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Abstract
Some neural circuits within infants are not fully 
developed at birth, especially in preterm infants. 
Therefore, it is unclear whether reflexes that affect 
breathing may or may not be activated during the 
neonatal stabilisation at birth. Both sensory reflexes 
(eg, tactile stimulation) and non-invasive ventilation 
(NIV) can promote spontaneous breathing at birth, but 
the application of NIV can also compromise breathing 
by inducing facial reflexes that inhibit spontaneous 
breathing. Applying an interface could provoke the 
trigeminocardiac reflex (TCR) by stimulating the 
trigeminal nerve resulting in apnoea and a reduction 
in heart rate. Similarly, airflow within the nasopharynx 
can elicit the TCR and/or laryngeal chemoreflex (LCR), 
resulting in glottal closure and ineffective ventilation, 
whereas providing pressure via inflations could stimulate 
multiple receptors that affect breathing. Stimulating the 
fast adapting pulmonary receptors may activate Head’s 
paradoxical reflex to stimulate spontaneous breathing. 
In contrast, stimulating the slow adapting pulmonary 
receptors or laryngeal receptors could induce the Hering-
Breuer inflation reflex or LCR, respectively, and thereby 
inhibit spontaneous breathing. As clinicians are most 
often unaware that starting primary care might affect 
the breathing they intend to support, this narrative 
review summarises the currently available evidence on 
(vagally mediated) reflexes that might promote or inhibit 
spontaneous breathing at birth.

Introduction
Most very preterm infants breathe at birth, but 
this is often insufficient for adequate respiratory 
gas exchange, requiring infants to initially receive 
non-invasive ventilation (NIV) (eg, continuous 
positive airway pressure (CPAP), intermittent posi-
tive pressure ventilation (iPPV)) via a face mask 
or bi-nasal prongs.1 2 By applying a positive pres-
sure to the airway, NIV increases the surface area 
for gas exchange by promoting alveolar liquid 
absorption and by preventing alveolar collapse at 
end-expiration.3 NIV strategies are universally 
adopted as the first choice for respiratory support 
at birth, but their effect on breathing is unclear. It 
is well established that cutaneous sensory reflexes 
(eg, tactile stimulation), can stimulate the respi-
ratory centre and thereby increase spontaneous 
breathing.4 5 However, the application of NIV may 
have a variable response. By improving oxygen-
ation, it could stimulate breathing, but it could also 
induce vagally mediated reflexes that inhibit spon-
taneous breathing at birth. As neural circuits are 

more immature in preterm infants, the breathing 
responses to different types of stimuli are unclear.6 7

In this review, we discuss the current available 
evidence on (vagally mediated) reflexes that might 
promote or counteract spontaneous breathing of 
the preterm infant at birth. We performed a liter-
ature search on PubMed for reviews and (pre)
clinical studies investigating the trigeminocardiac 
reflex (TCR), Hering-Breuer inflation and defla-
tion reflex, Head’s paradoxical reflex and laryngeal 
chemoreflex (LCR) in newborns. The reference list 
of included articles was checked to identify articles 
excluded in the primary search.

Applying an interface
Most very preterm infants receive respiratory 
support at birth. While it is assumed that the appli-
cation of an interface (eg, face mask) to the infant’s 
face should support breathing, it may trigger a 
vagally mediated reflex via the trigeminal nerve 
that innervates the skin of the face. Applying a face 
mask with adequate pressure to acquire seal and 
prevent mask leak could activate the cutaneous 
stretch receptors of the trigeminal nerve, leading to 
apnoea and a decrease in heart rate.2 This trigem-
inal response is often referred to as the diving reflex 
which is one of the three peripheral subtypes of the 
TCR. The diving reflex covers the first branch of 
the trigeminal nerve and can be stimulated by cold 
air or water to the infant’s face. Two other TCR 
subtypes are the oculocardiac reflex, which can be 
stimulated by pressure on the eye globe, and the 
maxilla-mandibular/nasopharyngeal reflex covered 
by the second and third branch.8 9 As the face 
mask is placed over the mouth and nose covering 
all three branches of the trigeminal nerve, we will 
refer to the effect of the facemask as the periph-
eral TCR in general. The peripheral TCR is an 
oxygen preserving brainstem reflex, which can be 
activated by stimulating at least one of the three 
branches of the trigeminal nerve. The intensity of 
the TCR depends on the type (pressure, thermic or 
nociceptive,10 duration, intensity and localisation 
of the trigeminal stimuli.6 10–13 During activation 
of the peripheral TCR there is a strong synergistic 
co-activation of the parasympathetic and sympa-
thetic system resulting in closure of the larynx 
which will tend to avoid aspiration, a reduction 
of heart rate thereby lessening oxygen consump-
tion, and peripheral vasoconstriction which should 
preserve cerebral blood flow and delay progression 
of asphyxia.14 Thus, activating the peripheral TCR 
could lead to apnoea, bradycardia and closure of 
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the larynx, which can severely hamper NIV during stabilisation 
of preterm infants at birth.

The effects of applying a face mask in infants have been 
reported in several studies. Studies in term infants reported a 
change in breathing pattern with an increased tidal volume and 
decreased breathing rate after application of just the face mask 
rim, which persisted for at least 5 min and returned to control 
values after removing the rim.15–17 There might be a threshold 
to exceed for provoking the peripheral TCR as applying a light-
weight cardboard ring did not have similar effects as compared 
with a face mask (rim). We recently investigated the effect of 
applying a face mask on breathing in preterm infants and 
observed that in 54% of infants who were initially breathing, 
stopped breathing after applying the face mask and these infants 
had a lower heart rate as well.2

To avoid the use of face mask, different interfaces could be 
considered. Bi-nasal prongs, a single nasal tube or a nasal mask 
could diminish stimulation of the sensitive area around the 
mouth and nose and decrease the chance of inducing a TCR. 
Previous studies18–20 comparing a single nasal tube with a face 
mask reported no differences in breathing, oxygen saturation 
and heart rate between the interfaces during respiratory support 
at birth. It is possible that any or all of the various hand-held 
interfaces may result in stimulation of the trigeminal area. A 
randomised study21 comparing bi-nasal prongs and face mask 
during neonatal resuscitation reported less intubations and chest 
compressions when bi-nasal prongs were used. However, the 
effect of applying bi-nasal prongs or nasal mask on breathing in 
preterm infants at birth has so far not been investigated.

The use of a laryngeal mask for NIV may be an alternative 
approach for avoiding the TCR, although placing the laryn-
geal mask could stimulate the mechanoreceptors of the larynx 
and provoke the LCR leading to apnoea and bradycardia. 
Currently, a large randomised trial (n=1240), the NeoSupra 
(NCT03133572), is comparing a supraglottic airway (i-gel) and 
face mask as interface for preterm infants at birth. While this 
trial is ongoing, the direct effect of the interface on breathing has 
not been defined as an outcome measure.

Airflow
In addition to applying a face mask, airflow could also stimulate 
the nasal mucosa and/or skin and thereby trigger the peripheral 
TCR. Breathing rates and heart rates were reduced in preterm 
infants when a sudden airstream was delivered via the nostrils 
to infants at 1 cm distance from their face.7 Humidification 
and temperature of the air given could play an important role 
in inducing this response. While heated and humidified gases 
are used to reduce hypothermia, this may then also have an 
additional positive effect on breathing at birth.22 Whether only 
the temperature of the airstream or also the airstream itself is 
responsible for triggering the peripheral TCR is unclear.

Airflow can elicit the LCR as well. The LCR can be induced by 
chemical and mechanical stimuli as it protects the airway from 
aspiration of materials into the lungs. The LCR can differentiate 
between liquids based on the chemical composition, particu-
larly their chloride ion concentration. As foetal lung liquid has 
a high chloride ion concentration, the glottis tends to close in 
response to liquids with lower chloride ion concentration (eg, 
upper airway secretion or gastric fluid),23 which is thought to 
prevent the entry of liquids that might be hazardous to the lower 
airways. Next to this chemical stimuli, different mechanorecep-
tors are sensitive to mechanical stimuli, such as pressure, air flow 
and laryngeal movements.24 These receptors are innervated by 

the superior laryngeal nerve, which may activate a reflex similar 
to the TCR.25 26 In a study using newborn kittens and puppies 
the investigators observed that the LCR inhibited breathing 
when the flow receptors in the upper airway were stimulated 
with cold or warm air, while this did not occur when a local 
anaesthetic was applied to the laryngeal area or when the larynx 
was bypassed.27

Pressure (CPAP, sustained inflations and iPPV)
While NIV is often used and intended to support breathing, the 
pressure given can stimulate laryngeal and pulmonary receptors, 
for example, stretch-receptors, irritant-receptors and J-recep-
tors.25 28 When the pressure-sensitive laryngeal receptors are 
activated, laryngeal closure and thus apnoea could occur. Pulmo-
nary receptors can be activated in different ways. Stretch and 
irritant receptors are stimulated by lung inflation and/or chem-
ical irritants. J-receptors are stimulated by interstitial oedema, 
likely activated during lung aeration at birth due to the clearance 
of airway liquid into lung tissue by inflations and/or sponta-
neous breaths.25 When the glottis is open and the lungs are being 
aerated, lung inflations may stimulate the pulmonary stretch 
and/or irritant receptors, triggering the Hering-Breuer reflex 
and/or Head’s paradoxical reflex.25 29

Hering-Breuer reflex
The Hering-Breuer reflex consists of an inflation and defla-
tion reflex. When lung inflation increases afferent output from 
slowly adapting lung stretch receptors, the refractory time 
between signals from the inspiratory motor neurons increase 
to prevent overdistention of the lungs. This delays the start of 
the next inspiration and prolongs expiration, resulting in both 
a reduction in breathing rate and tidal volume.25 The incidence 
and duration of the inflation-induced apnoea is correlated to 
the functional residual capacity (FRC) in preterm infants.30 
However, this effect might not only be dependent on lung affer-
ents signalling via the vagus (eg, Hering-Breuer reflex), since 
lung inflation should have reduced inspiratory times. In contrast, 
they increased both inspiratory and expiratory times in preterm 
infants, suggesting that a separate mechanical reflex may have 
been activated, that is responsive to factors such as lung volume, 
chest wall reflexes or chest wall stability.30

The deflation reflex can be observed during expiration 
when the lung deflates and could play a role in protecting the 
newborn’s FRC, particularly during accentuated breathing when 
expirations are forced. During forced expirations, pulmonary 
proprioceptors can be activated, which truncate expiration 
by contracting the diaphragm or closing the larynx. Also, irri-
tant receptors can be stimulated, making it possible to inspire 
again. The magnitude of inspiratory response is dependent on 
the breathing rate before the deflation, the amount of reduction 
in lung volume below FRC, deflation pressures and deflation 
rate.31 32 Rapid lung deflation may cause high rates of inward 
rib cage retraction thereby activating the intercostal-phrenic 
inhibitory reflex. This could lead to the same response as seen 
in the Hering-Breuer inflation reflex (eg, inhibition of inspi-
ration).31 33 34 Further studies are needed to define the exact 
mechanism(s) of these reflexes more clearly, however, CPAP can 
reduce the frequency and severity of apnoeic event, perhaps by 
increasing stability of the rib cage.34

Head’s paradoxical reflex
Head’s paradoxical reflex is provoked when lung inflation 
increases the afferent output from the rapidly adapting irritant 
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receptors (into the respiratory centre), stimulating inspira-
tion.32 35 It triggers an infant to abruptly breathe in and might 
be responsible for the first effective inspiratory volume during 
resuscitation and the first appearance of FRC after birth.36–38 
Indeed, Harris et al39 reported that an infant’s first breath 
tended to occur during a sequence of five sustained (2–3 s) infla-
tions after birth, with a median time of 7 s from the first infla-
tion, possibly due to Head’s paradoxical reflex. Thus, Head’s 
paradoxical reflex may help to stimulate breathing and is most 
commonly seen in the first 24 hours of life.40

Spontaneous breaths during sustained inflations in initial 
apnoeic infants are often reported.2 29 41 It is possible, that the 
sustained inflations provoke a Head’s paradoxical reflex, which 
triggers spontaneous breathing. However, it is unclear why lung 
inflation could stimulate the stretch receptors in some infants 
(Hering-Breuer inflation reflex) and the irritant receptors in others 
(Head’s paradoxical reflex). It is quite possible that the degree and 
uniformity of lung aeration could play a role in this distinction.

Cardiovascular response to stimulating pulmonary receptors
In addition to an effect on breathing, pulmonary slow adapting 
receptors that also signal via vagal afferent nerve fibres can influ-
ence the cardiovascular response that is observed during the 
diving reflex.42 Stimulating these pulmonary receptors (eg, lung 
inflations, spontaneous breathing movements) may reduce or 
even abolish the bradycardia associated with the diving reflex.42 
Besides this, it has been suggested that high intrathoracic pressures 
(>15 cmH2O)43 reduce venous return, thereby increasing efferent 
sympathetic activity and heart rate and thus preventing the brady-
cardia associated with the diving reflex from manifesting.42–45

Tactile stimulation
During stabilisation of preterm infants, tactile stimulation is recom-
mended by international guidelines to prevent apnoea and stimu-
late spontaneous breathing.46 47 Rubbing the sole of the foot or 
the infant’s back supposedly activates proprioceptors or somatic/
visceral mechanoreceptors in the thorax, respectively, which 
are known to stimulate spontaneous breathing.48 These afferent 
somatosensory pathways are functional even before 25 weeks of 
gestation.49

If the newborn is apnoeic or has an irregular or unstable 
breathing pattern at birth, the larynx is predominantly closed 
and opens only during a spontaneous breath.50 Therefore, 
NIV could be ineffective in apnoeic infants. Glottis function is 
regulated by the recurrent laryngeal nerves, which form part 
of the vagal trunk, exiting the vagus nerve within the thorax 
and then passing cranially alongside the trachea to innervate the 
glottis.51 As they initially form part of the vagal complex and 
have a variety of both respiratory and non-respiratory functions 
(including postural), it is possible that tactile stimulation (or 
other interventions that stimulate spontaneous breathing) might 
be able to counteract the reflexive closure of the glottis as result 
of the TCR or LCR as well.

Although the use of tactile stimulation has been recommended 
internationally, there is no consensus about how tactile stimula-
tion should be provided; the duration and method of stimulation 
is widely variable between caregivers and centres.52 53

However, a randomised controlled trial48 comparing repet-
itive stimulation to standard stimulation reported a clinically 
relevant improvement in respiratory function in the repetitive 
stimulation group.48 In the repetitive stimulation group, the 
incidence of a tactile stimulation episode was higher and the 
duration of the stimulation episode was shorter. These findings 

are consistent with those of Dumont et al,49 who reported that 
preterm infants habituate to tactile stimulation, with the ability 
to distinguish between stimulus location and inter-stimulus 
time.49 Recently, the effects of different tactile stimulation sites 
have been reviewed and truncal stimulation appeared to be more 
effective in eliciting a response, for example, crying and move-
ments, than foot flicks.54 The physiological benefits of increased 
tactile stimulation that have been observed in preterm infants 
include an increase in oxygen saturation along with significantly 
fewer intubations.52 55

Suctioning
Oronasopharyngeal suction is used in newborns to expedite lung 
aeration at birth by removing amniotic fluid, meconium, mucus 
and/or blood from the pharynx to prevent aspiration into the 
lower airways.56 57 However, suctioning could also stimulate recep-
tors within the laryngeal epithelium and provoke the LCR, leading 
to changes in heart rate and oxygen saturation. Studies investi-
gating the effect of suctioning in newborns immediately after birth 
reported heart rate disturbances, a significantly lower breathing 
rate and an increase in time to reach an arterial oxygen saturation 
≥92%.56 58–60 Therefore, suctioning during or after delivery is not 
recommended when there is clear or no meconium-stained amni-
otic fluid and no obvious obstruction.57

Temperature
When infants are born, there is a sudden environmental tempera-
ture change from the warm uterus (~38°C) to a relatively cool 
ambient room temperature (20°C–22°C). Infants are placed 
under a radiant heater and heated and humidified gases are used 
to prevent hypothermia. Despite the current heath management, 
infants are still at risk for both hypothermia and hyperthermia 
and this could directly affect vagally mediated reflexes.22

Animal data suggest that body temperature directly affects 
vagal activity and thereby may affect breathing activity. Studies in 
newborn rats have demonstrated that hyperthermia ≥38°C and 
ambient air temperature ≥36°C enhanced apnoea induced by 
vagally mediated reflexes, for example, LCR and Hering-Breuer 
reflex.61 62 In contrast, hypothermia reduced the strength of the 
Hering-Breuer reflex.63

The effect of temperature on breathing has been confirmed in 
infants, as both hypothermia and hyperthermia are associated with 
an increased incidence of apnoea.64–66 Neonatal hypothermia could 
affect breathing by reducing lung compliance, causing pulmonary 
vasoconstriction and influencing the recovery from birth asphyxia. 
In infants this led to less effective surfactant therapy, a decrease in 
left atrial pressure and a more severe metabolic acidosis at birth.67 
In addition, prolonged exposure to cold air is associated with 
respiratory distress, delayed circulatory transition and an increased 
morbidity and mortality.68 All of these findings stress the impor-
tance of maintaining normothermia at birth.

Humidification and temperature of the inhaled air are equally 
important. Besides preventing hypothermia, exposure to warm 
air/water (35°C–39°C) inhibits and cold air/water (<26°C) 
stimulates the trigeminal receptors, provoking the TCR. The 
primary excitation factor of nasal receptors seems to be tempera-
ture changes.43 69–71 Yet, very low temperatures (≤4°C) may be 
perceived as painful, thereby activating the sympathetic nervous 
system and increasing the heart rate. This suggests that the 
heart rate response to temperatures applied to the face might 
be J-shaped.72 In line with this finding, face immersion in colder 
water (≤10°C) reduces the maximal apnoeic time and stimulates 
ventilation as result of a cold shock-like response, which drives 
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Table 1  Risk factors and its’ effect on vagally mediated reflexes

Risk factor TCR Hering-Breuer reflex LCR References

Gestational age (increasing) – C ? 2 7 78 79

Postnatal maturation (increasing) – – ? 78 80 81

Gender (male) C ? + 2 9 82

Anaesthesia – – ? 83 84

Maternal medication - (Beta-adrenergic agonist)
+ (selective serotonin reuptake inhibitor)

? - (Beta-adrenergic agonist) 13 85

Prenatal nicotine exposure + ? ? 9 86

Hypoxia + + + 9 62 86–88

Heightens the response (+), weakens the response (-), contradictive literature (C), unknown (?).
LCR, laryngeal chemoreflex; TCR, trigeminocardiac reflex.

inspiration and appears to override the diving response.73 The 
effect of water temperature causes the least response when it is 
considered to be thermoneutral (35.5°C).42 72

Other risk factors
Next to all the factors mentioned above, vagally mediated reflexes 
can be influenced by risk factors aside from the interventions 
involved during the stabilisation. These risk factors are presented 
in table 1. Studies have shown that Hering-Breuer reflex activity 
was independent of race74 and caffeine administration.75–77

Conclusion
While we now recognise that the optimal use of NIV requires 
the infant to breathe spontaneously, the optimal way to stimulate 
and support spontaneous breathing in preterm infants at birth 
is currently unclear. Nevertheless, it is important to recognise 
that simply by applying NIV, we might compromise breathing by 
inducing reflexes. Different vagally mediated reflexes are height-
ened in preterm infants due to neural immaturity and can be 
provoked during the stabilisation. Applying an interface could 
provoke the TCR by stimulating the trigeminal nerve resulting in 
apnoea and a reduction in heart rate. Airflow can elicit the TCR 
and/or LCR, resulting in glottal closure and ineffective ventila-
tion. Pressure via inflations may induce the Head’s paradoxical 
reflex promoting breathing, while the Hering-Breuer inflation 
reflex and LCR inhibits breathing. Tactile stimulation promotes 
spontaneous breathing, which opens the glottis and might coun-
teract the reflexive closure of the glottis as result of the TCR or 
LCR. Suctioning may provoke the LCR as well. In addition to 
this, temperature management is very important as it can influ-
ence vagally mediated reflexes as well.

Clinicians should be aware that starting primary care could 
compromise the breathing they intend to support. Some reflexes 
are inevitable to provoke. Nevertheless, understanding the under-
lying mechanisms, the hierarchy and the thresholds for activating 
these reflexes will be important for improving the primary care 
of neonatal stabilisation. Further studies are warranted to inves-
tigate the mechanism of these reflexes before recommendations 
can be made for an interface or effective ventilation (eg, airflow, 
pressure) during the stabilisation at birth.
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