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Regular Article

LYMPHOID NEOPLASIA
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KEY PO INT S

l Overexpressing AID
in Em-TCL1 mice
enhances leukemia
cell proliferation
and causes more
aggressive disease.

l TCL1/AID mice
develop AID-induced
mutations in cancer
driver genes at
identical amino acid
substitutions as in
human neoplasms.

Most cancers become more dangerous by the outgrowth of malignant subclones with
additional DNA mutations that favor proliferation or survival. Using chronic lymphocytic
leukemia (CLL), a disease that exemplifies this process and is a model for neoplasms in
general, we created transgenic mice overexpressing the enzyme activation-induced de-
aminase (AID), which has a normal function of inducing DNA mutations in B lymphocytes.
AID not only allows normal B lymphocytes to develop more effective immunoglobulin-
mediated immunity, but is also able to mutate nonimmunoglobulin genes, predisposing to
cancer. In CLL, AID expression correlates with poor prognosis, suggesting a role for this
enzyme in disease progression. Nevertheless, direct experimental evidence identifying the
specific genes that are mutated by AID and indicating that those genes are associated with
disease progression is not available. To address this point, we overexpressed Aicda in a
murine model of CLL (Em-TCL1). Analyses of TCL1/AID mice demonstrate a role for AID in
disease kinetics, CLL cell proliferation, and the development of cancer-related target
mutations with canonical AID signatures in nonimmunoglobulin genes. Notably, our mouse

models can accumulate mutations in the same genes that are mutated in human cancers. Moreover, some of these
mutations occur at homologous positions, leading to identical or chemically similar amino acid substitutions as in human
CLL and lymphoma. Together, these findings support a direct link between aberrant AID activity and CLL driver
mutations that are then selected for their oncogenic effects, whereby AID promotes aggressiveness in CLL and other
B-cell neoplasms.

Introduction
Chronic lymphocytic leukemia (CLL) results from the accumu-
lation of mature, long-lived CD51 B lymphocytes in peripheral
blood (PB), bonemarrow, and secondary lymphoid organs1,2 due
to an imbalance between cell proliferation and death.3 Further-
more, disease progression correlates with the relative proportions
of proliferative and quiescent subpopulations within leukemic
clones.4,5 Activation of CLL cells mainly occurs in secondary
lymphoid organs,6,7 where they are stimulated via B-cell receptors,8

CD40, and/or Toll-like receptors.9,10 In B lymphocytes, such re-
ceptor/ligand interactions lead to expression of activation-induced

cytidine deaminase (AID), an enzyme required for somatic
hypermutation and class switch recombination.11 AID mutates
genomic DNA by deaminating cytosine to uracil, which can lead
to point mutations and DNA double-stranded breaks.12,13 Al-
though AID preferentially acts on immunoglobulin genes, it can
also target other genes giving rise to mutations and/or chro-
mosome translocations that can be oncogenic.14

We have shown that leukemic clones in patients with worse
clinical outcomes overexpress AID, and that AID expression is
modulated by microenvironmental signals.15-17 Despite these
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and other studies18 suggesting a link between AID activity and
CLL progression, direct experimental evidence indicating that
AID is responsible for off-target mutations driving disease
progression is not available.

Here, we tested the hypothesis that mice overexpressing AID in
leukemic cells would recapitulate the leukemogenic process
observed in progressive and immunoglobulin heavy chain (IGHV)-
unmutated CLL (U-CLL) clones expressing AID. To address this,
we crossed Em-TCL1 mice (a validated murine model of CLL19,20)
with 2 different strains overexpressing AID, either only in B cells12

or ubiquitously.21

Our results show that these double-transgenic AID (DT-AID)
mice develop more aggressive leukemias with shorter survivals
than Em-TCL-1, linking constitutive AID expression in the leu-
kemic clone with enhanced cell proliferation. Whole-exome
sequencing (WES) of leukemic cells from DT-AID and their pro-
liferating fractions reveal novel AID-induced mutations in onco-
genes and tumor-suppressor genes as well as in genes involved in
chromatin structure and theWnt-signaling pathway. Furthermore,
we found that some genes that are mutated in human CLL and
diffuse largeB-cell lymphoma (DLBCL) are alsomutated inDT-AID
mice, and that some of these mutations occur at the exact same
positions, resulting in equivalent amino acid substitutions as in the
human disease. Hence, our 2 DT-AID strains provide comple-
mentary models of aggressive CLL-like disease and strongly in-
dicate that AID causes a distinct set of off-target mutations in
genes that are likely relevant to CLL and human B-cell neoplasms
in general because of selection for their oncogenic effects.

Materials and methods
Clinical samples
PB mononuclear cells were collected in a prospective manner
from patients with CLL defined by International Workshop on
Chronic Lymphocytic Leukaemia (IWCLL) criteria. Progressive
CLL cases were identified as described in Prieto et al.22 Sup-
plemental Table 1 (available on the Blood Web site) lists the
clinical and molecular characteristic of these patients.

Mice models
Eu-TCL1–transgenic mice19 were crossed with either AID-
transgenic mice under the control of the actin (act-AIDTg/wt

mice) promoter21 or AID-transgenic mice under control of
the immunoglobulin k (Igk; Igk-AIDTg/Tg mice) promoter12 in
C57BL/6 3 (C57BL/6 3 C3H) or pure C57BL/6 final genetic
backgrounds. Genotyping was performed by polymerasce chain
reaction from tail tissue using specific primers for TCL1 and AID
genes.19,21

Quantitative real-time polymerase chain reaction
and immunohistochemistry
Total RNA was isolated from purified leukemic cells and retro-
transcribed as described.23 Gene analysis and quantification of
AID expression were performed as described,21,23 and primer
sets were depicted in supplemental Materials and methods or
in Palacios et al.23 Immunohistochemistry was performed as
described24 and detailed in supplemental Materials andmethods.

Whole-exome sequencing
Genomic DNA was purified from isolated leukemic Ki671 and
Ki672 cells (tumor) and tail tips (germline) using the Quick-DNA
Kit (Zymo Research). A similar procedure was used for human PB
mononuclear cells where the leukemic clone was isolated and
the T-cell fraction was used as a germline control. Reads were
aligned as described25,26 and variant calling was performed using
VarScan with a minimal variant frequency of 0.08, and minimum
coverage of 103 (V2.4.3).27 Mutation signature analysis was
performed using SomaticSignatures28 and methods are detailed
in supplemental Materials and methods.

Statistical analysis
Data are presented as means plus or minus standard error of the
mean. The 1-way analysis of variance (ANOVA) multiple com-
parisons test, the 2-tailed, unpaired Student t test, and the Fisher
exact test were used for statistical analysis (*P, .05, **P, .001,
***P , .001, ****P , .0001). Kaplan-Meier survival curve plots,
the Gehan-Breslow-Wilcoxon test, and the log-rank (Mantel-Cox)
test were performed. All tests were performed with GraphPad
Prism v.6 software. A value of P , .05 was considered significant.

Results
Em-TCL1 mice overexpressing AID develop a more
aggressive disease
The strategy to generate DT mouse models is depicted in
supplemental Figure 1A. DT-AID mice were healthy, without
evidence of inborn alterations. AID messenger RNA (mRNA)
levels were significantly higher in the DT-AID models compared
with TCL1 (supplemental Figure 1B). Cytoplasmic AID protein
was increased within B2201 cells in the DT-AID models com-
paredwith the TCL1 counterpart (Figure 1A). All 3 strains showed
loss disruption of lymphoid tissue architecture and weaker B220
signals compared with normal B-cell follicles. Disease kinetics
were monitored every 2 months by white blood cell counts,
proportion of IgM1CD51 cells, and associated signs of leukemia.
Mice of 6 and 10 months of age were selected as these time
points were illustrative of preleukemic and leukemic stages,
respectively.29 In both DT-AID models, circulating leukemia cells
appeared earlier and at 10 months were significantly higher than
in TCL1 (Figure 1B-C; supplemental Figure 1C). Tumor burden
was higher, with significantly larger spleens and more IgM1CD51

cells in the DT-AID than in TCL1 (Figure 1C-D), whereas both
DT-AIDmodels had significantly shorter survival than TCL1 (Figure
1E; supplemental Figure 1E). As expected based on the consti-
tutive expression of AID, many more IGHV mutations were found
in the B-cell expansions identified in the DT-AID mice than in the
TCL1 animals (supplemental Figure 2).

Distinct mutation signatures in DT-AID and
TCL1 mice
Genome-wide DNA mutations induced by AID overexpression
were identified (supplemental Excel File 1, sheets 1-6). Since the
clinical findings, variant rates and mutation patterns were similar
in both DT-AID mouse lines (Figure 2; supplemental Figure 3A;
supplemental Excel File 1, sheet 1), they were considered to-
gether for all subsequent analyses. WES analysis revealed a
mutation rate in protein-coding regions of 0.836 0.88 per Mb in
TCL1, similar to the mutation rate reported for human CLL 0.66
0.28.30 As expected, AID overexpression in DT-AIDmice led to a
higher mutation rate (1.59 6 0.83 per Mb).
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Analysis of the somatic mutation pattern31 showed a higher
proportion of C.T transitions at the preferred RCY AID hotspots
in DT-AID than TCL1 mice (Figure 2A; supplemental Figure 3B).
Unbiased assessment of underlying mutagenic processes showed
that 3 main signatures accounted for.95% of the variance in the
sample set, with a higher contribution of the AID signatures in the
DT-AID than the TCL1mice (Figure 2B). Interestingly, mutations at
AID canonical hotspots (c-AID; C.T/G within RCY motifs)32

dominated (supplemental Figure 3).

Analysis of genome-wide AID signatures
We identifiedmutations that might have resulted from the action
of AID using 3 criteria: (1) those occurring at c-AID, (2) those
considered to be indirectly induced by AID through non-
canonical mismatch repair (nc-AID; A.C/G at WAN motifs),33

and (3) C.T transitions in CpG (NCG).34 These variants are
collectively referred to as “AID mutations” hereafter and were
more abundant in DT-AID than TCL1 (Figure 3C; supplemental
Excel File 1, sheet 5). However, of these 3, c-AID mutations were
the only signature significantly increased in DT-AID mice, either
genome-wide (Figure 2D), or specifically in exons, noncoding
RNA (ncRNA), and 59 untranslated region (UTRs) (Figure 2E).

Next, we defined those genes that were recurrently mutated at
c-AID hotspots in the DT-AID strains as those exhibiting $5
mutations distributed between at least 2 mice, and not present
in the TCL1model (supplemental Excel File 1, sheets 5-6). Thirty-
four genes met these criteria and, among these, 18 genes (53%)
have been identified as AID nonimmunoglobulin targets in
murine B cells35-38 (Figure 2F). Furthermore, we identified a series
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Figure 1. Overexpression of the AID transgene emulates a progressive CLL-like disease. (A) Immunohistochemical analyses of spleen sections from the 3 strains eu-
thanatized after developing leukemia. As depicted, AID levels in both AID-DT strains appeared similar to, or even higher than in, GC B cells from immunized wild-type (wt)
C57BL/6 mice examined in parallel. Cre-immunized wt animals were used as controls. Micrographs for each genotype depicting AID and B220 for 3 different magnifications are
depicted. Insets/squares indicate the areas where augmentation was used. Scale bars: 500, 100, and 20 mm for original magnifications of32.5,310, and340, respectively. Mice
between 8 and 10 months were used for these experiments. Within the sensitivity range achieved by immunocytochemistry, the relative AID protein levels of the DT-AIDmodels
correlatedwithmRNAmeasurements (supplemental Figure 1B). Overall, these data indicate that bothDT-AIDmodels develop leukemia with similar histopathology and, despite
relatively higher AID expression, do not exhibit dysfunctional development and are suitable to study the influence of AID in CLL evolution. After antigen detection, each section
was counterstained using Mayer’s hematoxylin. (B) Submandibular vein bleeding was performed for TCL1 and DT-AID mice at 6 and 10 months. Percentages of malignant
IgM1CD51 cells are shown for$15 animals of the 3 genotypes. At month 10, the TCL1/Igk-AIDmean was 46%6 8%; the TCL1/act-AIDmean was 47%6 7%; and the TCL1 mean
was 26%6 5%. (C) Comparison of spleen weights of control wt mice and animals from the 3 genotypes (n$ 8). Representative images of spleens are shown under the chart. (D)
To determine tumor burden in leukemic animals, 10 mice from each genotype were euthanized at 6 and 10 months of age. Spleens from the 3 strains at 10 months of age were
disaggregated to evaluate leukemic infiltration (IgM1CD51 cell percentage). The TCL1/Igk-AIDmean percentagewas 87%6 5%; the TCL1/act-AIDmean percentagewas 64%6

7%; and the TCL1 mean percentage was 42%6 7%. (E) Kaplan-Meier survival curves are shown for TCL1 (n5 51), TCL1/Igk-AID (n5 63), and TCL1/act-AID (n5 27). Survival data
were obtained by observing cohorts of 10 to 51 mice for each genotype. Differences in median overall survival for both DT-AID strains (medians: TCL1/Igk-AID5 270 days and
TCL1/act-AID mice5 245 days) compared with TCL1 mice (median, 356 days) were significant (log-rank test). Overall survival of the monotransgenic AID strains was comparable
to TCL1 mice (supplemental Figure 1E). Only those mice (stipulated by end-point leukemia or dying with leukemia signs) were euthanized and included in the analysis of overall
survival. *P , .05, **P , .001, ***P , .001, ****P , .0001. ns, not significant.
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Figure 2. Mutational activity and identification of AID nonimmunoglobulin, off-target genes in DT-AID mice. Purified leukemic cells from spleens of 5 TCL1 and 7 DT-AID
were studied by the WES technique. (A) Total somatic mutation pattern (left) and analysis of somatic mutation pattern by 96-trinucleotide substitutions model (right). One
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of recurrently mutated genes with a c-AID signature that have
not been previously described in either AID-38 or TCL1-transgenic
models39 (supplemental Data 1). Thus, theDT-AIDmice accumulated
c-AID mutations in different cancer-specific genes that were directly
mutated byAID. These included a striking accumulation ofmutations
in genes encoding histones (Hist1h1c, Hist1h1d, Hist1h1e, and
Hist2h2aa1) and in tumor-associated transcription factors (Gata3,
Bhlhe41, Sox4, Klf2, Zfp36l2, Tcf7). Furthermore, we found a higher
number of c-AID mutations in genes associated with tumor devel-
opment (Myc, Ly6e, Dusp2) as well as linked with CLL development
andprogression40-42 (Pim-1,Nfatc1,Mcl1,Pten, and Lef-1) (Figure 2F).

Leukemic cells overexpressing AID show increased
proliferation and c-AID mutations affecting genes
in cancer-associated pathways
AID expression is restricted to a subpopulation of cells that are
dividing43 or have recently divided.44 To investigate whether the
more aggressive disease in the DT-AID models correlated with
tumor proliferation and/or survival rates, we evaluated Ki67 and
BCL-2 protein levels in circulating and/or splenic IgM1CD51

cells. DT-AID mice had significantly higher percentages of
IgM1CD51Ki671 cells in PB and spleen than TCL1 and C57BL/6

Figure 2 (continued) Student t test). (E) Genomic context of AID-related variants. Significant differences in exonic (P 5 .03), ncRNA (P 5 .04), and 59 UTR (P 5 .03) (2-tailed,
unpaired Student t test). Upstream and downstream indicate variants overlapping the 1-kb region up/downstream of transcription start or end site. Intergenic regions were
excluded from analyses. (A-E) *P, .05. (F) Recurrently mutated genes,$5 c-AID mutations distributed between at least 2 mice in DT-AID mice are represented, summing the 7
genomes included in our study for this genotype. Total number of mutations in each gene, for the entire group, is depicted on the y-axis. Genes are displayed on the x-axis
according tomutation numbers. Genes previously described as AID-off targets are indicated by red characters and an open triangle. Driver genes in B-cell neoplasms previously
described are underlined and identified by a red triangle. Genes in bold plus italic letters represent genes associated with tumor development. Genes associated with CLL
progression are highlighted by asterisks.
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Figure 3. Proliferation/antiapoptotic markers and main genes/pathways affected by c-AID mutations in DT-AID mice. (A) Percentages of IgM1CD51Ki671 cells in the
blood (left) and spleen (right) fromwild-type (WT) controls (black circles), TCL1 (green circles), andDT-AID (red circles) mice determinedby flow cytometry (n$ 10; 1-way,multiple
comparison ANOVA). Arrows indicate the mouse used for the WES experiments (right panel). (B) Percentages of IgM1CD51Bcl-21 cells in the blood of wt (black circles), TCL1
(green squares), and DT-AID (red squares) mice. CD191 cells fromC57BL/6mice and Jurkat T-cell line cells (ctrol1) are shown as controls. No significant differences exist (1-way,
multiple comparison ANOVA; n$ 7). (A-B) *P, .05, **P, .001, ****P, .0001. (C) Signaling pathway analysis of the groups of genes harboring nonsynonymous c-AID mutations
in DT-AID mice. The 7 pathways depicted were significantly enriched and are shown according to the number of affected genes (Panther Pathway enrichment analysis; P, .05).
The 3 pathways with the highest gene counts were: “Inflammation mediated by chemokine and cytokines signaling” (IMCC; PPA: P00031), “Wnt signaling” (PPA: P00057), and
“Cholecystokinin and gastrin receptors (CCKR) signaling” (PPA: P06959). (D) Mutated genes for eachmouse in the 3 underlined pathways. Red asterisks identify genes previously
involved in B-cell proliferative disorders.
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animals (Figure 3A). In contrast, BCL-2 levels in the same cell
populations were not significantly different (Figure 3B).

Functional annotation of genes bearing nonsynonymous mu-
tations in c-AID hotspots in the DT-AID strains identified
7 significantly enriched pathways, most of them involved in cell
proliferation and tumor growth. Interestingly, among the 3 path-
ways with the highest gene counts, we found Wnt signaling
(Panther Pathway Accession [PPA]: P00057), which was associ-
ated with CLL progression45 (Figure 3C-D). Notably, many of the
genes involved in these 3 pathways were shared between the
different DT-AID animals and previously linked with CLL pro-
gression (Mcl1,46 Myc,47 Pten,48 Nfatc1,41 and Lef-142) or with
leukemia in general (Sox449 and Prkch50) (Figures 2F and 3D, red
asterisks).

Genes mutated by AID in proliferating
leukemic cells
Because AID’s mutagenic activity is operative in dividing cells43

and associates with tumor development,51 and given the higher
percentage of Ki671 leukemic cells observed in DT-AIDmice, we
searched nonimmunoglobulin genes bearing AIDmutations that
could affect leukemia cell proliferation. We isolated splenic
IgM1CD51Ki671 cells and IgM1CD51Ki672 cells from selected
mice (Figure 3A, arrows) for WES. Analyses of these data show
that the c-AID mutation signature was significantly greater in the
DT-AID than the TCL1 mice (Figure 4A-B).

Next, we focused our analysis to genes in the Ki671 fraction
bearing any c-AID mutation that could affect gene expression or
function: that is, in the UTRs, up and downstream 2-kb gene
regions (;2 kb), as well as nonsynonymous mutations (n 5 136)
(supplemental Excel File 2, sheet D). This analysis showed
41 genes (30%) only mutated in the Ki672 fraction (subgroup I),
42 genes mutated in both fractions, (subgroup II), and 53 (39%)
only mutated in the Ki671 fraction (subgroup III; Figure 4C).
Newly mutated genes in the Ki671 fraction (subgroup II shared
with a subset of subgroup I and subgroup III not shared with
subgroup I; n 5 95, 70% of genes) were remarkably enriched in
c-AID mutations affecting histones and B-cell neoplasm gene
drivers (Figure 4C, red genes). Sixteen of 167 gene drivers (9%)
found in the Ki671 fraction have been described in human
CLL30,52,54 and/or DLBCL53 (supplemental Excel File 2, sheet E).
Thus, forcing AID expression in TCL1 mice led to the accumu-
lation of c-AID mutations in a subset of driver genes found in
human B-cell neoplasms. Wnt signaling was the most overrep-
resented pathway affected by c-AID mutations inside of the
Ki671 fraction (Figure 4D; supplemental Figure 3).

Mutated genes in the Ki671 fraction displaying
c-AID signatures
Among genes identified in the Ki671 fraction (subgroup II and III;
Figure 4C), 11 were chosen for in-depth analysis because they
had nonsynonymous c-AID mutations in coding regions and/or
in UTRs or up/downstream regions. These genes clustered into
3 groups: oncogenes (Pim-1,Mcl-1, andMyc), tumor-suppressor
genes (Pax-5, Dusp2, Gata-3, Klf2, and Zfp36l2), and histones
(Hist1h1d, Hist1h1e, and Hist1h2h2aa1). Most of the c-AID
mutations fell in functional regions in both DT-AID models
(Figure 5).

Among the oncogenes, we found mutations in the kinase cat-
alytic domain of the protein kinase–encoding PIM-1, in the Bcl-2
apoptosis-regulator domain of MCL-1 protein, and within the
59UTR of Myc (Figure 5A). In tumor suppressors, each tran-
scription factor (PAX-5, GATA-3, KLF-2, and ZFP36L2) had
mutations in DNA-binding domains (Figure 5B). In the case of
histones, we found an unexpected number (.14) of c-AID
mutations on the H1 family proteins, including H1.3 and H1.4
variants encoded by Hist1h1d and Hist1h1e, respectively. Mu-
tations in H1.3, H1.4, andH2A affected key amino acid positions.
All of them are placed at the conservedDNA-binding domains or
affect the AKP helix motif of domain H15 in H1.4, which is es-
sential for this histone family’s function (Figure 5C, red letters).

The AID mutational profile from DT-AID models
resembles those of progressive human CLL
expressing AID
To further explore the role of AID expression in human CLL
progression, and to validate the usefulness of the DT-AID
models, we performed WES on leukemic clones from 12 pro-
gressive patients with CLL (supplemental Table 1; supplemental
Excel File 3), systematically identifying genes mutated in the
patients and in our murine models. Patients were selected based
on continuous AID expression (AID mRNA1 in PB white blood
cells every 3 months until treatment), Binet stage, and short time
to first treatment. WES data from the human and murine CLL
samples were analyzed for mutational context, focusing on
putative AID hotspots (c-AID; nc-AID and NCG). Our initial
analysis revealed that introduction of the Aid transgene in TCL1
mice resulted in mutations that corresponded closely with the
AID mutational signatures in the progressive CLL patients
(Figure 6A; supplemental Figure 6). A higher number of c-AID
mutations, which can be directly ascribed to AID activity, were
shared between the DT-AID model with progressive human
disease. In total, 20 genes harboring 64 c-AID mutations in the
DT-AID (lower red ticks) and 26 in the human progressive cohort
(upper red ticks) were simultaneously affected (Figure 6A, largest
circos plot), whereas no genes showing c-AID hotspots were
affected in the TCL-1 and progressive CLL cohort (Figure 6A
small circus plot). Notably, a much higher number of non-
immunoglobulin genes were concomitantly mutated in DT-AID
and progressive CLL (45 c-AID, 7 nc-AID, and 19 NCG) than in
TCL-1 and progressive patients (3 c-AID, 2 nc-AID, and 4 NCG)
(Figure 6B).

To further explore the role of AID in CLL progression, we
searched for specific nonimmunoglobulin genes carrying po-
tentially functionally impacting mutations in the DT-AID models
and human CLLs. Twenty genes were affected in DT-AID and
progressive CLL; of these, 7 displayed c-AID mutations and
3 nc-AID mutations. Interestingly, Prkch, Pax-5, Mcl1, Hist1h1b,
Hist1h1c, and Hist1h1d, bearing an AID signature, were iden-
tified in the DT-AID model, in the Ki-671 murine fraction, and in
the human progressive cohort (Figure 6C).

Altogether, these data confirmed that the mutational pattern
developed by the introduction of the Aid transgene into the
TCL-1 model emulates the genotype in progressive CLLs in
which persistent AID expression was documented.
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Murine DT-AID model recapitulates mutations
reported for human lymphomagenesis
Of the 11 genes with nonsynonymous c-AID mutations in the
Ki671 fraction mentioned herein, Pax-5, Pim-1, Dusp-2, Mcl1,
Gata-3, Klf2, Hist1h1e, and Hist1h1d are considered human
tumor drivers.55 Notably for Pim-1,Mcl-1,Hist1h1e, andHist1h1d,
the amino acid changes occurred at identical positions in the
DT-AID mice and human neoplasms. Analyses of available crystal
structures for these proteins predict that these mutations have
functional consequences (Figure 7).

For PIM-1, a serine/threonine kinase overexpressed in CLL,61

Ser97 is changed in both DT-AID models and CLL. This mutation
is crucial in regulating protein kinase activity. Figure 7A illus-
trates the ionic bridge between Glu89 and Lys67 essential to
achieve kinase activation.62

In the case of MCL-1, a key protein in lymphoid development
and survival,63 we identified a shared Ser→Thr replacement
(murine Ser266 and human Ser285) (Figure 7B). Our structural
analysis comparing PDB 5W89 to 5LOF64 suggests 2 putative,
not mutually exclusive scenarios. Either the Ser is important for

posttranslational regulatory signaling or it plays an allosteric role
in modulating the BH3-binding groove.

Concerning the histone H1 family, we exploited the available
structures of H1 and H5 alone and in complex with DNA (PDBs
1GHC, 4QLC, and 5NL0).58-60 In particular, the Ser90→Arg
substitution in H1.3 could lead to steric hindrance of the histone
favoring chromatin decompaction (Figure 7C inset). Interestingly,
this specificmutation has also been identified inCLL.52 For histone
H1.4, 2 specific c-AID mutations result in 2 different amino acid
changes (Ala164→Ser and Ala167→Val). Again, both mutations
have also been described in CLL.30,52

Remarkably, 3 of 5 of these shared mutations led to the in-
troduction of the same amino acid in mice and humans (Figure 7)
and for the other 2, the substitutions were conservative as
there is high physicochemical similarity between Ser and Thr
(Hist1h1e) and between polar and almost isosteric residues
Thr and Asn (Pim-1) (Figure 7A,D).

Altogether, the fact that each of these mutations occurs at the
same positions in the respective genes and that the changes are
either identical or chemically conservative in DT-AID mice and
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Figure 4. Genes mutated by AID in proliferating and resting leukemic cells. (A) Quantification of mutations in Ki671 cells according to occurrence at canonical and
noncanonical AID hotspots, and C.T transitions in CpG for TCL1 and DT-AID animals. Analyses of these data show that the c-AIDmutation signature was significantly greater in
the DT-AID than in the TCL1 mice (median, 1216 40 vs 186 9, respectively; P5 .027, 2-tailed, unpaired Student t test). (B) Genomic context of AID-related variants in Ki671 cells
of TCL1 and DT-AIDmice. Significant differences using the 1-tailed exonic, unpaired Student t test (P5 .04), ncRNA (P5 .04), and 39UTR (P5 .03), were found. *P, .05 (A-B). (C)
Graphical representation of the genes affected by nonsynonymous mutations (exonic, UTRs, and up/downstream regions), which adhered to the c-AID context in Ki671 and
Ki672 cells. Figure was generated using genes with .5 c-AID mutations; these are highlighted in bold letters. Red bold letters denote gene drivers described in CLL30,52 and
DLBCL53 and in the KI671 fraction. Genes underlined and in bold letters are mutated members of theWnt-signaling pathway. (D) c-AIDmutations were selected and functionally
annotated using statistical overrepresentation (KEGG pathways; Fisher exact test). Wnt pathways with the mutated genes affected by c-AID and nonsynonymous mutations are
shown. Black asterisks identify genes with c-AID mutations in Ki671 and Ki672 fractions. Red asterisks identify genes with c-AID mutations only present in the Ki671 fraction. As
depicted, genes involved in these pathways and previously associated with tumor progression such as Lef-1, Tcf-7, Sox4, Prkch, and Celsr-1 were found.
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Figure 5. Gene mutational maps of candidate driver genes with c-AID signatures involved in CLL progression.Graphic representation of 11 selected mutated genes with
c-AID signatures separated in oncogenes (A), tumor supressors (B), and genome chromatin/histones (C) categories. Red gene names highlight previously described tumor
drivers in human cancers. Black asterisks refer tomutations detected in the whole-leukemic clone; red asterisks indicatemutations found in the Ki671 fraction. Key domains where
AID mutations are detected and the corresponding base-pair number for each gene map are shown. Specifically, in the case of histones, red characters indicate substitutions in
H1.3 (Leu83→Phe and Ser90→Asp) and in H1.4 (Leu82→Phe) located at conserved DNA-binding domains. Leu82→Phe substitution was found in 3 different mice of both DT-AID
strains. For H1.4, the Ala111→Thr and Ala112→Thr changes are placed within the AKP helix motif of domain H15, which is essential for this histone family’s functional integrity. For
H2A, the Glu65→Asp mutation directly affects the DNA-binding site. Blue characters identify individual TCL1/Igk-AID mice carrying c-AID mutations; red characters identify
TCL1/act-AID mice.
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CLL patients strongly suggests that these mutations were se-
lected because they influence the development and/or evolu-
tion of CLL.

Discussion
A long-standing model of cancer evolution posits that tumor
cells progress through stages via an iterative process of ex-
pansion, diversification, and selection.65 Clonal expansion can
promote genetic diversification by the acquisition of new mu-
tations and selection of subclones containing “advantageous”
mutations that favor disease progression and/or therapeutic
refractoriness.66 Although in CLL cells microenvironmental in-
fluences increase AID expression and drive CLL progression,17,18,23,67

the association of AID activity, disease evolution, and poor clinical
outcome in progressive CLL patients remains hypothetical due
to a lack of direct experimental evidence that specific off-target
mutations in CLL clones are involved in disease progression.

Therefore, to better understand how AID overexpression in CLL
patients promotes disease progression, we developed 2 murine
strains overexpressing AID in the TCL1 background. Consistent
with our hypothesis, both DT-AID models experienced more
rapid and aggressive IgM1CD51 CLL-like disease, resembling
the worse clinical outcomes of patients with U-CLL expressing
AID in leukemic B cells.15,16,18,67 Because in the TCL1/act-AID
mice AID is expressed globally, malignant T-cell lymphomas
could arise.21 Nevertheless, TCL1/act-AID mice gave rise to
CD51 B-cell leukemia instead of a T-cell lymphoma, probably
because of an earlier temporal expansion of CD51 clones
(supplemental Figure 4). This effect could be due to the anti-
apoptotic actions of TCL1 in murine B lymphocytes.68

The leukemic cells in DT-AID mice grew faster and led to more
rapid death. Because of this and AID’s expression being in-
creased in proliferating human subsets of the leukemic
clone,18,23,69 we performed WES not only of the whole leukemic
clone but also of leukemia cells stratified into proliferating
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(Ki671) and nonproliferating (Ki672) fractions. Because muta-
tions bearing AID signatures affected mainly coding regions, we
focused mainly on mutations with potential functional impact.
Because c-AID mutations were enriched in the whole leukemic
clone and in the IgM1CD51Ki671 fractions of DT-AID animals,
correlation of AID activity with cell division was evident.43 The
findings in the Ki671 fraction pinpoint key genes altered by
c-AID mutations in the Wnt pathway, which are frequently
mutated and involved in CLL progression.45 Despite this in-
teresting observation, our data in the human cohort do not
identify c-AIDmutations inWnt-associated genes, possibly due to
interpatient heterogeneity. A larger cohort of patients expressing
AID needs to be analyzed to correlate c-AID mutations with the
constitutive activation of the Wnt axis in CLL.

Moreover, genes described as AID targets and/or as gene drivers
in B-cell neoplasms were only found in the proliferating fraction
(Pax-5, Irf4, and Ube2a). Additionally, the genes with the highest

number of c-AID mutations (Hist1h1c, d, and e, Pim1, Mcl1, Myc,
and others) were shared with components of the resting fraction,
indicating that they occurred upon activation of resting cells. This
is consistent with cycling cells emanating from resting ones69 and
that AID is only active in cycling cells.43 Hence the new, nonshared
AID-induced mutations facilitate the emergence of new clonal
variants that could be selected for enhanced tumor fitness.

Recently, unbiased sequencing on CLL genomes confirmed the
existence of genetic heterogeneity among patients and revealed
important intratumor heterogeneity.30 These data are in agreement
with patients differing in clinical course having different proliferation
rates and ratios of proliferating and quiescent fractions expressing
(or not) AID, respectively.4,17,23,44,69,70 Previous analyses of the
AID mutational signatures in CLL performed on nonstratified
cohorts13,31,33,71 identified AID-induced genomic uracil formation
not restricted to immunoglobulin genes.13,31,33 Additionally, anal-
yses of an indolent CLL cohort showed a preponderance of
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noncanonical (20%) over canonical AID signature (5%), whereas an
aging signature accounted for 75% of the total mutations.72,73

Here, by restricting our WES analyses to leukemic cells over-
expressing AID, we documented a mutational pattern domi-
nated by a c-AID signature in the unseparated and Ki671 subsets
of DT-AID clones compared with the TCL1 counterpart. Con-
sidering that TCL-1 recapitulates progressive and U-CLL,19,20,74

and that AID overexpression associates with a clinically poor
outcome in U-CLL patients,15,67,75,76 we further compared our
mouse WES findings with those of progressive U-CLLs with
sustained AID expression. This revealed that overexpression of
AID in the TCL-1 model drives more progressive disease with
increased off-target c-AIDmutations. Again, this particular pattern
recapitulated many of the mutations found in progressive human
CLL patients expressing AID, strongly suggesting a direct link
between AID overexpression and disease progression.

Finally, we identified genes (Prkch, Pax-5,Mcl1,Hist1h1b,Hist1h1c,
Hist1h1d) carrying anAID signature inDT-AID and humanCLLs that
could be have a role in leukemia progression after upregulation of
AID enzyme.

To further explore this hypothesis, we compared genes bearing
c-AID signatures in DT-AID animals to mutations described in
the same genes in human tumors. Four genes (Pim-1, Mcl-1,
Hist1h1d, and Hist1h1e) were mutated at homologous base
pairs in mice and humans, and all occurred within a c-AID
context. On the basis of available crystal structures, we mod-
eled the sites of those mutations, providing structural bases for
putative functional effects in cancer progression (Figure 7).
Specifically for Moloney murine leukemia virus 1 (PIM-1) and
MCL-1 proteins, the structural changes could be relevant for CLL
progression because PIM kinases are essential for CLL survival40,77

and MCL-1 levels correlate with resistance to fludarabine
therapy.78 Additionally, the MCL-1 Ser285 replacement could
allosterically modulate the BH3-binding groove and change the
groove’s affinity for antiapoptotic BH3-containing proteins,
leading to therapeutic resistance toMCL-1 inhibitors (Figure 7B).

A striking observation was the quantity of c-AID mutations found
in histone family genes. H1 histones are necessary for the con-
densation of nucleosome chains and for regulation of gene tran-
scription through chromatin remodeling and DNA methylation.79

Interestingly, Hist1h1b, Hist1h1c, Hist1h1d, and Hist1h1e, which
are drivers in humanCLL,30,78 in DLBCL53 and in FL,80 aremutated in
the AID-DT models as well as in the human progressive disease.

Interestingly, the sites of c-AID mutations observed in Hist1h1e
and Hist1h1d are identical between mouse and human and in
some cases even the amino acid changes are the same. Hence,
we propose a feed-forward mechanism whereby c-AID muta-
tions affecting the H1 histone family favor the formation of
single-stranded DNA, which in turn allows further mutagenesis
by AID. Supporting this hypothesis is the Ser90→Asn substitution
in Hist1h1d that could lead to physical clash of the histone with
the nucleosomeDNA promoting DNAdecompaction (Figure 7C).

It is noteworthy that point mutations in PIM-1, MCL-1, H1.3, and
H1.4 occurred at the same homologous positions in our murine
models and a published human CLL cohort (Figure 7).52 Even
more remarkable is that among 5 shared mutations, 3 led to the

same and the other 2 to conservative amino acid substitutions
based on physiochemical similarity. The chances of finding
mutations leading to identical or biochemically equivalent amino
acid changes in driver genes in 2 different unrelated species
developing the samemalignancy is highly unlikely to be random,
and strongly suggests that a selection of these changes confers
functional advantages for leukemia progression.

In summary, we describe 2 novel transgenic mouse models that re-
capitulate aggressive CLL and are useful tools to study AID off-target
mutations in genes related with disease progression in a leukemic
context. We also describe for the first time the mutational pattern of
a progressive U-CLL cohort overexpressing AID and confirm that
nonimmunoglobulin mutations with a c-AID signature found in the
DT-AID models occur in these progressive U-CLL clones. These
findings allowed us to highlight previously defined CLL mutations in
nonimmunoglobulin genes, and identify newones, someofwhich are
tumor drivers in human B-cell leukemias/lymphomas and could
therefore be relevant for the disease. Collectively, these new findings
support a direct association between an activated leukemic B-cell
population, aberrant AID action, and clonal aggressiveness in CLL.
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