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ABSTRACT

Introduction: Infrared thermography (IRT) is widely used to assess skin temperature 
in response to physiological changes. Yet, it remains challenging to standardize skin 
temperature measurements over repeated datasets. We developed an open-access 
semi-automated segmentation tool (the IRT-toolbox) for measuring skin temperatures in 
the thoracic area to estimate supraclavicular brown adipose tissue (scBAT) activity, and 
compared it to manual segmentations. 

Methods: The IRT-toolbox, designed in Python, consisted of image pre-alignment and 
non-rigid image registration. The toolbox was tested using datasets of 10 individuals 
(BMI=22.1±2.1 kg/m2, age=22.0±3.7 years) who underwent two cooling procedures, yield-
ing four images per individual. Regions of interest (ROIs) were delineated by two raters 
in the scBAT and deltoid areas on baseline images. The toolbox enabled direct transfer of 
baseline ROIs to the registered follow-up images. For comparison, both raters also manu-
ally drew ROIs in all follow-up images. Spatial ROI overlap between methods and raters 
was determined using the Dice coefficient. Mean bias and 95% limits of agreement in 
mean skin temperature between methods and raters were assessed using Bland-Altman 
analyses.

Results: ROI delineation time was four times faster with the IRT-toolbox (01:04min) than 
with manual delineations (04:12min). In both anatomical areas, there was a large vari-
ability in ROI placement between methods. Yet, relatively small skin temperature differ-
ences were found between methods (scBAT: 0.10°C, 95%LoA[-0.13 to 0.33°C] and deltoid: 
0.05°C, 95%LoA[-0.46 to 0.55°C]). The variability in skin temperature between raters was 
comparable between methods.

Conclusion: The IRT-toolbox enables faster ROI delineations, while maintaining inter-user 
reliability compared to manual delineations. 
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3.1 INTRODUCTION 

Infrared thermography (IRT) is a non-invasive, safe and inexpensive imaging technique for 
assessing surface temperature. The working principle behind IRT is that all objects emit 
infrared radiation1. The intensity and wavelength of the emanated radiation can be used 
to calculate surface temperatures, which are displayed as colored heatmaps. 

IRT is used to study the relation between thermal physiology and skin temperature in 
humans2, and has been utilized for the diagnosis of breast cancer, diabetic neuropathy 
and peripheral vascular disorders3. There has been increasing interest in utilizing IRT for 
assessing thermogenic activity induced by brown adipose tissue (BAT)4. BAT is a thermo-
genic tissue found in mammals, with cold exposure being its most potent physiological 
activator5,6 Upon activation, BAT combusts triglyceride-derived fatty acids and glucose, 
producing heat due to the presence of uncoupling protein 1 (UCP-1) in its mitochondria. 
Previous studies have employed IRT to assess BAT activity by measuring skin temperature 
in the supraclavicular region, the location of the largest BAT depot in humans7–9. 

Although IRT has been used for many clinical applications, it is challenging to standard-
ize repeated measurements from a region of interest (ROI). Manual ROI delineations are 
time-consuming and have a poor spatial reproducibility4,10. Fully automated ROI extraction 
methods have been developed for several anatomical regions10,11. However, these meth-
ods rely on approaches such as clustering, thresholding or edge-detection, which cannot 
be easily applied to regions with irregular structures or low tissue contrast such as in the 
supraclavicular area10. Semi-automated ROI extraction methods, requiring some manual 
input, are faster than manual methods12–14. Law et al. developed a semi-automated ROI 
method for extracting supraclavicular skin temperature12, which improved analysis speed 
while maintaining reproducibility of manual delineations.

However, these semi-automated ROI methods still require manual input for defining the 
ROI on all images within a dataset. This makes the analysis in studies with large cohorts 
and/or multiple interventions challenging, particularly when there are differences in 
subject orientation and positioning with respect to the thermal camera. These challenges 
can potentially be overcome by using non-rigid image registration, which enables a pixel-
by-pixel overlap between the baseline image and every follow-up image. A single baseline 
ROI can be chosen, which can be directly transferred to all registered follow-up images. 
In this work, we have developed an open access semi-automated toolbox using non-rigid 
image registration for measuring skin temperatures in two regions of the thoracic area. 
We compared the toolbox with manual delineations for analysis time, ROI placement and 
inter-user reliability.
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3.2 MATERIALS AND METHODS 

3.2.1 The main features of the IRT-toolbox
The IRT-toolbox was implemented using Python (Python Software Foundation. Python 
Language Reference (v3.8.5). Thermal images were initially saved in JPEG format and 
subsequently converted to temperature maps using the Python package: Flir Image Ex-
tractor (v1.4.0). The ExifTool application was used to extract metadata from the thermal 
images15. We did not use any commercially available software development kit to analyse 
our images. The main features of the toolbox are: image pre-alignment, non-rigid image 
registration and semi-automated ROI segmentation. 

Image pre-alignment and non-rigid image registration
The challenge of repeated measurements is summarized in Figs. 1a and 1b. Four images 
were acquired at different times, and ROIs were manually drawn in the supraclavicular 
and deltoid regions on each image. The data show that there are differences in the posi-
tion and orientation of the subject. These lead, as shown in Fig. 1b, to spatial differences 
in the ROIs drawn for the two areas in the four images. Figs. 1c-e show the main features 
of the toolbox. In Fig. 1c, image pre-alignment was used to correct for large displacements 
between images: the neck was used as an anatomical landmark. The spatial coordinates 
of the neck were calculated for all images in each dataset and used to align each follow-up 
image to the baseline image. The neck coordinates were determined based on image 
thresholding, wherein the background was separated from the subject. Along each row 
of the image (x-direction; see Fig. 1), temperature differences were determined for con-
secutive pixels. This yielded a temperature gradient for each row, with minor differences 
in homogenous regions, and large peaks at transitions between the background (room 
temperature ~22 °C) and the body (34.3±0.5°C, at thermoneutrality and 29.9±1.7°C after 
cooling16). Pixels that were located between the transition peaks were given a value of 1 if 
their temperature values were above 25ºC (foreground pixels), whereas the other pixels 
in that same row were given a value of zero (background pixels). This was applied to all 
rows, until the body was fully separated from the background. Subsequently, the neck was 
located as the row corresponding to the smallest number of foreground pixels. The outer 
left x and y coordinates of the neck were used to shift each follow-up image towards the 
outer left x and y coordinates of the neck in the baseline image. The number of pixels were 
converted to centimeters, and reported as the amount of subject displacement prior to 
the image pre-alignment and registration steps.

The next step was to account for any geometric differences in the acquired images. Non-
rigid image registration was integrated into the toolbox using the open-source image reg-
istration toolbox Elastix 17. Non-rigid image registration enables a stepwise deformation 
of an image until it fully overlaps with a given reference image (e.g., a baseline image). 
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Registration parameters including the number of resolutions, number of iterations and 
the maximum step length of the optimizer were systematically optimized based on an 
image similarity metric, Mattes mutual information. As a quantitative indicator for the 
registration quality, it was evaluated whether the Mattes mutual information stabilized 
along the stepwise image deformation for each registration case. Image pre-alignment 
and non-rigid image registration were both implemented to obtain a pixel-wise image 
overlap between the reference image and every subsequent image within a participant’s 
dataset (Fig. 1c). As a result, ROIs only needed to be delineated on the reference image 
and this reference ROI could be subsequently transferred to the registered follow-up im-
ages (Fig. 1d), requiring no redrawing as shown in Fig. 1e.

Figure 1. A schematic overview of manual delineations and the IRT-toolbox
a. Manual method: regions of interest were manually delineated on the reference image (morning pre-cooling) and 
the follow-up images (morning post-cooling, evening pre-cooling and evening post-cooling) in each dataset. b. The 
overlap between manually-delineated ROIs in the supraclavicular and deltoid areas is shown for one participant. 
Follow-up ROIs were aligned with the reference ROI. c. IRT-toolbox: image pre-alignment and image registration 
were applied to obtain a pixel-wise image correspondence between registered follow-up images (blue) and the 
reference image (orange) within a single dataset. d. The ROI that was manually drawn on the reference image (step 
a), was mapped to the registered follow-up images. e. Mapping of the reference ROI removed the variability in 
manual ROI placement. ROI: region of interest. 
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3.2.2 Study subjects and experimental procedures
Data were obtained from four healthy males and six healthy females (BMI=22.1±2.1 kg/
m2, age=22.0±3.7 years) who were enrolled in a clinical trial studying the circadian rhythm 
of cold-induced thermogenesis16. This study was approved by the Medical Ethical Com-
mittee of the Leiden University Medical Center and performed in accordance with the 
principles of the revised Declaration of Helsinki. Informed consent was obtained from all 
participants. The clinical trial was registered at ClinicalTrials.gov NCT04406922. The study 
design is extensively described elsewhere16.

Participants underwent a personalized cooling procedure on two separate study days: 
in the morning (07:30 AM) and in the evening (07:30 PM). The examination room had 
an average room temperature of 22.0±0.3°C in the morning and 22.4±0.4°C in the 
evening. At the start of each study visit, an IRT image of the upper thorax/neck region 
was obtained using the FLIR T530 camera (FLIR Systems, Inc., Wilsonville, OR, USA). The 
camera was equipped with a 24° AutoCal™ lens and had an image capture rate of 30 Hz. 
The distance between the camera and the participant was 1.5 meters and the camera 
was held orthogonally (90º) with respect to the participant. At the end of the cooling 
procedure, a second IRT image of the upper thorax/neck region was made. Overall, four 
IRT images were acquired per participant: morning pre-cooling, morning post-cooling, 
evening pre-cooling and evening post-cooling. The camera acquired an image with the 
size of 320 pixels (x direction) and 240 pixels (y direction) (Fig. 1), which was converted to 
centimeters 18 using the focal length (17 mm) and distance (1.5 m) between the camera 
and subject: the image size was 63 x 47 cm.

3.2.3 ROI segmentation 
Two researchers (ASM and AMG; hereinafter ‘raters’) delineated ROIs in the supraclavicu-
lar and deltoid areas manually on the baseline image (morning pre-cooling, Fig. 1a). The 
supraclavicular depot was segmented using a triangular shape placed between the end 
of the neck and above the clavicular bone, which has been used in previous IRT studies to 
simplify manual delineations between raters19. The deltoid area was delineated by placing 
a polygon in the upper arm. The raters drew ROIs on all follow-up images to compare 
results with semi-automated segmentations. The manual morning pre-cooling ROI was 
used in the semi-automated analysis (IRT-toolbox), and directly applied to the registered 
follow-up images (i.e. morning post-cooling, evening pre-cooling and evening post-cool-
ing) in each dataset. We refer to the morning pre-cooling image as the “reference image”, 
and the morning pre-cooling ROI as the “reference ROI”. ROIs were delineated in Matlab 
(version 2016a) using a custom-built function that enabled the user to draw polygons by 
mouse-clicking. ROIs were subsequently exported to Python for analysis. Of note, the cur-
rent version of the IRT-toolbox is fully designed in Python, including the delineation step. 
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3.2.4 Statistical analysis
Mean and maximum skin temperatures were determined for all four imaging conditions 
from manually drawn ROIs and from the reference ROI directly applied to the registered 
images in each dataset (IRT-toolbox). These outcome measures were used to assess the 
variability between segmentation methods (intra-rater variability) and between raters 
(inter-rater variability). Data normality was tested using the Shapiro-Wilk test. 

The assessment of spatial agreement and temperature outcomes between the IRT-toolbox 
and manual segmentations 
In the first analysis, we assessed the spatial overlap between methods, where we com-
pared the overlap of the reference ROI (i.e. the ROI drawn on the reference image, that 
was directly used on registered follow-up images with the IRT-toolbox) with each manually 
drawn follow-up ROI. Since there were large displacements between the reference image 
and follow-up images, follow-up ROIs needed to be registered first to match the location 
of the reference ROI. The spatial overlap was then quantified using the Dice coefficient. 
The Dice coefficient was determined based on formula (1), wherein the overlapping area 
of two ROIs A and B is divided by the total number of pixels in both ROIs.

 (1)

This overlap coefficient is reported for each anatomical region as mean and range: [min, 
max], wherein ROIs from both raters were included. The qualitative scores for the Dice 
coefficient were defined as 0–0.49 (poor), 0.5–0.69 (moderate), 0.7–0.89 (good), and >0.9 
(excellent) 20. Subsequently, mean and maximum skin temperatures from the two raters 
were averaged to determine the mean skin temperature difference (mean bias) between 
methods, and to detect the variability between methods using the 95% limits of agree-
ment (95%LoA) using a repeated measures Bland-Altman analysis (R Core Team v4.1.0 
(2021), R Foundation for Statistical Computing, Vienna, Austria; R package: SimplyAgree). 

The assessment of the inter-user reliability with the IRT-toolbox versus manual 
segmentations
In the second analysis, the performance of the IRT-toolbox and the manual method were 
assessed by evaluating the outcomes between raters. The Dice coefficient was used to 
determine the spatial agreement between ROIs delineated by the two raters. For the IRT-
toolbox, the spatial agreement between the reference ROIs was assessed, resulting in 10 
ROIs (i.e., 1 ROI per subject) being compared between raters. For the manual method, 
all manually drawn reference and follow-up ROIs were included, and therefore 40 ROIs 
(i.e., 4 ROIs per subject) were compared between raters. Subsequently, the mean bias 
and 95% LoA in mean and maximum skin temperature between raters were determined 
for each method. Finally, the ROI drawing time of the supraclavicular region of the whole 
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dataset was recorded for both segmentation methods for one rater. The registration time 
for a single image and the time required to register the entire dataset were also recorded. 
Statistical analyses were performed using SPSS (Statistical Package for the Social Sciences; 
v25). 

3.3 RESULTS 

3.3.1 The IRT-toolbox reduces the ROI delineation time to a single image 
per dataset
The average amount of subject displacement in the follow-up images relative to the refer-
ence image, prior to applying the IRT-toolbox, was 3.6±2.5 cm along the y direction and 
7.5±5.4 cm along the x direction. After performing the image pre-alignment step, this ini-
tial displacement between images was reduced to zero. The optimized image registration 
parameters were: two-dimensional B-spline transform with a 10×10 mm2 grid, adaptive 
stochastic gradient descent with four resolutions, maximum step length of 0.5 and 450 
iterations. In all datasets, image overlap and convergence of the image similarity index 
were visually assessed by one rater. Image registration took 38 seconds per image pair, 
and 21:13 min for the entire dataset. The total time for drawing supraclavicular ROIs for 
the entire dataset, i.e., on all reference-and follow-up images, was 04:12 min using the 
manual method and 01:04 min with the IRT-toolbox.

3.3.2 Intra-rater analysis: the agreement between ROIs from the IRT-
toolbox and manual method showed a wide range, but skin temperature 
differences were less than 1°C
First, we assessed the spatial overlap and skin temperature outcomes between the IRT-
toolbox and manual segmentations. To assess the spatial overlap between methods, we 
compared the overlap between the reference ROI with each manually drawn follow-up 
ROI. We found a good agreement, albeit with a wide range, between reference ROIs and 
manually drawn follow-up ROIs in the supraclavicular area (Dice=0.75, range: [0.42-0.93]), 
and a moderate agreement in the deltoid area (Dice=0.66, range: [0.30-0.92]; see Table 1.

A mean temperature difference of 0.10°C, 95% LoA=[-0.13 °C,0.33 °C] was found for the 
supraclavicular area, and 0.05°C, 95% LoA=[-0.46 °C,0.55 °C] for the deltoid area; see Figs. 
2a,b. The results for maximum skin temperature are shown in Online resource 1; Fig. S1
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3.3.3. Inter-rater analysis: the IRT-toolbox has a similar inter-user 
variability to manual segmentations 
Secondly, we assessed spatial agreement and temperature outcomes between the two 
raters for both methods. The IRT-toolbox revealed a good spatial overlap between refer-
ence ROIs from the two raters in the supraclavicular region (Dice=0.73, range: [0.62-0.84]), 
and in the deltoid region (Dice=0.75, range: [0.58-0.83]). For the manual method, a good 
spatial overlap in the supraclavicular region (Dice=0.70, range: [0.56-0.86]), and a moder-
ate overlap in the deltoid region (Dice=0.65, range: [0.38-0.83]) were found; see Table 1. 

Regarding the skin temperature outcomes between the two raters, the mean supraclavicu-
lar skin temperature differences between raters were -0.04 °C, 95% LoA=[-0.23 °C,0.14 °C] 

Table 1. The agreement in ROI placement between methods and raters

1. Methods 2. Raters
IRT-toolbox Manual method

Supraclavicular area Dice=0.75,
range: [0.42,0.93]

Dice=0.73,
range: [0.62-0.84]

Dice=0.70, 
range: [0.56-0.86]

Deltoid area Dice= 0.66,
range: [0.30,0.92]

Dice=0.75,
range: [0.58-0.83]

Dice=0.65, 
range: [0.38-0.83]

Table 1. The agreement in ROI placement between methods and raters
1. Methods: the spatial agreement between ROIs from the IRT-toolbox (reference ROI) and all manually-drawn 
follow-up ROIs. 2. Raters: the spatial agreement in ROI placement between raters when using the IRT-toolbox and 
the manual method. The spatial agreement was quantified with the Dice coefficient and the qualitative scores 
were: 0–0.49 (poor), 0.5–0.69 (moderate), 0.7–0.89 (good) and >0.9 (excellent). Dice coefficient is presented as 
mean, range: [min,max].

Figure 2. The mean difference and variability in mean skin temperature between methods
The mean difference and variability in mean skin temperature between methods for the supraclavicular area (a) 
and the deltoid area (b) are shown. Data for all ten participants are shown; different colors represent different 
imaging sessions. The solid line represents the mean difference and the dashed lines represent the upper and the 
lower 95% limits of agreement. 
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using the IRT-toolbox, and -0.09 °C, 95% LoA=[-0.30 °C,0.12 °C] using manual segmenta-
tions; see Figs. 3a,b. 

The mean deltoid skin temperature difference between raters was 0.14 °C, 95% LoA=[-
0.32 °C,0.59 °C] using the IRT-toolbox, and 0.14 °C, 95% LoA=[-0.33 °C,0.62 °C]) with 
manual segmentations; see Figs. 3c,d. The results for the maximum skin temperature are 
shown in Online resource 1; Fig. S2. Temperature gradients in the supraclavicular area 
and the deltoid region were determined to evaluate the homogeneity of the temperature 
distributions in both areas. Results are shown in Online resource 1; Fig. S3.

Figure 3. The mean difference and variability in mean skin temperature between raters
The mean difference and variability in mean skin temperature in the supraclavicular area (a, b) and deltoid area (c, 
d) between two raters using the IRT-toolbox and the manual method are shown. Data for all ten participants are 
shown; different colors indicate different imaging sessions. The solid line represents the mean difference and the 
dashed lines represent the upper and the lower 95% limits of agreement.
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3.4 DISCUSSION

In this work, we developed an open-access semi-automated segmentation method, and 
compared it to manual delineations. The IRT-toolbox effectively reduced the ROI drawing 
time to a single image per dataset. Importantly, our method showed a similar inter-user 
variability to manual segmentations.

In previous work, semi-automated ROI delineations took longer when moderate dis-
placements were present12: in a semi-automated analysis without non-rigid registration, 
manual input is still needed on all images. Our results show that the image pre-alignment 
and image registration steps of the IRT-toolbox successfully accounted for displacements. 
This enabled ROI drawing on the reference image only, and therefore the total drawing 
time was reduced. 

The mean spatial overlap between the reference ROI and manually delineated ROIs was 
good for the supraclavicular region, and moderate for the deltoid region. For both regions, 
however, a large variability in spatial overlap was found between methods, which is likely 
due to differences in ROI placement and size of manually drawn follow-up ROIs. The IRT-
toolbox minimizes such variability by utilizing a single ROI applied to all registered follow-
up images. Although a large variability was found in ROI placement between methods, 
skin temperature differences were relatively small (< 1°C) for both areas. 

The IRT-toolbox showed the same inter-user variability in skin temperature outcomes as 
manual segmentations in both areas. The IRT-toolbox improved the spatial agreement be-
tween the ROIs from the two raters in the deltoid area compared to manual segmentations 
(good versus moderate), whereas both methods scored the same for the supraclavicular 
area (good). This difference may be due to the larger size of the deltoid area compared to 
the supraclavicular area. 

The variability in ROI placement and ROI size between methods and raters do not seem 
to influence differences in skin temperature outcomes, most likely due to relatively small 
temperature gradients between the region of interest and surrounding tissues (Online 
resource 1; Fig. S3). Hence, the IRT-toolbox may further minimize the variability between 
users in future applications that involve tissues with more heterogenous temperature 
distributions.

3.4.1 Practical implications, limitations and future directions 
The IRT-toolbox is an open-access, freely available method for temperature analyses 
and available for clinical applications. The semi-automated part of the program reduces 
drawing time to a single image per participant, which makes it favorable in studies with 
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repeated measurements. A limitation of this study is that no calibration procedures were 
performed prior to imaging, and no corrections were made for the environmental vari-
ance between imaging conditions. This will not have influenced our results since we did 
not determine skin temperature differences between different imaging conditions (i.e., 
morning pre-cooling and evening pre-cooling), but determined skin temperature differ-
ences between segmentation methods and raters where ROIs were applied to the same 
image for comparison. Nevertheless, we do recommend to perform these kind of cor-
rections to enable more accurate estimates of supraclavicular skin temperature changes 
between different imaging sessions. In addition, the detected pixel in the IRT image had a 
size of 0.2 cm based on the instantaneous field of view (iFOV) of 1.308 mrad and a target 
distance of 1.5 meters18,21. The thermal measurement area that corresponded to 1 cm2 
consisted of 25 pixels. It should be taken into account that this measurement area had a 
minimal variation in the two-dimensional IRT image since the body surface is not flat and 
the pixel area is not infinitely small. A limitation of the IRT-toolbox is the registration time. 
However, this step has to be performed only once in the analysis and a built-in function of 
the program allows users to automatically run the image registration part consecutively on 
multiple datasets. Another limitation is that the IRT-toolbox can only be used in thermal 
images, where anatomical regions have a sufficiently different temperature compared to 
the background, such as in imaging the feet in diabetes 22. In this case, an additional color 
(i.e., Red Green Blue, RGB) image might need to be integrated. The IRT-toolbox may be 
optimized by automating the method using e.g., skin fiducials, anatomical landmarks and/
or artificial networks, and combined with high-end computers. This will further minimize 
user workload and may fully eliminate the variability between raters. 

In conclusion, we introduced a new semi-automated segmentation tool to facilitate 
temperature analyses of supraclavicular and deltoid skin temperatures. The IRT-toolbox 
reduced the ROI delineation time and showed a comparable inter-user variability with 
respect to manual segmentations. 



3

CHAPTER 3 53

SUPPLEMENTARY DATA

Supplemental Figure 1. The mean difference and variability in maximum skin temperature between methods
The mean difference and variability in maximum skin temperature between methods for the supraclavicular area 
(a) and the deltoid area (b) are shown. Data for all ten participants are shown; different colors represent different 
imaging conditions. The solid line represents the mean difference and the dashed lines represent the upper and 
the lower 95% limits of agreement. 

Supplemental Figure 2. The mean difference and variability in maximum skin temperature between raters
The mean difference and variability in maximum skin temperature in the supraclavicular area (a, b) and deltoid area 
(c, d) between two raters using the IRT-toolbox and the manual method is shown. Data for all ten participants are 
shown; different colors indicate different imaging conditions. The solid line represents the mean difference and the 
dashed lines represent the upper and the lower 95% limits of agreement. 
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Supplemental Figure 3. Temperature distribution in the deltoid and supraclavicular regions.
Skin temperature values along a vertical line passing through the deltoid region (blue) and the supraclavicular 
region (red) are plotted.
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