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Introduction

Ventricular tachycardia (VT) originating from the right ventricle (RV) can be idiopathic, 
due to RV cardiomyopathies of various underlying etiologies, including arrhythmogenic 
right ventricular cardiomyopathy (ARVC), cardiac sarcoidosis, (peri) myocarditis and 
other (rare) causes or the consequence of (repaired) congenital heart disease. This thesis 
focusses on ventricular arrhythmia due to RV cardiomyopathies. ARVC is a hereditary 
disease characterised by fibrofatty replacement of predominantly the RV myocardium, 
but can also affect the left ventricle (LV).[1-3] The disease was first described by Guy 
Fontaine, in 1977, in patients undergoing cardiac surgery for the treatment of RV VT.[3] 
In 1982, Frank Marcus and Guy Fontaine described the clinical characteristics of ARVC in 
a case series of 24 patients.[4]

The first disease manifestation can range from RV dysfunction, RV heart failure, 
ventricular arrhythmias (VA) to sudden cardiac death (SCD).[5] The diagnosis is based 
on the ARVC task force criteria including subsets of imaging and ECG criteria, tissue 
characteristics, family history and/or genetic mutations.[6] Early recognition and 
treatment of ARVC is important because ventricular tachycardia or SCD can be the first 
disease manifestation.[7] The diagnosis, however, remains challenging due to minimal 
structural abnormalities in the early stage of the disease, which makes it difficult to 
differentiate these patients from healthy individuals.[6, 8] Inflammatory diseases such 
as cardiac sarcoidosis can also be erroneously diagnosed as ARVC due to overlapping 
clinical presentation and low specificity of ARVC task force criteria.[9] 

The majority of ARVC patients carry a class IV/V variant in desmosomal and some other 
ARVC associated genes. In a Dutch ARVC registry a pathogenic mutation was found in 
58% of ARVC index patients and in 90% of familial cases.[10] Desmosomal genes are 
responsible for cell to cell linking proteins. Pathogenic mutation can lead to protein 
misfolding, resulting in less effective or dysfunctional proteins. The exact mechanism 
from pathogenic mutation to disease manifestation remains unclear. Of importance, 
not every subject with a pathogenic mutation develops signs and symptoms of ARVC. 
Additional factors are likely to play an important role in the development and progression 
of ARVC. One of these factors associated with disease progression is endurance training. 
Endurance training in ARVC patients has been associated with disease progression with 
earlier manifestation of VT and heart failure.[11-13] 

Endurance training and arrhythmia
Endurance training can have a profound effect on the heart depending on the type of 
exercise. Strength training at a low percentage of maximal oxygen uptake can lead to 
concentric hypertrophy with a normal or slightly enlarged LV end diastolic diameter.
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[14] Longstanding endurance training, for a long period at a high percentage of VO2 
max, can lead to balanced biventricular dilatation and eccentric hypertrophy, with 
preservation of systolic and diastolic function and left atrial dilatation.[14-17] The 
largest increase in LV wall thickness and LV end diastolic diameter have been reported 
in endurance athletes with a combination of strength and endurance training such as 
rowing and cycling.[14, 18, 19] This physiological form of hypertrophy or athletes’ heart 
is considered to be a normal and benign adaptation of the heart to athletic training.[15]

Although exercise-induced non-sustained VT in athletes are usually considered 
benign,[20] in some athletes performing exercise at high levels of dynamic and static 
demand, fatal arrhythmic events do occur.[21] In a Belgian cohort of high-level endurance 
athletes with VA of RV origin, a desmosomal gene mutation was found in only 13% of 
these endurance athletes.[22] These athletes may have a mutation not yet identified 
and/or may have RV scarring due to the longstanding endurance training. Imaging 
studies in intense endurance training have shown acute but reversible dysfunction of 
the right ventricle, while the left ventricle remained unaffected. The effect was more 
pronounced after longer endurance events.[23] It has therefore been hypothesized that 
repetitive training of long duration, without sufficient recovery until the next training, 
may lead to damage as a consequence of chronic pressure and/or volume overload in 
longstanding endurance training and may lead to pathological RV remodelling.[24] 

Ventricular arrhythmia in de RV
VA in the RV can encompass premature ventricular contraction, but also life-threatening 
fast monomorphic VT and ventricular fibrillation. PVC and VT in structurally normal 
hearts are typically due to triggered activity, often originate from a focal source in the 
RVOT, and have a favourable prognosis.[25, 26] 

In contrast, in patients with RV cardiomyopathy, scar-related re-entry is the dominant VT 
mechanism and can result in syncope or SCD.[7] Scar related re-entry VT is often confined 
to scar areas with conduction delay, unexcitable boundaries and unidirectional block. In 
infarcted myocardial tissue, it has been demonstrated that slow conduction is caused by 
a “zigzag” course of activation.[27]. The slow conduction areas are usually embedded in 
heterogeneous scar tissue or adjacent to anatomical unexcitable boundaries (e.g. valve 
annulus), and thereby protected from direct activation of adjacent myocardial tissue. The 
critical slow conducting pathway, between entrance and exit site, is called a VT- isthmus. 
The VT morphology depends on the VT exit site and the activation pattern of the RV and LV.

There is limited data on the substrate and mechanisms of VT in RV cardiomyopathy 
compared to VT after myocardial infarction. In ARVC, the substrate is often located in low 
bipolar voltage areas close to the tricuspid valve.[4, 28] Low voltage areas are suggestive 
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of fat or fibrofatty replacement.[29] In patients selected for invasive treatment of VT, 
catheter mapping is performed to localize the critical VT substrate. The VT isthmus site 
can be identified by activation and entrainment mapping, with concealed fusion and a 
post pacing interval equal to the VT CL indicating reentrant circuit sites.[30] Mapping 
during VT is considered the gold standard for detection of the VT isthmus. However 
VT-mapping can only be performed for hemodynamically tolerated VT. In RV VT, this 
is often impossible due to the short cycle length and subsequently hemodynamically 
instability observed in 68% of the VTs.[31] Therefore a substrate-based ablation strategy 
in SR is required to identify areas related to VT based on electrogram characteristics. 

Substrate identification by electroanatomical mapping
Three dimensional electroanatomical mapping (EAM) is routinely performed for 
substrate identification of all VT, hereby coupling recorded electrograms to an anatomical 
location. A 3 dimensional map is constructed, which contains all information on the local 
electrogram characteristics of the mapped endocardial or epicardial surface of the RV or 
LV. Substrate-based ablation tries to identify the arrhythmic substrate during SR or RV-
pacing based EGM features. In patients with RV cardiomyopathy, the arrhythmogenic 
substrate may be confined to the epicardium and is usually more extensive than on the 
endocardium.[1, 32, 33] Different techniques have been described to identify potential 
VT substrates, all with their own advantage and disadvantages: including bipolar and 
unipolar voltage mapping, distinct abnormal electrogram features, combined with 
pace-mapping techniques, facilitated by CT-image integration. 

Low amplitude bipolar or unipolar electograms allow detection of areas compatible with 
scar. Voltage mapping has been described of being superior to current image modalities 
like MRI to detect small RV scars.[34] The local bipolar voltage (BV) is calculated from the 
unipolar recordings of the tip and ring-electrode of the mapping catheters. A BV above 
1,5 mV is considered normal.[35] Unipolar voltage (UV) is measured between the tip 
and the Wilson central terminal. Low endocardial UV at sites with normal endocardial 
BV may detect subepicardial scar which may have important clinical implications for 
substrate identification and ablation strategies.[36, 37] Previous studies have suggested 
4.4 mV and 5.5 mV endocardial UV cutoff values to detect epicardial bipolar low voltage 
areas.[36, 37] Both studies lacked important epicardial fat information. The surface of 
the epicardial RV is covered by a thick fat layer, in particular towards the atrioventricular 
groove.[38-40] An thick epicardial fat layer can attenuate the epicardial BV and may 
thereby lead to overestimation of the epicardial scar.[41] CT scan derived fat thickness 
can be integrated in EAM system and can be useful to distinguish sites with low voltages 
due to scar from low voltage sites that may be at least partly due to a thick epicardial 
fat layer. Studies using the information from CT derived fat thickness to evaluate the 
performance of endocardial UV mapping to detect epicardial low BV areas are lacking. 
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Patients with RV cardiomyopathy often have large low-voltages areas but not all low-
voltages areas are related to VT. During sinus rhythm VT isthmus sites often exhibit 
signs of local conduction delay (split or fragmented EGM, late potentials).[30] Especially 
isolated late potentials have been demonstrated to be a specific marker of VT circuits 
in post-infarct patients.[42, 43] A VT-ablation strategy that targets all areas with 
fragmented, split or late potentials (LAVA signals) has been described.[44] Complete 
LAVA eliminations was associated with good long term VT free survival in patients with 
structural heart disease.[44] Others have proposed to target all conducting channels 
entrances to eliminate the arrhythmogenic substrate.[33, 45] 

In ARVC, 69-79% of the VT are due to scar-related re-entry confined to the epicardium.
[30-32, 46] Intramural fat and fibrosis may result in prolonged transmural activation 
and in protected subepicardial areas which may facilitate re-entry VT. These areas with 
functional of fixed conduction block may be detectable during sinus rhythm. A delayed 
and altered epicardial RV activation in SR has been reported in ARVC patients compared 
to healthy control patients.[31] Transmural activation time in SR have not been studied 
in criterial VT isthmus sites in ARVC patients with predominantly hemodynamically non-
tolerated VT.

CT image integration to visualize intramyocardial fat 
CT and MRI data can be loaded in the EAM system and may be helpful to identify potential 
arrhythmogenic substrates.[39, 47] ARVC is characterized by fibrofatty replacement of 
myocardium, progressing from the epicardium towards the endocardium (Figure 1).[4, 
48, 49] Cardiac computed tomography (CT) allows identification of fat with high spatial 
resolution.[50-52] The overall percentage of intramyocardial fat within the RV free wall, 
quantified on CT, has been demonstrated to be higher in patients with ARVC compared 
to matched controls,[50] and local abnormal ventricular electrograms have been related 
to areas with a high percentage of intramyocardial fat.[53] High percentages of fat, 
however, may also be due to confluent areas of intramyocardial fat, which result in local 
abnormal low voltage electrograms without conduction delay, required for re-entry VT. 
Heterogeneous tissue provides the substrate for slow conduction facilitating re-entrant 
VT.[54] To date, no study has investigated the relation of conduction delay detected by 
EAM and the intermingling of fibrofatty tissue and normal myocardium, quantified on 
CT, at a specific location. 

Treatment of VT
Treatment options for VT in ARVC are antiarrhythmic medication, catheter ablation 
or ICD implantation for those VT that are considered life-threatening. Abnormal 
sympathetic innervation has been described in ARVC, which may result in dispersion 
of repolarization and thereby contributing to pro-arrhythmogenicity.[56] Beta-blockers 
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may reduce arrhythmogenicity in ARVC.[56] Amiodarone is considered the most 
effective drug for preventing VA recurrence, but study results are contradictive.[57, 
58] High doses of sotalol has been effective to suppress inducibility of VT but not to 
prevent spontaneous VTs during follow-up.[58] Flecainide in combination with sotalol 
or metoprolol may be an effective antiarrhythmic strategy.[59] 

Figure 1. Histology of the RV myocardium in a patient with ARVC

Panel A. The myocardial slide shows a thick epicardial fat layer (white) with minimal fat infiltration between 
epicardial myocardial fibers in a patient without structural heart disease. Almost no fibrosis (red) is visible in the 
myocardium. Panel B. Histology of a patient with end stage ARVC. This myocardial slide shows a high percentage 
of fibrosis and fat infiltration between the remaining myocardium. Reprinted from Venlet et. al.[55] 

ICDs can terminate VT or ventricular fibrillation but cannot prevent the occurrence of 
arrhythmia. In a follow-up study in ARVC patients with ICD, appropriate therapy was 
high despite antiarrhythmic medication or beta-blockers in 83% of the patients with 
ICD therapy.[60] 

A number of studies have reported promising results of VT-ablation with significant 
reduction of VT burden during follow-up.[28, 61, 62] Combined endocardial and 
epicardial ablation was more efficacious than endocardial ablation alone.[33, 46, 63] 
Studies comparing antiarrhythmic medication and VT-ablation are missing. 
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Aim and outline of this thesis 
The present thesis aims to improve the understanding and identification of the VT 
substrate in patients with right ventricular VT. Better understanding may allow improved 
risk stratification and treatment of VT in this patient population. Chapter 2 aims to 
evaluate whether RV electroanatomical scar patterns related to VTs can distinguish 
endurance athletes with VT from ARVC and post-inflammatory cardiomyopathies. 
Epicardial voltages are attenuated by epicardial fat thickness. Chapter 3 aims to improve 
endocardial unipolar voltage mapping to detect epicardial scar using CT derived fat 
thickness. An endocardial unipolar voltage cutoff to detect, potentially more relevant, 
abnormal epicardial electrograms was investigated. In RV cardiomyopathies, intramural 
scar may prevent rapid and direct endocardial to epicardial activation. This activation 
delay may facilitate subepicardial VT circuits. Chapter 4 investigates the association 
between transmural activation delay during sinus rhythm, and VT-related sites. The 
hallmark of ARVC is fibrofatty replacement starting at the epicardium. Chapter 5 
investigates whether RV tissue heterogeneity on CT is associated with conduction 
delay in ARVC and if overall tissue heterogeneity can be used to distinguish ARVC from 
endurance athletes with VT and healthy control patients. Chapter 6 is a multicenter 
study comparing AAD versus VT-ablation strategies to prevent VT recurrence in ARVC 
patients. Finally, a summary, conclusions and future perspectives are provided in 
Chapter 7.
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