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A B S T R A C T

Starting from 2021, more demanding NOx emission restrictions were introduced for ships operating in the
North and Baltic Sea waters. Since all methods currently used for ship compliance monitoring are financially
and time demanding, it is important to prioritize the inspection of ships that have high chances of being non-
compliant. The current state-of-the-art approach for a large-scale ship NO2 estimation is a supervised machine
learning-based segmentation of ship plumes on TROPOMI/S5P images. However, challenging data annotation
and insufficiently complex ship emission proxy used for the validation limit the applicability of the model
for ship compliance monitoring. In this study, we present a methodology towards the automated and scalable
selection of potentially non-compliant ships using a combination of machine learning models on TROPOMI
satellite data. It is based on a proposed regression model predicting the amount of NO2 that is expected to be
produced by a ship with certain properties operating in the given atmospheric conditions. The model does not
require manual labeling and is validated with TROPOMI data directly. The differences between the predicted
and actual amount of produced NO2 are integrated over observations of the ship in time and are used as a
measure of the inspection worthiness of a ship. To add further evidence, we compare the obtained results
with the results of the previously developed segmentation-based method. Ships that are also highly deviating
in accordance with the segmentation method require further attention. If no other explanations can be found
by checking the TROPOMI data, the respective ships are advised to be the candidates for inspection.
1. Introduction

The industry of international shipping is one of the strongest sources
of anthropogenic emission of nitrogen oxides (NOx) - a substance
harmful both to ecology and human health. The contribution of the
shipping industry to the global emission of NOx is estimated to vary
between 15%−35% (Crippa et al., 2018; Johansson et al., 2017), causing
approximately 60,000 premature deaths annually (Corbett et al., 2007).
To mitigate the negative impact of this industry, the International
Maritime Organization (IMO) stepwisely tightens the restrictions put
on emission factors of marine engines (IMO, 1997). The latest step is
an 80% reduction of NOx emission for ships operating in the North and
Baltic Sea (IMO, 2020).

The monitoring of the compliance of ships with the IMO regulations
is being performed by manual onboard inspections. However, due to
the high costs, a selection of ships that will undergo inspection is
needed. Among the sources of information currently used for the selec-
tion of ships are in-situ emission measurement stations (Beecken et al.,

∗ Corresponding author.
E-mail address: s.kurchaba@liacs.leidenuniv.nl (S. Kurchaba).

2014; McLaren et al., 2012; Kattner et al., 2015) usually located at
the entrance of the harbors, or airborne platform-based measurements
such as planes, drones or helicopters (Van Roy and Scheldeman, 2016).
The data collected with such methods give limited information on how
much the selected ships emit outside of a port and are usually done
near-shore. Additionally, the above-mentioned methods are spot checks
that usually only happen once. This does not give a possibility of having
a wider perspective on ship performance. As a result, the decisions
regarding the worthiness of a ship inspection do not have sufficient
justification.

Remote sensing is a well-established technique for the measurement
of emission levels. In particular, there is an extensive list of studies
using satellite-based instruments for the quantification of NO2 emission
levels produced by the shipping industry (Burrows et al., 1999; Beirle
et al., 2004; Bovensmann et al., 1999; Richter et al., 2004; Levelt et al.,
2006; Vinken et al., 2014). However, until recently the low spatial
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resolution of instruments did not allow to access plumes produced by
individual ships.

The game changer is the TROPOspheric Monitoring Instrument
onboard the Sentinel 5 Precursor (TROPOMI/S5P) satellite launched
in 2018 (Veefkind et al., 2012). It is the first remote sensing instru-
ment that is able to distinguish nitrogen dioxide (NO2) plumes from
individual ships (Georgoulias et al., 2020). This technical improvement
allows considering remote sensing as a potential solution for ship
compliance monitoring (SCIPPER, 2020). In particular, the data from
the TROPOMI instrument could be used for the development of a
data-driven inspection recommendation.

The current state-of-the-art of large-scale methods for NO2 ship
plume modeling use thresholding or supervised machine learning-based
segmentation of TROPOMI images to attribute the measured NO2 to
ndividual ships (Kurchaba et al., 2021, 2022). The latter methodology
s an automated procedure improving significantly upon previously-
sed manual methods. However, due to the low signal-to-noise ratio
f TROPOMI measurements, ship plumes are often hard to delineate,
hich makes the process of manual data annotation time-consuming
nd potentially erroneous. The absence of ground truth for a given
ask requires an alternative measure of validation. One possibility is
he usage of theoretical models for ship emission approximation –
hip emission proxy (Fan et al., 2016; Georgoulias et al., 2020). For
nstance, in Georgoulias et al. (2020), the authors propose to estimate
he expected amount of NOx emission from ships as 𝑆ℎ𝑖𝑝_𝑙𝑒𝑛𝑔𝑡ℎ2 ×
ℎ𝑖𝑝_𝑠𝑝𝑒𝑒𝑑3. However, such proxies often do not cover the full list
f factors that can potentially influence the levels of ship emissions
e.g. amount of cargo on board, local meteorological conditions), which
oes not allow a proper quantification of the effects of the errors
oming from manual labeling. Consequently, the possibilities of the
pplication of this approach to the task of monitoring NO2 emissions
rom individual ships are limited.

In this study, we propose a robust method for automated selection
f anomalously NO2 emitting seagoing ships. The presented approach
oes not require data labeling and is validated using TROPOMI data
irectly. Moreover, our method is based on the integration of mul-
iple observations, which gives a more complete perspective on ship
erformance. This is achieved by training a specifically designed re-
ression model, which predicts the amount of NO2 that is expected
o be observed by the TROPOMI sensor for a given ship operating in
ertain atmospheric conditions. The difference between the predicted
nd actual amount of observed NO2 is integrated over the available
umber of ship observations. The integrated difference we consider a
easure of inspection worthiness of the ship.

We train the regression model with an automatically delineated
egion of Interest (RoI) based on ship, wind speed, and direction. We
pply Automated Machine Learning (AutoML) to optimize the machine
earning-based regression pipeline for the NO2 prediction. To assure the
obustness of the proposed method, we compare the results obtained
ith the regression model with the previously developed (Kurchaba
t al., 2022) method for ship plume segmentation. Ships that are
lso ranked as highly deviating in accordance with the ship plume
egmentation model are nominated as anomalous emitters and require
urther attention. We visually check the TROPOMI data for objective
xplanations of anomalous results. If no other explanations are found,
he ships are advised to be the candidates for further inspection.

The rest of this paper is organized as follows: In Section 2, we
escribe the data sources used in this study. In Section 3, we introduce
he developed methodology, which is followed by the results presented
n Section 4. In Sections 5 and 6, the reader can find the discussion and
inal conclusions respectively.
2

2. Data

To prepare the dataset, we combine several sources of data. We use
the TROPOMI file.1 to retrieve an NO2 tropospheric vertical column
density (VCD𝑡𝑟𝑜𝑝) variable; wind data that is used to define the RoI of

ship, and as a feature of the segmentation and regression models;
lbedo data, as well as two VCD𝑡𝑟𝑜𝑝 priors (slant column density (SCD)
nd air mass factor (AMS)) that are used as features of the regression
odel. We use Automatical Identification System (AIS) data for the
osition of ships at the moment of the satellite overpass. Finally, official
hip registries are used to retrieve information about the dimensions
f the studied ships. In the following section, we provide a detailed
escription of all used data sources.

.1. TROPOMI data

TROPOMI/S5P (Veefkind et al., 2012) – TROPOspheric Monitor-
ng Instrument onboard the Sentinel 5 Precursor (S5P) satellite is

UV–Vis-NIR-SWIR (UV, visible, near-infrared, short-wave infrared)
pectrometer operating from May 2018. It is a sun-synchronous satellite
hat achieves global coverage with approximately 14 orbits in 24 h. The
ocal equatorial overpass time of the satellite is 13:30. The TROPOMI
nstrument measures spectra of multiple trace gasses including NO2.
he NO2 gas is an outcome of photochemical reactions of NOx emitted
y ships and, therefore, is suitable for ships’ compliance monitor-
ng (Kurchaba et al., 2022). In this study, the variable of interest is NO2
ropospheric vertical column density – VCD𝑡𝑟𝑜𝑝 (Eskes et al., 2022).

The VCD𝑡𝑟𝑜𝑝 column is the result of a transformation of SCD (slant
olumn density) using the air mass factors (AMS) calculated, among
he others, on the basis of historical emission inventories (Eskes et al.,
022). This results in the fact that the plumes located in the regions
f historical shipping lanes will be enhanced by the retrieval algo-
ithm (Douros et al., 2023). To minimize the impact of the potential
ias, such variables as background NO2 SCD, AMF, surface albedo, and
un/satellite geometry will be used as model features for ship NO2
stimation.

This study we based on the analysis of the same region2 in the
astern Mediterranean Sea as in Kurchaba et al. (2022). An outline
f the studied area can be found in Fig. 1. The study period is 20
onths, starting from 1 April 2019 until 31 December 2020. The spatial

esolution of the TROPOMI spectrometer equals 3.5 × 5.5 km2 at nadir,
ith the real size of the pixel varies depending on the distance between

he satellite and the captured part of the earth’s surface. To obtain the
mages of regular size, we perform regridding3 of the original TROPOMI
ata into a grid of regular size 0.045◦ × 0.045◦, which for the studied
rea translates to approximately 4.2 × 5 km2 (Kurchaba et al., 2022).
he following quality filters were applied on the satellite data: only
easurements flagged with 𝑞𝑎_𝑣𝑎𝑙𝑢𝑒 > 0.5 (Sneep, 2021) are taken into

onsideration. In addition, since the TROPOMI measurements of scenes
overed with clouds should not be considered valid, we filtered out
rom the data pixels with a cloud fraction higher than 0.05. With this
evel of cloud filtering we lost approximately 35% of ship observations.

.2. Meteorological data

For the study, the wind information is taken from wind speed
ata from the European Center for Medium-range Weather Forecast
ECMWF) at 10 m height, available with 0.25◦ resolution at a 6-hourly
ime step. The surface albedo data is the OMI minimum Lambertian
quivalent reflectance (LER) at a resolution of 0.5◦. Both ECMWF wind
ata and OMI surface albedo data are available as support products in
he TROPOMI/S5P data file.

1 Open access under https://s5phub.copernicus.eu/. TROPOMI/S5P data
ersion: 2.3.1.

2 The studied region is restricted by the following coordinates: long: [19.5◦;
29.5◦], lat: [31.5◦; 34.2◦].

3
 The regridding is performed using the Python package HARP v.1.13.

https://s5phub.copernicus.eu/
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Fig. 1. The NO2 tropospheric column. Visualized day: June 14th, 2019. Study area: part of the Mediterranean Sea, bound by the Northern coasts of Libya and Egypt in the South
and South of Crete in the North. Magenta lines indicate tracks of ships based on AIS data. The elevated background concentrations (green) in the east correspond to outflow from
a variety of land-based sources. To visualize the TROPOMI data, a native local pixel size is plotted before regridding.
Source: (Kurchaba et al., 2022).
2.3. Ship-related data

Another data source used in this study is relayed through Auto-
matic Identification System (AIS) transponders.4 The data include the
position, speed, heading, and unique identifier (MMSI) of each ship
carrying an active transponder. Due to the fact that at the moment there
is no open-access AIS data available, for the scope of this study, the AIS
data as well as information about the dimensions of the ships (such
as length, type, and gross tonnage) were provided by the Netherlands
Human Environment and Transport Inspectorate (ILT). This is the
Dutch national designated authority for shipping inspections, has access
to commercial databases for the AIS data set used in this study, and is
participating in this research.

In order to prevent the occurrence in our dataset of ships below
the detection limit, we focus our analysis on the seagoing ships that
are longer than 150 meters and faster than 12 kt. Another situation we
want to prevent is when too many ships contribute to the creation of
the detected NO2 plume, as in this case, quantification of individual
contributions is extremely challenging. Thus, we remove the ships,
whose trajectories within 2 h before the satellite overpass, intersect
with more than 3 other neighboring ships. This is a trade-off between
a sufficient size of the dataset and the complexity of the problem of the
quantification of individual contributions. Among all ship types present
in the dataset, for the detection of anomalously emitting ships, we focus
our attention on two ship types: containers and tankers. Other ship
types have not been represented in the dataset in a sufficient amount
to obtain statistically significant results.

3. Method

In this Section, we present the method for automated detection of
ships that produce anomalously high amounts of NO2. The method
is composed of the following steps: we train a regression model for
the prediction of the amount of NO2 within the RoI of the analyzed
ship. We calculate the difference between the observed and predicted
amount of NO2 and integrate this value over all observations of the
same ship within the studied period. The integrated difference be-
tween the real and predicted value of NO2 we consider as a measure
of the inspection worthiness of the ship. We rank the studied ships
accordingly. To assure the robustness of the results, we apply the
ship plume segmentation model (Kurchaba et al., 2022) to the same
dataset. We compare the results obtained using the segmentation model
with the value of the theoretical ship emission proxy. We consider the
results of the comparison to be a measure of the inspection worthiness
according to the segmentation model. The ships that are high on the

4 Since 2002 all commercial sea-going vessels are obliged to carry on board
an AIS transponder (Mou et al., 2010).
3

inspection worthiness list of both independently trained and validated
machine learning models are considered to be potentially anomalously
emitting. We evaluate the obtained results by visual inspection of the
corresponding TROPOMI measurements. Fig. 2 provides a high-level
explanation of the proposed method for the detection of anomalously
emitting ships. Below, each step of the methodology is described in
detail.

3.1. Regression model

Here, we describe our proposed regression model as part of a
method for the detection of anomalously emitting ships. We first pro-
vide a formal definition of the proposed way for ship NO2 estimation
with the regression model. Then we discuss the process of definition of
the RoI of a studied ship. Finally, we introduce the details of training
and optimization of the machine learning methodology proposed in this
study.

3.1.1. Formalization of the problem
For a given ship 𝑠 ∈ 𝑆 on a given day 𝑑 ∈ 𝐷, the real amount of

NO2 observed by TROPOMI is calculated as:

NO2;𝑑,𝑠 =
∑

𝑖∈𝑅𝑜𝐼𝑑,𝑠

𝑉 𝐶𝐷NO2;𝑖
(1)

where VCDNO2
is the value of the retrieved TROPOMI pixel within

the RoI of the analyzed ship (see Section 3.1.2 for more details of
RoI definition). We then use a machine learning model 𝑓 that based
on values of features 𝑋 ∈ R predicts the expected amount of NO2:
N̂O2;𝑑,𝑠 ∈ R.

N̂O2;𝑑,𝑠 = 𝑓 (𝑋𝑑,𝑠) (2)

The list of features 𝑋 can be found in Table 1. In Appendix A, we
provide histograms of the features, as well as other dataset details. As
a next step, we calculate 𝑑𝑖𝑓𝑓𝑑,𝑠[%] – a percentage difference between
the predicted and observed amount of NO2. Finally, assuming |𝐷𝑠|

is the number of days when the ship 𝑠 was observed, 𝑚𝑖𝑛_𝑜𝑏𝑠_𝑛𝑏 is
the minimal number of days we require the ship to be present in
the dataset, for each ship 𝑠 ∈ 𝑆 ∶ |𝐷𝑠| ≥ 𝑚𝑖𝑛_𝑜𝑏𝑠_𝑛𝑏, we integrate
the obtained differences over the observed number of days calculating
arithmetic mean 𝜇(𝑑𝑖𝑓𝑓𝑑,𝑠) and standard deviation 𝜎(𝑑𝑖𝑓𝑓𝑑,𝑠). To assure
that our ship profile is representative to make the decision about being
anomalously emitting and taking into consideration data availability
(see Fig. 3), we set the threshold as 𝑚𝑖𝑛_𝑜𝑏𝑠_𝑛𝑏 = 4.

A high value of 𝜇(𝑑𝑖𝑓𝑓𝑑,𝑠) represents a situation when the observed
value of NO2 was repeatedly underestimated by the model. This means
that the amount of NO2 observed was consistently higher than can be
expected given the ship’s characteristics and operational atmospheric
conditions. In other words, 𝜇(𝑑𝑖𝑓𝑓𝑑,𝑠) is a measure of the inspection
worthiness of the ship in accordance with the regression model 𝐼𝑊 𝑟𝑒𝑔𝑟.
𝑠
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Fig. 2. High-level diagram of the proposed methodology.
Fig. 3. Histogram of occurrences of the same ship in the created dataset. The black
line indicates the set level of 𝑚𝑖𝑛_𝑜𝑏𝑠_𝑛𝑏. Only ships that have been observed more than
𝑚𝑖𝑛_𝑜𝑏𝑠_𝑛𝑏 = 4 days are taken into account for the detection of anomalously emitting
ships.

The value 𝜎(𝑑𝑖𝑓𝑓𝑑,𝑠) is a measure of the consistency of the obtained
results. Since the satellite measurement results have a lower limit and
do not have an upper limit, a very high 𝜎(𝑑𝑖𝑓𝑓𝑑,𝑠) can only occur from
the fact that very high values of NO2 were assigned to a ship that on a
regular basis does not produce that much – only high NO2 outliers can
cause a high standard deviation. Such a situation is not of our interest.
Therefore, ships with outlying values of 𝜎(𝑑𝑖𝑓𝑓𝑑,𝑠) will be removed
from the analysis. The value of 𝜎(𝑑𝑖𝑓𝑓𝑑,𝑠) is considered to be outlying
if 𝜎(𝑑𝑖𝑓𝑓𝑑,𝑠) > 𝜇(𝜎(𝑑𝑖𝑓𝑓𝑑,𝑠)) + 2𝜎(𝜎(𝑑𝑖𝑓𝑓𝑑,𝑠)), which corresponds to 5%
of the highest observations of 𝜎(𝑑𝑖𝑓𝑓𝑑,𝑠).

3.1.2. Defining RoI
The RoI of a ship defines the region within which the emitted NO2

during the last two hours is expected based on ship speed, wind speed,
direction, and uncertainties. We use the method of RoI assignation
presented in Kurchaba et al. (2021). First, we estimate the trajectory
of the ship – a ship track – using AIS ship data, starting from two hours
before, until the moment of the satellite overpass (c.f. Fig. 4a). The
observation duration of two hours was selected considering an average
lifetime of NOx (de Foy et al., 2015). Secondly, we assume that the
plume emitted by a ship has moved in accordance with wind direction
by a distance 𝑑 = 𝑣 × |𝛥𝑡|, where 𝑣 is the local wind speed for a
4

Table 1
List of features used for the regression model. The area outside the
RoI is restricted to the ship neighborhood defined as the ship plume
image in accordance to Kurchaba et al. (2022).
Feature type Feature name

Ship related Ship length
Ship speed
Ship heading
Gross tonnage
Ship type

State of the atmosphere Wind speed
Wind direction
Surface albedo
Solar zenith angle
Measurement month

Priors for background Average NO2 VCD𝑡𝑟𝑜𝑝 outside RoI
Average NO2 SCD outside RoI
AMF outside RoI
Sensor zenith angle

coinciding time, and |𝛥𝑡| is a time difference between the time of the
satellite overpass and the time of a given AIS ship position. In this
way, we obtain a trajectory that we call a wind-shifted ship track. An
illustration of a wind-shifted ship track is depicted in Fig. 4b.

Both wind speed and wind direction are assumed to be constant for
the whole time during which we study the plume. Such an assumption
may create uncertainties in the expected position of the plume of the
ship. Therefore, in the third step, we calculate the extreme wind-shifted
tracks, by adding the margin of wind-related uncertainty to each side of
the wind-shifted ship track – c.f. Fig. 4c. The extreme wind-shifted tracks
define the borders of the RoI of the analyzed ship that we refer to as
a ship sector. The radius of the ship sector is determined as a maximal
distance from the position of the ship at the moment of the satellite
overpass to the position of the ship 2 h before the satellite overpass in
accordance to ship track, wind-shifted ship track, or extreme wind-shifted
tracks (the furthest point is taken into consideration). The ship sector
delineates the area within which we study the plume produced by the
analyzed ship. In Fig. 4d an example of a resulting RoI that we call a
ship sector is presented.

3.1.3. Model optimization
We use a nested scheme of cross-validation (see Fig. 5). Within

the outer 5-fold loop of cross-validation we create 5 ‘‘hold out’’ non-
overlapping test sets and 5 training sets. The test sets are used for:

1. Performance evaluation of the regression model.
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Fig. 4. Ship sector definition pipeline. Background – the TROPOMI NO2 signal for the area around the analyzed ship. Two ship plumes can be distinguished at the central part
of the image, and one less intense ship plume is located in the lower right of the image. Only one is of interest here. (a) Ship track – estimated, based on AIS data records. The
ship track is shown for the time period starting from 2 h before until the moment of the satellite overpass. (b) Wind-shifted ship track – a ship track shifted in accordance with the
speed and direction of the wind. It indicates the expected position of the ship plume. A black arrow indicates the wind direction. (c) Extreme wind-shifted ship tracks – calculated,
based on wind information with assumed uncertainties; define the borders of the ship sector. (d) A resulting ship sector – an ROI of an analyzed ship. For all presented images, the
size of the pixel is equal to 4.2 × 5 km2.
Source: (Kurchaba et al., 2022).
Fig. 5. Applied scheme of cross-validation. In the outer loop, we generated five test sets that were used for the regression model performance evaluation, as well as for the
detection of anomalously emitting ships. In the inner loop, the generated training and validation sets were used by AutoML algorithms to optimize machine learning pipelines for
regression models.
2. Detection of anomalously emitting ships.

Within the inner loop of cross-validation, we split the training set into
training and validation, which are used for the optimization of the
regression model performance.

The task of model optimization is tackled using automated machine
learning (AutoML) (Hutter et al., 2019). With AutoML, we aim to
solve a so-called CASH problem, which stands for Combined Algorithm
Selection and Hyperparameter optimization (Kotthoff et al., 2019).
Given the absence of available benchmarks for our original dataset,
such a technique allows for an efficient selection of a regression model
and feature preprocessor from among a wide variety of machine learn-
ing models and feature transformation techniques without preliminary
model selection experiments. In this study, we address the CASH prob-
lem using TPOT (Tree-based Pipeline Optimization Tool) (Olson et al.,
2016) – a Python package for automatic selection of machine learning
pipelines based on genetic programming (GP) (Koza, 1994).

The results obtained using the TPOT AutoML library are bench-
marked towards the results obtained using the eXtreme Gradient Boost-
ing (XGBoost) (Chen and Guestrin, 2016) regression model with the
default hyperparameters settings. The XGBoost model is considered to
be a good choice when it comes to tabular data (Grinsztajn et al., 2022),
5

as well as showed the best performance on the same type of data in our
previous study (Kurchaba et al., 2022).

3.2. Detection of anomalously emitting ships

In order to assure the robustness of the proposed method for detect-
ing anomalously emitting ships, we compare the results obtained with
the regression model with another, independently trained and validated
machine learning model applied to the same dataset. We intersect the
results obtained with both considered models in order to obtain a list
of potentially anomalously emitting ships. Hereafter, we introduce the
ship plume segmentation model (Kurchaba et al., 2022) that is added to
the presented regression model as a decision support tool, and explain
how the results of both models are used to make a decision regarding
the candidate selection of anomalously emitting ships.

3.2.1. Segmentation model
As a support tool for the presented regression model, we use the ship

plume segmentation model prepared in accordance with the methodol-
ogy introduced in Kurchaba et al. (2022). This method uses manually
annotated data to train a supervised model for the segmentation of a
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ship plume within the ship RoI as defined in Section 3.1.2. Below, we
provide a formal explanation of how we propose to use this method for
the detection of potentially anomalously emitting ships.

For a given ship 𝑠 ∈ 𝑆 on a given day 𝑑 ∈ 𝐷, the estimated amount
f NO2 can be expressed as:

Ô2;𝑑,𝑠 =
∑

𝑖∈𝑅𝑜𝐼𝑑,𝑠

𝑦̂𝑖 ⋅𝑁𝑂2,𝑖, (3)

here 𝑦̂𝑖 ∈ {0, 1} and NO2,𝑖 are the output of the segmentation model
or the pixel 𝑖 and the value of the pixel 𝑖 of the ship 𝑠 on day 𝑑.

To detect potential anomalous emitters, for each ship observation,
e calculate the value of the ship emission proxy5 𝐸𝑑,𝑠. For each ship
∈ 𝑆 ∶ |𝐷𝑠| ≥ 𝑚𝑖𝑛_𝑜𝑏𝑠_𝑛𝑏, we aggregate the N̂O2;𝑑,𝑠 and 𝐸𝑑,𝑠 over the
ays of observation by calculating their arithmetic mean 𝜇. We assume
hat 𝜇(N̂O2;𝑑,𝑠) is linearly proportional to 𝜇(𝐸𝑑,𝑠). Therefore, we can
xpress it as:

(N̂O2;𝑑,𝑠) = 𝛼 ⋅ 𝜇(𝐸𝑑,𝑠) + 𝛽 + 𝜖𝑠, (4)

here 𝛼 and 𝛽 are the parameters of the fitted linear equation. We
onsider 𝜖𝑠 the measure of the inspection worthiness of the ship in
ccordance with the segmentation model 𝐼𝑊 𝑠𝑒𝑔𝑚

𝑠 . The measure of
onsistency of the results is defined as the standard deviation of the
stimated values of NO2, 𝜎(N̂O2;𝑑,𝑠). The ships for which 𝜎(N̂O2;𝑑,𝑠) >
(𝜎(N̂O2;𝑑,𝑠))+2𝜎(𝜎(N̂O2;𝑑,𝑠)) are considered to be outlying and will not
e taken into consideration.

.3. Merge of two models to identify anomalous ships

In order to identify anomalously emitting ships, we intersect the
esults obtained with the two independently trained/validated machine
earning models: a newly developed regression model for the prediction
f ship’s NO2 within the assigned RoI, and ship plume segmentation
odel developed in previous study (Kurchaba et al., 2022). To assure

he comparability of the results, we perform a normalization of the
nspection worthiness measures obtained from both used methods,
efining 𝑛𝑜𝑟𝑚_𝐼𝑊 𝑟𝑒𝑔𝑟

𝑠 , 𝑛𝑜𝑟𝑚_𝐼𝑊 𝑠𝑒𝑔𝑚
𝑠 ∈ [0, 1]. The normalization is per-

ormed using min–max scaling applied on 𝐼𝑊𝑟𝑒𝑔𝑟𝑠 and 𝐼𝑊𝑠𝑒𝑔𝑚𝑠
such

hat:

𝑜𝑟𝑚_𝐼𝑊 𝑟𝑒𝑔𝑟
𝑠 =

𝐼𝑊 𝑟𝑒𝑔𝑟
𝑠 − 𝑚𝑖𝑛(𝐼𝑊 𝑟𝑒𝑔𝑟

𝑠 )
𝑚𝑎𝑥(𝐼𝑊 𝑟𝑒𝑔𝑟

𝑠 ) − 𝑚𝑖𝑛(𝐼𝑊 𝑟𝑒𝑔𝑟
𝑠 )

(5)

𝑛𝑜𝑟𝑚_𝐼𝑊 𝑠𝑒𝑔𝑚
𝑠 =

𝐼𝑊 𝑠𝑒𝑔𝑚
𝑠 − 𝑚𝑖𝑛(𝐼𝑊 𝑠𝑒𝑔𝑚

𝑠 )
𝑚𝑎𝑥(𝐼𝑊 𝑠𝑒𝑔𝑚

𝑠 ) − 𝑚𝑖𝑛(𝐼𝑊 𝑠𝑒𝑔𝑚
𝑠 )

(6)

Providing a decision threshold 𝑡, the ship is assigned to the list of
nomalously emitting ships in accordance with the following rule:

𝑜𝑟𝑚_𝐼𝑊 𝑟𝑒𝑔𝑟
𝑠 > 𝑡 ∧ 𝑛𝑜𝑟𝑚_𝐼𝑊 𝑠𝑒𝑔𝑚

𝑠 > 𝑡 ⟺ 𝑠 ∈ 𝐴𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠_𝑒𝑚𝑖𝑡𝑡𝑒𝑟𝑠, (7)

uch that:

𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠_𝑒𝑚𝑖𝑡𝑡𝑒𝑟𝑠 = {𝑠1,… , 𝑠𝑛} ∶

𝑜𝑟𝑚_𝐼𝑊 𝑟𝑒𝑔𝑟
𝑠𝑖

⋅ 𝑛𝑜𝑟𝑚_𝐼𝑊 𝑠𝑒𝑔𝑚
𝑠𝑖

< 𝑛𝑜𝑟𝑚_𝐼𝑊 𝑟𝑒𝑔𝑟
𝑠𝑖+1

⋅ 𝑛𝑜𝑟𝑚_𝐼𝑊 𝑠𝑒𝑔𝑚
𝑠𝑖+1

(8)

The decision about the selection of the used threshold level 𝑡 is
eft to the user. In this study, the threshold was manually selected as
= 0.55.

. Results

In this Section, we present the obtained results. We first present
he results of the regression model optimization. We then show the
ggregated results of the application of the regression and segmentation
odels and perform the selection of potentially anomalously emitting

hips. Finally, using a one-way ANOVA analysis of group differences,
e inspect the obtained results for the presence of a decision bias

esulting from the merge of regression and segmentation models.

5 For details on model training and emission proxy definition see
ppendix B.
6

Table 2
Regression model results. Hyperparameters applied for AutoML
optimization: Maximal evaluation time: 10 min; Population
size: 50; Number of generations: 50; Early stopping criteria:
10.
Method Pearson R2

TPOT 0.740 ± 0.058 0.538 ± 0.08
Default XGBoost 0.715 ± 0.057 0.497 ± 0.098

Table 3
A model and a feature pre-processor selected by TPOT as optimal at a given iteration
of cross-validation.

Feature processor Model

MaxAbs Scaler Gradient Boosting (Friedman, 2002)
MaxAbs Scaler Gradient Boosting
Polynomial Features (2𝑛𝑑 deg.) XGBoost (Chen and Guestrin, 2016)
Standard Scaler Gradient Boosting
Standard Scaler XGBoost

4.1. Regression model optimization

In Table 2, we present the results of the regression model opti-
mization. The application of the TPOT pipeline optimization algorithm
allowed us to improve the results of both used quality metrics over
our benchmark – default XGBoost. In Table 3, we provide models and
feature pre-processing methods selected as optimal (best performance
on validation set) at each cross-validation iteration. The XGBoost model
was still one of the most often selected optimal models. The ad-
vantage of the AutoML application, in this case, was gained by the
possibility of hyperparameters optimization and selection of feature
pre-processing method. Another well-performing model was the related
Gradient Boosting algorithm.

4.2. Detection of anomalously emitting ships

Here, we analyze the results of the application of the regression
and plume segmentation model with the aim of detecting anomalously
emitting ships. First, for each model, we calculated the measures of the
consistency of the results, i.e. 𝜎(𝑑𝑖𝑓𝑓𝑑,𝑠) and 𝜎(N̂O2;𝑑,𝑠), while removing
he resulting outlying values from the analysis. Fig. 6 presents the
onsistency measures for regression and segmentation models along
ith the applied cut-off thresholds.

In Fig. 7, we depict the integrated results of the regression model
or each studied ship (𝜇(𝑑𝑖𝑓𝑓𝑠), 𝜎(𝑑𝑖𝑓𝑓𝑠)) and rank them in ascending
rder of inspection worthiness, 𝐼𝑊 𝑟𝑒𝑔𝑟

𝑠 = 𝜇(𝑑𝑖𝑓𝑓𝑠). Ships for which the
bserved level of NO2 is substantially higher than the predicted level
re the most interesting for us. Fig. 8 presents the resulting relationship
etween the averaged amounts of 𝜇(N̂O2;𝑠) for each ship and averaged
hip emission proxy 𝜇(𝐸𝑠). The black line indicates the fitted linear
rend. The gray dashed lines indicate the ship inspection worthiness
𝑊 𝑠𝑒𝑔𝑚

𝑠 . The ships for which the 𝐼𝑊 𝑠𝑒𝑔𝑚
𝑠 is the highest are of our main

nterest.
Next, we combine the errors obtained from the regression and the

hip plume segmentation models. Fig. 9 shows the combined inspection
orthiness for the two studied ship types. Black scatter plot markers

ndicate the analyzed ships. The size of the markers is scaled in ac-
ordance with the average value of the ship’s emission proxy. Ships
ocated in the green zone of the plots, we consider as weak emitters,
ecause both of the models overestimate the actual level of NO2. Two
ellow zones indicate ships for which one of the models overesti-
ates the actual level of NO2, while the other model underestimates

t. This can be due to the low resistance of the particular machine
earning model to certain types of difficult modeling conditions, or
ystematic errors. To name a few, the combination with land-based
O2 sources, a plume accumulated within one TROPOMI pixel, certain
tmospheric conditions, etc. Finally, the red zone of a plot indicates
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Fig. 6. A measure of the consistency of results of the regression model 𝜎(𝑑𝑖𝑓𝑓𝑠) and segmentation model 𝜎(N̂O2;𝑑,𝑠). The threshold 𝜇(N̂O2;𝑑,𝑠) + 2𝜎(N̂O2;𝑑,𝑠) is indicated with vertical
lines.

Fig. 7. The triangle-shaped markers indicate the measure of ship inspection worthiness in accordance with the regression model 𝐼𝑊 𝑟𝑒𝑔𝑟
𝑠 . The vertical lines indicate 𝜎(𝑑𝑖𝑓𝑓𝑠) - the

measure of the consistency of results for a given ship.

Fig. 8. Relation between the estimated amount of NO2 using the segmentation model and ship emission proxy with a fitted linear trend. Gray dashed lines indicate the measure
ship inspection worthiness 𝐼𝑊 𝑠𝑒𝑔𝑚

𝑠 according to the plume segmentation model.
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Fig. 9. Combination of results of segmentation and regression models. Values of the inspection worthiness obtained from each model were normalized using a min–max scaler.
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Table 4
Measures of results consistency of regression (𝜎(𝑑𝑖𝑓𝑓 )) and segmentation
(𝜎(𝑁𝑂2)) models, for ships identified as anomalous emitter. Ship Ids are
in accordance with the numbers assigned in Fig. 9 for containers and
tankers respectively.
Ship type Ship id 𝜎(𝑑𝑖𝑓𝑓 ) 𝜎(𝑁𝑂2)

Container 1 0.57 1.5 ⋅1016

2 0.17 0.99 ⋅1016

3 0.22 1.5 ⋅1016

Tanker 1 0.36 2.03 ⋅1016

2 0.33 1.4 ⋅1016

3 0.12 0.65 ⋅1016

ships that are most inspection worthy according to both models. We call
those ships potentially anomalously emitting since throughout twenty
months of analysis they were producing more than is expected based on
their characteristics and operational atmospheric conditions. Clearly, to
make final conclusions, the detected ships should be studied closer.

4.3. Visual verification of potential anomalous emitters

In order to make final conclusions regarding the ships that were
identified by the proposed method as anomalously emitting, as a next
step, we visually analyzed the TROPOMI measurements related to those
ships. Fig. 10a–c and Fig. 11a–c provide the TROPOMI images for
the red-zone containers and tankers respectively. On the images from
the corresponding dates of TROPOMI observations, we indicate the
trajectory of the ship of interest, the other ships in the ship image, and
the pixels that were classified as a part of the plume of the ship by the
segmentation model.

First, we can see that for each ship, there are images where the
segmented plume was in fact produced by another ship. This underlines
the earlier mentioned constraint that intersecting ship plumes pose a
challenge for this type of analysis. Nonetheless, each container ship
selected as a potential anomalous emitter has at least two measure-
ment days where there are no other candidates for producing the
observed/segmented NO2 plume. Comparing the values of results con-
sistency (see Table 4) for ships selected as anomalous emitters with the
data distribution for the whole set of studied ships (Fig. 6), we can see
that values of interest are located in the middle of the data distribution.
Therefore, we do not have reasons to remove any of the selected ships
8

from the list of anomalous emitters. s
Table 5
Statistical summary for important factors that influence levels of produced NO2
for ships that by both models were identified as strong and weak emitters. IoU
stands for Intersection over Union.
Ship type Variable Strong emitters Weak emitters

Tanker Year of built 2013 ± 5 2009 ± 4
Ship length [m] 224 ± 78 253 ± 66
Ship speed [kt] 14.8 ± 1.5 14.8 ± 1.6
Wind speed [m/s] 4.9 ± 0.4 5.0 ± 0.7
Average IoU 0.07 ± 0.1 0.05 ± 0.06

Container Year of built 2008 ± 2 2012 ± 5
Ship length [m] 386 ± 20 340 ± 70
Ship speed [kt] 18.5 ± 1. 17.1 ± 1.7
Wind speed [m/s] 4.8 ± 0.5 5.1 ± 0.8
Average IoU 0.07 ± 0.02 0.04 ± 0.04

In the case of tankers, the situation is different. For a potential
anomalous emitter with Id 1 (c.f. Fig. 11a), we can see that for two
(2019-03-13, 2020-07-29) out of five measurement days, the segmen-
tation model did not segment any plumes. In addition, for one mea-
surement day (2020-05-13), the segmented plume was at least partially
produced by another ship. Finally, the obtained 𝜎(N̂O2) is very high
and close to the applied cut-off threshold. Therefore, we conclude that
the given ship should be removed from the list of potential anomalous
emitters.

For the tanker with Id 2, both 𝜎(N̂O2) and 𝜎(𝑑𝑖𝑓𝑓 ) are within the
istributions. However, from Fig. 11b, we can see that at least two
imes (2019-06-11, 2020-04-28) the segmented plumes were produced
y more than one ship. In three other cases (2020-04-11, 2019-07-19,
020-08-29), the segmented pieces of plumes partially or fully belong
o other emitters. For the measurement day of 2020-06-22, the model
id not segment any plume. The one remaining measurement from the
rofile of a given ship does not justify the addition of that ship to the
ist of anomalous emitters.

Finally, for the tanker with Id 3, there is one measurement day
2020-07-29) when the segmented plume was at least partially pro-
uced by another ship. The rest of the images, nevertheless, show
isually distinguishable NO2 plumes that can be attributed to the ship
f our interest. Consequently, we do not have reasons to remove a given

hip from the list of potential anomalous emitters.
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Fig. 10. Ship type: Container. Lines represent shifted ship tracks. Magenta line – ship of interest. Cyan line – other ships in the area. Gray lines – borders of the RoI of the
analyzed ship. Dots indicate pixels classified by the segmentation model as a plume. (a) Outlying ship 1. Ship length: 398 m. Average ship speed: 19.6 kt. Year of built: 2008. (b)
Outlying ship 2. Ship length: 363 m. Average ship speed: 17.5 kt. Year of built: 2011. (c) Outlying ship 3. Ship length: 397 m. Average ship speed: 18.4 kt. Year of built: 2006.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 6
One way ANOVA for the significance of the statistical difference between
samples of ships identified as strong and weak emitters. IoU stands for
Intersection over Union.
Ship type Variable F statistic p-value

Tanker Year of built 2.3 0.13
Ship length 0.48 0.49
Ship speed 0.004 0.95
Wind Speed 0.12 0.72
Average IoU 0.4 0.53

Container Year of built 1.7 0.19
Ship length 0.24 0.27
Ship speed 1.95 0.16
Wind Speed 0.53 0.47
Average IoU 1.32 0.25

4.4. Decision bias

To select the anomalously emitting ships, we combined the results
of two independently trained models: a regression model for ship NO2
estimation and a model of ship plume segmentation. Taking this into
account, as a final step of the analysis, we would like to know if
such a model fusion did not create any decision bias that would pre-
determine the attribution of a certain ship to a class of strong or weak
emitters. For this, we decided to study five variables that are interesting
from the point of view of result interpretability. Three of the selected
variables (ship length, ship speed, and wind speed) were features of
both regression and segmentation models. Another two variables (Year
of built – stands for the ship built year, and Average IoU – stands for
an average score of Intersection over Union of ships RoI with the RoI
9

of other ships6) were not a part of any model7 but can have a potential
influence on the attribution of a ship to a class of weak or strong
emitters.

To check the potential presence of decision bias, for each studied
ship type, we compared the averages of the above-mentioned features
(see Table 5) and performed a univariate one-way ANOVA test ( Ta-
ble 6), analyzing the statistical significance of the differences between
the values of the variables from two groups of ships – strong or weak
emitters. From the obtained results, we conclude that none of the
analyzed variables had a statistically significant influence on attributing
a certain ship to a class of strong or weak emitters. This implies the
absence of decision bias related to these variables.

5. Discussion

In this study, we presented a method for detecting anomalously
NO2 emitting ships by applying a combination of machine-learning-
based methods on TROPOMI satellite data. The provided methodology
is an important step towards the automation of the procedures for
the selection of ships that should undergo inspection. The application
of satellite data for such a task is a substantial advancement, as a
satellite is the only available measurement instrument that can access
ship emissions in the open sea.

6 Given two areas of interest, IoU is computed as the surface of their overlap
divided by the surface of their joint area.

7 The variables were tested in the preliminary phase of our regression
model experiments but were removed due to the negative impact on model
performance.
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Fig. 11. Ship type: Tanker. Lines represent shifted ship tracks. Magenta line – ship of interest. Cyan line – other ships in the area. Gray lines – borders of the RoI of the analyzed
ship. Dots indicate pixels classified by the segmentation model as a plume. (a) Outlying ship 1. Ship length: 180 m. Average ship speed: 15.3 kt. Year of built: 2016. (b) Outlying
ship 2. Ship length: 315 m. Average ship speed: 16.1 kt. Year of built: 2008. (c) Outlying ship 3. Ship length: 179.5 m. Average ship speed: 13 kt. Year of built: 2017. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Another advantage of satellite observations in contrast to all the
other methods currently used for ship emission monitoring, is that
satellite measurements enable us to observe the emissions over time
regularly and remotely. The presented approach exploits this prop-
erty of a satellite by making multi-days profiles of ship observations.
Such an approach allows us to make conclusions based on aggregated
statistics of several ship observations rather than based on a single
observation only. The disadvantage of such a statistics-based approach
is that only systematic high emitters can be captured.

In order to be able to use the proposed approach on a day-to-day
basis some technological advancements are needed. First of all, as we
can see from Figs. 10 and 11, the correct and complete segmentation of
ship plumes remains a challenging task. Additionally, it is challenging
to attribute the detected plume to a certain ship. Both challenges will
become more feasible when satellite measurements with an even higher
spatial resolution (for instance, TANGO instrument Landgraf et al.,
2020) become available. Moreover, it is still difficult to fully eliminate
signal interference. This is mainly due to the high irregularities of
both atmospheric chemistry processes and ship trajectories. Also, the
problem will become less significant once the higher-resolution data is
available.

Another possible improvement is to account for the dynamics of
the atmospheric processes within the methodology. The dynamics of
the atmospheric processes affects how fast and how much NO2 will be
created out of emitted NOx. In this study, we implicitly addressed the
atmospheric chemistry processes by using features such as the month
the observation took place (seasonability) and solar angle. Explicit
modeling such as through the introduction of ozone concentration or
air temperature features may provide additional insights.
10
Finally, at the moment, we do not have access to the ground truth
data that would allow us to validate the proposed selection of poten-
tially anomalously emitting ships. As we mentioned at the beginning of
this Section, the TROPOMI satellite observation is currently the most
complete available source of information regarding emissions of ships
in the open sea. Once the proposed approach is implemented into a
production environment, the feedback received from inspectors can be
used for validation and for further optimization of the method.

6. Conclusions

In this study, we applied a combination of machine learning-based
methods on TROPOMI satellite data and presented an approach for
automatic identification of potentially anomalously NO2 emitting ships.
Our approach allows the automatic processing of a huge amount of
satellite remote sensing data in order to select for the inspection
ships that consistently emit more than can be inferred based on their
properties and sailing conditions. With the proposed methodology, the
selected cases for inspection are based on multi-day observations of
ship emissions. With this, we harvest the main advantage of satellite
observations over the existing approaches for ship compliance monitor-
ing, with which the decisions have to be made on the basis of a single
observation only. The proposed methodology provides a potential path
towards the development of a scalable recommendation system for ship
inspectors that is based on satellite observations.
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ppendix A. Regression model

The dataset used for the regression model is composed of 4153 rows
aggregated ship plume images). Fig. A.12 presents the histograms of
he distributions of the variables from the regression model dataset.

ppendix B. Segmentation model dataset

To train a segmentation model we used a labeled dataset presented
n Kurchaba et al. (2022). The dataset is composed of 68 days of NO2
ROPOMI measurements taken between 1 April 2019 and 31 December
019. The dataset covers the same area in the Mediterranean Sea as the
egression model dataset (see Section 2.1).

In Kurchaba et al. (2022) it was shown that the highest performance
uality of the ship plume segmentation task was achieved with XGBoost
lassifier. Therefore, in this study, for the task of ship plume segmen-
ation, we use XGBoost model and optimize it using the methodology
rom the original article. The hyperparameters The obtained cross-
alidation-averaged average precision score is equal to 0.753. For the
xtensive reports of the model performance evaluation, we direct the
eader to Kurchaba et al. (2022).

Following the methodology from Kurchaba et al. (2022), to validate
he results obtained with the segmentation model, we use a theoretical
hip emission proxy 𝐸𝑑,𝑠 (Georgoulias et al., 2020) defined as:

𝑑,𝑠 = 𝐿2
𝑠 ⋅ 𝑢

3
𝑑,𝑠 (B.1)

here 𝐿𝑠 is the length of the ship 𝑠 in 𝑚, and 𝑢𝑑,𝑠 is its average speed
n a day 𝑑 in m/s, derivation details see Georgoulias et al. (2020).
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