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Article

A global test for competing risks survival
analysis

Dominic Edelmann1 , Maral Saadati1, Hein Putter2 and

Jelle Goeman2

Abstract

Standard tests for the Cox model, such as the likelihood ratio test or the Wald test, do not perform well in situations,

where the number of covariates is substantially higher than the number of observed events. This issue is perpetuated in

competing risks settings, where the number of observed occurrences for each event type is usually rather small. Yet,

appropriate testing methodology for competing risks survival analysis with few events per variable is missing. In this

article, we show how to extend the global test for survival by Goeman et al. to competing risks and multistate models

[Per journal style, abstracts should not have reference citations. Therefore, can you kindly delete this reference cita-

tion.]. Conducting detailed simulation studies, we show that both for type I error control and for power, the novel test

outperforms the likelihood ratio test and the Wald test based on the cause-specific hazards model in settings where the

number of events is small compared to the number of covariates. The benefit of the global tests for competing risks

survival analysis and multistate models is further demonstrated in real data examples of cancer patients from the

European Society for Blood and Marrow Transplantation.
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1 Introduction

It is well known that inference in the Cox proportional hazards model based on maximization of the partial

likelihood does not perform well when the number of events is small compared to the number of predictors. Under

these circumstances, the parameter estimates for the log-hazard ratios can be severely biased.1–3Moreover, stan-

dard tests as the Wald test, the score test, and the likelihood ratio test (LRT) perform badly1,2 and frequently do

not control the specified level of significance.3,4

In many applications,5–7 failures may occur due to several causes that should be treated separately in statistical

modeling and testing.8 In these competing risks settings, the association of predictor variables with different event

types is typically either modeled by a cause-specific hazards9 or a Fine and Gray model.10 Both models involve

fitting a proportional hazards model for each event type of interest. Hence, the number of events for a single cause

is smaller than the total number of cases. It then often arises that there are only few events for one or more of the

causes. In these settings, the Wald test, the score test, and the LRT consequently show a bad performance.
For the proportional hazards model, Goeman et al.11 have developed a global test for testing the association of

a group of p predictor variables with a (possibly right-censored) time-to-event outcome. Different from standard

tests, this test is applicable in high dimensions, i.e. when the number of predictors p exceeds the sample size n.

1Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
2Biomedical Data Sciences, Leiden University, Leiden, The Netherlands

Corresponding author:

Dominic Edelmann, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.

Email: dominic.edelmann@dkfz-heidelberg.de

Statistical Methods in Medical Research

2020, Vol. 29(12) 3666–3683

! The Author(s) 2020

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/0962280220938402

journals.sagepub.com/home/smm

https://orcid.org/0000-0001-7467-6343
https://orcid.org/0000-0001-5395-1422
mailto:dominic.edelmann@dkfz-heidelberg.de
http://uk.sagepub.com/en-gb/journals-permissions
http://dx.doi.org/10.1177/0962280220938402
journals.sagepub.com/home/smm
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0962280220938402&domain=pdf&date_stamp=2020-07-06


Moreover, the global test reliably controls the specified level of significance in settings with a low number

of events.
As noted above, problems arising from few events per variable (EPV) frequently show up in competing risks

situations. To tackle these problems, some authors pool similar events,12 i.e. they merge events of different types

into a novel combined event type. While pooling of events may increase the number of events per event type, it

leads to new problems. First, neglecting the distinctiveness of events types implies a loss of information. Second,

different ways of pooling events may lead to different results in subsequent testing. When for example testing the

null hypothesis of no effect of the predictors on any event type, one way of pooling might lead to acceptance,

another way to rejection of the null. Such an arbitrariness of results is clearly not desirable. Yet, testing proce-

dures for competing risks survival analysis that can deal with rare event types are missing.
The goal of this work is to develop a novel approach for testing the strong null hypothesis “no association of

the predictors with any event type” in the competing risks setting that reliably controls the type I error

and outperforms existing standard tests in terms of power in situations with rare event types and/or a high

number of covariates.
To this end, we extend the global test for survival by Goeman et al.11 Notably, we derive a global test for the

proportional hazards model with strata based on the test established in Goeman et al.11 Then a global test based

on cause-specific hazards regression can be derived from the result for the proportional hazards model with strata.

Moreover, we remark that the result for the stratified Cox model also allows us to establish a global test for

general multistate models.
There are various applications of such tests in practice. First, similar to the global test for the standard Cox

model,11 the global test for the competing risks setting offers an alternative for high-dimensional data, where

standard tests are not applicable (see Goeman et al.,11 Section 5 for an example in the standard Cox model).

However, we will see in Section 3.1 that there are also scenarios in the low-dimensional setting, in which the

nominal type I error is much better controlled by the global test than by standard tests, and it should hence be the

method of choice. Moreover, we show how to extract more detailed information from the result of global tests

using closed testing procedures in Section 4.1. Finally, the global test for the multistate model (similarly for the

competing risk model) offers the possibility to test if the regression coefficients for a certain subset of transitions

are the same, simplifying the subsequent modeling procedure (see Section 4.2).
In a large simulation study, we investigate the properties of the global test for competing risks survival analysis.

In particular, we demonstrate that the novel testing procedure reliably controls the specified level of significance in

all given scenarios, including settings where the number of covariates is larger than the number of events. The

power of the global test for competing risks is compared with the LRT and the Wald test in a variety of settings,

and we give recommendations for statistical testing in practice. Two real data examples from the European

Society for Blood and Marrow Transplantation (EBMT) illustrate the performance of the global test for com-

peting risks survival analysis and multistate models.
The remainder of the paper is organized as follows. In Section 2.1, an extension of the global test for the

proportional hazards model with strata is developed. The global test for competing risks arises as a special case,

which is investigated in greater detail in Section 2.2. Notably, an alternative formula for the global test for

competing risks is developed leading to a substantially faster implementation. An extension to multistate

models is discussed in 2.3. Section 3 compares the performance of the global test with the LRT and the score

test in a variety of simulations. After demonstrating the performance of the global test on real data examples in

Section 4, Section 5 discusses the results and gives recommendations.

2 A global test for the stratified Cox model and cause-specific hazards regression

2.1 A global test for the stratified Cox model

The global test for the stratified Cox model is an extension of the global test for the ordinary Cox model derived in

Goeman et al.11 For the sake of simplicity, we will not consider the adjustment for an additional set of covariates,

such as for example possible confounders. The test adjusting for additional covariates follows analogously to

Goeman et al.11 and is discussed in the supplementary material.
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Let us assume that n observations of q predictors are organized in a data matrix X 2 Rn�q with elements xij,
further define RX ¼ XX0.

Moreover, we consider an additional categorical variable s with m categories and observations s1; . . . ; sn deter-
mining the strata for each individual. The stratified Cox model, see e.g. Section 3.2 of Therneau and Grambsch,13

models the hazard function of individual i at time t via

hiðtÞ ¼ hðsiÞðtÞexpðriÞ

where hð1Þð�Þ; . . . ; hðmÞð�Þ are the unknown baseline hazards of strata 1; . . . ;m and ri ¼
Xq

l¼1
blxil is the linear

effect of the predictors. We will assume throughout this article that both the predictors and the strata are time
independent and that the censoring times are independent of the failure times given the predictors.

Observing a sample of size n consisting of the predictor matrix X, follow-up times t ¼ ðt1; . . . ; tnÞ and status
indicators d ¼ ðd1; . . . ; dnÞ, we are interested in testing the null hypothesis that the predictors are not associated
with survival, i.e.

H0 : b1 ¼ � � � ¼ bq ¼ 0 (1)

without making any restriction on the number of covariates q. Notably, the test should also be valid in the high-
dimensional setting, where q is larger than the sample size n. In this case, there are alternatives b1; . . . ; bq satisfying
ri¼ 0 for all i 2 f1; . . . ng and there is clearly no hope to detect these alternatives. Since it is not possible to
establish tests that are robust against all alternatives, it appears sensible to focus our power on a set of interesting
alternatives. We do so in a Bayesian fashion by putting a prior distribution on b1; . . . ; bq. In particular, we will
assume that the regression coefficients b1; . . . ; bq are random and a priori independent with mean zero and
common variance s2. The resulting test has high power against alternatives for which large variance principal
components of the data matrix X explain most of the variation in the response; some practical motivation is that
small variance principal components are often related to noise, see Goeman et al.,14 Sections 5.7 and 5.8 for
details. The log-likelihood of s2 is then given by

Lðs2Þ ¼ log Eðb1;...;bqÞ exp
Xn
i¼1

fiðriÞ
 ! !" #

(2)

where

fiðriÞ ¼ di loghðsiÞðtiÞ þ ri

� �
�HðsiÞðtiÞexpðriÞ

HðkÞðtÞ ¼
R t
0 h

ðkÞðsÞds is the cumulative baseline hazard of stratum k and the expectation is taken with respect to
the distribution of ðb1; . . . ; bqÞ.

Plugging in estimates for the baseline hazards under the null

bui ¼ bHðsiÞðtiÞ ¼
X
tj � ti

dj1fsj¼sigX
tk�tj

1fsk¼sig
; bu ¼ ðbu1; . . . ; bunÞ

and proceeding along the lines of Section 3 in Goeman et al.,11 we obtain a global test statistic for the stratified
Cox model given by

bT ¼ ðd� buÞRX ðd� buÞ0 � traceðRX
bUÞ (3)

where bU is a diagonal matrix with entries bUii ¼ bui.
Testing H0 is carried out based on a normal approximation (analogous to Goeman et al.,11 Section 3.4) of bT

using estimates of the expectation and variance. Details on the derivation of bT and corresponding estimators for
the mean and variance can be found in the supplementary material.
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2.2 A global test for competing risks survival analysis

In competing risks data, failure may occur due to several causes and only the first occurring failure can be
observed. In these cases, the time-to-event endpoint additionally contains information about the specific cause
leading to failure. As an example, consider the data from the EBMT that we will investigate in Section 4. In this
scenario, death may occur due to different infections (viral, bacterial, or fungal), relapse, graft-versus-host disease
(GvHD), or other causes.

Similar to testing for association between predictors and survival in classical time-to-event data, one is often
interested in testing if there is an impact of the predictors on a competing risk endpoint. In the following, a global
test for this problem is established.

For this purpose, we consider a competing risk setting with m different causes of interest. As in Section 2.1, the
observations of the predictors are organized in a data matrix X with elements xij. For modeling the effect of the
predictors on the different causes, we assume a cause-specific hazards regression,8 i.e. the hazard function on cause
k for individual i is given by

h
ðkÞ
i ðtÞ ¼ hðkÞðtÞexp r

ðkÞ
i

� �
where hðkÞð�Þ is the unknown baseline hazard of cause k, r

ðkÞ
i ¼

Xq

l¼1
bðkÞl xil is the linear effect of the predictors on

cause k, and bðkÞ denotes the corresponding vector of regression coefficients. Moreover, let Z be the nm� nm
block-diagonal matrix with m blocks given by

Z ¼
X 0 0

0 . .
.

0

0 0 X

0BB@
1CCA

the elements of Z will be denoted by zi;j. Defining rðkÞ ¼ ðrðkÞ1 ; . . . ; r
ðkÞ
n Þ; r ¼ ðrð1Þ; . . . ; rðmÞÞ and b ¼ ðbð1Þ; . . . ; bðmÞÞ,

we obtain that r
ðkÞ
i can be alternatively expressed as

r
ðkÞ
i ¼ riþnðk�1Þ ¼

Xmq

l¼1

bzi;iþnðk�1Þ (4)

The purpose of the global test for competing risks is testing the null hypothesis

H0 : b ¼ bð1Þ; . . . ; bðmÞ
� �

¼ ð0; . . . ; 0Þ (5)

i.e. that there is no effect of the predictors on any cause of interest. Analogous to Section 2.1, we assume that the
components of b, which we will denote by b1; . . . ; bmq are independent and normally distributed with common
variance s2, reducing equation (5) to

H0 : s
2 ¼ 0

Defining the status indicators for cause k by

d
ðkÞ
i ¼ 1 if individual i observes cause k;

0 else

�

the log-likelihood of s2 is given by

Lðs2Þ ¼ log Eb exp
Xm
k¼1

Xn
i¼1

f
ðkÞ
i r

ðkÞ
i

� � ! !" #
(6)
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where

f
ðkÞ
i ðrðkÞi Þ ¼ d

ðkÞ
i loghðkÞðtiÞ þ r

ðkÞ
i

� �
�HðkÞðtiÞexpðriÞ

and HðkÞðtÞ ¼
R t
0 h

ðkÞðsÞds is the cumulative baseline hazard of stratum k.
The likelihood of s2 in the cause-specific hazards model is just the product of the m cause-specific likelihood for

all n individuals, involving a total of nm factors. More precisely, equations (2) and (6) yield that the likelihood of

s2 in the cause-specific hazards model is the same as in a stratified proportional hazards regression including nm

(pseudo-)individuals and strata 1; . . . ;m, where the hazard function on the iþ n ðk� 1Þ th (pseudo-)individual is

given by

hiþnðk�1ÞðtÞ ¼ h
ðkÞ
i ðtÞ ¼ hðkÞðtÞexpðriþnðk�1ÞÞ

and riþnðk�1Þ ¼
Xmq

l¼1
bzi;iþnðk�1Þ, cf. equation (4).

Hence, the global test for the cause-specific hazards regression can be traced back to the result of the global test

for the stratified Cox model. To develop explicit expressions for the global test for competing risks, we define the

Breslow estimate for the cumulative baseline hazard of cause k under H0 as

buðkÞi ¼ bHðkÞðtiÞ ¼
X
tj � ti

d
ðkÞ
jXn

k¼1
1ftk�tjg

where ti is the follow-up time of individual i. Moreover, we denote by dðkÞ ¼ ðdðkÞ1 ; . . . ; d
ðkÞ
n Þ the vector containing

the status indicators for cause k and d ¼ ðdð1Þ; . . . ; dðmÞÞ. Analogously define buðkÞ ¼ ðuðkÞ1 ; . . . ; u
ðkÞ
n Þ andbu ¼ ðuð1Þ; . . . ; uðmÞÞ. Applying equation (3), we obtain the test statistic

bT ¼ ðd� buÞRZ ðd� buÞ0 � traceðRZ
bUÞ (7)

where RZ ¼ ZZ0 and bU is a diagonal matrix whose diagonal entries are given by the elements of the vector bu.
Obviously, RZ is block-diagonal with

RZ ¼
XX0 0 0

0 . .
.

0

0 0 XX0

0BB@
1CCA

Defining RX ¼ XX0 and letting bUðkÞ
denote the diagonal matrix with entries bUðkÞ

ii ¼ u
ðkÞ
i , equation (7)

simplifies to

bT ¼
Xm
k¼1

dðkÞ � buðkÞ
� �

RX dðkÞ � buðkÞ
� �0

� trace RX
bUðkÞ

� �h i
¼
Xm
k¼1

bTðkÞ
(8)

where bTðkÞ
is the global test statistic in the ordinary Cox model11 with status indicators d

ðkÞ
i and follow-up times ti.

We remark, that representation (8) could have also been derived directly by considering the log-likelihood of s2

in the cause-specific hazards model which splits into a sum of the cause-specific terms. However, we chose

to derive the global test this way, because the stratified Cox model is of independent interest and can also be

used to derive tests for multistate models and conditional logistic regression. Representation (8) is

substantially more efficient than computing bT for the competing risks situation using equation (3), since it exploits

the block structure of RZ. Notably, the cost of computing grows linearly in m for equation (8) but quadratically

for equation (3).
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Estimators for the expectation and variance of bT are given by

bEð bTÞ ¼Xm
k¼1

bE bTðkÞ
� �

(9)

and

dVarð bTÞ ¼Xm
k¼1

dVar bTðkÞ
� �

(10)

where bEð bTðkÞÞ and dVarð bTðkÞÞ are corresponding estimators for the expectation and variance for the standard Cox

model, cf. Section 3.3 of Goeman et al.11

Using the same arguments as in Section 3.4 of Goeman et al.,11 one can show that the normalized test statistic

bQ ¼
bT � bEð bTÞffiffiffiffiffiffiffiffiffiffiffibEð bTÞq

is asymptotically standard normally distributed. This directly induces an asymptotic test for H0. Notably, the

p-value of the asymptotic test is given by pparametric ¼ 1� Uð bQÞ, where U is the cumulative distribution function of

the standard normal distribution.
Alternatively, permutation-based testing approaches may be applied. However, it should be noted that the

permutation test is only applicable under quite restrictive assumptions. First, it requires the censoring

mechanism to be independent of the predictors under consideration. Second, if there are nuisance

covariates such as e.g. possible confounders (see Appendix A in the supplementary material for details),

the permutation-based test will not be valid. To perform a permutation version of the global test, we

generate B permutations p1; . . . ; pB of 1; . . . ; n. For each permutation pj : f1; . . . ; ng ! f1; . . . ; ng, we

evaluate the corresponding test statistic bTpj based on the original set of covariates X and the permuted

competing risks endpoint ðtpjðiÞ; d1pjðiÞ; . . . d
m
pjðiÞÞ; i ¼ 1 . . . ; n

n o
. The p-value of the permutation test is then

obtained by

ppermutation ¼

XB

i¼1
1ð bT � bTpjÞ
Bþ 1

2.3 Extension to multistate models

The ideas of Section 2.1 used to develop a global test for competing risks can also be applied to multistate models

assuming that they are Markov. If the hazard rate for the transition j ! k (from state j to state k) is given by

h
ðjkÞ
i ðtÞ ¼ hðjkÞðtÞexp r

ðjkÞ
i

� �
(11)

where hðjkÞð�Þ is an unknown baseline hazard and r
ðjkÞ
i ¼

Xq

l¼1
bðjkÞl xil is the linear effect of the predictors on j ! k,

then one could consider the null hypothesis

H0 : b
ðjkÞ
l ¼ 0 for all ðj; kÞ 2 T ; l 2 f1; . . . ; qg

where T is the set of all possible state transitions. This corresponds to testing that no predictor is associated with

any of the state transitions. Assuming that the single regression coefficients bðjkÞl ððj; kÞ 2 T ; l 2 f1; . . . ; qgÞ are i.i.d.
with variance s2 simplifies the null hypothesis to

H0 : s
2 ¼ 0

Edelmann et al. 3671



Suppose that time t in the description of the hazards refers to time since entry in state j (“clock reset” model8).
Proceeding along the lines of Section 2.2, one can derive that a test statistic for testing H0 in the “clock reset”
multistate model is given by

bT ¼
X

ðj;kÞ2T

bTðjkÞ

where bTðjkÞ
is the global test statistic in the ordinary Cox model11 corresponding to the transition from j to k. A

global test based on the “clock-forward” model (meaning that t in equation (11) refers to the time since beginning
of observation) can be derived similarly as a sum of global test statistics for delayed entry Cox models.

Another useful application of the global test is the following. A common problem in multistate models is the
large number of parameters needed to describe the effect of covariates on the transitions. Often, not that many
events are observed for some of the transitions, especially those which occur at the end of the chain. One strategy
to deal with this problem is to assume that the effect of some covariates is the same for a certain subset of
transitions S. This makes biological sense if the subset of transitions in question are all defined by the same clinical
event. By reparametrizing bðjkÞl ¼ cl þ dðjkÞl , it is then of interest to test the null hypothesis H0 : d

ðjkÞ
l ¼ 0, for all

transitions j ! k in S. A global test statistic for testing H0 can be established along the lines of Appendix A and is
given by

bTc ¼
X

ðj;kÞ2S

bTðjkÞ
c

where bTðjkÞ
c is a global test statistic in a corresponding Cox model,11 for which the estimates of the cumulative

hazards are obtained by multiplying the estimated baseline hazards by exp
Xq

l¼1
clxil

� �
.

3 Simulation studies

In the following, the performance of the global test for cause-specific hazards regression is compared with that of
the corresponding LRT and the Wald test. The results for the score test are very similar to the LRT and can be
found in the supplementary material. Additionally to the LRT for the cause-specific hazards regression, we also
consider an LRT for the ordinary Cox model, where events of all type are merged. Motivated from the setting,
where the event types relate to different causes of death, we call this test the likelihood ratio test for “overall
survival” (LRT-OS).

Throughout the simulations, the covariate data X follows a multivariate normal distribution with
X�Nð0;RðqÞÞ, where the elements of the covariance matrix RðqÞ are

XðqÞ
ij

¼
1 for i ¼ j;

q for i 6¼ j

(

Except in Section 3.4, we will always assume that q is 0, i.e. that the covariates are pairwise independent.
The competing risks endpoint is generated using the approach of Beyersmann et al.15 assuming a cause-specific

hazards model with

h
ðkÞ
i ðtÞ ¼ hðkÞðtÞexpðrðkÞi Þ

where hðkÞð�Þ is the unknown baseline hazard of cause k and r
ðkÞ
i ¼

Xq

l¼1
bðkÞl xil is the linear effect of the predictors

on cause k. The number of events k, the number of covariates q, and the cause-specific regression coefficients
bðkÞ1 ; . . . ; bðkÞq will vary throughout the simulations. If not stated differently, the censoring times will be uniformly
distributed on the interval ½0; 28� and independent of the predictors.

Moreover, as we will see in Section 3.1 that the type I error of the parametric versions of the tests shows stark
differences, we will use permutation tests for all power comparisons. We emphasize that permutation tests will
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only be valid when there are no nuisance covariates and the censoring distribution is uniform over all individuals.

The purpose of using permutation tests in this simulation study is merely to obtain a fair power comparison of the

different tests under consideration.
All tests will be applied with a specified significance level of a ¼ 0:05. Indicated empirical powers and signif-

icant levels are based on N¼ 1000 simulations. If not stated otherwise, the sample size is n¼ 300.

3.1 Comparison of type I error

All statistical tests under comparison are asymptotic tests, exploiting the fact that the distribution of the test

statistics converges to a normal or chi-squared distribution. For standard tests in the Cox model, it has been

demonstrated2,3 that the asymptotic approximation for the classical tests is not satisfactory when the number of

events is small compared to the number of covariates. In particular, the actual type I error of such tests if often

higher than specified.
When considering competing risks models, the situation may be even more delicate since these involve fitting of

one single Cox model for each event type. It is hence of crucial interest to investigate the type I error of the tests in

different settings.
For this purpose, we conducted a simulation study varying the number of samples (n¼ 300, 600) and the

number of covariates (q ¼ 1; 5; 10; 15; 20; 50). For the global test, we additionally considered a high-dimensional

scenario with q¼ 1000 covariates; since n> q, all other tests are not feasible in this case. Moreover, we considered

two different censoring distributions. For the first scenario (moderate censoring), censoring is uniform on the

interval ½0; 28� resulting in a censoring rate of approximately 33%. For the second scenario (heavy censoring),

censoring is uniform on the interval ½0; 18� resulting in a censoring rate of approximately 54%. The baseline

hazards for the two event types are equal with hðkÞð�Þ 	 0:05 and the distribution of the covariates was simulated

via a multivariate normal with identity covariance matrix, i.e. the covariates are pairwise independent. Since we

are investigating the type I error of different tests, we assumed that the null hypothesis H0 is true, i.e. b
ðkÞ
l ¼ 0 for

k ¼ 1; . . . ;m and l ¼ 1; . . . ; q. All tests were applied with a specified significance level of a ¼ 0:05.
Figure 1 illustrates the results of the simulations. We first note that the global test satisfyingly controls the

specified level of significance in all situations, even when the number of covariates is much larger than the sample

size. Like its counterparts for Cox regression11 or the generalized linear model,16 the global test for competing

risks rather seems to be slightly conservative, in particular for situations where only few covariates are involved.
On the other hand, the rejection rate of the LRT is close to 0.05 in all scenarios with one variable but rises with

an increasing number of variables. For q¼ 50 covariates, the type I error largely exceeds the nominal level of 0.05

in all scenarios under consideration. The Wald test shows a similar behavior as the LRT, however its type I error

is consistently lower than that of the LRT. Somehow surprisingly, at least for uniform censoring, the Wald test

seems to perform better in the scenarios with heavy censoring compared to the scenarios with moderate censoring.
To ensure reliable results for regression estimates, standard practice is to follow the one-in-ten rule proposed by

Harrell et al.,17,18 which recommends that at least 10 events per predictor covariate should be available. In the

following, we will adapt the concept of EVP for investigating the question, at what point considerable problems

with standard tests arise. To be precise, we consider the EPV ratios for the rarest cause, i.e. the cause with the

fewest events. Adapting this idea, we remark for the four displayed scenarios that moderate problems (type I error

� 0:07) with the significance level of the LRT first occur at EPV values from 4.3 to 9.6 for the rarest cause. For the

Wald test, the rejection rate first exceeds 0.07 at EPV values from 3.2 to 9.6 for the rarest cause.
The given results imply that the LRT and the Wald test should be used with extreme caution when the number

of covariates and/or event types is high.
Due to the substantial problems of controlling the type I error shown by the LRT and the Wald test, power

comparisons of the asymptotic versions of the global test with these competitors are difficult to interpret, even

more so since the global test itself is rather conservative. Consequently, we used permutation versions of all

competing tests for the power comparisons.

3.2 Power comparison in the situation of two different causes of failure

Most competing risks applications have only two causes of failure, usually death and some other event of interest.

In cancer studies for example, one typically considers death and relapse. Similarly, for dialysis patients, competing

risks may be death on dialysis and receiving a kidney transplant.6 Due to its importance in practice, we focus on

the two-event-type case first.
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Since the actual a-level of the LRT and the Wald test can be much larger than 5%, we used permutation
versions of all tests to achieve a fair comparison. Notably, we conducted a permutation version of the global test
as described in Section 2.2. Permutation versions of the LRT and the Wald test are obtained analogously. Since in

this simulation study there are no nuisance covariates and censoring is non-informative, permutation tests are
valid. We note that in practice, we will often consider nuisance covariates or it may be reasonable to assume that
the censoring mechanism depends on the covariates. Since permutation tests are not valid then, the asymptotic

global test is the only test under consideration which reliably controls the specified nominal level under small EVP
values. The use of permutation tests in this simulation study merely serves the purpose of providing a fair

benchmark for the different tests.
In the simulations for two event types, we varied the number of covariates (q ¼ 2; 5; 10; 15; 20) and the baseline

hazards for the first and second cause with ðhð1Þð�Þ; hð2Þð�ÞÞ 	 ðð0:05; 0:05Þ; ð0:07; 0:03Þ; ð0:09; 0:01Þ; ð0:095; 0:005ÞÞ.
With decreasing baseline hazard hð2Þð�Þ, events related to the second cause become less and less frequent, allowing

Figure 1. Empirical type I error of the global test, the LRT, the Wald test, and the LRT-OS for different numbers of variables
(q ¼ 1; 5; 10; 15; 20; 50; 1000) and sample sizes (n¼ 300, 600). The censoring on the left-hand side is uniform on ½0; 28� resulting in a
censoring rate of approximately 33% over all scenarios. The censoring on the left-hand side is uniform on ½0; 18� resulting in a
censoring rate of approximately 54% over all scenarios. The specified significance level is a ¼ 0:05. The results are based on N¼ 1000
simulations.
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to investigate the influence of rare event types on the power of different tests. The regression coefficients on the

two different causes of interest are given by

bð1Þ ¼ ð 0:25; 0; . . . ; 0Þ0 bð2Þ ¼ ð 0; 0:25; 0; . . . ; 0Þ0 (12)

Hence, the first covariate is associated with cause 1 while the second covariate is associated with cause 2. All

other q – 2 predictors are noise variables that do not impact survival.
Figure 2 illustrates the results of the simulations. First, we note that the global test, the Wald, and the LRT

show virtually the same performance for the scenario with hð1Þð�Þ ¼ hð2Þð�Þ 	 0:05 The average number of events is

approximately 94 resulting in EPV values for the rarest causes ranging from 1.9 (q¼ 50) to 47 (q¼ 2). The LRT

for overall survival shows a substantially worse performance in this case, which is not surprising since different

covariates are linked with different causes.

Figure 2. Power of permutation versions of the global test, the LRT, the Wald test, and the LRT-OS for different numbers of variables
(q ¼ 2; 5; 10; 15; 20) and two event types, where the specified significance level is a ¼ 0:05. The regression coefficients are given in
equation (12). The results are based on N¼ 1000 simulations and a sample size of n¼ 300. The censoring times are uniformly
distributed on the interval ½0; 28� resulting in censoring rates from 33% to 34%.
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In situations, where one event type is rarer than the other, the global test shows slight to moderate advantages

compared to the LRT and the Wald test. In particular, the power of the global test slightly increases with

differences in the baseline hazards, whereas the power of the LRT decreases. The power of the Wald test decreases

similarly, but the effect seems to be less severe than for the LRT. Noting that the average number of events for

cause 2 is 20 for the scenario with hð2Þð�Þ 	 0:01 and 10 for hð2Þð�Þ 	 0:005, we see that considerable differences

(>0.05) between the global test and the other two tests test first arise when the EPV is 4.07 (for the scenario with

hð2Þð�Þ 	 0:01 and q¼ 5 covariates) and 5.18 (for the scenario with hð2Þð�Þ 	 0:005 and q¼ 2 covariates). When the

number of events is close to the number of covariates, i.e. the EPV is close to 1, the differences are quite sub-

stantial, in particular between the global test and the LRT.
The performance of the LRT for overall survival gets substantially better with rarer event types. This is clearly

due to the fact that overall survival is largely associated with the first covariate in these settings.
These results allow to draw interesting conclusions. First, the performance of the global test is either better than

or equal to the other tests in all displayed situation, hence it uniformly dominates its competitors in these settings.

Second, when one event type is much rarer than another, pooling can help to increase the power of a correspond-

ing LRT even in situations, where different covariates are associated with different event types. Yet, we emphasize

that no such pooling is necessary when applying the global test for competing risks.

3.3 Power comparison for more than two different causes of failure

In most applications, analysis is restricted to one or two different event types. This is often an oversimplification

of medical reality, which is carried out for facilitating documentation and mathematical modeling. However, in

the course of many diseases, a large number of interesting events can occur and modeling them separately may

give deeper insights into the disease. Analyses considering a multitude of different events have been emerging in

recent years5,19 and we expect the number of corresponding studies to increase in the future.
The simulations in this subsection compare the performance of the tests under consideration for the setting of

m¼ 4, 8 event types, varying the number of variables, q ¼ 5; 10; 15; 20. For the baseline hazards, we considered a

balanced situation where hðkÞð�Þ 	 0:1=m for all k ¼ 1; . . . ;m and an imbalanced situation, where half of the event

types are rare, given by

hðkÞð�Þ 	
0:16=m for k odd;

0:04=m for k even

(
(13)

The regression coefficients are given by

bk ¼
ð 0; . . . ; 0
zfflfflfflfflffl}|fflfflfflfflffl{k�1

; 0:5; 0; . . . ; 0
zfflfflfflfflffl}|fflfflfflfflffl{q�k�2

Þ0 for k 2 1; . . .
m

2

� 	
;

ð 0; . . . ; 0
zfflfflfflfflffl}|fflfflfflfflffl{q

Þ0 for k 2 m

2
þ 1; . . . ;m

� 	
8>>>>>><>>>>>>:

(14)

Hence, for k 2 1; . . . m2

 �

, the kth cause of interest is associated with the kth covariate, whereas the causes
m
2 þ 1; . . . ;m

 �

are not associated with any covariate. Notably, for the case of imbalanced baseline hazards, half of

the rare and half of the non-rare causes are associated with a covariate. Censoring times were again uniformly

distributed on the interval ½0; 28� resulting in censoring rates of 33%–34%.
As in Section 3.3, we used permutation versions of the global test, LRT, and score test to achieve a fair

comparison. The simulation results are illustrated in Figure 3.
The results are similar to the findings of Section 3.2. Notably, in the balanced scenarios, the global test shows

only a slight or no advantage compared to the other tests; in the setting with q¼ 5 covariates and m¼ 4 balanced

event types (EPV for the rarest cause 8.7), the results are virtually identical (global: 0.888, LRT: 0.888, and Wald:

0.887). In the imbalanced scenarios, however, in particular when more variables are involved, the global test

clearly outperforms the LRT and the Wald test. The LRT for overall survival is not competitive in these scenarios,

demonstrating that pooling gets more complicated if more event types are present.
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Comparing the Wald test with the LRT, the impression of the previous two subsections is confirmed. While the
performance of the LRT and the Wald test is virtually identical for the balanced hazards scenarios, the Wald test
seems to be more robust to settings with rare events where the EVP for the rarest cause is small.

In terms of EPVs, we observe that the permutation version of the global test shows pronounced power
advantages (>0.05) to the LRT and the Wald test when the EPV values for the rarest cause are between 1 and
2, e.g. in the imbalanced scenario with m¼ 4 events and q¼ 15 variables (EPV 1.2), in the imbalanced
scenario with m¼ 8 events and q¼ 5 variables (EPV 1.4) or in the balanced scenario with m¼ 8 events and
q¼ 10 variables (EPV 1.8)

While the differences in cases with higher EVPs appear not to be so strong, we emphasize that permutation
tests are only valid when one does not correct for additional covariates in the model (e.g. possible confounders)
and censoring is not uniform over all individuals. If these assumptions are violated, the null hypothesis is not
exchangeable, consequently permutation versions of all tests under consideration do not control the specified level
of significance.

Figure 3. Power of permutation versions of the global test, the LRT, the Wald test, and the LRT-OS for different numbers of variables
(q ¼ 5; 10; 15; 20) and numbers of event types m¼ 4, 8, where the specified significance level is a ¼ 0:05. Two different scenarios are
considered for the baseline hazards. In the balanced case, all baseline hazards are equal with hðkÞð�Þ 	 0:1=m. For the imbalanced case,
see equation (13). The regression coefficients are given in equation (14). The results are based on N¼ 1000 simulations and a sample
size of n¼ 300. The censoring times are uniformly distributed on the interval ½0; 28� resulting in censoring rates from 32% to 33%.
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On the other hand, we have seen in Section 3.1, that while the parametric version of the LRT and the

Wald test can already show problems with type I error control for larger EPV values than 2, the

parametric version of the global test reliably controls its significance level even for EPV values substantially

smaller than 1.

3.4 Influence of correlation structure

In Sections 3.1–3.3, we were assuming for simplicity that the predictors are pairwise independent. In these settings,

the global test outperforms its competitors if the number of EPV for the rarest cause is low. For larger EPV

values, the performances of the global test, the Wald test, and the LRT are virtually identical.
When assuming correlation between the predictors14 however, the power of the different tests under consid-

eration can differ substantially even for high EPV values. Depending on the correlation structure of the predictors

and the regression coefficients b, the global test may be more or less powerful than standard tests.
To investigates these effects, we performed simulations varying the pairwise correlation between the predictors

(q ¼ 0; 0:2; 0:4; 0:6; 0:8). We considered two different event types, where the baseline hazard for both causes is

hðkÞð�Þ 	 0:05. The censoring times were uniformly distributed on the interval ½0; 28� leading to a censoring rate of

approximately 33% in all settings.
Two scenarios settings with q¼ 4 covariates were investigated. In Scenario A (“opposing effects”), the regres-

sion coefficients on causes 1 and 2 are given by

bð1Þ ¼ ð 0:25=cq; � 0:25=cq; 0; 0Þ0 bð2Þ ¼ ð 0; 0; 0:25=cq; � 0:25=cqÞ0 (15)

where

c2q :¼ ð 1; � 1; 0; 0ÞRðqÞ ð 1; � 1; 0; 0Þ0

In Scenario B (“parallel effects”), we assumed

bð1Þ ¼ ð 0:25=nq; 0:25=nq; 0; 0Þ0 bð2Þ ¼ ð 0; 0; � 0:25=nq; � 0:25=nqÞ0 (16)

with

n2q :¼ ð 1; 1; 0; 0ÞRðqÞ ð 1; 1; 0; 0Þ0

The normalizing constants cq and nq were chosen in a way such that the standard deviation of the linear

predictor is always 0.25 leading to a good comparability among different scenarios and choices of q.
The results of the simulations are illustrated in Figure 4. While the powers of the competing tests are virtually

identical for q¼ 0, stark differences occur when correlation is present. Notably, the Wald test and the LRT are

known to be invariant under changes of correlation structure and choices of different regression coefficients. The

global test on the other hand shows excellent performance in Scenario B, but completely fails for higher values of

q in Scenario A.
The behavior of the global test for correlated covariates has been investigated in the linear model case in

Goeman et al.14 Notably, it is argued that the global test is more powerful than the F-test against alternatives for

which large variance principal components of the data matrix X explain most of the variation in the response. On

the other hand, if small variance components of X explain most of the variation in the response, the F-test is more

powerful. Since the global test for the linear model and the global test for competing risks are similar in nature, it

can be expected that the global test for competing risks shows a similar behavior.
Indeed, assuming q > 0, the principal component with the largest variance corresponds to the eigenvector

w ¼ ð1; 1; 1; 1Þ

of R. All other principal components have the same variance and correspond to the eigenspace orthogonal to w.
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While in Scenario B, the principal component corresponding to w explains a big fraction of the variation of the

linear predictors for both causes, it does not explain any variation of the linear predictors in Scenario A.

Consequently, in this situation, all variation is explained by small variance principal components.
The above considerations give a heuristic explanation for the differences in performance between the global test

and the other tests, which are illustrated in Figure 4. In particular, one should be aware that the global test

features little power against those alternatives, where a big fraction of the variation of the response can be

explained by small variance principal component of the data matrix.
However, as Goeman et al.14 note, it may be argued that small variance principal components are often

dominated by uninformative noise, which can safely be assumed to be not related to the endpoint. On the

other hand, the large variance principal components, i.e. the main patterns of variation in the data, are typically

driven by the actual biological signal. Following this argumentation, Scenario A will occur much more rarely in

practice than Scenario B. While we acknowledge that there may be some applications, where the LRT and the

Wald test outperform the global test, extreme cases (such as, e.g. outlined for correlation 0.6 or 0.8 on the left-

hand side of Figure 4) are rather unrealistic. We believe that this disadvantage gets clearly outweighed by the

better performance of the global test for associations driven by large variance principal components. Also, we

emphasize that there are situations, where the LRT and the Wald test are not feasible (if the sample size n is larger

than the number of covariates q), the corresponding ML estimate does not safely converge (if the number of

events is larger than q) or they do not control the nominal type I error (if the EPV ratio is small). In these

situations, the global test is the method of choice.

4 Real data examples

4.1 Competing risks model

The first dataset under consideration was collected by the EBMT and comprises several thousand leukemia

patients who had received bone marrow transplantation in the years from 1985 to 1998. The data are available

as part of the R package mstate20 on the Comprehensive R Archive Network.
For the purposes of this application, we restrict our analysis to all patients diagnosed with chronic myeloge-

nous leukemia, who received transplantation between 1995 and 1998 and had non-missing T-cell depletion (TCD)

status (sample size n¼ 851). The covariates in this dataset are age (categorized with levels “�20 years”, “20–40

years,” and “>40 years”), donor-recipient gender match (“No gender mismatch” and “Gender mismatch”), and

TCD status (“No T-cell depletion” and “T-cell depletion”).

Figure 4. Power of permutation versions of the global test, the LRT, the Wald test, and the LRT-OS for two event types, where the
specified significance level is a ¼ 0:05. We consider q¼ 4 variables and regression coefficients as given in equations (15) and (16). The
results are based on N¼ 1000 simulations and a sample size of n¼ 300. The censoring times are uniformly distributed on the interval
½0; 28� resulting in censoring rates of approximately 33% in all settings.
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The following causes of death were distinguished: death due to relapse, GvHD, bacterial infection, viral

infection, fungal infection, and other causes. The median follow-up time is 48.2months. Table 1 summarizes

the characteristics of the individuals in the dataset. We emphasize that the data were simplified for the purpose of

illustration and no clinical conclusions should be drawn from it.
The goal of this application is to test the null hypothesis of no impact of the covariates age, donor-recipient

gender match, and TCD status on any of the six different causes of death. We can recognize from Table 1 that

there are several rare event types in this dataset. Notably, using dummy coding for the covariate age, the number

of covariates under consideration is q¼ 4. This yields critical EPV values for the causes bacterial infection (EPV

1.25), viral infection (EPV 1.5), and fungal infection (EPV 3.75).
Since it is unlikely that they will control the nominal type I error (see Section 3.1), the LRT or Wald test should

not be directly used in this situation. A typical analysis of this dataset using classical tools would now involve

pooling of event types, thereby ignoring the differences between several rare causes of death. However, the

simulation results in Section 3.1 yield that the global test for competing risks reliably controls the specified

level of significance even in situations where there are more covariates than events.
Hence, the global test for competing risks can be directly applied on testing the null hypothesis of interest. Applying

the parametric version of the global test yields a p-value of pparametric ¼ 2:82� 10�4. The global test hence shows

strong evidence that the covariates are associated with at least one cause of death. In particular, assuming the usual

significance level of 0.05, we would reject the null hypothesis of no impact of the covariates on any cause of death.
At this point, it would be interesting for a practitioner, which causes of death are influenced by the covariates.

One way to investigate this question, while attaining strict family-wise type I error control is to apply a closed

testing procedure.21 For this purpose, we consider all 26–1 subsets of the six different causes. The hypothesis if a

subset of causes is associated with the covariates is only tested if all supersets of causes were significantly asso-

ciated. This procedure also allows to calculate a multiplicity adjusted p-value22 for each hypothesis, which is the

maximum of the p-value of the test itself and of the p-values corresponding to all its supersets. Table 2 lists the

multiplicity adjusted p-value for all single causes. Moreover, we also show the multiplicity adjusted p-values of

the sets of causes, which were significant at a level of 0.05, but none of their subsets was.
This table provides further insight into the association of the causes and covariates. Notably, relapse is the only

single cause that is significantly associated with the response. On the other hand, while GvHD itself features a

p-value of slightly larger than 0.05, there seems to be some evidence that it may be associated with the covariates,

since all supersets were significant. Finally, the closed testing procedure showed up a significant association of at

least one of the causes bacterial infection and fungal infection with the covariates. Given the small number of

events for these causes, this is a conclusion that a standard analysis could hardly provide.

4.2 Multistate model

The second data example was also collected by the EBMT and contains detailed information about the progress

of 2279 leukemia patients after bone marrow transplantation. The progress of the disease of each patient can be

Table 1. Patient characteristics for the real data example from the EBMT registry.

Age <¼20 65 (7.6%)

20–40 414 (48.6%)

>40 372 (43.7%)

Donor-recipient gender match No gender mismatch 632 (74.3%)

Gender mismatch 219 (25.7%)

TCD status No T-cell depletion 754 (88.6%)

T-cell depletion 97 (11.4%)

Cause of death Alive 641 (75.3%)

Relapse 36 (4.2%)

GvHD 91 (10.7%)

Bacterial infection 5 (0.6%)

Viral infection 6 (0.7%)

Fungal infection 15 (1.8%)

Other 57 (6.7%)

EBMT, European Society for Blood and Marrow Transplantation; TCD, T-cell depletion; GvHD, graft-versus-host disease.
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described by a multistate model with six different states (Transplant, Platelet Recovery (PR), Acute GvHD
(AGvHD), PR and AGvHD, Relapse, and Death) and 12 possible transitions. For each patient, the covariates
age (�20, 20–40, >40), donor-recipient gender mismatch (Yes/No), GvHD prevention (No TCD, þTCD), and

year of transplant (1985–1998, 1990–1994, 1995–1998) were provided. Detailed descriptive statistics on the dataset
can be found in Fiocco et al.23 Throughout this data example, we will consider a “clock reset” model.

When modeling the impact of covariates on specific transitions, one may assume that the regression
coefficients for transitions going into the same state or that are characterized by a similar clinical event
are equal. On the one hand, such an assumption leads to a simplification of the multistate model, making it

easier to interpret for practitioners. On the other hand, it may lead to more reliable estimates for the regression
coefficients in settings where the EPV ratio for some of the transitions is small. However, it is clearly highly

undesirable to make such an assumption, when the true regression coefficients differ. This urges a need for a
procedure that enables testing the null hypothesis that the regression coefficients for a subset of transitions S are
the same.

As already pointed out in Section 2.3, the global test for multistate models allows for testing this null hypoth-
esis. For this purpose, we first fit a single stratified Cox model on the transitions in S assuming different baseline

hazards, but the same coefficients for each transition in S. Subsequently, we reparametrize bðjkÞl ¼ cl þ dðjkÞl , where
bðjkÞl is the lth regression coefficient for the transition j ! k and cl is the lth regression coefficient obtained

from the fit of the single stratified Cox model on all transitions in S. Considering the null hypothesis dðjkÞl ¼ 0,
we can now test for equality of the regression coefficients.

In the dataset under consideration, there are four different transitions going into the state relapse (from
“Transplant”, “PR”, “AGvHD”, and “PR and AGvHD”) and four different transitions going into death
(from the same states that have a transition going into relapse). Testing for equality of the regression coefficients

of the transitions going into relapse, we obtain a p-value of 0.523, an analogous test for the transitions going into
death yields a p-value of 0.398. Both tests show no strong evidence for a violation of the assumption that the
regression coefficients of the corresponding transitions are equal.

Additionally, to the sets of transitions going into the same states “Death” and “Relapse”, there are two sets of
transitions that are characterized by the same clinical event. Notably, these are the sets

f“Transplant” ! “PR”; “AGvHD” ! “PR and AGvHD”g (characterized by the event “PR”) and
f“Transplant” ! “AGvHD”; “PR” ! “PR and AGvHD”g (characterized by the event “AGvHD”). Testing

for equality of the regression coefficients of the transitions characterized by the events, PR and AGvHD yield
p-values of 0.326 and 0.941, respectively.

In summary, no strong evidence of differing regression coefficients within the four considered subgroups of
transitions could be found. It is hence an interesting option to fit four stratified Cox regressions instead of 12
different Cox regressions. Reducing the number of regression coefficients from 72 to 24, this would substantially

facilitate the interpretation of the model.

Table 2. Multiplicity adjusted p-values for single causes and significant subsets of causes.

Subsets of causes

Multiplicity

adjusted p-value

{Relapse} 0.003

{GvHD} 0.054

{Bacterial infection} 0.079

{Viral infection} 0.064

{Fungal infection} 0.114

{Other} 0.063

{GvHD, Bacterial infection} 0.049

{GvHD, Viral infection} 0.046

{GvHD, Fungal infection} 0.033

{GvHD, Other} 0.015

{Bacterial infection, Viral infection} 0.042

{Viral infection, Other} 0.049

{Fungal infection, Other} 0.032

GvHD, graft-versus-host disease.
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5 Discussion

In situations, where the occurrence of many different event types is modeled, standard inference for competing

risks models often does not perform well. For the particular problem of testing, the null hypothesis of “no effect of

the predictors on any event type”, we have presented evidence for the shortcomings of standard tests, such as the

LRT in the cause-specific hazards model. Moreover, we have developed an alternative test for this specific null

hypothesis, which does not suffer from these shortcomings. Notably, this test—the global test for competing risks

analysis—reliably controls the specified level of significance in all settings considered, even when the number of

covariates is larger than the number of events. Moreover, it clearly outperforms its competitors in terms of power

in settings with rare event types. We emphasize again that the permutation tests used for obtaining a fair power

comparison are only valid when the censoring is uninformative and there are no nuisance covariates. Since these

assumptions rarely hold in practice and the parametric version of the LRT and the Wald test does not reliably

control the nominal type I level, the parametric version global test is the only feasible option for small EPV values.
There are also limitations of the novel test, that we have pointed out in Section 3.4. In particular, the test has

low power against alternatives for which changes in the small variance principal components explain most of the

variation in the response. However, those scenarios are rather unlikely to occur in practice since small variance

principal components are typically related to noise, whereas the actual signal is dominated by large variance

principal components.
On the other hand, we barely touched the aspect that the global test can also be applied in the n 
 p setting,

where the LRT and the score test are not feasible. For high-dimensional situations, it can be expected that the

global test for competing risks shows a similar performance as the related global test for survival11 and examples

of the application of this test on high-dimensional molecular data are given in Goeman et al.11

We would like to emphasize that in order to derive the global test for competing risks, we established a general

global test for the stratified Cox model, which can be applied in many settings outside of the area of competing

risks. As an important example, we have shown in Section 2.3 that a global test for general multistate models can

be derived using the results from Section 2.1. The extension for multistate models enables testing the null hypoth-

esis that the effects of some covariates are the same for a subset of transitions. This is useful in applications, where

such an assumption is often made to reduce the number of parameters and we have given an example for such an

application in Section 4.2. In addition, a global test for the conditional logistic regression model arises as another

important special case of the global test for the stratified Cox model.
The focus of this work was on the low-dimensional competing risks setting, where we showed that there are

many situations where the global test for competing risks should replace the LRT for cause-specific hazards as a

standard method. However, the shortcomings of inference based on maximization of the partial likelihood do not

solely affect testing of the global null hypothesis. Apart from that, important issues in practice are parameter

estimation and testing for the effect of single predictors. Evaluating the potential of adapting high-dimensional

methodology such as regularized regression24,25 to tackle these issues may be a promising direction for further

research.
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