement 71 0.3/h NA NA
seizures® Hart rate or 87 o.e/h NA NA
movement
De 17 127/ FOS, B3.2 2.01/h 79 13.3
A~ 918h tiiclndiiig [50-100] [0.88- [0.4-21]  [-18.2
et al.»2 TCs 3.52/h] to 54.3]
De 28 107/ Convulsive Patient-in- Overall:81.3  Overall: NA NA
Cooman 69sh and clinical  dependent 0.75/h
et al.2 subtle Patient- Overall: 77.6  Overall:  Overall: 1941
seizures specific 0.33/h 30.7
De 19 153/ FOS, Patient-in- Overall: 78.4  Overall: Overall: NA
Cooman 2833h including dependent 1.73/h 2.4
et al.¢ TCs fonly Patient- Overall: 76.5  Overall: Overall: NA
clinical specific 1.09/h 7
seizures) Adaptive Overall: 771 Overall: Overall: NA
1.24/h 3.3
Golden- 45 151/ FOS, Overall: 81-  Overall: NA NA
holz 7104h including 94 (FOBTC)  o0.4-2.4/h
et al.?! TCs 25-36(FO8)d
Onorati 59 55/ FOS, all TCs  Classifier 1 83.6 0.2a/day 39 3z
et al.3* s928h Classifier 2 92.7 0.21/day 50 28.3
Classifier 3 94.8 o.zo/day 51 29.3
Medium datasets
Boon 16 66/ NA  Different Threshold 59.3 7.2/h NA 6.0
gt al.® types of »20% [a5% Cl [-112 to
FOS, 5.31-9.94] 10s]
including Threshold 4.8 2.7/h NA 21.5
TCs =40% [85%Cl [o- 57]
1.70-3.91]
Threshold 168.8 0.5/ NA 35.0
=60% [as%Cl [4-40]
0.20-0.96]
Held- 8 55/ Motor (M) kNN 76.2 (M) NA 4.6 (M) NA
berg s40h and non- classifier ar.1 (nM}) 9.7 (nM)
et al2® motor (nM]
Sathirae Random 90.5 (M) NA 5.6 (M) NA
Forest 85.3 (nM) 12.3(nM)
Jeppesen 17 41! FOS, 81:mCSl-100) NA NA 18
et al? +27h including (Overall: 74, 1&=50]
TCs mCSl-100)
Osorio 81 241/ FOs Lowest set-  28.8 9.5th (1) NA NA
et al.™ 633sh tings T,D Da- 7.2/h (2)
taset (1) & (2)
Highest set- 855 1./h (1) NA NA
tings T.D Da- 0.7/h (2)

40

taset (1) & (2)
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Table 4 (Continued)
Study Validation of algorithm Performance of algorithm
No.of No.of Type of Algorithm Sensitivity FAR PPV (%) DL (s)
sub- seizures/ Seizures (%) [range]
jects TRT
Pavei 12 34f FOIA Overall: 94.1 Overall: Overall: NA
et al.2® 171h o.49/h 95.6
Poh 7 16/ FOS,all TCs  Non-patient 88 0.04/h NA NA
et al.4e se8h* specific (n=28}
Semi-patient 24 0.04/h NA NA
specific
Qarage 7 68/ NA FOS, ECG 96.4 s.4/h [1.5- NA 134
et al.» including 252001 9.5 /h] 18:20.6]
TCs ECG+EEG 100 1.6/h NA 123
[e-3.5/h] [3-26]
Vande- 11 41/ FOIA Wearable 64 2.as/h 2.03 NA
casteele To1h ECG (Overall: 70)  (Overall: (Overall:
et al# zii 219
Hospital 57 2.05/h 2.22 NA
ECG (Overall: 57)  (Overall: (Overall:
12y 193
PPG 33 1.88/h 1.43 NA

(Overall:32)  (Qyerall: (Overall:
1sohy 12
Small datasets

Cogan  © 10/ FOIA and 3 Sensors 100 p.015/h B8 NA
et al? 3aoh TCs Personalized 100 o.000/h 100 NA
Elmpt, 10 104/ sh Motor sei- NAF NA NA NA
van zures (T, TC,
et al.?? MC) & atypi-
cal absences
Fujiwara 14 11/6sh  FOS T statistics  Overall: s5 Overal: NA -524
et al.2* lawake) 1.2/h 216
() statistics Overall: 91 Overall: NA - 494 &
o.7/h 262
Hampel ! 12/88h  FOS with 92 1.88/h 8 7.4 (£5)
et al.» hyperkinetic
movements
Jeppesen 2 11/13h  FOlA 88 (CSI-30) NA NA -5 to 60
et al.2® {Overall: 73,
€51-30, mESl-
50)
Moridani 7 11/ +sh  FOS Overall: NA NA NA
et al.?? 88.3
Varon 42 108/ FOS and Algorithm 12 ga.s (F1) NA 85.7 (F1) NA
et al.#? t5h GOS, 86 (G1) 57.3 (G1)
including T, 100 (F2) 52.6 (F2)
TC,MCand  Algorithm 2¢  100(F1) NA 30.5 (F1) NA
absences a0(G1) 71.5 (G1)
100(F2) 71.4 (F2)

CS/ cardiac sympathetic index, DL detection latency, £CG electrocardiogram, EEG
electroencephalography, FAR rate false alarm rate, FOBTC focal onset to bilateral tonic—clonic, FOIA focal
onset with impaired awareness, FOS focal onset seizures, /2 hour, MC myoclonic, mCS/ modified cardiac
sympathetic index, NA not applicable, No. number, PPG photoplethysmography, s seconds, 7tonic, 7Cs
tonic—clonic seizures, 7RT total recording time.
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Table 4 (Continued)

aTraining and test set combined.

bIncluding tonic-clonic, tonic, hypermotor and cluster (series of at least five tonic or myoclonic spasms
within 3 min).

°When attendance or intervention was deemed necessary, based on seizure severity, postictal arousal
state, breathing difficulties, and distress.

dPercentage of evaluable data.

eAlso 3525 hours without seizures tested for False positives.

Great variability in sensitivity and PPV.

9 F1: Focal seizures children, G1: generalized seizures children (F1 +G1 = training set), F2: focal seizures
adult, used for validation.

A retrospective study of seven children with tonic-clonic seizures validated
different unimodal and multimodal algorithms on the same dataset. All
combinations of multimodal sensors, including ECG, EMG, and ACC, showed at
least 75% lower FAR.%® Studies differentiating outcome according to seizure
type showed diverse results, indicating that that different seizure types may
require different detection techniques. Multimodal techniques can provide a
solution to this problem.®' Another solution could be personalizing or tailoring
the algorithm. One study group studied two different personalization strategies
and calculated the number of seizures required for accurate tailoring.5 The
authors proposed an initialization phase to tailor an existing predefined
algorithm to a patient-specific algorithm. Six to eight seizures seemed sufficient
to set individual thresholds.%? Another retrospective multicenter study proposed
an automatic adaptive HRV algorithm and tested it on a database of 107
nocturnal seizures from 28 children.?® After an initialization phase of five
seizures, the personalized algorithm resulted in lower FARs compared to those
obtained with the patient-independent algorithm. A follow-up study proposed an
adaptive classifier with real-time user feedback that presented similar
performance; this method might be better accepted in daily practice.?*

CONCLUSION

Autonomic function alterations seem to represent an attractive tool for timely
seizure detection. Unimodal autonomic algorithms cannot, however, reach
acceptable performance: while most algorithms are quite sensitive, false alarm
rates are still too high. Multimodal algorithms and personalization of the
algorithm are important strategies to improve performance. Larger, prospective,
home-based studies with long-term follow-up are needed to validate these
methods and to demonstrate the added value of SDDs in clinical care.
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